JP4532833B2 - Vacuum cooling method - Google Patents

Vacuum cooling method Download PDF

Info

Publication number
JP4532833B2
JP4532833B2 JP2003007829A JP2003007829A JP4532833B2 JP 4532833 B2 JP4532833 B2 JP 4532833B2 JP 2003007829 A JP2003007829 A JP 2003007829A JP 2003007829 A JP2003007829 A JP 2003007829A JP 4532833 B2 JP4532833 B2 JP 4532833B2
Authority
JP
Japan
Prior art keywords
pressure
temperature
holding
cooled
product temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003007829A
Other languages
Japanese (ja)
Other versions
JP2004218958A (en
Inventor
哲志 中井
秀樹 東浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2003007829A priority Critical patent/JP4532833B2/en
Publication of JP2004218958A publication Critical patent/JP2004218958A/en
Application granted granted Critical
Publication of JP4532833B2 publication Critical patent/JP4532833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、食品や野菜などを冷却するとき、処理槽内を真空にすることにより冷却を行う真空冷却方法に関する。
【0002】
【従来の技術】
近年、食品などの安全性および衛生面への配慮から、調理した食品などの温度を素速く低下させることが要求されるようになった。これらの食品など(以下、「被冷却物」と云う)を冷却する方法の一つに、真空冷却する方法がある。
【0003】
このような真空冷却方法では、水分を前記被冷却物そのものから気化させるため、急激に減圧すると、前記被冷却物の内部で沸騰が発生すること等により、前記処理槽内に前記被冷却物の一部が飛散したり、型くずれを起こすことがある。一方、ゆっくりと真空冷却すれば、沸騰などは生じないが、冷却時間が長くなり、真空冷却機の運転効率が悪くなる。すなわち、真空冷却方法においては、沸騰防止と冷却時間の短縮という相反する課題がある。
【0004】
こうした課題を解決するために、出願人は、前記被冷却物毎に事前に検討した減圧特性曲線をプログラミングにより制御器に格納し、処理槽内の圧力を検出して、前記減圧特性曲線にそった減圧制御を行うことを提案している(特願2002−42412)。
【0005】
この方法は、前記被冷却物の沸騰を防止する技術として有効である。しかしながら、前記制御器に格納した前記減圧特性曲線に対応する前記被冷却物以外の被冷却物に対しては効果的でなく、数多くの前記被冷却物について沸騰を防止することはできないという課題がある。
【0006】
また、前記被冷却物の沸騰を防止する技術として、処理槽内の圧力を検出するとともに、前記被冷却物の温度(以下、「品温」と云う)を検出して、前記処理層内を前記被冷却物の飽和圧力に制御する技術が提案されている(たとえば、特許文献1参照)。
【0007】
【特許文献1】
特開平6−27307号公報(第3頁,図1)
【0008】
前記特許文献1に記載の従来技術によれば、予め設定された被冷却物の温度値における飽和圧力に制御するものであるために、適切な冷却速度とすることができず、冷却時間が長くなるという課題がある。その結果、前記従来技術は、相反する真空冷却方法の課題である沸騰防止と冷却時間の短縮の解決において十分なものとはいえないものであった。
【0009】
【発明が解決しようとする課題】
この発明が解決しようとする課題は、突沸やそれに伴なう飛散防止、あるいは型くずれを防止し、被冷却物に合った適切な冷却が行えるようにすることである。
【0010】
【課題を解決するための手段】
この発明は、前記の課題を解決するためになされたもので、被冷却物を収容する処理槽と、前記処理槽内を減圧するための減圧手段と、前記被冷却物の温度を検出する温度センサと、大気を前記処理槽内へ導入することにより保持圧力を複数段階に調整する電動弁とを備える真空冷却装置の真空冷却方法であって、前記処理槽内の圧力が減圧により最終的に到達する第一保持圧力となるように前記電動弁の開度を所定値として前記減圧手段を作動させて前記処理槽内の減圧を行う第一圧力保持工程と、前記第一圧力保持工程により前記温度センサにより検出される前記被冷却物の温度が設定温度へ到達したかどうかを判定する品温判定工程と、前記温度センサにより検出される前記被冷却物の温度の時間変化が基準値以下となったこと判定することで前記被冷却物の温度が前記処理槽内の圧力が減圧により最終的に到達する保持圧力に対応する被冷却物の飽和温度にほぼ近づいたことを判定する品温時間変化判定工程と、前記品温判定工程により前記設定温度への到達が判定され、かつ前記品温時間変化判定工程により前記基準値以下が判定されると、前記処理槽の圧力が前記保持圧力から所定値低減する保持圧力低減工程を含み、前記保持圧力低減工程により低減した保持圧力となるように前記処理槽内の減圧を行う第二圧力保持工程とを有し、前記品温時間変化判定工程および前記第二圧力保持工程を繰り返して行い、前記第二圧力保持工程を繰り返す際の前記保持圧力低減工程の前記所定値の各調整は、前記減圧手段の排気量を一定として前記電動弁の開度を複数段階に調整することにより行い、前記被冷却物の品温が低くなるほど前記電動弁を閉める量を少なくすることにより行うとともに、前記第一圧力保持工程,前記品温時間変化判定工程および前記第二圧力保持工程を圧力センサを用いることなく行い、前記第一圧力保持工程の前記第一保持圧力と前記品温判定工程の前記基準値および前記保持圧力低減工程の前記所定値は、前記被冷却物の突沸を防止するように設定されることを特徴としている。
【0011】
請求項2に記載の発明は、請求項1において、前記基準値を調整可能としたことを特徴としている。
【0012】
【発明の実施の形態】
この発明は、食品等(以下、「被冷却物」と云う)を冷却するとき、処理槽内を真空にすることにより、冷却を行う真空冷却機を用いた真空冷却方法において実施することができる。
【0013】
(実施の形態1)
この発明の実施の形態は、処理槽内を減圧して被冷却物を冷却する真空冷却方法であって、前記処理槽内の圧力が第一保持圧力となるように前記処理槽内の減圧を行い、前記被冷却物の温度(以下、「品温」と云う)の時間変化が基準値以下となったことを判定することで品温が前記処理槽内の圧力が減圧により最終的に到達する保持圧力に対応する被冷却物の飽和温度にほぼ近づいたことを判定し、前記処理槽の圧力が前記保持圧力から所定値低減した保持圧力となるように前記処理槽内の減圧を行い品温の時間変化の判定と前記保持圧力の低減による減圧とを繰り返して行うことを特徴とする真空冷却方法である。
【0014】
この実施形態においては、前記処理槽内の減圧を開始すると、前記処理槽内の圧力は、外気を導入(リーク)させながら、始めは大きい勾配にて下がり、時間の経過とともに前記勾配が小さくなり、最終的には前記第一保持圧力に到達する。こうして、前記処理槽内の圧力を前記第一保持圧力に保持する(第一圧力保持工程)。この第一保持圧力保持により、品温は、前記第一保持圧力に等しい前記処理槽内の圧力に対応する被冷却物の飽和温度まで低下する。そして、品温の時間的変化が少なくなると品温が前記度飽和温度にほぼ近づいたと判定し、この状態において、品温の時間的変化が前記基準値以下かどうかを判定し(品温時間変化判定工程)、前記基準値以下が判定されると、前記処理槽内の圧力が減圧により最終的に到達する保持圧力を少量の所定値だけ低減し(保持圧力低減工程)、前記処理槽内の圧力を低減された保持圧力となるように減圧を行う(第二圧力保持工程)。前記第二圧力保持工程は、前記保持圧力低減工程を含む。
【0015】
前記において、品温が「前記飽和温度に近づく」とは、品温が前記飽和温度よりやや高い場合、品温が前記飽和温度と等しい場合、品温が前記飽和温度よりやや低い場合を含む。
【0016】
そして、前記第一圧力保持工程の後、前記品温時間変化判定工程および前記第二圧力保持工程を繰り返すことにより、前記被冷却物の温度と前記処理槽内の飽和温度との差が一定温度範囲以下となるように冷却するものである。前記処理槽の飽和温度とは、前記処理槽の圧力に対応する被冷却物の飽和温度である。
【0017】
前記第一圧力保持工程および前記第二圧力保持工程による前記処理槽内の圧力一定保持は、好ましくは、つぎのようにして行われる。前記処理槽にリーク量を多段階に調整する電動弁を接続するとともに、前記処理槽に減圧手段を接続し、前記電動弁の開度を所定値として前記減圧手段の排気量を一定に制御することにより、前記処理槽内の圧力は、前記処理槽内の圧力が減圧により最終的に到達する保持圧力に一定に保持される。
【0018】
前記減圧手段としては、真空ポンプの他,前記真空ポンプと蒸気エゼクタと熱交換器とを組み合わせたもの,前記真空ポンプと前記熱交換器とを組み合わせたものを用いることができる。前記蒸気エゼクタは、水エゼクタに代えることもできる。
【0019】
前記品温時間変化判定工程は、冷却運転により品温が低下するのを品温の温度変化/時間(ΔT/Δt)の変化として捉えて、前記温度変化/時間(以下、「品温の時間変化」と云う)が前記基準値(ΔT1/Δt1)に達したかどうかを判定する。前記基準値に到達したとの判定は、前記処理槽内の圧力に対応する被冷却物の飽和温度と品温との差が減少して、品温が前記飽和温度に近づいたことの判定を意味する。
【0020】
前記基準値(ΔT1/Δt1)は、好ましくは、その値を調整可能とし、さらに好ましくは、前記時間(Δt1)を一定時間として、前記温度差(ΔT1)のみを可変とする。実施に応じて、前記ΔT1および前記Δt1の両方を調整可能とすることもできる。
【0021】
前記基準値は、その値を小さくすることにより、ゆっくりと減圧でき、逆に、液量が少なく、固体が多い被冷却物については値を大きくすることにより、速く減圧することができる。また、前記基準値は、被冷却物の種類,量に応じて設定することができる他、同じ被冷却物および量であっても過去の真空冷却運転の結果に基づいて一層適当と判断される値に設定することができる。
【0022】
また、前記基準値の設定は、真空冷却機のユーザーまたはメンテ員により実行され、設定の結果は、前記真空冷却機の制御器に記憶される。そして、前記設定は、真空冷却運転毎に行う必要はなく、基準値の変更を必要とするときに行えば良い。
【0023】
前記保持圧力低減工程は、前記処理槽内の圧力が減圧により最終的に到達する保持圧力を少量の所定値だけ下げる工程であり、前記電動弁の開度調節により行われる。この保持圧力低減工程は、前記圧力保持工程により品温の変化が無くなってきたとき、つぎの効果的な品温低下のために必要な工程である。
【0024】
この実施の形態によれば、前記第一圧力保持工程を行った後、前記品温時間変化判定工程および前記第二圧力保持工程を繰り返して行うので、品温と飽和温度との差を大きくすることなく、過熱領域の形成を抑制した真空冷却を行うことができる。また、前記品温の時間変化の基準値を被冷却物の種類などに応じて変更して設定することができるので、過熱領域の形成による沸騰を発生させない範囲で前記基準値を大きくすることにより、真空冷却に要する時間,すなわち真空冷却時間を短縮することができる。
【0025】
この発明は、前記の実施の形態に限定されるものではなく、つぎの実施の形態2〜実施の形態8を含む。
【0026】
(実施の形態2)
処理槽内を減圧して被冷却物を冷却する真空冷却方法であって、前記処理槽内の圧力を第一保持圧力に保持する第一圧力保持工程と、品温の時間変化が前記基準値以下となったかどうかを判定する品温時間変化判定工程と、前記品温時間変化判定工程により前記基準値以下が判定されると、前記処理槽内の圧力が減圧により最終的に到達する保持圧力を小量の所定値だけ低減する保持圧力低減工程を含み、前記処理槽内の圧力を前記保持圧力低減工程により設定された第二保持圧力に保持する第二圧力保持工程とを有し、前記品温時間変化判定工程および前記第二圧力保持工程を繰り返して行うことを特徴とする真空冷却方法。
【0027】
(実施の形態3)
前記実施の形態1または前記実施の形態2において、前記保持圧力低減工程における前記所定値を前記品温時間変化判定工程の前記基準値以下が判定されたときの品温に応じて調整することを特徴とする真空冷却装置。
【0028】
この実施の形態3においては、前記保持圧力低減工程における前記所定値が前記品温時間変化判定工程の前記基準値以下が判定されたときの品温に応じて調整される。具体的には、前記所定値の調整は、前記電動弁の開度の調整であり、前記電動弁の動作時間を長くすると前記電動弁を閉める量が多くなる。したがって、品温がT11℃では前記動作時間をt11とし、品温がT11未満,T12(<T11)以上で前記動作時間をt12(<t11)とし、品温がT12未満,T13(<T12)以上で前記動作時間をt13(<t12)…とする制御を行う。
【0029】
この実施の形態3によれば、前記保持圧力低減工程における所定圧力の量が、品温に応じて調整されるので、前記保持圧力が低い領域における被冷却物の沸騰防止を効果的に行うことができる。
【0030】
(実施の形態4)
前記実施の形態2または前記実施の形態3において、品温が第一設定温度へ到達したかどうかの品温判定工程を設け、前記第一設定温度への到達が判定され、かつ前記品温時間変化判定工程において前記基準値への到達が判定されると、前記保持圧力低減工程を実行する真空冷却方法。
【0031】
(実施の形態5)
前記実施の形態4において、前記第一設定温度を調整可能とした真空冷却方法。
【0032】
この実施の形態5によれば、前記第一設定温度を高い値に設定すると、減圧速度を遅くできるので、粘度の高い液体など温度の低下により著しく粘度が高くなる被冷却物の突沸防止に好適である。また、前記第一設定温度を低く設定すると、真空冷却時間を短縮することができる。
【0033】
(実施の形態6)
前記実施の形態1〜前記実施の形態5のいずれかにおいて、前記保持圧力低減工程における前記処理槽内の圧力が減圧により最終的に到達する保持圧力低減の実行時期を調整可能な遅延時間(t2)だけ遅らせる遅延工程をさらに含ませた真空冷却方法。
【0034】
この実施の形態6における前記遅延工程は、前記保持圧力低減工程の前に行われる。前記遅延時間は、調整可能であり、その時間を長くすると、放熱などにより前記処理槽内の飽和温度よりも品温を十分低くでき、つぎの保持圧力低減工程による急激な圧力低下時にも突沸を防止することができる。さらに前記遅延時間を長くするとその後の減圧無しで、品温を目的温度まで低減させることができる。
【0035】
(実施の形態7)
前記実施の形態1〜前記実施の形態6のいずれかにおいて、品温が前記第一温度より低い第二設定温度となると前記保持圧力低減工程による低減調整を最大として、前記処理槽内を減圧する冷却工程を前記第二圧力保持工程の後に含む真空冷却方法。
【0036】
この実施の形態7によれば、品温が前記第二設定温度となると急激な減圧を行い、真空冷却時間を短縮することができる。この実施の形態は、品温が一定温度まで低下すれば、被冷却物の上面と底面との温度差が大きくならず、急激な減圧をさせても沸騰が起こらないという発明者らによる知見に基づく。
【0037】
(実施の形態8)
実施の形態7において、前記第二設定温度を調整可能とした真空冷却方法。
【0038】
この実施の形態8においては、前記第二設定温度が被冷却物の特性により異なるので、被冷却物に応じた温度設定ができるようにしたものである。
【0039】
【実施例】
(第一実施例)
以下、この発明の具体的実施例を図面に基づいて詳細に説明する。図1は、この発明の真空冷却方法を適用する実施例の真空冷却装置を説明する概略的な説明図であり、図2は、同実施例の制御器による制御手順を示すフローチャート図であり、図3は、被冷却物を温水とした場合の同実施例の真空冷却方法による被冷却部の底部の品温および処理槽内の圧力に対応する被冷却物の飽和温度の時間変化を示す特性図である。
【0040】
(実施例の構成)
図1において、真空冷却装置1は、冷却される食品等(以下、「被冷却物」と云う。)2を収容する処理槽3と、この処理槽3を気密に閉鎖する扉(図示省略)と、前記処理槽3内を減圧するための減圧手段4と、前記被冷却物2の温度(以下、「品温」と云う)を検出する品温検出手段としての温度センサ5と、大気を前記処理槽3内へ導入することにより前記処理槽3内の圧力が減圧により最終的に到達する保持圧力を複数段階に調整する保持圧力調整手段としての電動弁6と、真空冷却運転を制御する制御器7とを備えている。
【0041】
前記被冷却物2は、水分を多く含んだ食品,たとえばスープであり、多数のパン(容器)8,8,…に入れられ、前記処理槽3内において、複数段の棚9,9,…に載置されている。
【0042】
前記減圧手段4は、前記処理槽3に接続される真空吸引ライン10に設けた真空ポンプ11,蒸気エジェクタ12,コンデンサ(熱交換器)13および逆止弁14を含む。前記蒸気エジェクタ12は、前記真空ポンプ11の上流側で前記処理槽3内を減圧する。これにより、前記減圧手段4は、2段の減圧を行う。前記コンデンサ13は、前記エジェクタ12の下流側で前記真空ポンプ11が吸引する気体を冷却する機能を備えている。
【0043】
前記温度センサ5は、品温を検出し、その温度信号を前記制御器7へ出力する。そして、前記温度センサ5の先端部(符号省略)は、前記被冷却物2のうちの1つの中へ差し込んで品温を検出する。
【0044】
前記電動弁6は、前記処理槽3と接続されている空気配管14に設けられている。前記電動弁6は、前記制御器7の出力信号により、その開度を全開から全閉までの間において複数段階に調節することで、大気の導入量を複数段階に調節する機能を備えている。前記電動弁6の開度調整機能により、前記保持圧力の低減が複数段階に調整される。そして、この空気配管14の先端には、前記処理槽3内へ導入する空気を清浄にするためのエアフィルター15が設けられている。
【0045】
前記制御器7は、前記減圧手段4,前記温度センサ5および前記電動弁6と回線16,16,…を介してそれぞれ接続されている。前記制御器7は、図2に示す処理手順に従い、前記減圧手段4の作動および前記電動弁6の作動を制御することにより、この発明の真空冷却方法を実現する。前記制御器8による前記減圧手段4の制御は、前記真空ポンプ11の起動,停止制御と、前記蒸気エジェクタ12の作動流体である蒸気の供給を制御する電磁弁(図示省略)の開閉制御と、前記コンデンサ13への作動流体(図示省略)の供給の制御とを含む。
【0046】
(実施例の動作)
前記実施例の動作を図2に示す処理手順に従い説明する。まず、前記処理槽3内へ被冷却物2としての温水を前記各パン8に入れた状態で収納し、前記扉を閉め、真空冷却運転の準備をしておく。ついで、処理ステップS1(以下、処理ステップSNは、単にSNと称する)において、調整可能な設定値,すなわち品温の第一設定温度T0℃,温度変化ΔT1℃,遅延時間t2min(分),品温の前記第一設定温度より低い第二設定温度T2℃を設定し、入力する。
【0047】
前記第一設定温度T0℃は、温度変化判定工程の開始を決める品温である。この前記第一設定温度T0℃は、それ以上では、沸騰が起こっても気泡の径があまり大きくならず、飛散が起こらない温度である。そして、高粘度液などの表面張力の大きい被冷却物2に対しては、温度を高く設定する必要がある。
【0048】
前記温度変化ΔT1℃は、前記品温の時間変化(ΔT/Δt)の基準値(ΔT1/Δt1)の分子であり、時間Δt1minは固定の3分としている。前記遅延時間t2minは、前記電動弁6による前記保持圧力の調整実行を遅延させる時間である。前記第二設定温度T2℃は、前記電動弁6を全閉として前記保持圧力の低減調整を最大とする時点を決定するための品温である。なお、前記各設定値の入力は、必要に応じて行われるものである。
【0049】
図3に示す真空冷却運転においては、前記第一設定温度T0℃を50℃とし,前記温度変化ΔT1℃を1.8℃とし,前記遅延時間t2min(分)を2分とし,前記第二設定温度T2℃を15℃としている。
【0050】
ついで、S2へ移行して、真空冷却運転の開始スイッチ(図示省略)を入れると、前記電動弁6を全開から約14.5秒閉じ(弁開度は約1/2となる)、前記真空ポンプ11を作動させ、前記処理槽3内の圧力が前記電動弁6の開度に応じた前記処理槽3内の圧力が減圧により最終的に到達する保持圧力となるように減圧して(第一圧力保持工程)、真空冷却運転を開始する。
【0051】
この第一圧力保持工程の前半においては、前記真空ポンプ11のみ作動させ、冷却運転開始から品温が所定温度,この実施例では約45℃になるか、または冷却運転開始から設定時間,この実施例では約5分後に前記エゼクタ12の作動を開始させる。こうして、前記第一圧力保持工程は、段階的に減圧速度を速める制御を行い、品温と前記処理槽の飽和温度(前記処理槽3内の圧力に対応する被冷却物の飽和温度)との差を前記過熱領域を形成しない程度の温度差(約4℃)を超えないようにしている。
【0052】
前記第一圧力保持工程においては、前記減圧手段4の真空吸引作用により、前記処理槽3内が減圧され、前記真空吸引ライン10を通して排気される。この吸引排気作用により、被冷却物から水分が蒸発することで品温が徐々に低下する。その際、前記電動弁6から外気が吸引されながら真空吸引され、前記電動弁6の開度に応じた前記保持圧力を保持するように真空冷却運転が行われることになる。この品温の低下の様子は、図3に示される。この図において曲線Aは、被冷却物の飽和温度の時間変化を示し、曲線Bは、被冷却物の底部,すなわち前記パン8内底部の品温の時間変化を示している。前記曲線AのX点は、前記エゼクタ12が作動した時点の飽和温度を示している。
【0053】
この第一圧力保持工程により、前記処理槽3内の飽和温度(圧力)は、図3の曲線Aに示すように減圧開始当初は急激に低下し、その後その低下勾配が緩くなり、前記電動弁6の開度に対応する前記保持圧力に保持される。そして、品温は、図3の曲線Bに示すように前記処理槽3の飽和温度に漸次近づいてゆく。これは、品温と被冷却物の飽和温度との差が少なくなってゆく過程を表すものである。
【0054】
こうした第一圧力保持工程中において、前記温度センサ5による検出温度が前記50℃となったかどうかの判定(第一品温判定工程)をS3において行う。S3において、NOが判定されると前記電動弁6の開度を変えることなく前記第一圧力保持工程が続行され、YESが判定されると、処理は、S4へ移行する。
【0055】
S4においては、品温の時間変化(ΔT/Δt)が前記基準値(ΔT1/Δt1)以下となったかどうか,すなわち3分間における品温の変化が1.8℃より小さくなったかどうかを判定する(品温時間変化判定工程)。S4において、NOが判定されると、処理は、S4にとどまり、前記第一圧力保持工程が続行され、YESが判定されると、処理は、S5ヘ移行する。このS4におけるYESの判定は、品温時間変化が少なくなり、このまま前記第一圧力保持工程を続行すると、真空冷却運転の長期化をもたらすことを意味する。
【0056】
S5においては前記遅延時間(t2)の2分が経過したかどうかが判定される(第一遅延時間判定工程)。S5で、NOが判定されると、前記第一冷却工程が続けられ、YESが判定されると、S6へ移行する。
【0057】
S6においては、前記電動弁6を0.4秒だけ閉じることで、その開度を少し小さくし、前記処理槽3内の圧力が減圧により最終的に到達する保持圧力を少し低くして(保持圧力低減整工程)、前記処理槽3内を低減された保持圧力となるように減圧することにより、真空冷却運転(第二圧力保持工程)を行う。前記電動弁6による保持圧力の調整時点は、図3のP点に示される。前記P点直後で前記処理槽3内の圧力低下の勾配が急となっていることが分かる。この保持圧力の調整により、再び品温と前記処理槽3内の圧力に対応する被冷却物の飽和温度との差が大きくなり、被冷却物からの水分の蒸発が活発となって、品温低下が促進される。
【0058】
S6の保持圧力低減工程後、処理は、S7へ移行し、保持圧力調整の実行後、所定の遅延時間(t3:この実施例では、固定の値で、80sec)が経過したかどうかを判定する(第二遅延時間判定工程)。S7で、NOが判定されると、S7にとどまり、YESが判定されると、S8へ移行し、品温が前記第二設定温度の15℃に到達したかどうかの判定(第二品温判定工程)を行う。
【0059】
S8において、NOが判定されると、処理は、S4へ戻り、前記第一設定温度への到達が判定されるまで、前記第二圧力保持工程が行われる。この第二圧力保持工程において、前記処理槽3内の圧力低下の勾配は、図3のP点以降に示すように、保持圧力調整直後では急であるが、その後徐々に緩やかとなり、所定の圧力に保持される。そして品温と前記処理槽3内の圧力に対応する被冷却物の飽和温度との差が少なくなると、品温の時間変化(ΔT/Δt)の値も小さくなり、その値が再び前記基準値となると、S4にてYESが判定される。
【0060】
すると、前記したS5の前記第一遅延時間判定工程−S6の前記保持圧力低減工程−S8の前記第二品温判定工程−S4の前記品温時間変化判定工程が、前記第二品温判定工程による前記第二設定温度への到達判定まで繰り返し行われることになる。この工程の繰り返しは、前記品温の時間変化が小さくなると、保持圧力を少し低減し、再び前記品温の時間変化が小さくなると、保持圧力を少し低くするという動作を繰り返すものである。図3に示す例においては、Q点において再びS6の保持圧力の低減が行われている。
【0061】
前記遅延時間(t3)を設けた理由は、つぎの通りである。S6の保持圧力の低減を行っても、直ちに前記品温の時間変化が変化しない。よって、前記遅延時間(t3)を設けないと、S6の処理後、S8経由で直ちにS4の判定を行うと、YESが判定され、保持圧力調整の効果が現われる前に、再びS6の保持圧力の調整が行われる。これを避けるために前記遅延時間(t3)を設けている。
【0062】
S8において、前記第二設定温度への到達が判定されると、処理はS9へ移行する。S9では、前記電動弁6を全閉,すなわち保持圧力低減の調整を最大の状態で前記冷却槽3内を減圧し、真空冷却運転を行う(急冷却運転)。図3の例では、R点が急冷却運転の開始時点を示している。
【0063】
なお、前記実施例では、前記電動弁6の特性上2回目の開度調整でほとんど閉じてしまい、前期第二設定温度まで冷却されているが、前記電動弁6を全閉までの時間が長いものを用いれば、僅かずつの保持圧力低減を行うことができ、S4からS7までの工程の繰り返し回数を増加できる。
【0064】
(実施例の効果)
前記実施例によれば、品温の時間変化が小さくなると、保持圧力を低減し、再び品温の時間変化が小さくなると、保持圧力を低減するという動作を繰り返し行うように構成しているので、品温と前記処理槽3内の圧力に対応する被冷却物の飽和温度との差を大きくすることなく、沸騰の主原因である被冷却物の過熱領域の発生を抑制できる。その結果、前記パン8からの被冷却物の飛散を防止できる。また、前記品温の時間変化が小さくなると、保持圧力を低くするので、真空冷却運転時間を短縮できる。
【0065】
また、前記実施例によれば、前記第一設定温度T0℃,前記温度変化ΔT1℃,前記遅延時間t2min(分),前記第二設定温度T2℃を調整することができるので、被冷却物の種類が異なる場合,被冷却物の量が異なる場合,前記パン8への被冷却物の収容状態(蓋の有る無しや前記パン8の深さなど)が異なる場合にであっても、前記設定値(前記第一設定温度T0℃,前記温度変化ΔT1℃,前記遅延時間t2min(分),前記第二設定温度T2℃)の一つまたは複数の値の調整により、沸騰を抑制した真空冷却運転を行うことができる。
【0066】
さらに、前記実施例によれば、圧力センサを用いることなく、突沸やそれに伴なう飛散防止、あるいは型くずれを防止し、被冷却物に合った適切な冷却が行えるものである。
【0067】
【発明の効果】
以上のように、この発明によれば、突沸やそれに伴なう飛散防止、あるいは型くずれを防止し、被冷却物に合った適切な冷却が行えるとともに、保持圧力低減工程における所定値の低減量が、品温に応じて調整されるので、所定保持圧力が低い領域における被冷却物の沸騰防止を効果的に行うことができるなど多大なる効果を奏する。
【図面の簡単な説明】
【図1】この発明の真空冷却方法を適用する実施例の真空冷却装置を説明する概略的な説明図である。
【図2】同実施例の制御器による制御手順を示すフローチャート図である。
【図3】被冷却物を温水とした場合の同実施例の真空冷却方法による被冷却部の底部の品温および処理槽内の飽和温度の時間変化を示す特性図である。
【符号の説明】
2 被冷却物
3 処理槽
4 減圧手段
5 温度センサ
6 電動弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum cooling method for cooling a food or vegetable by evacuating a treatment tank.
[0002]
[Prior art]
In recent years, it has been required to rapidly reduce the temperature of cooked foods and the like from the viewpoint of safety and hygiene of foods and the like. One method for cooling these foods (hereinafter referred to as “objects to be cooled”) is a vacuum cooling method.
[0003]
In such a vacuum cooling method, moisture is vaporized from the object to be cooled itself. Therefore, when the pressure is rapidly reduced, boiling occurs in the object to be cooled, and the like, Some may scatter or lose shape. On the other hand, if the vacuum cooling is performed slowly, boiling or the like does not occur, but the cooling time becomes longer and the operation efficiency of the vacuum cooler becomes worse. That is, the vacuum cooling method has conflicting problems of preventing boiling and shortening the cooling time.
[0004]
In order to solve these problems, the applicant stores the decompression characteristic curve examined in advance for each object to be cooled in a controller by programming, detects the pressure in the processing tank, and follows the decompression characteristic curve. It is proposed to perform the decompression control (Japanese Patent Application No. 2002-42412).
[0005]
This method is effective as a technique for preventing the object to be cooled from boiling. However, it is not effective for the object to be cooled other than the object to be cooled corresponding to the decompression characteristic curve stored in the controller, and there is a problem that boiling cannot be prevented for many of the objects to be cooled. is there.
[0006]
Further, as a technique for preventing boiling of the object to be cooled, the pressure in the treatment tank is detected, and the temperature of the object to be cooled (hereinafter referred to as “product temperature”) is detected, and the inside of the treatment layer is detected. A technique for controlling the saturated pressure of the object to be cooled has been proposed (see, for example, Patent Document 1).
[0007]
[Patent Document 1]
JP-A-6-27307 (page 3, FIG. 1)
[0008]
According to the prior art described in Patent Document 1, since the saturation pressure is controlled at a preset temperature value of the object to be cooled, an appropriate cooling rate cannot be achieved, and the cooling time is long. There is a problem of becoming. As a result, the above-described prior art has not been sufficient in solving the boiling prevention and the shortening of the cooling time, which are the problems of the conflicting vacuum cooling method.
[0009]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to prevent bumping and scattering associated with it, or to prevent deformation of the mold, and to perform appropriate cooling suitable for the object to be cooled.
[0010]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and includes a treatment tank that accommodates an object to be cooled, a decompression unit that decompresses the inside of the treatment tank, and a temperature at which the temperature of the object to be cooled is detected. A vacuum cooling method of a vacuum cooling device comprising a sensor and an electric valve that adjusts a holding pressure in a plurality of stages by introducing air into the processing tank, and the pressure in the processing tank is finally reduced by pressure reduction Reach first A first pressure holding step for reducing the pressure in the processing tank by operating the pressure reducing means by setting the opening of the motor-operated valve to a predetermined value so as to obtain a holding pressure, and detecting by the temperature sensor by the first pressure holding step The product temperature determination step for determining whether the temperature of the object to be cooled has reached a set temperature, and the time change of the temperature of the object to be cooled detected by the temperature sensor is below a reference value. The By determining, the temperature of the object to be cooled is The pressure in the treatment tank finally reaches due to the reduced pressure Holding pressure Of the corresponding object to be cooled The product temperature time change determining step for determining that the temperature has almost approached the saturation temperature, the arrival of the set temperature is determined by the product temperature determining step, and the reference temperature or less is determined by the product temperature time change determining step. Then, the pressure of the treatment tank Guarantee Including a holding pressure reduction process for reducing the holding pressure by a predetermined value, Taho A second pressure holding step of reducing the pressure in the processing tank so as to be a holding pressure, and repeatedly performing the product temperature change determination step and the second pressure holding step, the second pressure holding step Each adjustment of the predetermined value in the holding pressure reduction step when iterating is performed by adjusting the opening degree of the motor-operated valve in a plurality of stages with the exhaust amount of the decompression means being constant, and the product temperature of the object to be cooled is The lower pressure is performed by reducing the amount of closing the motor-operated valve, and the first pressure holding step, the product temperature change determination step, and the second pressure holding step are performed without using a pressure sensor. Holding process The first The holding pressure, the reference value of the product temperature determination step, and the predetermined value of the holding pressure reduction step are set so as to prevent bumping of the object to be cooled.
[0011]
The invention described in claim 2 is characterized in that, in claim 1, the reference value is adjustable.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention can be implemented in a vacuum cooling method using a vacuum cooler that cools food by evacuating the inside of the treatment tank when cooling food (hereinafter referred to as “object to be cooled”). .
[0013]
(Embodiment 1)
An embodiment of the present invention is a vacuum cooling method in which a processing tank is depressurized to cool an object to be cooled, and the pressure in the processing tank is first The pressure inside the treatment tank is reduced to a holding pressure, and it is determined that the time change of the temperature of the object to be cooled (hereinafter referred to as “product temperature”) has become a reference value or less. The pressure in the treatment tank finally reaches due to the reduced pressure Holding pressure Of the corresponding object to be cooled It was determined that the saturation temperature was almost approached, and the pressure in the treatment tank was Guarantee Reduce the holding pressure by a predetermined value Taho Decrease the inside of the treatment tank so that the holding pressure becomes Guarantee It is a vacuum cooling method characterized by repeatedly performing pressure reduction by reducing holding pressure.
[0014]
In this embodiment, when depressurization in the processing tank is started, the pressure in the processing tank first decreases with a large gradient while introducing (leaking) outside air, and the gradient decreases with time. And finally said first The holding pressure is reached. Thus, the pressure in the treatment tank is first Hold at the holding pressure (first pressure holding step). this first Holding pressure of By holding, the product temperature is first In the treatment tank equal to the holding pressure Of the object to be cooled corresponding to the pressure Lower to saturation temperature. When the temporal change in the product temperature decreases, it is determined that the product temperature has approached the saturation temperature. In this state, it is determined whether the temporal change in the product temperature is equal to or less than the reference value (change in the product temperature over time). Determination step), when the reference value or less is determined, The pressure in the treatment tank finally reaches due to the reduced pressure The holding pressure is reduced by a small predetermined value (holding pressure reduction process), and the pressure in the processing tank is reduced. Taho The pressure is reduced so that the holding pressure is reached (second pressure holding step). The second pressure holding step includes the holding pressure reducing step.
[0015]
In the above, product temperature But" The phrase “approaching the saturation temperature” includes a case where the product temperature is slightly higher than the saturation temperature, a case where the product temperature is equal to the saturation temperature, and a case where the product temperature is slightly lower than the saturation temperature.
[0016]
And after said 1st pressure holding process, the difference of the temperature of the said to-be-cooled object and the saturation temperature in the said processing tank is constant temperature by repeating the said product temperature time change determination process and said 2nd pressure holding process. It cools so that it may become below the range. The saturation temperature of the treatment tank is the saturation temperature of the object to be cooled corresponding to the pressure of the treatment tank.
[0017]
The constant pressure holding in the processing tank by the first pressure holding step and the second pressure holding step is preferably performed as follows. An electric valve that adjusts the amount of leakage in multiple stages is connected to the processing tank, and a pressure reducing means is connected to the processing tank, and the exhaust amount of the pressure reducing means is controlled to be constant with the opening of the motor operated valve as a predetermined value. Thus, the pressure in the treatment tank is The pressure in the treatment tank finally reaches due to the reduced pressure It is held constant at the holding pressure.
[0018]
As the pressure reducing means, a vacuum pump, a combination of the vacuum pump, a steam ejector, and a heat exchanger, or a combination of the vacuum pump and the heat exchanger can be used. The steam ejector may be replaced with a water ejector.
[0019]
In the product temperature / time change determination step, the temperature change due to the cooling operation is regarded as temperature change / time (ΔT / Δt) change of the product temperature, and the temperature change / time (hereinafter referred to as “product temperature time”). It is determined whether or not (change) is equal to the reference value (ΔT1 / Δt1). The determination that the reference value has been reached is performed in the treatment tank. Of the object to be cooled corresponding to the pressure The difference between the saturation temperature and the product temperature decreases, and the product temperature Said Determining that the saturation temperature has been approached.
[0020]
The reference value (ΔT1 / Δt1) is preferably adjustable, and more preferably, only the temperature difference (ΔT1) is variable with the time (Δt1) as a fixed time. Depending on the implementation, both ΔT 1 and Δt 1 can be adjustable.
[0021]
The reference value can be depressurized slowly by reducing the value, and conversely, it can be depressurized quickly by increasing the value of the object to be cooled with a small amount of liquid and a large amount of solid. The reference value can be set according to the type and amount of the object to be cooled, and even if the same object and amount are to be cooled, it is determined that the reference value is more appropriate based on the result of the past vacuum cooling operation. Can be set to a value.
[0022]
The setting of the reference value is executed by a user or maintenance person of the vacuum cooler, and the setting result is stored in the controller of the vacuum cooler. The setting need not be performed for each vacuum cooling operation, but may be performed when the reference value needs to be changed.
[0023]
The holding pressure reducing step includes The pressure in the treatment tank finally reaches due to the reduced pressure This is a step of lowering the holding pressure by a small predetermined value, and is performed by adjusting the opening of the motor-operated valve. This holding pressure reduction step is a step necessary for the next effective reduction of the product temperature when the change in the product temperature is eliminated by the pressure holding step.
[0024]
According to this embodiment, after performing the first pressure holding step, the product temperature time change determining step and the second pressure holding step are repeatedly performed, so the difference between the product temperature and the saturation temperature is increased. Therefore, it is possible to perform vacuum cooling while suppressing the formation of the overheated region. In addition, since the reference value of the time change of the product temperature can be changed and set according to the type of the object to be cooled, the reference value is increased within a range that does not cause boiling due to the formation of the overheating region. The time required for vacuum cooling, that is, the vacuum cooling time can be shortened.
[0025]
The present invention is not limited to the above-described embodiment, and includes the following second to eighth embodiments.
[0026]
(Embodiment 2)
A vacuum cooling method for cooling an object to be cooled by depressurizing the inside of the treatment tank, wherein the pressure in the treatment tank is Ichiho The first pressure holding step for holding the holding pressure, the product temperature time change determining step for determining whether the time change of the product temperature is equal to or less than the reference value, and the reference temperature or less is determined by the product temperature time change determining step. Once judged The pressure in the treatment tank finally reaches due to the reduced pressure A holding pressure reducing step of reducing the holding pressure by a small predetermined value, and the pressure in the processing tank is set by the holding pressure reducing step. Niho And a second pressure holding step for holding the holding pressure, and repeatedly performing the product temperature change determination step and the second pressure holding step.
[0027]
(Embodiment 3)
In the first embodiment or the second embodiment, the predetermined value in the holding pressure reduction step is adjusted according to a product temperature when a value equal to or lower than the reference value in the product temperature time change determination step is determined. A featured vacuum cooling device.
[0028]
In the third embodiment, the predetermined value in the holding pressure reduction step is adjusted according to the product temperature when it is determined that the reference value or less is determined in the product temperature time change determination step. Specifically, the adjustment of the predetermined value is an adjustment of the opening degree of the motor-operated valve. When the operating time of the motor-operated valve is lengthened, the amount of closing the motor-operated valve increases. Accordingly, when the product temperature is T11 ° C., the operation time is t11, the product temperature is less than T11, and when the product temperature is T12 (<T11) or more, the operation time is t12 (<t11), and the product temperature is less than T12, T13 (<T12). Thus, the control is performed so that the operation time is t13 (<t12).
[0029]
According to the third embodiment, the amount of the predetermined pressure in the holding pressure reduction step is adjusted according to the product temperature. Guarantee It is possible to effectively prevent the object to be cooled from boiling in the region where the holding pressure is low.
[0030]
(Embodiment 4)
In the second embodiment or the third embodiment, there is provided a product temperature determination step for determining whether or not the product temperature has reached the first set temperature, the arrival at the first set temperature is determined, and the product temperature time A vacuum cooling method for executing the holding pressure reduction step when it is determined that the reference value is reached in the change determination step.
[0031]
(Embodiment 5)
The vacuum cooling method according to the fourth embodiment, wherein the first set temperature can be adjusted.
[0032]
According to the fifth embodiment, when the first preset temperature is set to a high value, the pressure reduction rate can be slowed, which is suitable for preventing bumping of an object to be cooled whose viscosity increases remarkably due to a decrease in temperature, such as a liquid with high viscosity. It is. Further, when the first set temperature is set low, the vacuum cooling time can be shortened.
[0033]
(Embodiment 6)
In any of the first to fifth embodiments, in the holding pressure reducing step. The pressure in the treatment tank finally reaches due to the reduced pressure A vacuum cooling method further including a delaying step of delaying the holding pressure reduction execution time by an adjustable delay time (t2).
[0034]
The delaying process in the sixth embodiment is performed before the holding pressure reducing process. The delay time can be adjusted, and if the time is lengthened, the product temperature can be sufficiently lower than the saturation temperature in the treatment tank due to heat radiation or the like, and even when a sudden pressure drop is caused by the next holding pressure reduction process, bumping can occur. Can be prevented. Further, if the delay time is lengthened, the product temperature can be reduced to the target temperature without subsequent decompression.
[0035]
(Embodiment 7)
In any one of the first to sixth embodiments, when the product temperature reaches a second set temperature lower than the first temperature, the reduction adjustment in the holding pressure reduction process is maximized, and the inside of the processing tank is depressurized. A vacuum cooling method comprising a cooling step after the second pressure holding step.
[0036]
According to the seventh embodiment, when the product temperature reaches the second set temperature, the pressure can be rapidly reduced and the vacuum cooling time can be shortened. This embodiment is based on the knowledge by the inventors that if the product temperature is lowered to a certain temperature, the temperature difference between the top and bottom surfaces of the object to be cooled does not increase, and boiling does not occur even if sudden pressure reduction is performed. Based.
[0037]
(Embodiment 8)
The vacuum cooling method according to Embodiment 7, wherein the second set temperature can be adjusted.
[0038]
In the eighth embodiment, since the second set temperature varies depending on the characteristics of the object to be cooled, the temperature can be set according to the object to be cooled.
[0039]
【Example】
(First Example)
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic explanatory view for explaining a vacuum cooling apparatus of an embodiment to which the vacuum cooling method of the present invention is applied, and FIG. 2 is a flowchart showing a control procedure by a controller of the embodiment. FIG. 3 shows the product temperature at the bottom of the part to be cooled by the vacuum cooling method of the embodiment when the object to be cooled is warm water and the inside of the treatment tank. Of the object to be cooled corresponding to the pressure It is a characteristic view which shows the time change of saturation temperature.
[0040]
(Configuration of Example)
In FIG. 1, a vacuum cooling device 1 includes a processing tank 3 for storing a food to be cooled (hereinafter referred to as “object to be cooled”) 2 and a door (not shown) for hermetically closing the processing tank 3. A pressure reducing means 4 for depressurizing the inside of the processing tank 3, a temperature sensor 5 as a product temperature detecting means for detecting the temperature of the object to be cooled 2 (hereinafter referred to as "product temperature"), and air. By introducing into the treatment tank 3 The pressure in the treatment tank 3 finally reaches due to the reduced pressure. A motor-operated valve 6 as holding pressure adjusting means for adjusting the holding pressure in a plurality of stages and a controller 7 for controlling the vacuum cooling operation are provided.
[0041]
The object to be cooled 2 is a food containing a lot of moisture, for example, soup, and is put in a large number of breads (containers) 8, 8,..., And a plurality of shelves 9, 9,. It is mounted on.
[0042]
The decompression unit 4 includes a vacuum pump 11, a steam ejector 12, a condenser (heat exchanger) 13 and a check valve 14 provided in a vacuum suction line 10 connected to the processing tank 3. The steam ejector 12 depressurizes the inside of the processing tank 3 on the upstream side of the vacuum pump 11. Thereby, the decompression means 4 performs two-stage decompression. The capacitor 13 has a function of cooling the gas sucked by the vacuum pump 11 on the downstream side of the ejector 12.
[0043]
The temperature sensor 5 detects the product temperature and outputs the temperature signal to the controller 7. And the front-end | tip part (code | symbol omission) of the said temperature sensor 5 inserts in one of the said to-be-cooled objects 2, and detects a product temperature.
[0044]
The motor-operated valve 6 is provided in an air pipe 14 connected to the processing tank 3. The motor-operated valve 6 has a function of adjusting the air introduction amount in a plurality of stages by adjusting the opening degree in a plurality of stages from the fully open to the fully closed state according to the output signal of the controller 7. . The holding pressure reduction is adjusted in a plurality of stages by the opening adjustment function of the motor-operated valve 6. An air filter 15 for cleaning the air introduced into the processing tank 3 is provided at the tip of the air pipe 14.
[0045]
The controller 7 is connected to the pressure-reducing means 4, the temperature sensor 5, and the motor-operated valve 6 via lines 16, 16,. The controller 7 realizes the vacuum cooling method of the present invention by controlling the operation of the pressure reducing means 4 and the operation of the motor-operated valve 6 according to the processing procedure shown in FIG. Control of the decompression means 4 by the controller 8 includes starting and stopping control of the vacuum pump 11 and opening / closing control of an electromagnetic valve (not shown) for controlling supply of steam as a working fluid of the steam ejector 12; Control of supply of working fluid (not shown) to the capacitor 13.
[0046]
(Operation of the embodiment)
The operation of the embodiment will be described according to the processing procedure shown in FIG. First, warm water as the object to be cooled 2 is stored in the processing tank 3 in a state where it is put in each pan 8, the door is closed, and preparation for vacuum cooling operation is performed. Then, in process step S1 (hereinafter, process step SN is simply referred to as SN), adjustable set values, that is, the first set temperature T0 ° C., temperature change ΔT 1 ° C., delay time t 2 min (minutes), product A second set temperature T2 ° C. lower than the first set temperature is set and input.
[0047]
Said 1st preset temperature T0 degreeC is the product temperature which determines the start of a temperature change determination process. The first set temperature T0 ° C. is a temperature at which the bubble diameter does not become so large even when boiling occurs and scattering does not occur. And it is necessary to set temperature high with respect to the to-be-cooled object 2 with large surface tensions, such as a highly viscous liquid.
[0048]
The temperature change ΔT1 ° C. is a reference value (ΔT1 / Δt1) of the time change (ΔT / Δt) of the product temperature. molecule The time Δt1min is fixed to 3 minutes. The delay time t2min is a time for delaying the holding pressure adjustment by the motor-operated valve 6. The second set temperature T2 ° C. is a product temperature for determining a time point when the motor valve 6 is fully closed and the holding pressure reduction adjustment is maximized. The input of each set value is performed as necessary.
[0049]
In the vacuum cooling operation shown in FIG. 3, the first set temperature T0 ° C. is set to 50 ° C., the temperature change ΔT 1 ° C. is set to 1.8 ° C., the delay time t 2 min (min) is set to 2 minutes, and the second set temperature is set. The temperature T2 ° C is set to 15 ° C.
[0050]
Next, when the process proceeds to S2 and the start switch (not shown) of the vacuum cooling operation is turned on, the motor-operated valve 6 is closed for about 14.5 seconds from the full opening (the valve opening is about ½), and the vacuum The pump 11 is operated, and the pressure in the processing tank 3 corresponds to the opening degree of the motor-operated valve 6. The pressure in the treatment tank 3 finally reaches due to the reduced pressure. The pressure is reduced to the holding pressure (first pressure holding step), and the vacuum cooling operation is started.
[0051]
In the first half of the first pressure holding step, only the vacuum pump 11 is operated, and the product temperature reaches a predetermined temperature from the start of the cooling operation, which is about 45 ° C. in this embodiment, or a set time from the start of the cooling operation. In the example, the operation of the ejector 12 is started after about 5 minutes. Thus, the first pressure holding step performs control to increase the pressure reduction speed step by step, and the product temperature and the processing tank 3 Saturation temperature (Saturation temperature of the object to be cooled corresponding to the pressure in the treatment tank 3) The temperature difference (about 4 ° C.) that does not form the overheating region is not exceeded.
[0052]
In the first pressure holding step, the inside of the processing tank 3 is depressurized by the vacuum suction action of the decompression means 4 and exhausted through the vacuum suction line 10. Due to this suction / exhaust action, the product temperature gradually decreases as water evaporates from the object to be cooled. At that time, vacuum is sucked while the outside air is sucked from the motor-operated valve 6, and the front according to the opening degree of the motor-operated valve 6. Guarantee A vacuum cooling operation is performed so as to maintain the holding pressure. The state of the decrease in the product temperature is shown in FIG. In this figure, the curve A shows the change over time of the saturation temperature of the object to be cooled, and the curve B shows the change over time of the product temperature at the bottom of the object to be cooled, that is, the bottom inside the bread 8. The point X of the curve A indicates the saturation temperature when the ejector 12 is activated.
[0053]
By this first pressure holding step, the saturation temperature (pressure) in the treatment tank 3 rapidly decreases at the beginning of decompression as shown by the curve A in FIG. Before corresponding to 6 opening Guarantee The holding pressure is maintained. The product temperature gradually approaches the saturation temperature of the treatment tank 3 as shown by a curve B in FIG. This represents a process in which the difference between the product temperature and the saturation temperature of the object to be cooled decreases.
[0054]
In such a first pressure holding step, it is determined whether the temperature detected by the temperature sensor 5 has reached 50 ° C. (first product) Warm Step S3). In S3, if NO is determined, the first pressure holding step is continued without changing the opening of the motor-operated valve 6. If YES is determined, the process proceeds to S4.
[0055]
In S4, it is determined whether or not the change in product temperature over time (ΔT / Δt) is equal to or less than the reference value (ΔT1 / Δt1), that is, whether the change in product temperature in 3 minutes is less than 1.8 ° C. ( Product temperature time change judgment process ). If NO is determined in S4, the process remains at S4, the first pressure holding step is continued, and if YES is determined, the process proceeds to S5. The determination of YES in S4 means that a change in the product temperature time decreases, and if the first pressure holding step is continued as it is, the vacuum cooling operation is prolonged.
[0056]
In S5, it is determined whether or not 2 minutes of the delay time (t2) has elapsed (first delay time determination step). If NO is determined in S5, the first cooling step is continued, and if YES is determined, the process proceeds to S6.
[0057]
In S6, by closing the motor-operated valve 6 for 0.4 seconds, the opening degree is slightly reduced, The pressure in the treatment tank 3 finally reaches due to the reduced pressure. A vacuum cooling operation (second pressure holding step) is performed by lowering the holding pressure a little (holding pressure reduction adjusting step) and reducing the pressure inside the processing tank 3 to a reduced holding pressure. The point in time when the holding pressure is adjusted by the motor-operated valve 6 is indicated by point P in FIG. It can be seen that the slope of the pressure drop in the treatment tank 3 is steep immediately after the point P. By adjusting the holding pressure, the product temperature and the Saturation temperature of the object to be cooled corresponding to the pressure in the treatment tank 3 And the difference between the temperature of the object to be cooled and the evaporation of water from the object to be cooled become active, thereby reducing the product temperature.
[0058]
After the holding pressure reduction step of S6, the process proceeds to S7, and after execution of the holding pressure adjustment, it is determined whether or not a predetermined delay time (t3: in this embodiment, a fixed value, 80 sec) has elapsed. (Second delay time determination step). If NO is determined in S7, the process stays in S7. If YES is determined, the process proceeds to S8 to determine whether the product temperature has reached the second set temperature of 15 ° C (second product temperature determination). Step).
[0059]
If NO is determined in S8, the process returns to S4, and the second pressure holding step is performed until it is determined that the first set temperature is reached. In this second pressure holding step, the gradient of the pressure drop in the processing tank 3 is steep immediately after holding pressure adjustment as shown after point P in FIG. Retained. And the product temperature Of the object to be cooled corresponding to the pressure in the treatment tank 3 When the difference from the saturation temperature decreases, the value of the change in product temperature over time (ΔT / Δt) also decreases, and this value is again Standard value Then, YES is determined in S4.
[0060]
Then, the first delay time determination step of S5, the holding pressure reduction step of S6, the second product temperature determination step of S8, and the product temperature time change determination step of S4 are the second product temperature determination step. The process is repeatedly performed until reaching the second set temperature is determined. The repetition of this process repeats the operation of reducing the holding pressure a little when the time change of the product temperature becomes small, and lowering the holding pressure a little when the time change of the product temperature becomes small again. In the example shown in FIG. 3, the holding pressure is reduced again at S6 at the point Q.
[0061]
The reason for providing the delay time (t3) is as follows. Even if the holding pressure is reduced in S6, the time change of the product temperature does not change immediately. Therefore, if the delay time (t3) is not provided, if the determination of S4 is immediately performed via S8 after the processing of S6, YES is determined, and the holding pressure adjustment of S6 is again performed before the effect of the holding pressure adjustment appears. Adjustments are made. In order to avoid this, the delay time (t3) is provided.
[0062]
If it is determined in S8 that the second set temperature is reached, the process proceeds to S9. In S9, the motor-operated valve 6 is fully closed, that is, the inside of the cooling tank 3 is depressurized with the adjustment of the holding pressure reduction being maximized, and the vacuum cooling operation is performed (rapid cooling operation). In the example of FIG. 3, the point R indicates the start point of the rapid cooling operation.
[0063]
In the above embodiment, due to the characteristics of the motor-operated valve 6, it is almost closed by the second opening adjustment and cooled to the second set temperature in the previous period, but the time until the motor-operated valve 6 is fully closed is long. If one is used, the holding pressure can be reduced little by little, and the number of repetitions of the steps from S4 to S7 can be increased.
[0064]
(Effect of Example)
According to the embodiment, when the time change of the product temperature is small, the holding pressure is reduced, and when the time change of the product temperature is small again, the operation of reducing the holding pressure is repeatedly performed. Product temperature and Of the object to be cooled corresponding to the pressure in the treatment tank 3 Without increasing the difference from the saturation temperature, it is possible to suppress the occurrence of an overheated region of the object to be cooled, which is the main cause of boiling. As a result, scattering of the object to be cooled from the pan 8 can be prevented. Further, when the time change of the product temperature is small, the holding pressure is lowered, so that the vacuum cooling operation time can be shortened.
[0065]
Further, according to the embodiment, the first set temperature T0 ° C, the temperature change ΔT1 ° C, the delay time t2min (minutes), and the second set temperature T2 ° C can be adjusted. Even if the type is different, the amount of the object to be cooled is different, or the accommodation state of the object to be cooled in the pan 8 is different (such as the absence of a lid or the depth of the pan 8), the setting is performed. value (First set temperature T0 ° C, temperature change ΔT1 ° C, delay time t2min (minutes), second set temperature T2 ° C) By adjusting one or a plurality of values, a vacuum cooling operation in which boiling is suppressed can be performed.
[0066]
Furthermore, according to the above-described embodiment, without using a pressure sensor, it is possible to prevent bumping and scattering associated with it, or to prevent deformation of the mold, and to perform appropriate cooling suitable for the object to be cooled.
[0067]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent bumping and scattering associated therewith, or prevent deformation of the mold and perform appropriate cooling suitable for the object to be cooled. At the same time, since the amount of reduction of the predetermined value in the holding pressure reduction step is adjusted according to the product temperature, it is possible to effectively prevent the object to be cooled from boiling in the region where the predetermined holding pressure is low. And so on.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view for explaining a vacuum cooling apparatus according to an embodiment to which a vacuum cooling method of the present invention is applied.
FIG. 2 is a flowchart showing a control procedure by the controller of the embodiment.
FIG. 3 is a characteristic diagram showing temporal changes in the product temperature at the bottom of the part to be cooled and the saturation temperature in the treatment tank by the vacuum cooling method of the same example when the object to be cooled is warm water.
[Explanation of symbols]
2 Object to be cooled
3 treatment tank
4 Pressure reducing means
5 Temperature sensor
6 Motorized valve

Claims (2)

被冷却物2を収容する処理槽3と、前記処理槽3内を減圧するための減圧手段4と、前記被冷却物2の温度を検出する温度センサ5と、大気を前記処理槽3内へ導入することにより保持圧力を複数段階に調整する電動弁6とを備える真空冷却装置1の真空冷却方法であって、
前記処理槽3内の圧力が減圧により最終的に到達する第一保持圧力となるように前記電動弁6の開度を所定値として前記減圧手段4を作動させて前記処理槽3内の減圧を行う第一圧力保持工程と、
前記第一圧力保持工程により前記温度センサ5により検出される前記被冷却物2の温度が設定温度へ到達したかどうかを判定する品温判定工程と、
前記温度センサ5により検出される前記被冷却物2の温度の時間変化が基準値以下となったこと判定することで前記被冷却物2の温度が前記処理槽3内の圧力が減圧により最終的に到達する保持圧力に対応する被冷却物2の飽和温度にほぼ近づいたことを判定する品温時間変化判定工程と、
前記品温判定工程により前記設定温度への到達が判定され、かつ前記品温時間変化判定工程により前記基準値以下が判定されると、前記処理槽3の圧力が前記保持圧力から所定値低減する保持圧力低減工程を含み、前記保持圧力低減工程により低減した保持圧力となるように前記処理槽3内の減圧を行う第二圧力保持工程とを有し、
前記品温時間変化判定工程および前記第二圧力保持工程を繰り返して行い、前記第二圧力保持工程を繰り返す際の前記保持圧力低減工程の前記所定値の各調整は、前記減圧手段4の排気量を一定として前記電動弁6の開度を複数段階に調整することにより行い、前記被冷却物2の品温が低くなるほど前記電動弁6を閉める量を少なくすることにより行うとともに、前記第一圧力保持工程,前記品温時間変化判定工程および前記第二圧力保持工程を圧力センサを用いることなく行い、
前記第一圧力保持工程の前記第一保持圧力と前記品温判定工程の前記基準値および前記保持圧力低減工程の前記所定値は、前記被冷却物2の突沸を防止するように設定されることを特徴とする真空冷却方法。
A processing tank 3 for storing the object to be cooled 2, a decompression means 4 for decompressing the inside of the processing tank 3, a temperature sensor 5 for detecting the temperature of the object to be cooled 2, and the atmosphere into the processing tank 3 A vacuum cooling method for a vacuum cooling device 1 comprising a motor-operated valve 6 that adjusts a holding pressure in a plurality of stages by introducing a holding pressure,
The pressure reducing means 4 is operated with the opening of the motor-operated valve 6 as a predetermined value so that the pressure in the processing tank 3 reaches a first holding pressure that is finally reached by pressure reduction, and the pressure in the processing tank 3 is reduced. A first pressure holding step to be performed;
A product temperature determination step of determining whether or not the temperature of the object to be cooled 2 detected by the temperature sensor 5 in the first pressure holding step has reached a set temperature;
The final pressure of the temperature sensor 5 the cooling object in temperature of 2 the processing tank 3 by determining the time variation of the temperature of the cooling object 2 to be detected is equal to or less than the reference value by the by vacuum Product temperature time change determination step of determining that the saturation temperature of the object to be cooled 2 corresponding to the holding pressure to be reached is substantially approached,
The product temperature determination step reaching the set temperature is determined by, and the article when the rising time changed by the determination step below the reference value is determined, the pressure of the treatment tank 3 before Kiho predetermined value from lifting pressure include holding pressure reducing step of reducing, and a second pressure holding step of performing the decompression in the treatment tank 3 so that the reduced hold pressure by the holding pressure reduction step,
The product temperature time change determination step and the second pressure holding step are repeatedly performed, and each adjustment of the predetermined value in the holding pressure reduction step when the second pressure holding step is repeated is performed by adjusting the displacement of the decompression means 4. Is performed by adjusting the opening of the motor-operated valve 6 in a plurality of stages, and by decreasing the amount of closing the motor-operated valve 6 as the product temperature of the object to be cooled 2 decreases, the first pressure The holding step, the product temperature time change determining step and the second pressure holding step are performed without using a pressure sensor,
Said predetermined value of said reference value and the holding pressure reduction step of the first holding pressure and the product temperature determining step of the first pressure holding step, that the set to prevent bumping of the object to be cooled 2 A vacuum cooling method characterized by the above.
前記基準値を調整可能としたことを特徴とする請求項1に記載の真空冷却方法。  The vacuum cooling method according to claim 1, wherein the reference value is adjustable.
JP2003007829A 2003-01-16 2003-01-16 Vacuum cooling method Expired - Fee Related JP4532833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007829A JP4532833B2 (en) 2003-01-16 2003-01-16 Vacuum cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007829A JP4532833B2 (en) 2003-01-16 2003-01-16 Vacuum cooling method

Publications (2)

Publication Number Publication Date
JP2004218958A JP2004218958A (en) 2004-08-05
JP4532833B2 true JP4532833B2 (en) 2010-08-25

Family

ID=32897812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007829A Expired - Fee Related JP4532833B2 (en) 2003-01-16 2003-01-16 Vacuum cooling method

Country Status (1)

Country Link
JP (1) JP4532833B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581849B2 (en) * 2005-05-31 2010-11-17 三浦工業株式会社 Steaming device
JP5950437B2 (en) * 2012-01-17 2016-07-13 株式会社サムソン Vacuum cooling device
JP6215091B2 (en) * 2014-03-07 2017-10-18 株式会社サムソン Vacuum cooling device
JP6362467B2 (en) * 2014-07-29 2018-07-25 株式会社サムソン Vacuum cooling device
JP6601275B2 (en) * 2016-03-08 2019-11-06 三浦工業株式会社 Vacuum cooling device
JP7376846B2 (en) 2018-12-07 2023-11-09 三浦工業株式会社 vacuum cooling device
JP2020096539A (en) * 2018-12-17 2020-06-25 三浦工業株式会社 Vacuum cooling device
JP7223319B2 (en) * 2018-12-17 2023-02-16 三浦工業株式会社 vacuum cooling system
JP7232400B2 (en) * 2018-12-21 2023-03-03 三浦工業株式会社 vacuum cooling system
JP7432103B2 (en) * 2019-12-16 2024-02-16 三浦工業株式会社 vacuum cooling device

Also Published As

Publication number Publication date
JP2004218958A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP4532833B2 (en) Vacuum cooling method
JP5251557B2 (en) Cooling device and cooling method
JP4924147B2 (en) Food machine with vacuum cooling function and its operation method
JP6601275B2 (en) Vacuum cooling device
KR100621718B1 (en) Vacuum microwave defrosting method, and vacuum microwave defrosing machine
JP4134802B2 (en) Vacuum cooling method
JP6362467B2 (en) Vacuum cooling device
JP2007192459A (en) Composite cooling system
JP2004218957A (en) Vacuum cooling method
JP4474680B2 (en) Defroster
JP2010133569A (en) Composite cooling device
JP7421798B2 (en) vacuum cooling device
JP3832354B2 (en) Vacuum cooling method
WO2020175102A1 (en) Food drying method, refrigerator, storage, and dried food production method
CN112438591B (en) Cooking control method, cooking control device, cooking appliance and computer readable storage medium
JP5370670B2 (en) Operation method of cooking device
JPH06273027A (en) Gradually cooling method and device in vacuum cooling device
JP5407378B2 (en) Cooling device and cooling method
CN110870658B (en) Cooking appliance control method and cooking appliance
JP2018162960A (en) Food machine having vacuum cooling function
CN112438589B (en) Cooking control method, cooking control device, cooking appliance and computer readable storage medium
CN110870680B (en) Cooking appliance control method and cooking appliance
JP2004357629A (en) Vacuum steam thawing machine
JP2833250B2 (en) Decompression high-frequency heating device
JP4438086B2 (en) Defroster

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Ref document number: 4532833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees