JP4536131B2 - Insulated power feeder for moving objects - Google Patents

Insulated power feeder for moving objects Download PDF

Info

Publication number
JP4536131B2
JP4536131B2 JP2008135420A JP2008135420A JP4536131B2 JP 4536131 B2 JP4536131 B2 JP 4536131B2 JP 2008135420 A JP2008135420 A JP 2008135420A JP 2008135420 A JP2008135420 A JP 2008135420A JP 4536131 B2 JP4536131 B2 JP 4536131B2
Authority
JP
Japan
Prior art keywords
coil
primary
magnetic pole
magnetic
side coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008135420A
Other languages
Japanese (ja)
Other versions
JP2009284695A (en
Inventor
修 羽畑
則昭 徳田
重幸 岡
治 野呂
一広 阿部
英彦 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Plant Systems Ltd
Original Assignee
Kawasaki Plant Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Plant Systems Ltd filed Critical Kawasaki Plant Systems Ltd
Priority to JP2008135420A priority Critical patent/JP4536131B2/en
Publication of JP2009284695A publication Critical patent/JP2009284695A/en
Application granted granted Critical
Publication of JP4536131B2 publication Critical patent/JP4536131B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、バッテリーを動力とする自走式台車設備のバッテリーに充電する装置に関する。   The present invention relates to an apparatus for charging a battery of a self-propelled cart facility powered by a battery.

従来、バッテリーを動力とする自走式台車(AGV)設備は、一般に、直流12V、24V、36V、48V、ないし96Vの低圧架線に対してコレクタシューを接触させて取電する直接給電方式によりバッテリーを充電してきた。しかし、直接給電方式では、供給電圧が低いため大電流を流すことになり、架線部分やコレクタ部分の損耗が激しく、保守が煩雑であった。また、絶縁していない架線を介して給電するため、露出した充電部分からの漏電が避けられず、安全の確保が難しかった。   Conventionally, a self-propelled cart (AGV) equipment powered by a battery is generally a battery using a direct power feeding method in which a collector shoe is brought into contact with a DC 12V, 24V, 36V, 48V, or 96V low voltage overhead line to collect electricity. Have been charging. However, in the direct power supply method, since a supply voltage is low, a large current flows, and the overhead wire portion and the collector portion are severely worn and maintenance is complicated. In addition, since power is supplied through an uninsulated overhead wire, leakage from the exposed charged part is unavoidable, and it is difficult to ensure safety.

これに対して、電磁誘導を利用した給電装置を使うと給電装置と受電装置の間を絶縁状態にして非接触で給電することができる。
特許文献1には、無人工場等において、フロアやレールなどの固定体に沿って走行する走行台車に給電する方法が開示されている。移動体にコイルを巻いた鉄心を設け、移動体が停止する位置にコイルを巻いた鉄心を配置し、固定体のコイルに通電することにより移動体に電力を供給するものである。
開示方法では、移動体は給電装置と非接触で充電することができるが、移動体を給電場所に停止させて給電する必要がある。
On the other hand, when a power feeding device using electromagnetic induction is used, power can be supplied in a contactless manner with the power feeding device and the power receiving device insulated.
Patent Document 1 discloses a method of supplying power to a traveling carriage that travels along a fixed body such as a floor or a rail in an unmanned factory or the like. An iron core wound with a coil is provided on the moving body, the iron core wound with the coil is disposed at a position where the moving body stops, and power is supplied to the moving body by energizing the coil of the fixed body.
In the disclosed method, the moving body can be charged in a non-contact manner with the power feeding device, but it is necessary to stop the moving body at the power feeding place and supply power.

特許文献2には、移動体の移動中に非接触で給電する技術が開示されている。開示技術によれば、移動体の経路に沿って給電区間と無給電区間を交互に設定し、給電区間に給電制御手段を備えた一次側コイルを敷設し、移動体に二次側コイルを備えて、移動体が給電区間を走行している間だけ一次側コイルに電流を流して、電磁誘導により非接触で移動体に電力を供給することができる。
開示技術では、給電区間に移動体が存在する間は一次側コイルに通電するため、移動体が給電区間に対して小さいときには、漏れ磁束により大きな損失が発生する。また、周囲の導体に渦電流を発生させて過熱するなどの悪影響を及ぼす可能性がある。
Patent Document 2 discloses a technique for supplying power in a contactless manner while a moving body is moving. According to the disclosed technology, the feeding section and the non-feeding section are alternately set along the path of the moving body, the primary side coil including the feeding control means is laid in the feeding section, and the secondary coil is provided in the moving body. Thus, it is possible to supply electric current to the moving body in a non-contact manner by electromagnetic induction by passing a current through the primary coil only while the moving body is traveling in the power feeding section.
In the disclosed technology, since the primary coil is energized while the moving body is present in the power feeding section, when the moving body is smaller than the power feeding section, a large loss occurs due to the leakage magnetic flux. In addition, there may be adverse effects such as overheating by generating eddy currents in the surrounding conductors.

特許文献3には、リニアモーター駆動の搬送装置が開示されている。ここで、移動体にリニアモーターの2次導体を設け、走行経路側にリニアモーター本体を配設してなる搬送装置において、リニアモータ本体に対面する誘導コイルを移動体に取り付け、被搬送物の積み降ろし位置に停止したときあるいは走行中に誘導コイルに誘起される三相交流電圧を整流してバッテリーを充電して、駆動用動力以外の移動体内電力需要に応えるようにしたものが開示されている。
リニアモーター駆動の搬送装置では、駆動用リニアモーターの一次側コイルが走行方向に並べられた櫛歯状コアにY結線された三相誘導コイルが一部重なって1相ずつシフトするように形成されている。開示発明は、この一次側コイルをそのまま転用して制御回路用のバッテリー充電を行う。一次側コイルは移動体を駆動する容量を持っているので、制御用電源としては一次側コイルの一部を利用するだけで十分である。
Patent Document 3 discloses a linear motor-driven transfer device. Here, in a transfer device in which a linear motor secondary conductor is provided on the moving body and the linear motor main body is disposed on the travel path side, an induction coil facing the linear motor main body is attached to the moving body, A battery that charges the battery by rectifying the three-phase AC voltage induced in the induction coil when it stops at the loading / unloading position or during traveling to meet the power demand in the mobile body other than driving power is disclosed. Yes.
In the linear motor driven conveying device, the primary coil of the driving linear motor is formed so that the three-phase induction coil Y-connected to the comb-shaped core arranged in the running direction partially overlaps and shifts one phase at a time. ing. In the disclosed invention, the battery for the control circuit is charged by diverting the primary coil as it is. Since the primary side coil has a capacity for driving the moving body, it is sufficient to use a part of the primary side coil as a control power source.

特許文献4には、定軌道上を走行する無人搬送車に非接触で動力用電力を給電する装置が開示されている。開示発明の非接触給電装置は、軌道に沿って多数配置されスイッチで断接できる一次側コイルと移動体に設けた二次側コイルを備え、二次側コイルと対向する一次側コイルを交流電源に接続して二次側コイルに電流を誘起させる。
移動体側に設けられた下向きコ字形の二次鉄心の対向面は、軌道側の隣り合わせた2個の一次鉄心を覆う大きさとなっている。
開示装置によれば、機械的に非接触で効率的な給電が可能となる。
しかし、移動体が軌道に沿って移動する間に一次鉄心と二次鉄心が対向して重なる面積が変動するので、移動中に励磁電流の大きさが変化する。
特開平3−289302号公報 特開平7−067206号公報 特開平3−007002号公報 実開平6−066201号公報
Patent Document 4 discloses a device that supplies power for power to a guided vehicle traveling on a fixed track in a non-contact manner. A non-contact power feeding device of the disclosed invention includes a primary coil that is arranged along a track and can be connected / disconnected by a switch, and a secondary coil provided on a moving body, and the primary coil facing the secondary coil is connected to an AC power source. To induce a current in the secondary coil.
The opposing surface of the downward U-shaped secondary iron core provided on the moving body side is sized to cover two adjacent primary iron cores on the track side.
According to the disclosed apparatus, it is possible to efficiently supply power without mechanical contact.
However, since the area where the primary iron core and the secondary iron core face each other changes while the moving body moves along the track, the magnitude of the excitation current changes during the movement.
JP-A-3-289302 Japanese Patent Laid-Open No. 7-0667206 JP-A-3-007002 Japanese Utility Model Publication No. 6-066201

本発明が解決しようとする課題は、移動体が移動中に移動体に給電することが可能な、小型軽量な非接触給電装置を提供することである。特に、バッテリーを動力とする自走式台車のバッテリー充電を電気的に絶縁状態を保ったまま行う非接触給電装置を提供することを課題とする。   The problem to be solved by the present invention is to provide a small and lightweight non-contact power feeding device that can feed power to the moving body while the moving body is moving. In particular, it is an object of the present invention to provide a non-contact power feeding device that performs battery charging of a self-propelled carriage powered by a battery while maintaining an electrically insulated state.

上記課題を解決するため、本発明の非接触給電装置は、電磁誘導を利用して地上の一次側コイルからこの一次側コイルに対向する二次側コイルを介して移動体のバッテリーを充電する給電装置であって、一次側コイルはE字形断面をもつ3突極形磁性体の磁極に三相巻線を施したもので3個の磁極を移動体の移動軌跡に対して垂直の方向に配置したものを各相毎に移動軌跡に沿って等しいピッチで複数個配置する。
さらに、移動体に搭載される二次側コイルも一次側コイルと同様の3突極形磁性体の磁極に三相巻線を施したもので磁極の移動体移動方向の長さが一次側コイルの磁極の移動方向ピッチに等しくなっている。
In order to solve the above-described problem, the non-contact power feeding device of the present invention uses a magnetic induction to charge a battery of a moving body from a primary coil on the ground via a secondary coil facing the primary coil. The primary coil is a three salient pole type magnetic body with a three-phase winding on the magnetic pole of an E-shaped cross section, and the three magnetic poles are arranged in a direction perpendicular to the moving locus of the moving body. A plurality of these are arranged at the same pitch along the movement locus for each phase.
Furthermore, the secondary side coil mounted on the moving body is also a three-phase winding on the magnetic pole of the same three salient pole type magnetic body as the primary side coil, and the length of the moving direction of the magnetic pole in the moving body is the primary side coil. It is equal to the movement direction pitch of the magnetic pole.

また、一次側コイルはスイッチを介して三相交流電源に接続され、一次側コイルの磁極と二次側コイルの磁極の重なり状態を検出する重なりセンサを備えて、重なりセンサが両磁極の重なりを検出するとスイッチを投入して一次側コイルに通電させ、両磁極が離れていることを検出するとスイッチを開放して一次側コイルの電源との接続を遮断するようになっている。   In addition, the primary coil is connected to a three-phase AC power source via a switch, and includes an overlap sensor that detects the overlapping state of the magnetic pole of the primary coil and the magnetic pole of the secondary coil. When it is detected, the switch is turned on to energize the primary coil, and when it is detected that both magnetic poles are separated, the switch is opened and the connection with the power source of the primary coil is cut off.

本発明によれば、移動体の移動軌跡に沿って一次側コイルが並んでいるので、移動体の二次側コイルが一次側コイルの列に沿って移動する間に、電磁誘導により非接触で二次側コイル内に電流を誘起して非接触でエネルギーを伝達することができる。
なお、本発明の非接触給電装置は、三相交流式の磁気回路を使用するため、出力電力KVAを鉄芯体積mで割った出力容量比が増大する。
According to the present invention, since the primary side coils are arranged along the movement trajectory of the moving body, while the secondary side coil of the moving body moves along the row of the primary side coils, it is contactless by electromagnetic induction. Energy can be transferred in a non-contact manner by inducing a current in the secondary coil.
The non-contact power feeding device of the present invention, in order to use the magnetic circuit of a three-phase alternating current, the output capacity ratio obtained by dividing the output power KVA with iron core volume m 3 is increased.

また、二次側コイルの磁極の長さが一次側コイルのピッチに等しいため、二次側コイルが移動中であっても二次側コイルと鎖交する磁束は変わらず、移動中でも二次側コイルへの給電は途切れることなく、また二次側コイルの出力変動を抑制することができる。
さらに、一次側コイルは二次側コイルが磁極に対向する位置に存在するときのみ通電するので、対向コイルが不在で空間に放散する漏れ磁束の発生を抑制して効率よい運転が可能である。
Also, since the length of the magnetic pole of the secondary side coil is equal to the pitch of the primary side coil, the magnetic flux interlinking with the secondary side coil does not change even when the secondary side coil is moving, and the secondary side even during movement The power supply to the coil is not interrupted, and the output fluctuation of the secondary coil can be suppressed.
Further, since the primary side coil is energized only when the secondary side coil is located at a position facing the magnetic pole, the generation of leakage magnetic flux that radiates into the space without the opposing coil is suppressed, and an efficient operation is possible.

本発明において、一次側コイルと二次側コイルは移動方向に平行な側面に磁気シールドを施すことが好ましい。また、これらコイルは、表面に樹脂カバーを施して密封することが好ましい。
移動体の移動方向が水平方向である場合は、一次側コイルと二次側コイルの上下面に磁気シールドを施すことにより、周囲への漏れ磁束を遮断して安全を確保することができる。
また、コイル表面に樹脂カバーを施して密封したものは、たとえば水際でバッテリー充電する場合など、水が掛かっても悪影響を受ける心配がない。
In the present invention, the primary side coil and the secondary side coil are preferably magnetically shielded on the side surfaces parallel to the moving direction. These coils are preferably sealed by applying a resin cover to the surface.
When the moving direction of the moving body is the horizontal direction, by providing magnetic shields on the upper and lower surfaces of the primary side coil and the secondary side coil, the leakage magnetic flux to the surroundings can be cut off to ensure safety.
In addition, the coil surface sealed with a resin cover is not adversely affected even when it is splashed with water, for example, when the battery is charged at the water's edge.

スイッチは、電磁開閉器と抵抗器を並列に接続することで構成することが好ましい。
GTOなどの半導体スイッチを利用しようとしても遮断すべき電流に見合う周波数の遮断信号を必要とする型式のものでは、遮断すべき一次側コイルの入力電源の周波数が400Hz程度と高い場合には追従することができない。このため、機械的な電磁開閉器を採用して、電源電流の周波数によらず電路を開閉するようにした。
The switch is preferably configured by connecting an electromagnetic switch and a resistor in parallel.
Even if a semiconductor switch such as a GTO is used, a type that requires a cut-off signal with a frequency corresponding to the current to be cut off follows if the frequency of the input power source of the primary coil to be cut off is as high as about 400 Hz. I can't. For this reason, a mechanical electromagnetic switch is used to open and close the electric circuit regardless of the frequency of the power supply current.

しかし、このスイッチは一次側コイルに供給される大電流を断続するので、特に電流を遮断するときに電極間にスパークが飛んだりして電磁開閉器の寿命が短くなる問題がある。
そこで、電磁開閉器に並列に抵抗器を接続して、電磁開閉器の解放時にはサージ電流を並列した抵抗器に流すことにより接点間のスパークを防止して、電子開閉器の寿命を延ばすことができる。
However, since this switch interrupts a large current supplied to the primary side coil, there is a problem that the life of the electromagnetic switch is shortened due to a spark flying between the electrodes particularly when the current is interrupted.
Therefore, by connecting a resistor in parallel to the electromagnetic switch, when the electromagnetic switch is released, a surge current is passed through the parallel resistor to prevent sparking between the contacts and extend the life of the electronic switch. it can.

さらに、三相交流電源は、外部の三相交流供給線に接続される整流回路、整流回路の直流出力を平滑化する平滑回路、平滑回路の出力を交流にする逆変換回路を備えたインバータであることが好ましい。
一次側コイルに流す交流は高周波である方が磁気飽和を生じ難く、コア鉄芯の断面積を小さくすることが可能となるため、装置の小型化・軽量化に適している。したがって、インバータを用いて50Hzや60Hzの交流をたとえば400Hzなど可能な限り高周波化して利用して効率化することが望ましい。
Furthermore, the three-phase AC power source is an inverter provided with a rectifier circuit connected to an external three-phase AC supply line, a smoothing circuit for smoothing the DC output of the rectifier circuit, and an inverse conversion circuit for converting the output of the smoothing circuit to AC. Preferably there is.
Higher AC current flowing through the primary coil is less likely to cause magnetic saturation, and the cross-sectional area of the core iron core can be reduced, which is suitable for reducing the size and weight of the device. Therefore, it is desirable to increase the efficiency by using 50 Hz or 60 Hz alternating current as high as possible, such as 400 Hz, using an inverter.

また、インバータの整流回路の直流出力電力の測定値を取り込んで、取り込んだ直流出力電力測定値が所定の値より小さいときにバッテリー充電の終了と判定する制御装置を備えることが好ましい。
インバータ出力が一次側コイルを介して移動体のバッテリーを充電している場合は、インバータには充電電流に見合う電流が流れている。一方、バッテリー充電が終了して充電電流がなくなったときには、インバータには最小限の電流しか流れない状態になる。
In addition, it is preferable to include a control device that takes in a measured value of the DC output power of the rectifier circuit of the inverter and determines that the battery charging is finished when the fetched DC output power measured value is smaller than a predetermined value.
When the inverter output charges the battery of the moving body via the primary side coil, a current corresponding to the charging current flows through the inverter. On the other hand, when the battery charging is completed and the charging current disappears, only a minimum current flows through the inverter.

そこで、本願発明者らは鋭意研究の結果、充電電流の変化が最も見やすい形で観察される部位は整流回路の直流出力で、バッテリー充電が終了したときには平滑回路の作用で平滑化された直流部の電圧と直流電流から計算される直流出力電力が無負荷のときと同じ値になるので容易に判定できることを見出した。
本発明の給電装置では、インバータの整流器回路出力電圧と電流から計算される直流出力電力に基づいてバッテリー充電の完了を検知すると、一次側コイルへの電源供給を電磁開閉器で遮断することにより、バッテリーの過充電により生じる劣化や損耗を防ぐことができる。
Therefore, as a result of intensive studies, the inventors of the present invention have observed that the change in the charging current is most easily observed in the DC output of the rectifier circuit. It was found that the DC output power calculated from the voltage and the DC current can be easily determined because it has the same value as when there is no load.
In the power supply device of the present invention, when the completion of battery charging is detected based on the DC output power calculated from the rectifier circuit output voltage and current of the inverter, the power supply to the primary coil is shut off by the electromagnetic switch, Deterioration and wear caused by overcharging of the battery can be prevented.

なお、本発明の一次側コイルを所定数配設してユニット化したものを、必要に応じて適当数、移動体の移動軌道に沿って並べることにより、不足する容量を補充したり複数の移動体を同時に充電したりすることができる。
このようなユニット化により、設計、製造、施工工程を簡単化して、費用効果の高い製品とすることができる。
It should be noted that, by arranging a predetermined number of primary side coils of the present invention as a unit and arranging them in an appropriate number along the movement trajectory of the moving body as necessary, a shortage of capacity is supplemented or a plurality of movements are made. You can charge your body at the same time.
Such unitization simplifies the design, manufacturing, and construction processes, and makes the product cost effective.

本発明によれば、移動体が移動中に移動体に給電することが可能な効率の良い非接触給電装置を提供することができる。
さらに、バッテリーを動力とする自走式台車のバッテリー充電を電気的に絶縁状態を保ったまま行う非接触給電装置を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the efficient non-contact electric power feeder which can supply electric power to a moving body while a moving body is moving can be provided.
Furthermore, it is possible to provide a non-contact power feeding device that charges a battery of a self-propelled cart powered by a battery while maintaining an electrically insulated state.

以下、図面を用いて、本発明の非接触給電装置の最良の形態を詳細に説明する。
図1は本実施例の非接触給電装置の主要部の概念を説明する斜視図、図2は平面図、図3は側面断面図、図4は本実施例における充電走行中の二次側コイル鎖交磁束を説明する図面、図5は給電装置を複数備えた給電ユニットを複数配設して構成したシステムを表すブロック図、図6は給電ユニットの回路構成を示すブロック図である。
Hereinafter, the best mode of the non-contact power feeding device of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view for explaining the concept of the main part of the contactless power feeding device of this embodiment, FIG. 2 is a plan view, FIG. 3 is a side sectional view, and FIG. 4 is a secondary coil during charging traveling in this embodiment. FIG. 5 is a block diagram showing a system in which a plurality of power supply units each including a plurality of power supply devices are arranged, and FIG. 6 is a block diagram showing a circuit configuration of the power supply unit.

本実施例の非接触給電装置の基本的構成を図1から図3に示した。
本実施例の非接触給電装置は、充電ステーションで走行しながらバッテリー駆動式自走台車のバッテリーを充電する装置であって、電磁誘導を利用して給電側の一次側コイル1からこれに対向する自走台車側の二次側コイル2にエネルギー伝達してバッテリーを充電するものである。
本実施例の非接触給電装置は、背面をヨーク12,22で接続した3個の磁極11,21にそれぞれ三相交流の1相の巻線13,23を巻回して三相巻線を施したコイルを使用する。これにより、単相巻線と比較して出力容量比(出力電力KVAを鉄芯体積mで割った値)が高く効率の良い装置となる。
The basic configuration of the non-contact power feeding apparatus of this embodiment is shown in FIGS.
The non-contact power feeding device of this embodiment is a device that charges a battery of a battery-driven self-propelled cart while traveling at a charging station, and is opposed to the primary coil 1 on the power feeding side by using electromagnetic induction. Energy is transmitted to the secondary coil 2 on the self-propelled carriage side to charge the battery.
In the non-contact power feeding apparatus of this embodiment, three-phase alternating current one-phase windings 13 and 23 are wound around three magnetic poles 11 and 21 whose backs are connected by yokes 12 and 22, respectively. Use the coil. Thus, the output volume ratio as compared to the single-phase windings (divided by the output power KVA iron core volume m 3) is the high efficient apparatus.

給電側の一次側コイル1は地上に固定され、3個の磁極U,V,Wを自走台車の移動軌跡に対して垂直の方向に配置したものを移動軌跡に沿って等しいピッチPで複数個、たとえば6個配置したものを給電ユニット10としたものである。
自走台車に搭載される二次側コイル2は、給電側の一次側コイル1の各相に対応する位置に配置した3個の磁極u,v,wを備えたもので、磁極21の自走台車移動方向の長さD2が一次側コイルの磁極11の移動方向ピッチPに等しくなっている。
The primary coil 1 on the power supply side is fixed to the ground, and a plurality of magnetic poles U, V, W arranged in a direction perpendicular to the movement locus of the self-propelled carriage are arranged at the same pitch P along the movement locus. The power supply unit 10 is formed by arranging, for example, six.
The secondary coil 2 mounted on the self-propelled carriage is provided with three magnetic poles u, v, and w arranged at positions corresponding to the respective phases of the primary coil 1 on the power feeding side. The length D2 in the moving direction of the carriage is equal to the moving direction pitch P of the magnetic pole 11 of the primary coil.

自走台車の移動中に、一次側コイル1の磁極U,V,Wと二次側コイル2の同じ相の磁極u,v,wがそれぞれ対応している必要があるため、各相毎にそれぞれ同じ高さになるように構成される。
給電装置の前には自走台車用の案内レールや案内ガードを設けて、自走台車走行中に、一次側磁極U,V,Wと二次側磁極u,v,wの間に数mmから十数mmの空隙Gを保つようにして、安定にエネルギー伝達を行えるようにする。
During the movement of the self-propelled carriage, the magnetic poles U, V, W of the primary coil 1 and the magnetic poles u, v, w of the same phase of the secondary coil 2 need to correspond to each other. Each is configured to have the same height.
In front of the power feeding device, a guide rail for a self-propelled carriage and a guide guard are provided, and several millimeters are provided between the primary side magnetic poles U, V, W and the secondary side magnetic poles u, v, w while the self-propelled carriage is running. Therefore, the gap G of 10 mm or more is maintained so that energy can be transferred stably.

二次側コイル2には、電流・電圧を一定範囲内に保つ安定化回路を組み込んだバッテリー充電用の整流回路などを含む搭載ユニット26を内蔵する。
一次側コイル1と二次側コイル2は、上面と下面に磁気シールド14,24を配置して、周囲への漏れ磁束を遮断する。
また、磁極11,21の前面を含み周囲全体を樹脂15,25で覆って防水と防音をする。
The secondary coil 2 has a built-in unit 26 including a battery charging rectifier circuit incorporating a stabilization circuit that keeps current and voltage within a certain range.
The primary side coil 1 and the secondary side coil 2 arrange | position the magnetic shields 14 and 24 in the upper surface and a lower surface, and interrupt | block the leakage magnetic flux to circumference | surroundings.
In addition, the entire periphery including the front surfaces of the magnetic poles 11 and 21 is covered with resin 15 and 25 for waterproofing and soundproofing.

二次側コイル2の磁極21の長さD2が一次側コイル1の磁極11の移動方向ピッチPに等しいので、図4に示す通り、二次側コイル2の鎖交磁束は給電ユニット10を通過する間安定した量を維持する。
すなわち、二次側コイル2が給電ユニット10に進入し、最初の一次側コイル(1)の磁極11に鎖交し始める時点(X=0)では、二次側鎖交磁束は0%であり、二次側コイルの磁極21が最初の一次側コイル(1)の磁極11を完全にカバーする位置(X=D1)まで進むと100%になる。ここで、Xは二次側コイル2の中心位置の座標を表す。また、一次側コイル1の磁極11の移動方向長さをD1とする。
Since the length D2 of the magnetic pole 21 of the secondary coil 2 is equal to the moving direction pitch P of the magnetic pole 11 of the primary coil 1, the interlinkage magnetic flux of the secondary coil 2 passes through the power supply unit 10 as shown in FIG. Maintain a stable amount while running.
That is, when the secondary coil 2 enters the power supply unit 10 and starts to link to the magnetic pole 11 of the first primary coil (1) (X = 0), the secondary flux linkage is 0%. When the magnetic pole 21 of the secondary coil advances to a position (X = D1) that completely covers the magnetic pole 11 of the first primary coil (1), it becomes 100%. Here, X represents the coordinates of the center position of the secondary coil 2. Moreover, the moving direction length of the magnetic pole 11 of the primary side coil 1 is set to D1.

その後、二次側コイル2が移動を続けて、磁極21の後端が最初の一次側コイル(1)の磁極11の後端より前方に進むようになるまでの間は、二次側鎖交磁束量は100%と変わらない。
磁極21の後端が最初の一次側コイル(1)の磁極11の後端から離れようとするときには、磁極21の先端が2番目の一次側コイル(2)の磁極11後端に達して、その後は二次側コイル2が移動するにつれて最初の一次側コイル(1)との鎖交磁束量が減少する分だけ2番目の一次側コイル(2)との鎖交磁束量が増加するため、二次側コイル2の磁極21に鎖交する磁束量は変わらない。
Thereafter, the secondary side coil 2 continues to move until the rear end of the magnetic pole 21 moves forward from the rear end of the magnetic pole 11 of the first primary coil (1). The amount of magnetic flux remains unchanged at 100%.
When the rear end of the magnetic pole 21 is about to be separated from the rear end of the magnetic pole 11 of the first primary coil (1), the tip of the magnetic pole 21 reaches the rear end of the magnetic pole 11 of the second primary coil (2), Thereafter, the amount of flux linkage with the second primary coil (2) increases as the amount of flux linkage with the first primary coil (1) decreases as the secondary coil 2 moves. The amount of magnetic flux linked to the magnetic pole 21 of the secondary coil 2 does not change.

このようにして、二次側コイル2の磁極21後端が最後の一次側コイル(n)の磁極後端から前方にずれ始めるまでは、鎖交磁束量は100%を維持する。
自走台車がさらに移動して、二次側コイル2の磁極21が最後の一次側コイル(n)の磁極11との重なりが減少し始めると、距離D1にわたって二次側コイル2の鎖交磁束も減少して、磁極21が一次側コイル1の磁極11から外れる位置(X=L+D2)で0%となって、二次側出力は停止する。
In this manner, the flux linkage is maintained at 100% until the rear end of the magnetic pole 21 of the secondary coil 2 starts to shift forward from the rear end of the magnetic pole of the last primary coil (n).
When the self-propelled carriage moves further and the overlap of the magnetic pole 21 of the secondary coil 2 with the magnetic pole 11 of the last primary coil (n) starts to decrease, the interlinkage magnetic flux of the secondary coil 2 over the distance D1. Is reduced to 0% at a position where the magnetic pole 21 deviates from the magnetic pole 11 of the primary coil 1 (X = L + D2), and the secondary output stops.

ここで、Lは給電ユニット10の磁極端間距離である地上極長を表す。n個の磁極11から成る給電ユニット10の地上極長Lは、磁極同士の間隙dを使って、L=D1×n+d×(n−1)と表せる。
また、D2=D1+dであるから、二次側コイル2の磁極21の鎖交磁束が100%となる給電ユニット10の有効極長L2は、
L2=L+D2−2×D1=D1×(n−1)+d×n
となる。
Here, L represents the ground pole length which is the distance between the magnetic pole ends of the power supply unit 10. The ground pole length L of the power supply unit 10 composed of n magnetic poles 11 can be expressed as L = D1 × n + d × (n−1) using the gap d between the magnetic poles.
Further, since D2 = D1 + d, the effective pole length L2 of the power feeding unit 10 in which the interlinkage magnetic flux of the magnetic pole 21 of the secondary coil 2 is 100% is
L2 = L + D2-2 × D1 = D1 × (n−1) + d × n
It becomes.

本実施例の非接触給電装置は、バッテリーの充電に必要な給電時間に合わせて、一次側磁極の構成を任意に設定することが可能であり、設計自由度の高い給電システムとなる。
たとえば、一次側コイルの磁極数nを6個、磁極長さD1を220mm、磁極ピッチPを340mmとすると、有効極長L2は1820mmとなり、給電中の自走台車の移動速度を0.5m/sと仮定すると、給電可能な時間は3.6秒となる。この時間で充電が完了しない場合は、給電ユニット10を自走台車の軌道に沿って必要数設置して充電時間を確保するようにすればよい。また、給電ユニット10を構成する一次側コイルの数を増減したり、自走台車の移動速度を調整したりすることにより充電時間を調整することもできる。
The non-contact power supply device of the present embodiment can arbitrarily set the configuration of the primary side magnetic pole in accordance with the power supply time required for charging the battery, and becomes a power supply system with a high degree of design freedom.
For example, if the number of magnetic poles n of the primary coil is 6, the magnetic pole length D1 is 220 mm, and the magnetic pole pitch P is 340 mm, the effective pole length L2 is 1820 mm, and the moving speed of the self-propelled carriage during power feeding is 0.5 m / Assuming s, the power supply time is 3.6 seconds. If charging is not completed within this time, a required number of power supply units 10 may be installed along the track of the self-propelled carriage to ensure charging time. Further, the charging time can be adjusted by increasing or decreasing the number of primary side coils constituting the power supply unit 10 or adjusting the moving speed of the self-propelled carriage.

図5はシステム全体の構成例を表すブロック図である。
走行エリアを走行していたバッテリー自走台車20は、適宜のタイミングで充電ステーション30に戻って、搭載しているバッテリー41を充電する。充電ステーション30には、たとえば4基の給電ユニット10が並んでいて、その前にガイドレールが設けられている。
バッテリー自走台車20は、ガイドレールに案内されて給電ユニット10の前を所定速度で移動する間、給電ユニット10の一次側コイルの磁極と自走台車20の二次側コイル2の磁極の間隙を、たとえば7mm±3mmなど、適当な値に保持して、確実にエネルギー伝達するようになっている。
FIG. 5 is a block diagram illustrating a configuration example of the entire system.
The battery self-propelled carriage 20 traveling in the traveling area returns to the charging station 30 at an appropriate timing and charges the mounted battery 41. For example, four power supply units 10 are arranged in the charging station 30 and a guide rail is provided in front of the power supply units 10.
While the battery self-propelled carriage 20 is guided by the guide rail and moves in front of the power supply unit 10 at a predetermined speed, the gap between the magnetic pole of the primary side coil of the power supply unit 10 and the magnetic pole of the secondary side coil 2 of the self-propelled carriage 20. Is held at an appropriate value such as 7 mm ± 3 mm, for example, so that energy can be reliably transmitted.

給電ユニット10にはそれぞれ一次電源装置31を介して最大400V/400Hzの電源が供給される。一次電源装置31は、インバータ32とスイッチ回路33と電流抑制抵抗器34を備えて、三相400V(50Hz/60Hz)の電源をインバータ32で最大400V/400Hzに変換して、スイッチ回路33を経由して一次側給電ユニット10の磁極に供給する。
本実施例では、バッテリー走行台車20は、48V(12V×4直列)のバッテリー41により走行する。
The power supply units 10 are each supplied with a maximum power of 400 V / 400 Hz via the primary power supply 31. The primary power supply device 31 includes an inverter 32, a switch circuit 33, and a current suppression resistor 34, converts a three-phase 400 V (50 Hz / 60 Hz) power source to a maximum of 400 V / 400 Hz by the inverter 32, and passes through the switch circuit 33. And supplied to the magnetic poles of the primary power supply unit 10.
In the present embodiment, the battery traveling carriage 20 travels by a battery 41 of 48V (12V × 4 series).

図6は、給電ユニット10ごとの回路構成を示すブロック図である。1基の給電ユニット10には例えば6個など適宜のn個の一次側コイル1が1列に配設されている。
一次電源装置31は、インバータ32と無効電力抑制回路35と給電制御装置39で構成され、給電ユニット10に対して1式設備される。
FIG. 6 is a block diagram illustrating a circuit configuration for each power supply unit 10. In one power supply unit 10, appropriate n primary side coils 1 such as six are arranged in a row.
The primary power supply device 31 includes an inverter 32, a reactive power suppression circuit 35, and a power supply control device 39, and one set of equipment is provided for the power supply unit 10.

インバータ32は、整流回路36と平滑回路37と逆変換回路38から構成され、400V50Hz/60Hzの三相交流電源を入力して整流回路36で整流し、並列に接続された平滑回路37で直流化して、逆変換回路38で400Hzの三相交流電流に変換し、無効電力抑制回路35に供給する。
コイル間のエネルギー交換は周波数が高いほど効率が高く小型化ができるが、市販の汎用インバータで比較的容易に使えることを前提とすると、本実施例の条件を満たそうとすると現状では400Hz程度が適当である。したがって技術の高度化に伴いさらに高周波に変換するようにしてもよいことはいうまでもない。
The inverter 32 includes a rectifier circuit 36, a smoothing circuit 37, and an inverse conversion circuit 38. The inverter 32 receives a 400 V 50 Hz / 60 Hz three-phase AC power supply, rectifies the rectifier circuit 36, and converts the DC voltage to the parallel smoothing circuit 37. Then, it is converted into a three-phase alternating current of 400 Hz by the inverse conversion circuit 38 and supplied to the reactive power suppression circuit 35.
The energy exchange between the coils is more efficient and smaller in size as the frequency is higher, but assuming that it can be used relatively easily with a commercially available general-purpose inverter, the current situation is that about 400 Hz when trying to satisfy the conditions of this embodiment. Is appropriate. Therefore, it goes without saying that it may be converted to a higher frequency as the technology becomes more advanced.

無効電力抑制回路35は、地上ユニットを構成する個々の一次側コイルに流れる電流を抑制するために挿入した抵抗器の有効・無効を電磁開閉器の操作により切り替える回路である。
無効電力抑制回路35は、n個の一次側コイル1ごとに設けられるスイッチ回路33とスイッチ回路33と並列に接続された電流抑制抵抗器34で構成され、1基のインバータ32から出力される最大三相400V/400Hzの電源を必要な一次側コイル1に分配する。
The reactive power suppression circuit 35 is a circuit that switches between enabling / disabling of a resistor inserted to suppress a current flowing in each primary coil constituting the ground unit by operating an electromagnetic switch.
The reactive power suppression circuit 35 includes a switch circuit 33 provided for each of the n primary side coils 1 and a current suppression resistor 34 connected in parallel with the switch circuit 33, and is the maximum output from one inverter 32. A three-phase 400 V / 400 Hz power supply is distributed to the necessary primary coil 1.

一次側コイル1には磁極検出センサ40が設けられて、自走台車20の二次側コイル2の磁極が一次側コイル1の磁極と交絡していることを検知する。
各一次側コイル1の磁極がそれぞれ二次側コイル2の磁極と交絡するかしないかを検出した結果を示す検出信号は、給電制御装置39に伝達される。
給電制御装置39は、PLC(プログラマブルロジックコントローラ)やボードコンピュータなどを使って構成し、インバータ32と無効電力抑制回路35の操作を行う。なお、給電制御装置39は100Vの単相交流により駆動される。
The primary coil 1 is provided with a magnetic pole detection sensor 40 to detect that the magnetic pole of the secondary coil 2 of the self-propelled carriage 20 is entangled with the magnetic pole of the primary coil 1.
A detection signal indicating the result of detecting whether or not the magnetic pole of each primary coil 1 is entangled with the magnetic pole of the secondary coil 2 is transmitted to the power supply control device 39.
The power supply control device 39 is configured using a PLC (programmable logic controller), a board computer, or the like, and operates the inverter 32 and the reactive power suppression circuit 35. The power supply control device 39 is driven by a 100 V single-phase alternating current.

給電制御装置39は、磁極検出センサ40の出力信号に基づいて、一次側コイル1の磁極と二次側コイル2の磁極が交絡状態にあるときに、交絡している一次側コイルに電源供給するスイッチ回路33をオンにして電流を供給し、二次側コイル2に電力を供給する。
また、両磁極が交絡していないときには、スイッチ回路33をオフにして、充電しない一次側コイルに無駄な電力を供給しないようにすると共に、スイッチ回路33の端子間に並列接続された電流抑制抵抗器34に電流を通してスイッチ回路33の端子間電圧を抑制しサージが発生しないようにして、スイッチ回路の寿命を確保する。
Based on the output signal of the magnetic pole detection sensor 40, the power supply control device 39 supplies power to the entangled primary side coil when the magnetic pole of the primary side coil 1 and the magnetic pole of the secondary side coil 2 are in an entangled state. The switch circuit 33 is turned on to supply current and supply power to the secondary coil 2.
Further, when the magnetic poles are not entangled, the switch circuit 33 is turned off so as not to supply useless power to the primary coil that is not charged, and the current suppression resistor connected in parallel between the terminals of the switch circuit 33 The voltage between the terminals of the switch circuit 33 is suppressed by passing a current through the capacitor 34 so as not to generate a surge, thereby ensuring the life of the switch circuit.

給電制御装置39は、インバータ32の直流回路の電圧と電流を監視して出力電力を計算し、二次側でバッテリー充電している電力が一定値以下になると充電完了として、二次側磁極が給電範囲内にいても、インバータ32の出力を停止する。
さらに具体的には、インバータ32の整流回路36の出力が平滑回路37で直流化した位置における直流電圧信号と、その部分を流れる直流電流信号を入力し、両者から計算される直流電力が所定の値を超えたときに自走台車20のバッテリー41の充電が完了したと判定して、インバータ32の作動を停止させる。
The power feeding control device 39 monitors the voltage and current of the DC circuit of the inverter 32 and calculates the output power. When the power charged in the battery on the secondary side becomes a certain value or less, the charging is completed and the secondary side magnetic pole is Even within the power supply range, the output of the inverter 32 is stopped.
More specifically, a DC voltage signal at a position where the output of the rectifier circuit 36 of the inverter 32 is converted to DC by the smoothing circuit 37 and a DC current signal flowing therethrough are input, and the DC power calculated from both is a predetermined value. When the value is exceeded, it is determined that the charging of the battery 41 of the self-propelled carriage 20 is completed, and the operation of the inverter 32 is stopped.

発明者らの研究の結果、インバータ32の有効電流の変化は整流回路36の出力を平滑化したところにおける電力値に顕著に表れることが分かった。これは、バッテリー41の充電が完了すると、一次側コイル1と二次側コイル2の磁極間でエネルギー伝達が行われなくなり、一次側コイル1にはほぼ無効電流しか流れなくるので、インバータ32の有効電流が減少するためと考えられる。   As a result of the studies by the inventors, it has been found that the change in the effective current of the inverter 32 appears significantly in the power value when the output of the rectifier circuit 36 is smoothed. This is because, when the charging of the battery 41 is completed, energy transfer is not performed between the magnetic poles of the primary side coil 1 and the secondary side coil 2, and only the reactive current flows through the primary side coil 1. This is probably because the effective current decreases.

そこで、本実施例においては、この知見を利用して、自走台車20から直接情報信号を取得する代わりに、インバータ32から取得した電圧信号によりバッテリー41の充電終了を推定して、インバータ32の作動を停止させてバッテリーの過充電を防止すると共にインバータの無駄な作動を排除するようにした。
本実施例におけるバッテリー充電終了判定方法により、運動する自走台車20と情報交換することなく、地上に固定された一次電源装置31内部の信号交換だけで自走台車20上のバッテリー41の状態を推定してインバータ32の合理的な運転を行うことができる。
Therefore, in this embodiment, instead of acquiring the information signal directly from the self-propelled carriage 20 by using this knowledge, the charging end of the battery 41 is estimated by the voltage signal acquired from the inverter 32, and the inverter 32 The operation was stopped to prevent the battery from being overcharged and the inverter wasted.
According to the battery charging end determination method in the present embodiment, the state of the battery 41 on the self-propelled carriage 20 is changed by only exchanging signals inside the primary power supply 31 fixed on the ground without exchanging information with the moving self-propelled carriage 20. It is possible to perform a reasonable operation of the inverter 32 by estimation.

自走台車20に搭載される搭載ユニット26は、三相磁極42を有する二次側コイル2と、整流回路43とチョッパ回路44と直流リアクトル45で構成される整流装置と、電流電圧制限回路46と、バッテリー41で構成される。三相磁極42に巻回された二次側コイル2に誘起された電流は整流回路43で直流化され、チョッパ回路44で適切な充電電流が得られる電圧に調整し、直流リアクトル45で直流化し平滑化して、バッテリー41に供給される。   The mounting unit 26 mounted on the self-propelled carriage 20 includes a secondary coil 2 having a three-phase magnetic pole 42, a rectifier constituted by a rectifier circuit 43, a chopper circuit 44, and a DC reactor 45, and a current-voltage limiting circuit 46. And a battery 41. The current induced in the secondary coil 2 wound around the three-phase magnetic pole 42 is converted into a direct current by the rectifier circuit 43, adjusted to a voltage at which an appropriate charging current can be obtained by the chopper circuit 44, and converted into a direct current by the direct current reactor 45. Smoothed and supplied to the battery 41.

電流電圧制限回路46は、供給電圧と供給電流が所定の設定値になるようにチョッパ回路44を制御して、充電の初期には定電流充電を行い充電末期には定電圧充電を行うことにより、バッテリー41の保護を行う。
電流電圧制限回路46は、またバッテリー41の充電完了状態を判断して、二次側系統を強制遮断する機能を備えてもよい。
The current / voltage limiting circuit 46 controls the chopper circuit 44 so that the supply voltage and the supply current become predetermined set values, and performs constant current charging at the beginning of charging and constant voltage charging at the end of charging. The battery 41 is protected.
The current / voltage limiting circuit 46 may also have a function of forcibly shutting off the secondary side system by determining the charging completion state of the battery 41.

本発明の非接触給電装置は、工場内で使われる自走台車や遊園地などの乗り物などの充電に使用することができる。また、防水機能を備える本実施例の非接触給電装置は、たとえば水上を巡回走行するバッテリー駆動のボートなどのバッテリー充電に利用することができる。   The non-contact power feeding device of the present invention can be used for charging vehicles such as self-propelled carts and amusement parks used in factories. Further, the non-contact power feeding device of this embodiment having a waterproof function can be used for charging a battery such as a battery-driven boat that travels on the water.

本発明の1実施例に係る非接触給電装置の主要部の概念を説明する斜視図である。It is a perspective view explaining the concept of the principal part of the non-contact electric power feeder which concerns on one Example of this invention. 本実施例に係る非接触給電装置の主要部を示す平面図である。It is a top view which shows the principal part of the non-contact electric power feeder which concerns on a present Example. 本実施例に係る非接触給電装置の主要部を示す側面断面図である。It is side surface sectional drawing which shows the principal part of the non-contact electric power feeder which concerns on a present Example. 本実施例における充電走行中の二次側コイル鎖交磁束を説明する図面である。It is drawing explaining the secondary side coil linkage magnetic flux in charge driving | running | working in a present Example. 本実施例における給電装置を複数備えた給電ユニットを複数配設して構成したシステムを表すブロック図である。It is a block diagram showing the system which arranged and comprised two or more electric power feeding units provided with two or more electric power feeders in a present Example. 本実施例における給電ユニットの回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the electric power feeding unit in a present Example.

符号の説明Explanation of symbols

1 一次側コイル
2 二次側コイル
10 給電ユニット
20 バッテリー自走台車
11,21 磁極
12,22 ヨーク
13,23 巻線
14,24 磁気シールド
15,25 樹脂
26 搭載ユニット
30 充電ステーション
31 一次電源装置
32 インバータ
33 スイッチ回路
34 電流抑制抵抗器
35 無効電力抑制回路
36 整流回路
37 平滑回路
38 逆変換回路
39 給電制御装置
41 バッテリー
42 三相磁極
43 整流回路
44 チョッパ回路
45 直流リアクトル
46 電流電圧制限回路
DESCRIPTION OF SYMBOLS 1 Primary side coil 2 Secondary side coil 10 Electric power feeding unit 20 Battery self-propelled carriage 11, 21 Magnetic pole 12, 22 Yoke 13, 23 Winding 14, 24 Magnetic shield 15, 25 Resin 26 Mounting unit 30 Charging station 31 Primary power supply 32 Inverter 33 Switch circuit 34 Current suppression resistor 35 Reactive power suppression circuit 36 Rectifier circuit 37 Smoothing circuit 38 Reverse conversion circuit 39 Power supply control device 41 Battery 42 Three-phase magnetic pole 43 Rectifier circuit 44 Chopper circuit 45 DC reactor 46 Current voltage limit circuit

Claims (6)

電磁誘導を利用して地上の一次側コイルから該一次側コイルに対向する二次側コイルを介して移動体のバッテリーを充電する給電装置であって、前記一次側コイルはE字形断面をもつ3突極形磁性体の磁極に三相巻線を施したもので該3突極の磁極を前記移動体の移動軌跡に垂直に配置したものを各相毎に前記移動軌跡に沿って等しいピッチでかつ適切な間隔で複数個配置し、前記移動体に搭載される前記二次側コイルは一次側コイルと同様の3突極形磁性体の磁極に三相巻線を施し該磁極の移動体移動方向の長さは前記一次側コイルの磁極の移動方向ピッチに等しく、前記一次側コイルはスイッチを介して三相交流電源に接続され、該一次側コイルの磁極と前記二次側コイルの磁極の重なり状態を検出する重なりセンサを備えて、該重なりセンサが両磁極の重なりを検出すると前記スイッチを投入して前記一次側コイルに通電させ、両磁極が離れていることを検出すると前記スイッチを開放して前記一次側コイルの電源との接続を遮断する非接触給電装置。   A power supply device that charges a battery of a moving body from a primary coil on the ground via a secondary coil facing the primary coil using electromagnetic induction, wherein the primary coil has an E-shaped cross section 3 A magnetic pole of a salient pole type magnetic body provided with a three-phase winding, and the magnetic poles of the three salient poles arranged perpendicularly to the movement locus of the moving body are arranged at an equal pitch along the movement locus for each phase. In addition, a plurality of secondary coils mounted on the movable body are arranged at appropriate intervals, and the secondary coil mounted on the movable body is provided with a three-phase winding on the magnetic pole of a three salient pole type magnetic body similar to the primary coil, and the movable body moves by moving the magnetic pole. The length of the direction is equal to the moving direction pitch of the magnetic pole of the primary side coil, and the primary side coil is connected to a three-phase AC power source through a switch, the magnetic pole of the primary side coil and the magnetic pole of the secondary side coil An overlap sensor for detecting an overlap state; When the sensor detects the overlapping of both magnetic poles, the switch is turned on to energize the primary coil, and when it is detected that both magnetic poles are separated, the switch is opened and the connection to the power source of the primary coil is cut off. A non-contact power feeding device. 前記一次側コイルおよび二次側コイルは移動方向に平行な側面に磁気シールドを施すことを特徴とする請求項1記載の非接触給電装置。   The non-contact power feeding apparatus according to claim 1, wherein the primary side coil and the secondary side coil are provided with magnetic shields on side surfaces parallel to the moving direction. 前記一次側コイルおよび二次側コイルは全表面に樹脂カバーを施して密封することを特徴とする請求項1または2記載の非接触給電装置。   The contactless power feeding device according to claim 1 or 2, wherein the primary side coil and the secondary side coil are sealed with a resin cover on the entire surface. 前記スイッチは、電磁開閉器と抵抗器を並列に接続したものであることを特徴とする請求項1から3のいずれかに記載の非接触給電装置。   The contactless power supply device according to any one of claims 1 to 3, wherein the switch includes an electromagnetic switch and a resistor connected in parallel. 前記三相交流電源は、外部の三相交流供給線に接続される整流回路、該整流回路の直流出力を平滑化する平滑回路、該平滑回路の出力を交流にする逆変換回路を備えたインバータであることを特徴とする請求項1から4のいずれかに記載の非接触給電装置。   The three-phase AC power source includes an rectifier circuit connected to an external three-phase AC supply line, a smoothing circuit that smoothes the DC output of the rectifier circuit, and an inverter circuit that converts the output of the smoothing circuit into an AC. The non-contact power feeding device according to claim 1, wherein 前記整流回路の直流出力を取り込んで該直流出力が所定の値より大きいときに前記バッテリー充電の終了と判定する制御装置を備えることを特徴とする請求項5記載の非接触給電装置。   6. The non-contact power feeding apparatus according to claim 5, further comprising a control device that takes in the DC output of the rectifier circuit and determines that the battery charging is finished when the DC output is greater than a predetermined value.
JP2008135420A 2008-05-23 2008-05-23 Insulated power feeder for moving objects Expired - Fee Related JP4536131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008135420A JP4536131B2 (en) 2008-05-23 2008-05-23 Insulated power feeder for moving objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008135420A JP4536131B2 (en) 2008-05-23 2008-05-23 Insulated power feeder for moving objects

Publications (2)

Publication Number Publication Date
JP2009284695A JP2009284695A (en) 2009-12-03
JP4536131B2 true JP4536131B2 (en) 2010-09-01

Family

ID=41454537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008135420A Expired - Fee Related JP4536131B2 (en) 2008-05-23 2008-05-23 Insulated power feeder for moving objects

Country Status (1)

Country Link
JP (1) JP4536131B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028549A (en) * 2015-09-18 2018-05-11 富士机械制造株式会社 Contactless power supply device
CN108292861A (en) * 2015-12-01 2018-07-17 株式会社富士 Contactless power supply device
WO2022258782A2 (en) 2021-06-09 2022-12-15 Capactech Limited Power supply and distribution networks

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010035300A (en) * 2008-07-28 2010-02-12 Showa Aircraft Ind Co Ltd Non-contact power supply apparatus
KR101221486B1 (en) * 2010-06-03 2013-01-14 한국과학기술원 Space division multiplexed power supply and collector device
JP5654367B2 (en) 2011-01-28 2015-01-14 パナソニックIpマネジメント株式会社 Power supply module of non-contact power supply device, method of using power supply module of non-contact power supply device, and method of manufacturing power supply module of non-contact power supply device
JP5655700B2 (en) * 2011-05-12 2015-01-21 株式会社Ihi Transport system
CN103748761B (en) * 2011-05-12 2018-09-11 株式会社 Ihi Vehicle and contactless power supply system
JP2012239334A (en) * 2011-05-12 2012-12-06 Ihi Corp Vehicle and non contact power supply system
US9379571B2 (en) * 2011-07-11 2016-06-28 Delphi Technologies, Inc. Electrical charging system having energy coupling arrangement for wireless energy transmission therebetween
DE102011087342A1 (en) * 2011-11-29 2013-05-29 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. USE OF FLEXIBLE MAGNETIC THIN SENSOR ELEMENTS
JP5654442B2 (en) * 2011-12-26 2015-01-14 日栄インテック株式会社 Vehicle storage device
JP6049742B2 (en) 2012-09-26 2016-12-21 富士機械製造株式会社 Electrostatic coupling type non-contact power feeding device
JP6137311B2 (en) * 2013-06-26 2017-05-31 村田機械株式会社 Traveling vehicle system and power saving method for traveling vehicle system
CN105098998B (en) * 2014-05-16 2020-02-11 泰科电子(上海)有限公司 Wireless power transmission device
JP2017131008A (en) * 2016-01-19 2017-07-27 富士通株式会社 Power transmitter, power receiver and wireless power transmission system
EP3435519B1 (en) 2016-03-25 2021-02-17 Fuji Corporation Wireless power supply device
JP6793008B2 (en) * 2016-11-02 2020-12-02 日本無線株式会社 Non-contact power transmission device
CN106532885B (en) * 2017-01-05 2023-03-21 浙江大学宁波理工学院 Mobile charging equipment and charging assembly line for rechargeable battery
WO2019163000A1 (en) * 2018-02-20 2019-08-29 三菱電機株式会社 Motor drive system
JP7167829B2 (en) * 2019-04-19 2022-11-09 株式会社デンソー Power supply system while driving and method for determining abnormal value of electrical characteristics thereof
JP6873212B2 (en) * 2019-11-07 2021-05-19 株式会社Fuji Board production line

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1094103A (en) * 1996-09-17 1998-04-10 Toyota Autom Loom Works Ltd Non-contact feed system to moving body and pickup coil unit
JP2000261902A (en) * 1999-03-09 2000-09-22 Railway Technical Res Inst Induction current collector
JP2003087902A (en) * 2001-09-13 2003-03-20 Ishikawajima Harima Heavy Ind Co Ltd Inductive feeding device and truck mounting the same thereon
JP2004040881A (en) * 2002-07-02 2004-02-05 Railway Technical Res Inst Power feeding system to vehicle in stop station section of superconducting magnetically levitated railway
JP2005289101A (en) * 2004-03-31 2005-10-20 Tsubakimoto Chain Co Non-contact power supply system
JP2006121791A (en) * 2004-10-20 2006-05-11 Chugoku Electric Power Co Inc:The Noncontact power feeder for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1094103A (en) * 1996-09-17 1998-04-10 Toyota Autom Loom Works Ltd Non-contact feed system to moving body and pickup coil unit
JP2000261902A (en) * 1999-03-09 2000-09-22 Railway Technical Res Inst Induction current collector
JP2003087902A (en) * 2001-09-13 2003-03-20 Ishikawajima Harima Heavy Ind Co Ltd Inductive feeding device and truck mounting the same thereon
JP2004040881A (en) * 2002-07-02 2004-02-05 Railway Technical Res Inst Power feeding system to vehicle in stop station section of superconducting magnetically levitated railway
JP2005289101A (en) * 2004-03-31 2005-10-20 Tsubakimoto Chain Co Non-contact power supply system
JP2006121791A (en) * 2004-10-20 2006-05-11 Chugoku Electric Power Co Inc:The Noncontact power feeder for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028549A (en) * 2015-09-18 2018-05-11 富士机械制造株式会社 Contactless power supply device
CN108028549B (en) * 2015-09-18 2022-04-19 株式会社富士 Non-contact power supply device
CN108292861A (en) * 2015-12-01 2018-07-17 株式会社富士 Contactless power supply device
CN108292861B (en) * 2015-12-01 2022-04-05 株式会社富士 Non-contact power supply device
WO2022258782A2 (en) 2021-06-09 2022-12-15 Capactech Limited Power supply and distribution networks

Also Published As

Publication number Publication date
JP2009284695A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4536131B2 (en) Insulated power feeder for moving objects
JP4536132B2 (en) Power supply control device in power supply device for moving body
JP2667054B2 (en) Induction power distribution system
PT929926E (en) Method and apparatus for supplying contactless power
KR101974507B1 (en) Multi phase wireless charging system for electric car
JP5903990B2 (en) Contactless power supply
JPH05111168A (en) Battery charger for electric automobile
JP3114360B2 (en) Contactless power supply equipment for mobile objects
JP3846781B2 (en) Linear actuator
JPH0993841A (en) Noncontact feeder system for ground mobile
JPH05336607A (en) Noncontact power supply for mobile
KR101356030B1 (en) System for Charging And Pick-up, Collector Device And Power Supply Structure Therefor
JPH0678406A (en) Noncontact power feeding equipment for moving body
JP6583037B2 (en) Wireless power transmission system
JP3263421B2 (en) Pickup unit for non-contact power supply equipment for moving object and moving object provided with this pickup unit
JPH05336606A (en) Noncontact power supply facility for mobile
JP2002084687A (en) Power supply facility
JPH05328508A (en) Facility for supplying electric power to movable body noncontactly
JPH05207603A (en) Noncontact power supply for moving object
JPH06153305A (en) Feeder holder
JPH06189403A (en) Noncontact feeding facility for vehicle
JPH08108391A (en) Cargo carrying equipment
KR101386669B1 (en) System for High Power Charging And Pick-up, High Power Collector Device Therefor
JPH0614479A (en) Non-contact feeding mat
JP7331394B2 (en) Power supply system while driving

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4536131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees