JP2014053984A - Movable feed type non-contact power supply apparatus - Google Patents

Movable feed type non-contact power supply apparatus Download PDF

Info

Publication number
JP2014053984A
JP2014053984A JP2012194825A JP2012194825A JP2014053984A JP 2014053984 A JP2014053984 A JP 2014053984A JP 2012194825 A JP2012194825 A JP 2012194825A JP 2012194825 A JP2012194825 A JP 2012194825A JP 2014053984 A JP2014053984 A JP 2014053984A
Authority
JP
Japan
Prior art keywords
power
coil
power receiving
power supply
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012194825A
Other languages
Japanese (ja)
Other versions
JP6022267B2 (en
Inventor
Kitao Yamamoto
喜多男 山本
Takeshi Sato
剛 佐藤
Masashi Mochizuki
正志 望月
Masayuki Yamashita
雅之 山下
Yasuyuki Okiyoneda
恭之 沖米田
Atsushi Watanabe
敦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aircraft Industry Co Ltd
Original Assignee
Showa Aircraft Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aircraft Industry Co Ltd filed Critical Showa Aircraft Industry Co Ltd
Priority to JP2012194825A priority Critical patent/JP6022267B2/en
Publication of JP2014053984A publication Critical patent/JP2014053984A/en
Application granted granted Critical
Publication of JP6022267B2 publication Critical patent/JP6022267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a movable feed type non-contact power supply apparatus in which, while firstly maintaining radiation electromagnetic field suppression effects, pulsation of received power can be suppressed secondly.SOLUTION: A non-contact power supply apparatus 1 is configured as a movable power feed type in which, on the basis of mutual induction of electromagnetic induction, power is supplied from a power transmitting coil 3 of a power supply side circuit 2 to a power receiving coil 7 of a power reception side circuit 5 and in the case of power supply, the power receiving coil 7 moves while keeping an air gap with respect to the fixed power transmitting coil 3. The power transmitting coil 3 is structured flat and formed in a long loop shape in a moving direction B of the power receiving coil 7 and crosses the moving direction in the middle, and a plurality of units 4 are formed by crossing. The power receiving coil 7 is loop-shaped and structured flat, and a plurality of receiving coils are disposed at an interval (d). Zero received power in the case where any power receiving coil 7 is positioned in counter to a crossing position of the power transmitting coil 3, is covered by normal received power of the other power receiving coils 7.

Description

本発明は、移動給電式の非接触給電装置に関する。例えば移動中の車輌に、外部から非接触で電力を供給する、非接触給電装置に関するものである。   The present invention relates to a mobile power feeding type non-contact power feeding device. For example, the present invention relates to a non-contact power supply device that supplies electric power to a moving vehicle from the outside without contact.

《技術的背景》
ケーブル等の機械的接触なしで、例えば電気自動車等の車輌に外部から電力を供給する非接触給電装置が、需要に基づき開発,実用化されている。
この非接触給電装置では、電磁誘導の相互誘導作用に基づき、定置された送電コイル側から、車輌等の移動体に搭載された受電コイル側に、数10mm〜数100mm程度のエアギャップを存し非接触で近接対応しつつ、電力を供給する。
このような非接触給電装置による給電方式としては、停止給電式が代表的であるが、給電のためにわざわざ停止する必要がなく、車輌等の走行続行距離が延長されて便利な移動給電式も、開発,実用化されている。
停止給電式では、給電に際し移動体が停止し、受電コイルが送電コイル上等で停止されて、給電が行われる。これに対し移動給電式では、給電に際し車輌等が停止することなく、受電コイルが送電コイル近くを移動しつつ給電が行われる。
《Technical background》
A non-contact power supply device that supplies electric power from the outside to a vehicle such as an electric vehicle without mechanical contact such as a cable has been developed and put into practical use based on demand.
In this non-contact power feeding device, based on the mutual induction action of electromagnetic induction, an air gap of about several tens mm to several hundreds mm exists from the stationary power transmission coil side to the power reception coil side mounted on a moving body such as a vehicle. Electric power is supplied in close proximity without contact.
As a power supply method using such a non-contact power supply device, a stop power supply method is typical, but there is no need to bother stopping for power supply, and there is also a convenient mobile power supply method in which the travel continuation distance of a vehicle or the like is extended. , Developed and put to practical use.
In the stop power supply method, the moving body stops during power supply, and the power receiving coil is stopped on the power transmission coil or the like to perform power supply. On the other hand, in the mobile power feeding method, power feeding is performed while the power receiving coil moves near the power transmitting coil without stopping the vehicle or the like during power feeding.

ところで、移動給電式の非接触給電装置については、従来、次の課題が指摘されていた。すなわち、電磁誘導の相互誘導作用に基づき電力供給が実施され、高周波電磁界(交流変動電磁界)の電磁波が強い強度で放射されるので、近隣周辺環境への悪影響が懸念されていた。
例えば、数10m〜数100m程度離れたエリアにおいて、電磁波障害,電波受信妨害を発生させたり、人体に機能障害を与える虞が指摘されていた。
これに対し、停止給電式の非接触給電装置は、電磁遮蔽対策が取り易かった。すなわち、送電コイルのループが小さいので、電磁シールド用の防磁カバーで覆うことにより、外部放射される電磁波を反射,吸収,減衰させることが容易であった。
これに対し、移動給電式の非接触給電装置は、電磁遮蔽対策が取りにくかった。すなわち、その送電コイルは、受電コイル側が移動することに鑑み、これをフォローすべく移動方向に沿い長大なループ状をなしており、広いループ面積よりなる。そこで、防磁カバーで覆う等の電磁遮蔽対策が容易でなく、放射される電磁波が近隣周辺の離れたエリアまで届き易かった。
By the way, the following problems have been pointed out in the past for the mobile power supply type non-contact power supply apparatus. That is, electric power is supplied based on the mutual induction effect of electromagnetic induction, and electromagnetic waves of a high-frequency electromagnetic field (alternating electromagnetic field) are radiated with a strong intensity, and there is a concern about adverse effects on the surrounding environment.
For example, it has been pointed out that in an area separated by several tens of meters to several hundreds of meters, electromagnetic interference and radio wave reception interference may occur, or the human body may be impaired.
In contrast, the non-contact power feeding device of the stop power feeding type is easy to take electromagnetic shielding measures. In other words, since the loop of the power transmission coil is small, it is easy to reflect, absorb, and attenuate electromagnetic waves radiated from outside by covering with a magnetic shielding cover for electromagnetic shielding.
On the other hand, it is difficult to take a countermeasure against electromagnetic shielding in the mobile power feeding type non-contact power feeding device. That is, in view of the fact that the power receiving coil side moves, the power transmitting coil has a long loop shape along the moving direction so as to follow this, and has a wide loop area. Therefore, it is not easy to take electromagnetic shielding measures such as covering with a magnetic shielding cover, and the radiated electromagnetic waves easily reach a remote area in the vicinity.

《従来技術》
さて、本発明の発明者および出願人は、このような実情に鑑み、先に下記の特許文献1を特許出願した。
この特許文献1の移動給電式の非接触給電装置1は、例えば図3の(1)図に示したように、給電側回路2の送電コイル3について、交叉コイル方式を採用したことを、特徴とする。
すなわち、長ループ状をなす送電コイル3を途中で交叉せしめることにより、交叉により形成された各ユニット4から発生する磁界の向きが、プラス方向とマイナス方向とに、交互に反転するようになっている。
もって、この特許文献1の非接触給電装置1は、放射電磁界強度の抑制効果を発揮し、電磁波の放射レベルが大きく低減され、前述した近隣周辺のエリア環境への悪影響が防止されるようになる。
<Conventional technology>
The inventor and the applicant of the present invention have filed a patent application for the following Patent Document 1 in view of such a situation.
For example, as shown in FIG. 3 (1), the mobile power supply non-contact power supply device 1 of Patent Document 1 employs a cross coil system for the power transmission coil 3 of the power supply side circuit 2. And
That is, when the power transmission coil 3 having a long loop shape is crossed in the middle, the direction of the magnetic field generated from each unit 4 formed by the crossing is alternately reversed between the plus direction and the minus direction. Yes.
Accordingly, the non-contact power feeding device 1 of Patent Document 1 exhibits an effect of suppressing the radiated electromagnetic field intensity, greatly reduces the radiation level of electromagnetic waves, and prevents the above-described adverse effects on the surrounding area environment. Become.

特開2011−223703号公報(特願2010−088411)JP 2011-223703 A (Japanese Patent Application No. 2010-088411)

《課題について》
ところで、このような特許文献1の移動給電式の非接触給電装置1は、上述したように優れた作用効果を発揮するが、受電コイル6からの受電電力に脈動が発生する、という指摘があった。
すなわち、図3の(2)図に示したように、給電に際し、受電側回路5の受電コイル6は、給電側回路2の送電コイル3の交叉位置つまりクロスポイントPに対向位置した際(図中の実線表示を参照)、受電電力が瞬間的にゼロとなってしまう。
対向位置において図示例では、受電コイル6の左半分は、プラス方向の磁界を受け、右半分はマイナス方向の磁界を受けるので、受電コイル6にて誘起される誘導起電力が、相殺されてしまう。
勿論、受電コイル6は移動するので、上述したクロスポイントP対向位置以外(図中の破線表示を参照)では、順調に給電が行われノーマルな受電電力が得られる。
結局これらにより、給電に際し受電コイル6が移動しながら電力を受電すると、その受電電力が、瞬間的,周期的にゼロに低下する脈動電力となってしまう、という指摘があった。因に、図3の(3)図は、このような非接触給電装置1について、給電側回路2と受電側回路5間の電磁結合の結合係数を実測した例であり、上述した所が結合係数の変化として捉えられている。その使用周波数は76kHz。
《About the issue》
By the way, although the mobile power feeding type non-contact power feeding device 1 of Patent Document 1 exhibits an excellent effect as described above, it has been pointed out that pulsation is generated in the received power from the power receiving coil 6. It was.
That is, as shown in FIG. 3 (2), when power is fed, the power receiving coil 6 of the power receiving side circuit 5 is located opposite to the crossing position P of the power transmitting coil 3 of the power feeding side circuit 2, that is, the cross point P (see FIG. 3). The received power is instantaneously zero.
In the illustrated example, the left half of the power receiving coil 6 receives a positive magnetic field and the right half receives a negative magnetic field, so that the induced electromotive force induced in the power receiving coil 6 is canceled. .
Of course, since the power receiving coil 6 moves, power is smoothly supplied and normal received power can be obtained except for the position facing the cross point P described above (see the broken line in the drawing).
As a result, it has been pointed out that when power is received while the power receiving coil 6 is moving during power feeding, the power received becomes pulsating power that drops instantaneously and periodically to zero. 3 (3) is an example in which the coupling coefficient of electromagnetic coupling between the power feeding side circuit 2 and the power receiving side circuit 5 is measured for such a non-contact power feeding device 1, and the above-described places are coupled. Perceived as a change in coefficient. Its operating frequency is 76 kHz.

《本発明について》
本発明の移動給電式の非接触給電装置は、このような実情に鑑み、上記特許文献1の従来技術の課題を解決すべくなされたものである。
そして本発明は、第1に、放射電磁界強度の抑制効果を維持しつつ、第2に、受電電力の脈動を抑制可能な、移動給電式の非接触給電装置を提案することを目的とする。
<< About the present invention >>
In view of such a situation, the mobile power feeding type non-contact power feeding device of the present invention has been made in order to solve the problems of the prior art of Patent Document 1.
A first object of the present invention is to propose a mobile power feeding type non-contact power feeding device capable of suppressing the pulsation of received power while maintaining the suppression effect of the radiated electromagnetic field strength. .

《各請求項について》
このような課題を解決する本発明の技術的手段は、特許請求の範囲に記載したように、次のとおりである。
請求項1については、次のとおり。
請求項1の移動給電式の非接触給電装置は、電磁誘導の相互誘導作用に基づき、給電側回路の送電コイルから受電側回路の受電コイルに、電力を供給する。そして、定置された該送電コイルに対し、給電に際し該受電コイルが、エアギャップを存しつつ移動する移動給電式よりなる。
そして該送電コイルは、フラットな構造をなし、該受電コイルの移動方向に沿い長ループ状をなすと共に、途中で交叉されており、交叉により複数のユニットが形成されている。該受電コイルは、ループ状でフラットな構造をなし、複数個が間隔を存して配置されていること、を特徴とする。
<About each claim>
The technical means of the present invention for solving such a problem is as follows, as described in the claims.
About Claim 1, it is as follows.
The non-contact power feeding device of the mobile power feeding type according to claim 1 supplies electric power from the power transmitting coil of the power feeding side circuit to the power receiving coil of the power receiving side circuit based on the mutual induction action of electromagnetic induction. Then, the power receiving coil is a mobile power feeding type in which the power receiving coil moves while leaving an air gap with respect to the stationary power transmitting coil.
The power transmission coil has a flat structure, forms a long loop along the moving direction of the power reception coil, and is crossed in the middle, thereby forming a plurality of units. The power receiving coil has a loop shape and a flat structure, and a plurality of the power receiving coils are arranged at intervals.

請求項2については、次のとおり。
請求項2の移動給電式の非接触給電装置は、請求項1において、該送電コイルは、交叉により形成された該ユニットから発生する磁界の向きが、プラス方向とマイナス方向とに交互に反転する。
そして、複数個の該受電コイルは、いずれかの該受電コイルの該送電コイル交叉位置に対応位置した際の受電電力ゼロが、他の該受電コイルのノーマルな受電電力にてカバーされること、を特徴とする。
請求項3については、次のとおり。
請求項3の移動給電式の非接触給電装置では、請求項2において、該受電コイルは、少なくとも2個よりなると共に、その幅が同一で、上記移動方向に沿ったサイズCも同一となっている。そして相互間の間隔dが、次の数式1を満足すべく設定されること、を特徴とする。
About Claim 2, it is as follows.
According to a second aspect of the present invention, there is provided the non-contact power feeding device of the mobile feeding type according to the first aspect, wherein the direction of the magnetic field generated from the unit formed by the crossing is alternately reversed between the plus direction and the minus direction. .
And, the plurality of power receiving coils are covered with normal received power of other power receiving coils when zero power is received when the power receiving coil is positioned corresponding to the crossing position of the power transmitting coil of any one of the power receiving coils. It is characterized by.
About Claim 3, it is as follows.
According to a third aspect of the present invention, the power feeding type non-contact power feeding device according to the second aspect includes at least two power receiving coils having the same width and the same size C along the moving direction. Yes. The distance d between them is set to satisfy the following formula 1.

Figure 2014053984
Figure 2014053984

請求項4については、次のとおり。
請求項4の移動給電式の非接触給電装置では、請求項3において、該送電コイルは、該受電コイルと同一の一定幅よりなると共に、一定ピッチでの交叉により、上記移動方向に沿ったサイズLが同一の該ユニットが、形成されている。そして該サイズLが、次の数式2を満足すべく設定されること、を特徴とする。
About Claim 4, it is as follows.
According to a fourth aspect of the present invention, the power feeding coil has a constant width that is the same as that of the power receiving coil, and is sized along the moving direction by crossing at a constant pitch. The units having the same L are formed. The size L is set to satisfy the following expression 2.

Figure 2014053984
Figure 2014053984

請求項5については、次のとおり。
請求項5の移動給電式の非接触給電装置では、請求項4において、該給電側回路の送電コイルは、道路,地面,床,その他の地上側に、定置配設されている。該受電コイル等の受電側回路は、自動車等の車輌,その他の移動体側に、搭載されていること、を特徴とする。
About Claim 5, it is as follows.
According to a fifth aspect of the present invention, the power feeding coil of the power feeding side circuit is fixedly disposed on the road, ground, floor, or other ground side. The power receiving side circuit such as the power receiving coil is mounted on a vehicle such as an automobile or other moving body.

《作用等について》
本発明は、このような手段よりなるので、次のようになる。
(1)この非接触給電装置では、給電が移動式にて行われる。
(2)そして給電に際し、送電コイルと受電コイル間が、エアギャップを存しつつ電磁結合される。
(3)もって、電磁誘導の相互誘導作用に基づき、給電側から受電側へと電力が供給される。
(4)ところで、この非接触給電装置では、給電側の長大ループ状をなす送電コイルにより、高周波電磁界が強力に形成され、電磁波が強い強度で放射される。
(5)そこで、この非接触給電装置では、送電コイルに交叉コイル方式が採用されている。もって、交叉により形成された各ユニットによる発生電磁界の向きが、交互に反転するようになっている。
(6)これにより、近隣周辺エリアに放射された電磁界,電磁波は、打ち消し合って大幅に弱められる。
(7)ところで、この非接触給電装置では、受電コイルが交叉位置に対向位置すると、その受電電力が瞬間的にゼロとなる。
(8)そこで本発明では、複数個の受電コイルを、所定間隔にて配置してなる。
(9)これにより、いずれかの受電コイルの受電電力ゼロが、他のノーマルな受電コイルの受電電力でカバー,補完可能となる。
(10)さてそこで、本発明の移動給電式の非接触給電装置は、次の効果を発揮する。
<About the action>
Since the present invention comprises such means, the following is achieved.
(1) In this non-contact power feeding device, power feeding is performed in a mobile manner.
(2) When power is supplied, the power transmission coil and the power reception coil are electromagnetically coupled with an air gap.
(3) Accordingly, electric power is supplied from the power feeding side to the power receiving side based on the mutual induction effect of electromagnetic induction.
(4) By the way, in this non-contact power supply device, a high-frequency electromagnetic field is strongly formed and electromagnetic waves are radiated with a strong intensity by a power transmission coil having a long loop shape on the power supply side.
(5) Therefore, in this non-contact power feeding device, a cross coil system is adopted as the power transmission coil. Accordingly, the direction of the electromagnetic field generated by each unit formed by crossover is alternately reversed.
(6) Thereby, the electromagnetic field and electromagnetic wave radiated to the neighboring peripheral area cancel each other and are greatly weakened.
(7) By the way, in this non-contact power feeding device, when the power receiving coil is positioned opposite the crossover position, the received power instantaneously becomes zero.
(8) Accordingly, in the present invention, a plurality of power receiving coils are arranged at predetermined intervals.
(9) Thereby, the received power zero of any of the receiving coils can be covered and supplemented by the received power of other normal receiving coils.
(10) Now, the mobile power feeding type non-contact power feeding device of the present invention exhibits the following effects.

《第1の効果》
第1に、放射電磁界強度が抑制される。本発明の移動給電式の非接触給電装置では、給電側回路の送電コイルについて、交叉コイル方式が採用されている。
もって、放射電磁界強度の抑制効果を発揮し、近隣周辺へと放射された電磁界は、打ち消し合って弱められる。放射された電磁波は、放射レベルが大きく低減され、強度が大幅低下せしめられる。
そこで、近隣周辺のエリア環境への悪影響が、確実に防止される。例えば、数10m〜数100m程度離れたエリアについて、電磁波障害,電波受信妨害を発生させたり、人体に機能障害を与える虞は、回避される。
<< First effect >>
First, the radiated electromagnetic field intensity is suppressed. In the mobile power feeding type non-contact power feeding device of the present invention, the cross coil method is adopted for the power transmitting coil of the power feeding side circuit.
Thus, the effect of suppressing the intensity of the radiated electromagnetic field is exerted, and the electromagnetic fields radiated to the vicinity are canceled and weakened. The emitted electromagnetic wave is greatly reduced in radiation level and greatly reduced in intensity.
Thus, adverse effects on the surrounding area environment are reliably prevented. For example, in an area separated by several tens of meters to several hundreds of meters, the possibility of causing electromagnetic wave interference, radio wave reception interference, or damaging the human body is avoided.

《第2の効果》
第2に、受電可能電力の脈動も抑制される。本発明の移動給電式の非接触給電装置は、上述したように、放射電磁界強度の抑制効果を維持,発揮しつつ、受電電力の脈動化が抑制される。
すなわち、受電側回路の受電コイルを、複数個用いると共に所定間隔で配置したことにより、いずれかの受電コイルが送電コイルの交叉位置に対向位置した際の受電電力ゼロが、他の受電コイルのノーマルな受電電力にてカバー,補完されるようになる。
もって給電に際し、受電コイルのトータルの受電電力は、総和的にゼロとはならず、受電側回路において、受電電力そして出力パワーが、瞬間的,周期的にゼロになる脈動発生は、確実に防止される。
このように、この種従来技術に存した課題がすべて解決される等、本発明の発揮する効果は、顕著にして大なるものがある。
<< Second effect >>
Second, pulsation of power that can be received is also suppressed. As described above, the mobile power feeding type non-contact power feeding device of the present invention suppresses the pulsation of the received power while maintaining and exhibiting the suppression effect of the radiated electromagnetic field strength.
That is, by using a plurality of power receiving coils of a power receiving side circuit and arranging them at a predetermined interval, zero power received when any one of the power receiving coils is opposed to the crossing position of the power transmitting coil is normal for other power receiving coils. It will be covered and complemented by the received power.
Therefore, when power is supplied, the total received power of the receiving coil does not become zero in total, and the occurrence of pulsation in which the received power and output power become zero instantaneously and periodically in the receiving side circuit is surely prevented. Is done.
As described above, the effects exerted by the present invention are remarkably large, such as all the problems existing in this type of prior art are solved.

本発明に係る移動給電式の非接触給電装置について、発明を実施するための形態の説明に供する。そして(1)図は、送電コイルの説明図、(2)図は、給電時の送電コイルと受電コイルの説明図、(3)図は、給電時の受電側回路等の回路説明図である。The mobile power supply type non-contact power supply apparatus according to the present invention will be described for explaining the mode for carrying out the invention. (1) is an explanatory diagram of a power transmission coil, (2) is an explanatory diagram of a power transmission coil and a power receiving coil during power feeding, and (3) is a circuit explanatory diagram of a power receiving side circuit and the like during power feeding. . 同発明を実施するための形態の説明に供する。そして、給電時の送電コイルと受電コイルの説明図であり、(1)図は第1例、(2)図は第2例、(3)図は第3例を示す。It serves for description of the form for implementing this invention. And it is explanatory drawing of the power transmission coil at the time of electric power feeding, and a receiving coil, (1) A figure shows a 1st example, (2) A figure shows a 2nd example, (3) A figure shows a 3rd example. 従来技術に係る移動給電式の非接触給電装置の説明に供する。そして(1)図は、送電コイルの説明図、(2)図は、給電時の送電コイルと受電コイルの説明図、(3)図は、結合係数のグラフである。A description will be given of a mobile power feeding type non-contact power feeding device according to the related art. And (1) figure is explanatory drawing of a power transmission coil, (2) figure is explanatory drawing of the power transmission coil at the time of electric power feeding, and a receiving coil, (3) figure is a graph of a coupling coefficient. 移動給電式の非接触給電装置の説明に供する。そして(1)図は、全体の側面説明図、(2)図は、その要部説明図、(3)図は、交叉コイル方式の送電コイルによる給電時の斜視説明図である。This will be described for the mobile power supply type non-contact power supply apparatus. And (1) figure is the whole side explanatory drawing, (2) figure is the principal part explanatory drawing, (3) figure is the perspective explanatory drawing at the time of the electric power feeding by the power transmission coil of a cross coil system.

以下、本発明を実施するための形態について、詳細に説明する。
《非接触給電装置1について》
まず、移動給電式の非接触給電装置1について、図4の(1)図,(2)図を参照して、一般的に説明する。非接触給電装置1は、電磁誘導の相互誘導作用に基づき、給電側回路2の送電コイル3から、受電側回路5の受電コイル7(図3の従来技術では6)に、エアギャップAを存しつつ電力を供給する。
そして給電に際し、受電コイル7(6)が、定置された送電コイル3に対し、エアギャップAを存し対向しつつ移動される、移動給電式よりなる。送電コイル3および受電コイル7(6)は、それぞれ、ループ状のフラット構造をなす。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
<< About the non-contact electric power feeder 1 >>
First, the mobile power feeding type non-contact power feeding device 1 will be generally described with reference to FIGS. 4A and 4B. The non-contact power feeding device 1 has an air gap A in the power receiving coil 7 of the power receiving side circuit 5 (6 in the prior art of FIG. 3) from the power transmitting coil 3 of the power feeding side circuit 2 based on the mutual induction action of electromagnetic induction. While supplying power.
And in the case of electric power feeding, it consists of a mobile electric power feeding type in which the receiving coil 7 (6) is moved facing the stationary power transmission coil 3 with the air gap A therebetween. Each of the power transmission coil 3 and the power reception coil 7 (6) has a loop-shaped flat structure.

このような非接触給電装置1について、更に詳述する。1次側の給電側回路2は、給電スタンドその他の給電エリアにおいて、送電コイル3が、道路8,地面,床,その他の地上側に定置配設される。
これに対し、2次側の受電側回路5は、受電コイル7(6)が、電気自動車(EV)や電車等の車輌9,その他の移動体側に、搭載される。受電側回路5は、その駆動用の他、非駆動用としても利用可能であり、図示のように車載バッテリー10に接続されるのが代表的であるが、各種負荷Rに直接接続される場合もある(図1の(3)図を参照)。
給電側回路2の送電コイル3は、高周波インバータが使用される電源11に接続されている。受電側回路5の受電コイル7(6)は、図示例ではバッテリー10に接続可能となっており、給電により充電されたバッテリー10にて、走行用モータ12が駆動される。図中13は、交流を直流に変換するコンバータ(後述する整流回路や平滑部)、14は、直流を交流に変換するインバータである。
送電コイル3および受電コイル7(6)は、それぞれ、絶縁コイル導線が同一面でループ状に、例えば複数回巻回ターンされたフラット構造をなし、移動体の移動方向Bに沿って横長の長方形環状をなす。受電コイル7(6)については、正方形環状や縦長長方形環状のものも可能である。
そして送電コイル3は、受電コイル7(6)と同幅W(横方向・移動方向Bに対し直角をなす縦方向の幅)よりなると共に、移動方向Bに数倍から数10倍の長大ループ状をなす。例えば、送電コイル3は5m×28cm、受電コイル7(6)は1m×28cmの寸法設定よりなる。
そして給電は、移動給電式にて実施される。すなわち給電に際し、受電側回路5の受電コイル7(6)が、給電側回路2の送電コイル3に対し、エアギャップAを存しつつ、非接触で近接対向して走行等移動する。
Such a non-contact power feeding device 1 will be described in further detail. In the power supply side circuit 2 on the primary side, the power transmission coil 3 is fixedly disposed on the road 8, the ground, the floor, or other ground side in a power supply stand or other power supply area.
On the other hand, in the secondary power receiving side circuit 5, the power receiving coil 7 (6) is mounted on a vehicle 9 such as an electric vehicle (EV) or a train, or other moving body side. The power receiving side circuit 5 can be used not only for driving but also for non-driving, and is typically connected to the in-vehicle battery 10 as shown, but is directly connected to various loads R. (Refer to Fig. 1 (3)).
The power transmission coil 3 of the power supply side circuit 2 is connected to a power source 11 in which a high frequency inverter is used. The power receiving coil 7 (6) of the power receiving side circuit 5 can be connected to the battery 10 in the illustrated example, and the traveling motor 12 is driven by the battery 10 charged by power feeding. In the figure, reference numeral 13 denotes a converter (rectifier circuit or smoothing section described later) that converts alternating current into direct current, and reference numeral 14 denotes an inverter that converts direct current into alternating current.
The power transmission coil 3 and the power reception coil 7 (6) each have a flat structure in which the insulating coil conductors are looped on the same surface, for example, a plurality of turns, and are horizontally long along the moving direction B of the moving body. Make a ring. The power receiving coil 7 (6) may be a square ring or a vertically long rectangular ring.
The power transmission coil 3 has the same width W as the power reception coil 7 (6) (the width in the vertical direction perpendicular to the horizontal direction / movement direction B), and a long loop several times to several tens of times in the movement direction B. Shape. For example, the power transmission coil 3 is 5 mx 28 cm, and the power receiving coil 7 (6) is 1 mx 28 cm.
And electric power feeding is implemented by a mobile electric power feeding type. In other words, during power feeding, the power receiving coil 7 (6) of the power receiving side circuit 5 travels and moves in close proximity to the power transmitting coil 3 of the power feeding side circuit 2 in a non-contact manner, while maintaining an air gap A.

電磁誘導の相互誘導作用については、次のとおり。給電に際し、対向位置する送電コイル3と受電コイル7(6)間では、送電コイル3での磁束形成により、受電コイル7(6)に誘導起電力を生成させ、もって送電コイル3から受電コイル7(6)へと、電力を供給することは、公知公用である。
すなわち、給電側回路2の送電コイル3に、電源11から例えば数kHz〜100kHz程度の高周波交流を、励磁電流として通電することにより、磁界が送電コイル3のコイル導線の周囲に生じ、磁束がコイル面に対して直角方向に形成される。そして、このように形成された磁束が、受電側回路5の受電コイル7(6)を貫き鎖交することにより、誘導起電力が誘起され、もって磁場が形成され磁界を利用して電力が送受される。
非接触給電装置1では、このような電磁誘導の相互誘導作用に基づき、送電コイル3と受電コイル7(6)の両回路は、相互間のエアギャップAに磁束の磁路が形成されて、電磁結合される。もって数kW以上、例えば数10kW〜数100kW程度の電力供給が、実施される。
非接触給電装置1については、以上のとおり。
The mutual induction effect of electromagnetic induction is as follows. During power feeding, between the power transmitting coil 3 and the power receiving coil 7 (6) facing each other, an induction electromotive force is generated in the power receiving coil 7 (6) by forming a magnetic flux in the power transmitting coil 3, so that the power receiving coil 7 receives the power from the power transmitting coil 3. Supplying power to (6) is publicly known.
That is, when a high-frequency alternating current of about several kHz to 100 kHz, for example, is supplied from the power source 11 to the power transmission coil 3 of the power supply side circuit 2 as an excitation current, a magnetic field is generated around the coil conductor of the power transmission coil 3 and the magnetic flux is coiled. It is formed in a direction perpendicular to the surface. The magnetic flux thus formed penetrates through the power receiving coil 7 (6) of the power receiving side circuit 5 to induce an induced electromotive force, so that a magnetic field is formed and power is transmitted and received using the magnetic field. Is done.
In the non-contact power feeding device 1, based on such mutual induction action of electromagnetic induction, both circuits of the power transmission coil 3 and the power reception coil 7 (6) have magnetic flux magnetic paths formed in the air gap A between them, Electromagnetically coupled. Accordingly, power supply of several kW or more, for example, about several tens kW to several hundred kW is performed.
About the non-contact electric power feeder 1, it is as above.

《交叉コイル方式の送電コイル3について》
次に、交叉コイル方式の送電コイル3について、図4の(3)図,更には図1,図2等を参照して、説明する。
送電コイル3は、フラットな構造をなし、受電コイル7(6)の移動方向Bに沿い長ループ状をなすと共に、途中で交叉されており、交叉により複数のユニット4が形成されている。
そして送電コイル3は、交叉により形成された各ユニット4から発生,放射される磁界の向きが、プラス方向とマイナス方向とに交互に反転する。
<< About the cross-coil transmission coil 3 >>
Next, the cross coil type power transmission coil 3 will be described with reference to FIG.
The power transmission coil 3 has a flat structure, forms a long loop along the movement direction B of the power reception coil 7 (6), and is crossed in the middle, and a plurality of units 4 are formed by the crossover.
In the power transmission coil 3, the direction of the magnetic field generated and radiated from each unit 4 formed by crossing is alternately reversed between the plus direction and the minus direction.

このような送電コイル3について、更に詳述する。送電コイル3は、途中のクロスポイントP(交叉位置)で交叉されており、もって複数のユニット4が、分割,区画形成されている。クロスポイントPの数つまり交叉回数は、単数または複数可能である。
図1の(1)図,(2)図,図2の(1)図の例では、クロスポイントPの数は1であり、2個のユニット4が形成される。図4の(3)図,図2の(2)図の例では、クロスポイントPの数は3であり、4個のユニット4が形成され、図1の(3)図,図2の(3)図の例では7であり、8個のユニット4が形成される。
交叉により形成される各ユニット4の面積(各ユニット4の絶縁コイル導線で囲われたフラット面の面積)は、図示のように共通,同一に設定されるのが代表的であるが、異なる設定も可能である。
Such a power transmission coil 3 will be further described in detail. The power transmission coil 3 is crossed at a cross point P (crossing position) on the way, and a plurality of units 4 are divided and partitioned. The number of cross points P, that is, the number of crossovers, can be singular or plural.
In the example of FIGS. 1A, 1B and 2A, the number of cross points P is 1, and two units 4 are formed. In the example of FIG. 4 (3) and FIG. 2 (2), the number of cross points P is 3, and four units 4 are formed, as shown in FIG. 1 (3) and FIG. 3) In the example shown in the figure, it is 7 and 8 units 4 are formed.
The area of each unit 4 formed by crossing (the area of the flat surface surrounded by the insulated coil conductor of each unit 4) is typically set to be the same as shown in the figure, but is set differently. Is also possible.

そして、交叉コイル方式の送電コイル3では、図示したように、交叉により形成されたユニット4において、発生する磁界の向きが、プラス方向とマイナス方向とに交互に反転される。
すなわち、交叉コイル方式の送電コイル3に電流を供給すると、電流に応じた磁界が発生するが、このように発生する磁界の向きは、交叉により形成されて隣接する各ユニット4毎に、プラス方向とマイナス方向とに交互に反転する。つまり、交叉結合された隣接ユニット4毎に、逆方向の磁界が発生する。
そして各ユニット4は、プラス方向の磁界を発生するユニット4の面積と、マイナス方向の磁界を発生するユニット4の面積とが、等しい設定よりなる。
すなわち、プラス方向磁界のユニット4の合計面積と、マイナス方向磁界のユニット4の合計面積とが、等しくなっている。なおここで、合計面積が等しいとは、完全に一致している場合のみならず、若干相違している場合をも包含する。各ユニット4の面積が上述したように共通,同一なので、プラス方向のユニット4とマイナス方向のユニット4とは、同数個となる。つまり、ユニット4の個数は偶数個となる。
And in the cross coil type power transmission coil 3, as shown in the figure, in the unit 4 formed by crossover, the direction of the generated magnetic field is alternately reversed between the plus direction and the minus direction.
That is, when a current is supplied to the cross-coil type power transmission coil 3, a magnetic field corresponding to the current is generated. The direction of the magnetic field generated in this way is positive for each unit 4 formed by crossing and adjacent to each other. And reverse in the negative direction. That is, a reverse magnetic field is generated for each adjacent unit 4 that is cross-coupled.
Each unit 4 is configured so that the area of the unit 4 that generates a magnetic field in the positive direction is equal to the area of the unit 4 that generates a magnetic field in the negative direction.
That is, the total area of the positive direction magnetic field units 4 is equal to the total area of the negative direction magnetic field units 4. Here, the case where the total areas are equal includes not only the case where they are completely coincident but also the case where they are slightly different. Since the area of each unit 4 is common or the same as described above, the number of units 4 in the plus direction and the number of units 4 in the minus direction are the same. That is, the number of units 4 is an even number.

ところで、このようなクロスポイントPの数、つまり交叉回数やユニット4の個数等の多少により、電磁界放射レベルの調整が可能である。
すなわち、この移動給電式の非接触給電装置1により給電が行われる際、周りが人工密集地ではなく、電波受信妨害を受けやすい機器等も存しない場所では、交叉回数等が減らされる。つまり、このような場所に設置される給電側回路2の送電コイル3については、交叉回数を減ずることにより、コイル導線の使用量を減らすことが出来、コスト低減が実現される。
これに対し、周りが市街地で電波受信妨害を受けやすい機器等が存する場所では、交叉回数が増加せしめられる。つまり、このような場所に設置される給電側回路2の送電コイル3については、放射電磁界強度の抑制がより重視され、交叉回数を増やされる。
交叉コイル方式の送電コイル3については、以上のとおり。
By the way, the electromagnetic field radiation level can be adjusted by the number of such cross points P, that is, the number of crossovers, the number of units 4 and the like.
That is, when power is supplied by the mobile power supply type non-contact power supply device 1, the number of crossovers and the like is reduced in a place where the surroundings are not an artificially crowded place and there are no devices that are susceptible to radio wave reception interference. That is, with respect to the power transmission coil 3 of the power supply side circuit 2 installed in such a place, the amount of coil conductors used can be reduced by reducing the number of crossovers, thereby realizing cost reduction.
On the other hand, the number of crossovers is increased in a place where there are devices that are susceptible to radio wave reception interference around the city. That is, for the power transmission coil 3 of the power supply side circuit 2 installed in such a place, suppression of the radiated electromagnetic field strength is more important and the number of crossovers is increased.
The cross coil power transmission coil 3 is as described above.

《本発明の概要》
以下、本発明について、図1,図2を参照して説明する。
まず、本発明の移動給電式の非接触給電装置1は、受電側回路5の受電コイル7が、前述したようにループ状でフラットな構造をなすと共に、複数個が間隔dを存して配置されていること、を特徴とする。
そして、複数個の受電コイル7は、いずれかの受電コイル7の送電コイル3交叉位置、つまりクロスポイントPに対向位置した際の受電電力ゼロが、他の受電コイル7のノーマルな受電電力にてカバーされること、を特徴とする。
<< Outline of the Invention >>
The present invention will be described below with reference to FIGS.
First, in the mobile power feeding type non-contact power feeding device 1 of the present invention, the power receiving coil 7 of the power receiving side circuit 5 has a loop shape and a flat structure as described above, and a plurality of them are arranged with a gap d. It is characterized by that.
The plurality of power receiving coils 7 have the normal power received by the other power receiving coils 7 when the power receiving coil 7 of any one of the power receiving coils 7 crosses the crossing position of the power transmitting coil 3, that is, when the power is zero. It is covered.

《受電コイル7について》
このような受電コイル7について、更に詳述する。まず図1の(2)図中に示したように、図示例において、移動する一方の受電コイル7は、その中心が送電コイル3のクロスポイントPに対向位置すると、その左半分が、送電コイル3からプラス方向の磁界を受け、右半分が、送電コイル3からマイナス方向の磁界を受ける。
そこでその瞬間、受電コイル7にて誘起される誘導起電力が相殺されてしまい、受電コイル7の受電電力がゼロとなり、取り出せる出力がゼロとなる。
これに対し、移動する他方の受電コイル7は、上述した一方の受電コイル7とは間隔dが存しており、その中心が送電コイル3のクロスポイントPに対向位置しない関係にある。
他方の受電コイル7は、一方の受電コイル7がクロスポイントPに対向位置した場合、クロスポイントPには対向位置しない関係にある。そこで、受電コイル7に誘起される誘導起電力は、所期の通りであり、100%ノーマルな受電電力,出力パワーが得られる。
<About the power receiving coil 7>
Such a power receiving coil 7 will be further described in detail. First, as shown in (2) Fig. 1, in the illustrated example, one receiving coil 71 that moves, when its center position facing the cross point P of the power transmission coil 3 and the left half, the transmission A positive magnetic field is received from the coil 3, and the right half receives a negative magnetic field from the power transmission coil 3.
Therefore that moment, will be induced electromotive force induced is offset by the receiving coil 71, the received power of the power receiving coil 71 becomes zero, the output that can be taken out becomes zero.
In contrast, the other receiving coil 7 2 to be moved, the power receiving coil 71 of the one described above has been exist spacing d, a relationship that the center does not face located in the cross point P of the power transmission coil 3.
The other receiving coil 7 2, one of the power receiving coil 71 may have a position facing the cross point P, a relationship that does not face located on the cross point P. Accordingly, it induced electromotive force induced in the receiving coil 7 2 are intended as 100% normal power receiving power, output power is obtained.

逆に、一方の受電コイル7は、他方の受電コイル7がクロスポイントPに対向位置した場合は、クロスポイントPには対向位置しない関係にある。この場合は、他方の受電コイル7の受電電力がゼロとなるのに対し、一方の受電コイル7の受電電力は、所期の通りでありノーマルな受電電力が得られる。
勿論、移動により両受電コイル7,7共に、クロスポイントPには対向位置せず、ノーマルな受電電力が得られる過程も存する。
なお図示例では、受電コイル7は、2個の受電コイル7,7から構成されていたが、本発明はこのような図示例に限定されるものではなく、3個以上の受電コイル7を用いることも可能である。この場合の各受電コイル7の相互関係については、上述した2個の場合に準じる。
受電コイル7については、以上のとおり。
Conversely, one of the power receiving coil 71, if the other receiving coil 7 2 are opposed located in the cross point P, a relationship that does not face located on the cross point P. In this case, while the received power of the other receiving coil 7 2 becomes zero, one of the receiving power received coil 7 1-normal reception power are expected as is obtained.
Of course, there is a process in which both the receiving coils 7 1 , 7 2 are not positioned opposite to the cross point P by movement and normal received power is obtained.
In the illustrated example, the power receiving coil 7 is composed of two power receiving coils 7 1 , 7 2. However, the present invention is not limited to such a illustrated example, and three or more power receiving coils 7. It is also possible to use. The mutual relationship between the power receiving coils 7 in this case conforms to the two cases described above.
The receiving coil 7 is as described above.

《受電側回路5について》
次に、このような受電コイル7が使用される受電側回路5について、図1の(3)図を参照して説明する。受電側回路5には、それぞれの整流回路15と、並列接続されたその直流出力端aa,bbと、平滑部16と、負荷Rやバッテリー10(図4の(1)図を参照)等が、設けられている。
そこで、受電コイル7,7からの出力は、まず、図示では単相全波整流器を用いた整流回路15を通されて、交流が直流に変換される。そして、それぞれの整流回路15の直流出力端aa,bbが並列接続されると共に、その出力が、平滑部16の平滑コンデンサにて安定電圧の直流とされた後、負荷R等へと供給される。従って、受電コイル7,7から負荷R等へと供給される受電電力の総和が、ゼロになることはない。
すなわち、一方の受電コイル7の受電電力がゼロの時、他方の受電コイル7の受電電力は100%ノーマルであり、逆に、他方の受電コイル7の受電電力がゼロの時、一方の受電コイル7の受電電力はノーマルである。もって、受電側回路5で取り出される電力は、、受電コイル7,7間の相互補完により出力和がゼロとなることなく、負荷R等へと供給される。
なお上述では、受電コイル7が2個の受電コイル7,7から構成される場合を例にとって説明したが、受電コイル7が3個以上となった場合も、上述した所に準じる。すなわち、いずれか1個の受電コイル7の受電電力がゼロの時は、残りの受電コイル7の受電電力で相互補完されることになる。
受電側回路5については、以上のとおり。
<< Receiving side circuit 5 >>
Next, the power receiving side circuit 5 in which such a power receiving coil 7 is used will be described with reference to FIG. The power receiving side circuit 5 includes a rectifier circuit 15, DC output terminals aa and bb connected in parallel, a smoothing unit 16, a load R, a battery 10 (see FIG. 4 (1)), and the like. , Provided.
Therefore, the outputs from the power receiving coils 7 1 and 7 2 are first passed through a rectifier circuit 15 using a single-phase full-wave rectifier in the drawing, and alternating current is converted into direct current. The DC output terminals aa and bb of the respective rectifier circuits 15 are connected in parallel, and the output is converted to a stable voltage DC by the smoothing capacitor of the smoothing unit 16 and then supplied to the load R and the like. . Therefore, the sum total of the received power supplied from the power receiving coils 7 1 and 7 2 to the load R and the like does not become zero.
That is, when one of the power receiving received power of the coil 71 is zero, the received power of the other receiving coil 7 2 100% normal, conversely, when the received power of the other receiving coil 7 2 is zero, whereas receiving power of the power receiving coil 71 of a normal. Accordingly, the electric power extracted by the power receiving side circuit 5 is supplied to the load R or the like without the output sum becoming zero due to mutual complementation between the power receiving coils 7 1 and 7 2 .
In the above description, the case where the power receiving coil 7 is composed of the two power receiving coils 7 1 and 7 2 has been described as an example, but the case where the number of the power receiving coils 7 is three or more is also the same as described above. That is, when the power received by any one of the power receiving coils 7 is zero, the power received by the remaining power receiving coils 7 is mutually complemented.
The power receiving side circuit 5 is as described above.

《受電コイル7の間隔dや、送電コイル3のサイズについて》
まず、受電コイル7間の間隔dについては、次のとおり。図1,図2に示した代表例では、複数の受電コイル7は、その幅Wが同一であると共に、移動方向Bに沿ったサイズCも同一となっている。
そして、相互間の間隔dが、次の数式3(前述した数式1)を満足すべく設定される。
<< About the interval d of the power receiving coil 7 and the size of the power transmitting coil 3 >>
First, the interval d between the power receiving coils 7 is as follows. In the representative example shown in FIGS. 1 and 2, the plurality of power receiving coils 7 have the same width W and the same size C along the moving direction B.
Then, the interval d between them is set so as to satisfy the following Equation 3 (Equation 1 described above).

Figure 2014053984
Figure 2014053984

この数式3は、実験の積み重ねにより得られたものであり、前述した受電コイル7間の相互補完機能を確実に発揮させるための間隔dであり、勿論、3個以上の受電コイル7が使用された場合にも適用可能である。
そして、もしも間隔dが、受電コイル7のサイズCの半分より小さな値となり、受電コイル7間がより接近した場合は、例えば、受電コイル7の受電電力相互間に悪影響を及ぼす虞等の事態発生が、推測される。
This Formula 3 is obtained by accumulating experiments, and is an interval d for surely exhibiting the mutual complementing function between the power receiving coils 7 described above. Of course, three or more power receiving coils 7 are used. It is also applicable to the case.
If the distance d is smaller than half the size C of the power receiving coil 7 and the power receiving coils 7 are closer to each other, for example, a situation may occur in which the power received by the power receiving coils 7 may be adversely affected. Is guessed.

又、送電コイル3のサイズについては、次のとおり。
図1,図2に示した代表例において、複数の受電コイル7は、幅Wが同一であると共に、サイズCも同一である。そして送電コイル3は、受電コイル7と同一の一定幅Wよりなると共に、一定ピッチでの交叉により、移動方向Bに沿ったサイズLが同一のユニット4が、形成されている。
そして、このユニット4のサイズLは、次の数式4(前述した数式2)を満足すべく設定される。
The size of the power transmission coil 3 is as follows.
In the representative example shown in FIGS. 1 and 2, the plurality of power receiving coils 7 have the same width W and the same size C. The power transmission coil 3 has a constant width W that is the same as that of the power reception coil 7, and a unit 4 having the same size L along the moving direction B is formed by crossing at a constant pitch.
The size L of the unit 4 is set so as to satisfy the following formula 4 (formula 2 described above).

Figure 2014053984
Figure 2014053984

この数式4も、実験の積み重ねにより得られたものであり、前述した受電コイル7間の相互補完機能を確実に発揮させるため、その前提となる送電コイル3の各ユニット4のサイズLに関するものである。
そして、もしもユニット4のサイズLが、受電コイル7のサイズとその間隔dとの和より小さな値となった場合は、例えば、受電電力がゼロとなった受電コイル7に対し、他の受電コイル7が補完機能を全うできなくなる等の事態発生が、推測される。
受電コイル7の間隔dや、送電コイル3サイズについては、以上のとおり。
This mathematical formula 4 is also obtained by accumulating experiments, and is related to the size L of each unit 4 of the power transmission coil 3 that is the prerequisite for reliably exhibiting the mutual complementing function between the power receiving coils 7 described above. is there.
If the size L of the unit 4 is smaller than the sum of the size of the power receiving coil 7 and the distance d, for example, the power receiving coil 7 whose power received is zero is replaced with another power receiving coil. The occurrence of a situation such as 7 becoming unable to complete the complementary function is presumed.
The distance d between the power receiving coils 7 and the size of the power transmitting coil 3 are as described above.

《作用等》
本発明の移動給電式の非接触給電装置1は、以上説明したように構成されている。そこで以下のようになる。
(1)この非接触給電装置1では、給電が移動給電式にて実施される。すなわち給電に際し、電気自動車等の車輌9、その他の移動体に搭載された2次側,受電側の受電コイル7は、走行等により移動方向Bに移動する。そして道路8,その他の地上側に定置配設された1次側,給電側の送電コイル3に対し、エアギャップAを存しつつ非接触で近接対向位置しつつ、走行等移動する(図4の(1)図,(2)図を参照)。
《Action etc.》
The mobile power feeding type non-contact power feeding device 1 of the present invention is configured as described above. Then, it becomes as follows.
(1) In the non-contact power feeding device 1, power feeding is performed by a mobile power feeding method. That is, at the time of power feeding, the secondary and power receiving side power receiving coils 7 mounted on the vehicle 9 such as an electric vehicle and other moving bodies move in the moving direction B by traveling or the like. Then, with respect to the road 8 and other primary and power feeding coils 3 that are stationaryly arranged on the ground side, the air travels and moves while being in close contact with each other in a non-contact manner with the air gap A (FIG. 4). (See Fig. 1 and Fig. 2).

(2)給電に際しては、非接触給電装置1の給電側において、給電側回路2の送電コイル3が、電源11からの高周波交流を励磁電流として、通電される。もって、給電側の送電コイル3と受電側の受電コイル7との間が、エアギャップAを存しつつ磁束の磁路が形成されて、電磁結合される。   (2) During power feeding, on the power feeding side of the non-contact power feeding device 1, the power transmission coil 3 of the power feeding side circuit 2 is energized using high frequency alternating current from the power source 11 as an exciting current. Accordingly, a magnetic path of magnetic flux is formed between the power transmitting coil 3 on the power feeding side and the power receiving coil 7 on the power receiving side while the air gap A exists, and is electromagnetically coupled.

(3)非接触給電装置1では、このようにして、電磁誘導の相互誘導作用に基づき、1次側の送電コイル3側から、2次側の受電コイル7側へと、電力が供給される。   (3) In the non-contact power feeding device 1, in this way, electric power is supplied from the primary side power transmission coil 3 side to the secondary side power reception coil 7 side based on the mutual induction action of electromagnetic induction. .

(4)さて、この種の非接触給電装置1では、まず、10kHz〜100kHz程度の高周波交流を用いられており、もって電磁誘導の相互作用に基づき給電が実施されるので、大きな密度の高周波電磁界(交流変動電磁界)が形成され、強力な高周波電磁波が放射される。
しかも、このような高周波電磁界,電磁波を放射する送電側の送電コイル3は、長大ループ状化しており、給電エリア全長にわたり数10m〜数100mにわたり、列状・略帯状に展開されている。
(4) Now, in this type of non-contact power feeding device 1, first, high frequency alternating current of about 10 kHz to 100 kHz is used, and power feeding is performed based on electromagnetic induction interaction. A field (AC fluctuation electromagnetic field) is formed, and a strong high-frequency electromagnetic wave is emitted.
Moreover, the power transmission coil 3 on the power transmission side that radiates such a high-frequency electromagnetic field and electromagnetic wave is formed in a long loop shape, and is developed in a row / substantially belt-like shape over several tens of meters to several hundreds of meters over the entire power supply area.

(5)そこでこの非接触給電装置1では、送電コイル3について交叉コイル方式が採用されている。交叉コイル方式では、交叉位置つまりクロスポイントPにより形成された各ユニット4について、発生磁界の向きが、プラス方向とマイナス方向とに交互に反転する(図4の(3)図を参照)。   (5) Therefore, in the non-contact power feeding device 1, the cross coil method is adopted for the power transmission coil 3. In the cross coil system, the direction of the generated magnetic field is alternately reversed between the plus direction and the minus direction for each unit 4 formed by the cross position, that is, the cross point P (see FIG. 4 (3)).

(6)そこで、非接触給電装置1の給電側回路2が設けられた給電エリアから、例えば数10m〜数100m程度離れた近隣周辺エリアへと外部放射された電磁界は、打ち消し合って弱められるようになる。隣接するプラス方向電磁界とマイナス方向電磁界とが、打ち消し合って、電磁界密度が大幅低下する。
このように、非接触給電装置1の給電側から外部放射された電磁波は、非接触給電装置1から離れたエリアにおいては、大幅低減され強度が著しく低下するようになる。
(6) Therefore, the electromagnetic fields radiated from the power supply area where the power supply side circuit 2 of the non-contact power supply device 1 is provided to a neighboring peripheral area, for example, about several tens of meters to several hundred meters away, cancel each other and are weakened. It becomes like this. Adjacent positive and negative electromagnetic fields cancel each other, greatly reducing the electromagnetic field density.
As described above, the electromagnetic waves radiated from the power supply side of the non-contact power supply apparatus 1 are greatly reduced in the area away from the non-contact power supply apparatus 1 and the intensity is significantly reduced.

(7)この非接触給電装置1では、給電側回路2について、このように、交叉コイル方式の送電コイル3が採用されている。
そこで、そのクロスポイントPに、移動する受電側回路5の受電コイル7が近接対向位置した場合、一時的に給電が困難化する。受電コイル7にて誘起される誘導起電力が、その左右で+−相殺され、受電電力,出力パワーが瞬間的にゼロとなってしまう(図4の(3)図も参照)。
(7) In the non-contact power feeding device 1, the cross-coil power transmission coil 3 is employed for the power feeding side circuit 2 in this way.
Therefore, when the power receiving coil 7 of the moving power receiving side circuit 5 is located close to the cross point P, power supply temporarily becomes difficult. The induced electromotive force induced in the power receiving coil 7 is +/- offset on the left and right sides, and the received power and the output power instantaneously become zero (see also FIG. 4 (3)).

(8)そこで本発明では、受電側回路5について、受電コイル7を複数個用いると共に、所定間隔dを置いて配置してなる(図1の(2)図,(3)図,図2の(1)図,(2)図,(3)図等を参照)。
なお、前述した数式3(数式1),数式4(数式2)が、このような間隔d、受電コイル7のサイズC、送電コイル3のユニット4のサイズL等について、設定の目安となる。
(8) Therefore, in the present invention, the power receiving side circuit 5 includes a plurality of power receiving coils 7 and is arranged at a predetermined interval d (see FIGS. 1 (2), (3), and 2). (Refer to (1) Figure, (2) Figure, (3) Figure, etc.)).
It should be noted that the above-described Equation 3 (Equation 1) and Equation 4 (Equation 2) are guides for setting the interval d, the size C of the power receiving coil 7, the size L of the unit 4 of the power transmitting coil 3, and the like.

(9)このような受電コイル7を採用したので、この非接触給電装置1の受電側回路5では、いずれかの受電コイル7がクロスポイントPに対向位置した際の受電電力ゼロが、クロスポイントPに対向位置しない他の受電コイル7のノーマルな受電電力にて、カバーされ補完されるようになる(図1の(3)図等を参照)。
複数個の受電コイル7、例えば受電コイル7,7の出力を、整流後に並列接続し、平滑して負荷Rに供給することにより、複数個の受電コイル7トータルの受電電力が、総和的にはゼロとなることはない。いずれかの受電コイル7の出力電圧がゼロとなっても、総和的には出力が維持される。もって、受電電力,出力パワーが、瞬間的,周期的にゼロとなる脈動発生は、防止される。
(9) Since such a power receiving coil 7 is adopted, in the power receiving side circuit 5 of the non-contact power feeding device 1, zero power received when any one of the power receiving coils 7 faces the cross point P is the cross point. It is covered and supplemented by the normal received power of the other receiving coil 7 not positioned opposite to P (see (3) in FIG. 1, etc.).
The outputs of the plurality of power receiving coils 7, for example, the power receiving coils 7 1 and 7 2 are connected in parallel after rectification, smoothed and supplied to the load R, so that the total power received by the plurality of power receiving coils 7 is totalized. Will never be zero. Even if the output voltage of any one of the power receiving coils 7 becomes zero, the output is maintained in total. Therefore, the occurrence of pulsation in which the received power and output power become zero instantaneously and periodically is prevented.

(10)なお、以上説明した給電側回路2や受電側回路5については、図示した所に加え、更に共振中継方式を採用することも、考えられる(その詳細については、前述した特開2011−223703号公報を参照)。
すなわち、中継コイルとコンデンサとを備えると共に独立した共振中継回路を、送電コイル3のエアギャップA側、又は/及び、受電コイル7のエアギャップA側に、配設することが考えられる。そして本明細書では、このような共振中継回路の中継コイルも、これまで説明した送電コイル3や受電コイル7の概念中に、包含される。
この中継コイルは、送電コイル3又は/及び受電コイル7について、その電磁結合強化策として用いられるに過ぎず、送電コイル3や受電コイル7の一環と解される。勿論、給電側の中継コイルは、交叉コイル方式となる。
作用等については、以上のとおり。
(10) The power supply side circuit 2 and the power reception side circuit 5 described above can be considered to employ a resonance relay system in addition to the illustrated ones (for details, see the above-mentioned JP-A-2011-11). 223703).
That is, it is conceivable that an independent resonance relay circuit including a relay coil and a capacitor is disposed on the air gap A side of the power transmission coil 3 and / or on the air gap A side of the power reception coil 7. And in this specification, the relay coil of such a resonance relay circuit is also included in the concept of the power transmission coil 3 and the power receiving coil 7 demonstrated so far.
The relay coil is merely used as a measure for strengthening the electromagnetic coupling of the power transmission coil 3 and / or the power reception coil 7, and is understood as a part of the power transmission coil 3 and the power reception coil 7. Of course, the relay coil on the power supply side is a cross coil system.
As for the action, it is as above.

1 非接触給電装置
2 給電側回路
3 送電コイル
4 ユニット
5 受電側回路
6 受電コイル(従来技術)
7,7,7
受電コイル(本発明)
8 道路
9 車輌
10 バッテリー
11 電源
12 モータ
13 コンバータ
14 インバータ
15 整流回路
16 平滑部
A エアギャップ
B 移動方向
C サイズ(受電コイル)
L サイズ(送電コイルのユニット)
P クロスポイント
R 負荷
W 幅
a 直流出力端
b 直流出力端
d 間隔
DESCRIPTION OF SYMBOLS 1 Non-contact electric power feeder 2 Power feeding side circuit 3 Power transmission coil 4 Unit 5 Power receiving side circuit 6 Power receiving coil (conventional technology)
7, 7 1 , 7 2 ,
Power receiving coil (present invention)
8 road 9 vehicle 10 battery 11 power source 12 motor 13 converter 14 inverter 15 rectifier circuit 16 smoothing part A air gap B moving direction C size (power receiving coil)
L size (power transmission coil unit)
P Cross point R Load W Width
a DC output terminal
b DC output terminal d Interval

Claims (5)

電磁誘導の相互誘導作用に基づき、給電側回路の送電コイルから受電側回路の受電コイルに、電力を供給する非接触給電装置であって、定置された該送電コイルに対し、給電に際し該受電コイルが、エアギャップを存しつつ移動する移動給電式よりなり、
該送電コイルは、フラットな構造をなし、該受電コイルの移動方向に沿い長ループ状をなすと共に、途中で交叉されており、交叉により複数のユニットが形成されており、
該受電コイルは、ループ状でフラットな構造をなし、複数個が間隔を存して配置されていること、を特徴とする移動給電式の非接触給電装置。
A non-contact power supply device that supplies power from a power transmission coil of a power supply side circuit to a power reception coil of a power reception side circuit based on a mutual induction action of electromagnetic induction, and the power reception coil when the power is supplied to the stationary power transmission coil However, it consists of a mobile feed type that moves with an air gap.
The power transmission coil has a flat structure, forms a long loop along the moving direction of the power reception coil, is crossed in the middle, and a plurality of units are formed by crossover,
A power feeding type non-contact power feeding device, wherein the power receiving coil has a loop shape and a flat structure, and a plurality of power receiving coils are arranged at intervals.
請求項1において、該送電コイルは、交叉により形成された該ユニットから発生,放射される磁界の向きが、プラス方向とマイナス方向とに交互に反転し、
複数個の該受電コイルは、いずれかの該受電コイルの該送電コイル交叉位置に対向位置した際の受電電力ゼロが、他の該受電コイルのノーマルな受電電力にてカバーされること、を特徴とする移動給電式の非接触給電装置。
The power transmission coil according to claim 1, wherein the direction of the magnetic field generated and radiated from the unit formed by crossing is alternately reversed between a positive direction and a negative direction.
The plurality of power receiving coils are configured such that zero received power when any one of the power receiving coils faces the crossing position of the power transmitting coil is covered with normal received power of the other power receiving coils. The mobile power supply non-contact power supply device.
請求項2において、該受電コイルは、少なくとも2個よりなると共に、その幅が同一で、上記移動方向に沿ったサイズCも同一となっており、
相互間の間隔dが、次の式を満足すべく設定されること、を特徴とする移動給電式の非接触給電装置。
Figure 2014053984
In claim 2, the power receiving coil is composed of at least two, the width thereof is the same, and the size C along the moving direction is the same,
A non-contact power feeding device of a mobile power feeding type, characterized in that an interval d between them is set to satisfy the following formula.
Figure 2014053984
請求項3において、該送電コイルは、該受電コイルと同一の一定幅よりなると共に、一定ピッチでの交叉により、上記移動方向に沿ったサイズLが同一の該ユニットが、形成されており、
該サイズLが、次の式を満足すべく設定されること、を特徴とする移動給電式の非接触給電装置。
Figure 2014053984
In claim 3, the power transmission coil has the same constant width as the power reception coil, and the unit having the same size L along the moving direction is formed by crossing at a constant pitch.
A non-contact power feeding device of a mobile power feeding type, characterized in that the size L is set to satisfy the following formula.
Figure 2014053984
請求項4において、該給電側回路の送電コイルは、道路,地面,床,その他の地上側に、定置配設されており、
該受電コイル等の受電側回路は、自動車等の車輌,その他の移動体側に、搭載されていること、を特徴とする移動給電式の非接触給電装置。
In Claim 4, the power transmission coil of the power supply side circuit is fixedly disposed on the road, ground, floor, or other ground side,
A power feeding type non-contact power feeding device, wherein a power receiving side circuit such as the power receiving coil is mounted on a vehicle such as an automobile or other mobile body side.
JP2012194825A 2012-09-05 2012-09-05 Mobile power supply type non-contact power supply device Active JP6022267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012194825A JP6022267B2 (en) 2012-09-05 2012-09-05 Mobile power supply type non-contact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012194825A JP6022267B2 (en) 2012-09-05 2012-09-05 Mobile power supply type non-contact power supply device

Publications (2)

Publication Number Publication Date
JP2014053984A true JP2014053984A (en) 2014-03-20
JP6022267B2 JP6022267B2 (en) 2016-11-09

Family

ID=50611957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012194825A Active JP6022267B2 (en) 2012-09-05 2012-09-05 Mobile power supply type non-contact power supply device

Country Status (1)

Country Link
JP (1) JP6022267B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051071A (en) * 2015-09-04 2017-03-09 キヤノン株式会社 Mobile device and non-contact power transmission system
WO2017149600A1 (en) * 2016-02-29 2017-09-08 三菱電機エンジニアリング株式会社 Wireless power transmission device
JPWO2017046946A1 (en) * 2015-09-18 2018-07-05 株式会社Fuji Non-contact power feeding device
JPWO2017163388A1 (en) * 2016-03-25 2019-01-31 株式会社Fuji Non-contact power feeding device
JP2019193397A (en) * 2018-04-23 2019-10-31 東海旅客鉄道株式会社 Wire connection device for non-contact electric power supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312902A (en) * 1996-05-21 1997-12-02 Hitachi Ltd Non-contact power supply device
JP2011167031A (en) * 2010-02-15 2011-08-25 Toyota Central R&D Labs Inc Power supplying device for moving body
JP2011223703A (en) * 2010-04-07 2011-11-04 Showa Aircraft Ind Co Ltd Portable type non-contact power supply device
WO2012008672A1 (en) * 2010-07-15 2012-01-19 한국과학기술원 Method and device for designing a current supply and collection device for a transportation system using an electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312902A (en) * 1996-05-21 1997-12-02 Hitachi Ltd Non-contact power supply device
JP2011167031A (en) * 2010-02-15 2011-08-25 Toyota Central R&D Labs Inc Power supplying device for moving body
JP2011223703A (en) * 2010-04-07 2011-11-04 Showa Aircraft Ind Co Ltd Portable type non-contact power supply device
WO2012008672A1 (en) * 2010-07-15 2012-01-19 한국과학기술원 Method and device for designing a current supply and collection device for a transportation system using an electric vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051071A (en) * 2015-09-04 2017-03-09 キヤノン株式会社 Mobile device and non-contact power transmission system
JPWO2017046946A1 (en) * 2015-09-18 2018-07-05 株式会社Fuji Non-contact power feeding device
US11005295B2 (en) 2015-09-18 2021-05-11 Fuji Corporation Non-contact power feeding device
US11223238B2 (en) 2015-09-18 2022-01-11 Fuji Corporation Non-contact power feeding device
WO2017149600A1 (en) * 2016-02-29 2017-09-08 三菱電機エンジニアリング株式会社 Wireless power transmission device
JPWO2017149600A1 (en) * 2016-02-29 2018-03-08 三菱電機エンジニアリング株式会社 Wireless power transmission device
JPWO2017163388A1 (en) * 2016-03-25 2019-01-31 株式会社Fuji Non-contact power feeding device
JP2019193397A (en) * 2018-04-23 2019-10-31 東海旅客鉄道株式会社 Wire connection device for non-contact electric power supply

Also Published As

Publication number Publication date
JP6022267B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6164421B2 (en) Power transmission coil unit and wireless power transmission device
JP5075973B2 (en) Non-contact power feeder with multi-pole coil structure
JP5885837B2 (en) Contactless power transformer for moving objects
EP2924842B1 (en) Coil unit and wireless power transmission device
JP5437650B2 (en) Non-contact power feeding device
JP2011223703A (en) Portable type non-contact power supply device
US20150145339A1 (en) Power feeding coil unit and wireless power transmission device
US10272789B2 (en) Wireless power supply system and wireless power transmission system
JP6022267B2 (en) Mobile power supply type non-contact power supply device
JP6303684B2 (en) Coil unit and wireless power transmission device
JP6432251B2 (en) Power transmission coil unit and wireless power transmission device
JP6003565B2 (en) Non-contact power feeding device
US9515493B2 (en) Power feeding coil unit and wireless power transmission device
JP5490385B2 (en) Non-contact power feeding device
JP2019071719A (en) Wireless power supply system for mobile
JP2015053751A (en) Non-contact power transmission device
JP2010035300A (en) Non-contact power supply apparatus
JP6162609B2 (en) Non-contact power feeding device
JP2015164152A (en) Non-contact power supply device
KR20150102299A (en) EMF cancel devices for Wireless power transfer system using Inductive Power Transfer
JP6226500B2 (en) Contactless power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161005

R150 Certificate of patent or registration of utility model

Ref document number: 6022267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250