JP5950437B2 - Vacuum cooling device - Google Patents

Vacuum cooling device Download PDF

Info

Publication number
JP5950437B2
JP5950437B2 JP2012007344A JP2012007344A JP5950437B2 JP 5950437 B2 JP5950437 B2 JP 5950437B2 JP 2012007344 A JP2012007344 A JP 2012007344A JP 2012007344 A JP2012007344 A JP 2012007344A JP 5950437 B2 JP5950437 B2 JP 5950437B2
Authority
JP
Japan
Prior art keywords
pressure
cooling
tank
vacuum
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012007344A
Other languages
Japanese (ja)
Other versions
JP2013148242A (en
Inventor
西山 将人
将人 西山
伸基 明尾
伸基 明尾
Original Assignee
株式会社サムソン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サムソン filed Critical 株式会社サムソン
Priority to JP2012007344A priority Critical patent/JP5950437B2/en
Publication of JP2013148242A publication Critical patent/JP2013148242A/en
Application granted granted Critical
Publication of JP5950437B2 publication Critical patent/JP5950437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、加熱調理された食品などの被冷却物を冷却槽内に収容し、冷却槽内を減圧することによって被冷却物内の水分を気化させることで、被冷却物を急速に冷却する真空冷却装置に関するものである。   The present invention rapidly cools an object to be cooled by storing the object to be cooled such as cooked food in a cooling tank and evaporating moisture in the object to be cooled by depressurizing the inside of the cooling tank. The present invention relates to a vacuum cooling device.

特許第3173535号に記載があるように、冷却槽内を減圧することで被冷却物から水分を蒸発させ、蒸発によって発生する気化熱によって被冷却物の冷却を行う真空冷却装置が知られている。給食センターなどにおいては、加熱調理食品を冷却する際に雑菌が繁殖する温度帯をできるだけ早く通過させることが要望されており、真空冷却装置であれば短時間で被冷却物の中心部までの冷却が可能であるために広く用いられている。しかし、減圧速度が速すぎる場合、被冷却物の品温から定まる飽和蒸気圧力よりも冷却槽内の圧力の方が低くなることによって突沸現象が発生することがある。その場合には、被冷却物の破損や飛散が発生することがあった。また、冷却後に冷却槽内へ空気を導入して冷却槽を復圧する場合にも、復圧速度が速すぎる場合には被冷却物に変形などが発生することがあった。そのため、被冷却物の性状に合わせて減圧速度を遅くする徐冷や減圧後の復圧速度を遅くする徐戻しを行うことができるようにしている。   As described in Japanese Patent No. 3173535, there is known a vacuum cooling device that evaporates moisture from an object to be cooled by reducing the pressure in the cooling tank and cools the object to be cooled by vaporization heat generated by evaporation. . In food service centers and the like, it is required to pass through the temperature range in which miscellaneous germs propagate as soon as possible when cooling cooked food. Cooling to the center of the object to be cooled in a short time is possible with a vacuum cooling device. Is widely used because it is possible. However, when the pressure reduction rate is too high, a bumping phenomenon may occur due to the pressure in the cooling tank being lower than the saturated vapor pressure determined from the product temperature of the object to be cooled. In that case, the object to be cooled may be broken or scattered. Even when air is introduced into the cooling tank after cooling to return the pressure to the cooling tank, the object to be cooled may be deformed if the return pressure speed is too high. For this reason, it is possible to perform slow cooling that slows down the decompression speed in accordance with the properties of the object to be cooled and slow return that slows down the decompression speed after decompression.

真空冷却装置では、冷却槽に真空配管を介して真空発生装置を接続しておき、真空発生装置を作動することで冷却槽内の空気を排出する。真空配管には途中に徐冷弁を設けた徐冷用配管を接続し、徐冷用配管を介して空気の取り込みを行えるようにしておく。真空発生装置による空気吸引時に徐冷弁を開くと、徐冷用配管を通して真空配管へ空気が送られ、真空発生装置では冷却槽内の空気に加えて徐冷用配管からの空気も吸引することになるために冷却槽内から排出される空気量が減少し、冷却槽内の減圧速度は低下する。徐冷弁から導入する空気量を増減することで、冷却槽での減圧速度の調節を行うこともでき、徐冷弁の開度を大きくして空気導入量を多くすれば減圧速度はより大きく低下し、徐冷弁の開度を小さくして空気導入量を少なくすれば減圧速度の低下は小さくなる。復圧時の徐戻しも同様であり、冷却槽内へ復圧用の空気を導入する部分に開度調節の可能な空気取り入れ弁を設けておき、空気取り入れ弁の開度を大きくすれば復圧速度は速くなり、空気取り入れ弁の開度を小さくすれば復圧速度は遅くなる。   In the vacuum cooling device, a vacuum generator is connected to the cooling tank via a vacuum pipe, and the air in the cooling tank is discharged by operating the vacuum generator. A vacuum cooling pipe provided with a slow cooling valve is connected to the vacuum pipe in the middle so that air can be taken in via the slow cooling pipe. When the slow cooling valve is opened during air suction by the vacuum generator, air is sent to the vacuum pipe through the slow cooling pipe, and the vacuum generator sucks air from the slow cooling pipe in addition to the air in the cooling tank. Therefore, the amount of air discharged from the cooling tank is reduced, and the pressure reduction speed in the cooling tank is reduced. The pressure reduction rate in the cooling tank can also be adjusted by increasing or decreasing the amount of air introduced from the slow cooling valve, and the pressure reduction rate can be increased by increasing the air introduction amount by increasing the opening of the slow cooling valve. If the opening of the slow cooling valve is reduced and the amount of air introduced is reduced, the reduction in the pressure reduction rate is reduced. The same is true for the gradual return at the time of return pressure, and an air intake valve that can adjust the opening is provided in the part where the air for return pressure is introduced into the cooling tank, and the return pressure can be increased by increasing the opening of the air intake valve. The speed increases, and the return pressure speed decreases as the opening of the air intake valve is reduced.

徐冷運転や徐戻し運転を行う場合には、経過時間とその時点における冷却槽内圧力を目標圧力として設定しておき、目標圧力になるように徐冷弁や空気取り入れ弁の開度を調節しながら運転を行う。徐冷用に設定しておいた目標圧力に対し、実際に計測した槽内圧力が高いという場合は、徐冷弁による空気取り込み量が多いために減圧速度が足りないということであり、その場合には減圧弁の開度を小さくすることで空気取り込み量を減らし、減圧速度を速める。逆に徐冷用に設定しておいた目標圧力に対し、実際に計測した槽内圧力が低いという場合には、徐冷弁による空気取り込み量が少ないために減圧速度が速すぎるということであり、その場合には徐冷弁の開度を大きくすることで空気取り込み量を増やし、減圧速度を遅くする。   When performing slow cooling operation or slow return operation, set the elapsed time and the pressure in the cooling tank at that time as the target pressure, and adjust the opening of the slow cooling valve or air intake valve so that it becomes the target pressure While driving. If the tank pressure actually measured is higher than the target pressure set for slow cooling, it means that the pressure reduction speed is insufficient due to the large amount of air taken in by the slow cooling valve. In order to reduce the air intake, the pressure reducing speed is increased. Conversely, if the tank pressure actually measured is lower than the target pressure set for slow cooling, it means that the pressure reduction speed is too fast because the amount of air taken in by the slow cooling valve is small. In that case, the amount of air intake is increased by increasing the opening of the slow cooling valve, and the pressure reduction speed is decreased.

徐冷弁の開度変更量は目標圧力と槽内圧力の差に基づいて決定するようにしており、目標圧力と槽内圧力の差が大きくなるほど、徐冷弁の開度変更量が大きくなるように設定しておく。PID制御を行い、目標圧力との差分に応じて徐冷弁の開度変更量を決定し、差分をなくすように徐冷弁の開度を調節することで、槽内圧力は目標圧力に沿って減圧させることができるはずであるが、実際には槽内圧力と目標圧力の間にずれが生じることがあった。槽内圧力が目標圧力通りにならないと、突沸の発生によって被冷却物の破損や飛散が発生したり、運転終了までの時間が長く掛かることになっていた。   The amount of change in the opening of the slow cooling valve is determined based on the difference between the target pressure and the pressure in the tank, and the amount of change in the opening of the slow cooling valve increases as the difference between the target pressure and the pressure in the tank increases. Set as follows. PID control is performed, the opening change amount of the slow cooling valve is determined according to the difference with the target pressure, and the opening of the slow cooling valve is adjusted so as to eliminate the difference, so that the pressure in the tank follows the target pressure. Although it should be possible to reduce the pressure, there may actually be a deviation between the tank pressure and the target pressure. If the pressure in the tank does not match the target pressure, the object to be cooled is damaged or scattered due to bumping, and it takes a long time to complete the operation.

特許3173535号公報Japanese Patent No. 3173535

本発明が解決しようとする課題は、真空冷却装置で徐冷運転や徐戻し運転を行う場合に、槽内圧力の目標圧力とのずれを少なくし、圧力制御の精度を高めることのできる真空冷却装置を提供することにある。   The problem to be solved by the present invention is that when performing slow cooling operation or slow return operation with a vacuum cooling device, vacuum cooling that can reduce the deviation of the internal pressure of the tank from the target pressure and increase the accuracy of pressure control. To provide an apparatus.

請求項1に記載の発明は、被冷却物を収容する冷却槽と、冷却槽内の空気を排出する真空発生装置を持ち、冷却槽の内部を真空化することで、冷却槽に収容した被冷却物の冷却を行う真空冷却装置であって、途中に徐冷弁を持った徐冷用配管を設け、真空冷却時に徐冷弁を通じて徐冷用の空気を導入することによって減圧速度を低下させる徐冷運転を行えるようにしており、真空冷却運転時には、冷却槽内の圧力を検出する圧力検出装置によって検出した槽内圧力と、経過時間に対応させて設定しておいた目標圧力を比較し、槽内圧力が目標圧力に近づくように徐冷弁の開度を調節するようにしている真空冷却装置において、徐冷運転を行う場合、冷却槽内の真空度が低い時期には目標圧力と槽内圧力の差に対する徐冷弁開度変更量の比例帯幅を小さくし、真空冷却運転が進むことで冷却槽内の真空度が高くなるにつれて、目標圧力と槽内圧力の差に対する徐冷弁開度変更量の比例帯幅は大きくなっていくような設定を行っていることを特徴とする。   The invention described in claim 1 has a cooling tank for storing an object to be cooled and a vacuum generator for discharging the air in the cooling tank, and the inside of the cooling tank is evacuated so as to accommodate the object to be stored in the cooling tank. A vacuum cooling device that cools a cooling object, and is provided with a slow cooling pipe with a slow cooling valve in the middle, and the vacuum pressure is reduced by introducing slow cooling air through the slow cooling valve during vacuum cooling. Slow cooling operation can be performed, and during vacuum cooling operation, the tank pressure detected by the pressure detection device that detects the pressure in the cooling tank is compared with the target pressure set corresponding to the elapsed time. In the vacuum cooling device in which the opening of the slow cooling valve is adjusted so that the pressure in the tank approaches the target pressure, when performing the slow cooling operation, the target pressure and the target pressure are reduced when the degree of vacuum in the cooling tank is low. Proportional band of change amount of slow cooling valve opening to difference in tank pressure As the degree of vacuum in the cooling tank increases as the vacuum cooling operation progresses, the proportional bandwidth of the slow cooling valve opening change amount with respect to the difference between the target pressure and the tank pressure increases. It is characterized by performing.

請求項2に記載の発明は、前記の真空冷却装置において、真空冷却終了後の復圧時も、経過時間に対応させて設定した目標圧力となるように空気取り入れ弁の開度を調節するようにしており、その際には冷却槽内の真空度が高い時期には目標圧力と槽内圧力の差に対する徐冷弁開度変更量の比例帯幅を大きくし、復圧運転が進むことで冷却槽内の真空度が低くなるにつれて目標圧力と槽内圧力の差に対する徐冷弁開度変更量の比例帯幅は小さくなっていくような設定を行っていることを特徴とする。   According to a second aspect of the present invention, in the vacuum cooling device, the opening degree of the air intake valve is adjusted so that the target pressure set in accordance with the elapsed time is obtained even when the pressure is restored after completion of the vacuum cooling. In this case, when the degree of vacuum in the cooling tank is high, the proportional band width of the change amount of the slow cooling valve opening relative to the difference between the target pressure and the pressure in the tank is increased, and the return pressure operation proceeds. As the degree of vacuum in the cooling tank decreases, the proportional band width of the slow cooling valve opening change amount with respect to the difference between the target pressure and the tank pressure is set to be small.

徐冷時に問題となるのは、真空発生装置は同じように作動し、徐冷弁も同じように動作しても、徐冷弁の開度変更による冷却槽内温度の変化量は、低真空時に比べて高真空時には大きくなることによる。本発明では、徐冷運転を行う場合、冷却槽内の真空度が低い時期には目標圧力と槽内圧力の差に対する徐冷弁開度変更量の比例帯幅を小さくし、真空冷却運転が進むことで冷却槽内の真空度が低くなるにつれて、目標圧力と槽内圧力の差に対する徐冷弁開度変更量の比例帯幅は大きくなっていくようにしている。すると、低真空時には槽内圧力が目標圧力から少し外れた場合でも徐冷弁の開度を比較的大きく変更することになるが、高真空時には槽内圧力が目標圧力から同じだけ外れた場合でも徐冷弁の開度変更量は比較的小さくなる。高真空時には、徐冷弁の開度を少し変更しただけでも冷却槽での飽和温度の変化量が大きくなるため、槽内圧力を目標圧力に収束させにくくなっていた。しかし、高真空時には開度変化を緩やかにすることで、圧力変動量が大きくなりすぎないようにし、逆に低真空時には開度変化を大きすることで圧力変動量が足りなくならないようにすることができる。そのため、被冷却物の突沸現象の抑制及び冷却時間の短縮が図られ、歩留まりの向上が期待できる。   The problem during slow cooling is that the vacuum generator operates in the same way, and even if the slow cooling valve operates in the same way, the amount of change in the cooling tank temperature due to the change in the opening of the slow cooling valve is low vacuum. This is because it becomes larger at high vacuum than at times. In the present invention, when performing the slow cooling operation, when the degree of vacuum in the cooling tank is low, the proportional bandwidth of the change amount of the slow cooling valve opening relative to the difference between the target pressure and the tank pressure is reduced, and the vacuum cooling operation is performed. As the degree of vacuum in the cooling tank is lowered by proceeding, the proportional bandwidth of the amount of change in the slow cooling valve opening with respect to the difference between the target pressure and the tank pressure is increased. Then, even if the tank pressure slightly deviates from the target pressure during low vacuum, the opening of the slow cooling valve will be changed relatively large, but even when the tank pressure deviates from the target pressure by the same amount during high vacuum. The amount of change in the opening degree of the slow cooling valve is relatively small. During high vacuum, even if the opening degree of the slow cooling valve is slightly changed, the amount of change in the saturation temperature in the cooling tank becomes large, so that it is difficult to converge the pressure in the tank to the target pressure. However, when the vacuum is high, the change in opening is made gentle so that the amount of pressure fluctuation does not become too large. Conversely, when the vacuum is low, the change in opening is increased so that the amount of fluctuation in pressure is not insufficient. Can do. Therefore, the bumping phenomenon of the object to be cooled can be suppressed and the cooling time can be shortened, and an improvement in yield can be expected.

復圧時も同様であり、空気取り入れ弁の開度変更量は同じであったとしても、高真空時には冷却槽内の飽和温度変化量は大きくなり、低真空時には冷却槽内の飽和温度変化量は小さくなる。この場合も、比例帯の幅を高真空時は大きくし低真空になるほど小さくなるようにしておく。すると、高真空時には目標圧力との差分に対する空気取り入れ弁の開度変更量が小さくなるために冷却槽内の圧力変化量は小さくなり、低真空時には空気取り入れ弁の開度変更量が大きくなることで、冷却槽の圧力変化量は大きくなる方向に変化する。このことにより、圧力に対する温度変化が大きくなりがちであった高真空時には変動量を縮小させることになり、圧力に対する温度変化が小さくなりがちであった低真空時には変動量を拡大することになる。   The same is true at the time of return pressure, and even if the amount of air intake valve opening change is the same, the amount of change in saturation temperature in the cooling tank increases during high vacuum, and the amount of change in saturation temperature in the cooling tank during low vacuum. Becomes smaller. Also in this case, the width of the proportional band is increased when the vacuum is high, and is decreased as the vacuum is reduced. Then, when the vacuum is high, the amount of change in the opening of the air intake valve with respect to the difference from the target pressure is small, so the amount of change in the pressure in the cooling tank is small, and when the vacuum is low, the amount of change in the opening of the air intake valve is large. Thus, the amount of change in pressure in the cooling tank changes in the increasing direction. As a result, the amount of fluctuation is reduced during a high vacuum where the temperature change with respect to pressure tends to be large, and the amount of fluctuation is enlarged during a low vacuum where the temperature change against pressure tends to be small.

本発明を実施することで、徐冷運転や徐戻し運転を行う場合に、圧力変化速度の変更量が大きくなりがちな時期には変化量が大きくなりすぎないように制御することができ、圧力変化速度の変更量が小さくなりがちな時期には変化量が小さくなりすぎないように制御することができる。そのため、目標圧力に沿った徐冷運転や徐戻し運転が行えるようになり、突沸の抑制と運転時間の短縮を両立させることができる。   By carrying out the present invention, when performing a slow cooling operation or a slow return operation, it can be controlled so that the change amount does not become too large at a time when the change amount of the pressure change rate tends to be large. Control can be performed so that the change amount does not become too small at a time when the change amount of the change speed tends to be small. Therefore, the slow cooling operation and the slow return operation along the target pressure can be performed, and both suppression of bumping and shortening of the operation time can be achieved.

本発明を実施する真空冷却装置のフロー図Flow diagram of a vacuum cooling apparatus for carrying out the present invention 徐冷/徐戻し運転時の目標圧力とのずれに対する徐冷弁/空気取り入れ弁開度変更量を説明する説明図Explanatory drawing explaining the slow cooling valve / air intake valve opening change amount with respect to the deviation from the target pressure during the slow cooling / slow return operation

本発明の一実施例を図面を用いて説明する。図1は本発明を実施する真空冷却装置のフロー図、図2は徐冷/徐戻し運転時の目標圧力とのずれに対する徐冷弁/空気取り入れ弁開度変更量を説明する説明図である。真空冷却装置は、被冷却物7を収容する冷却槽2と、冷却槽2内の空気を排出する真空発生装置1を持ち、冷却槽2の内部を真空化することで、冷却槽2に収容した被冷却物7の冷却を行う。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart of a vacuum cooling apparatus embodying the present invention, and FIG. 2 is an explanatory diagram for explaining an amount of change in opening degree of a slow cooling valve / air intake valve with respect to a deviation from a target pressure during slow cooling / slow return operation. . The vacuum cooling device has a cooling tank 2 that accommodates an object to be cooled 7 and a vacuum generator 1 that discharges air in the cooling tank 2, and is accommodated in the cooling tank 2 by evacuating the inside of the cooling tank 2. The cooled object 7 is cooled.

真空発生装置1は真空配管9で冷却槽2と接続しており、冷却槽2内の空気は真空発生装置1を作動することで真空配管9を通して排出する。被冷却物7の冷却時に冷却速度を緩やかにする徐冷を行うため、真空配管9には途中に徐冷弁3を設けた徐冷用配管4を接続しており、徐冷弁3を開くと徐冷用配管4を通じて外気が真空配管9内に入るようにしている。徐冷弁3には電動比例弁を用いており、徐冷弁3では開度を0%から100%の間で自由に調節することができるようにしている。   The vacuum generator 1 is connected to the cooling tank 2 by a vacuum pipe 9, and the air in the cooling tank 2 is discharged through the vacuum pipe 9 by operating the vacuum generator 1. In order to perform gradual cooling with a slow cooling rate when the object to be cooled 7 is cooled, a gradual cooling pipe 4 provided with a gradual cooling valve 3 is connected to the vacuum pipe 9 and the gradual cooling valve 3 is opened. The outside air enters the vacuum pipe 9 through the slow cooling pipe 4. An electric proportional valve is used as the slow cooling valve 3, and the opening degree of the slow cooling valve 3 can be freely adjusted between 0% and 100%.

また、真空冷却装置で冷却が終了した時点では、冷却槽2の内部は負圧の状態にあるため、冷却槽2の圧力を戻す必要がある。冷却槽2内を復圧させるため、冷却槽2には空気取り入れ弁8を持った復圧装置を設ける。復圧する際にも緩やかに復圧する徐戻しを行う必要がある場合には、空気取り入れ弁8も電動比例弁とし、空気取り入れ弁8でも開度を0%から100%の間で自由に調節することができるようにしておく。   Moreover, since the inside of the cooling tank 2 is in a negative pressure state when the cooling is completed by the vacuum cooling device, it is necessary to return the pressure of the cooling tank 2. In order to return the pressure in the cooling tank 2, a return pressure device having an air intake valve 8 is provided in the cooling tank 2. In the case where it is necessary to perform gradual return that gradually returns even when the pressure is restored, the air intake valve 8 is also an electric proportional valve, and the air intake valve 8 also freely adjusts the opening between 0% and 100%. Be able to do that.

冷却槽2には、冷却槽内の圧力を検出する圧力検出装置5を設けており、圧力検出装置5で検出した冷却槽内圧力の値は真空冷却装置の運転を制御する運転制御装置6へ出力する。運転制御装置6は、経過時間と圧力検出装置5で検出している槽内圧力に基づいて各装置の作動を制御する。運転制御装置6には、経過時間とその時点における冷却槽内の目標圧力を設定しておき、圧力検出装置5で検出している槽内圧力が目標圧力になるように減圧速度や復圧速度を調節する。本実施例では、減圧開始から時間A経過後の目標圧力は−10kPa、時間B経過後の目標圧力は−30kPa、時間C経過後の目標圧力は−50kPa、時間D経過後の目標圧力は−70kPa、時間E経過後の目標圧力は−90kPaとしておく。   The cooling tank 2 is provided with a pressure detection device 5 for detecting the pressure in the cooling tank, and the value of the pressure in the cooling tank detected by the pressure detection device 5 is supplied to the operation control device 6 for controlling the operation of the vacuum cooling device. Output. The operation control device 6 controls the operation of each device based on the elapsed time and the tank pressure detected by the pressure detection device 5. The operation control device 6 sets an elapsed time and a target pressure in the cooling tank at that time, and a decompression speed or a decompression speed so that the tank pressure detected by the pressure detection device 5 becomes the target pressure. Adjust. In the present embodiment, the target pressure after the lapse of time A from the start of decompression is -10 kPa, the target pressure after the lapse of time B is -30 kPa, the target pressure after the lapse of time C is -50 kPa, and the target pressure after the lapse of time D is- The target pressure after elapse of 70 kPa and time E is set to −90 kPa.

運転制御装置6で徐冷運転を行う場合、運転制御装置6では時間から定まる目標圧力とその時点での槽内圧力を比較し、槽内圧力が目標圧力より高い場合には徐冷弁3の開度を小さくし、槽内圧力が目標圧力より低い場合には徐冷弁3の開度を大きくする。   When the operation control device 6 performs the slow cooling operation, the operation control device 6 compares the target pressure determined from the time with the tank pressure at that time, and if the tank pressure is higher than the target pressure, the slow cooling valve 3 The opening degree is decreased, and when the tank pressure is lower than the target pressure, the opening degree of the slow cooling valve 3 is increased.

この時、槽内圧力が高い冷却運転の初期ほど目標圧力と槽内圧力の差に対する徐冷弁開度変更量の比例帯幅を小さくしておき、冷却工程が進むことで槽内圧力が低くなる冷却運転の終期ほど、目標圧力と槽内圧力の差に対する徐冷弁開度変更量の比例帯幅は大きくなっていくように設定しておく。このことを図2に基づいて説明する。図2では、経過時間に基づいて設定している目標圧力値と、槽内圧力に基づいて定まる徐冷弁3の開度を記載している。冷却運転の開始から時間Aが経過した時点での目標圧力は−10kPaであり、圧力検出装置5によって検出している槽内圧力が目標圧力である−10kPaより高い場合には徐冷弁3の開度を小さくし、目標定値である−10kPaより低い場合には徐冷弁3の開度を大きくする。   At this time, in the initial stage of the cooling operation in which the tank internal pressure is high, the proportional band width of the slow cooling valve opening change amount with respect to the difference between the target pressure and the tank internal pressure is reduced, and the tank internal pressure decreases as the cooling process proceeds. The proportional bandwidth of the slow cooling valve opening change amount with respect to the difference between the target pressure and the tank pressure is set so as to increase toward the end of the cooling operation. This will be described with reference to FIG. In FIG. 2, the target pressure value set based on the elapsed time and the opening degree of the slow cooling valve 3 determined based on the tank internal pressure are shown. When the time A has elapsed from the start of the cooling operation, the target pressure is -10 kPa, and when the tank pressure detected by the pressure detection device 5 is higher than the target pressure, -10 kPa, the slow cooling valve 3 The opening degree is decreased, and when it is lower than the target constant value of −10 kPa, the opening degree of the slow cooling valve 3 is increased.

槽内圧力に基づいて徐冷弁の開度を定める比例帯の幅は、単純に同じにするといったことはせず、冷却運転の初期では比例帯の幅を小さく設定し、冷却運転が進むにつれて比例帯の幅を大きく設定する。時間Aの時点では、槽内圧力−9.1kPaで徐冷弁の開度0%から槽内圧力−10.1kPaで徐冷弁の開度100%までの1.0kPa分で設定しており、槽内圧力が0.1kPa分異なった場合に徐冷弁の開度は10%分変化することになる。ここでは比例帯の幅を狭く設定しているため、槽内圧力が少し異なった場合でも徐冷弁の開度変更量は大きくなる。   The width of the proportional band that determines the opening degree of the slow cooling valve based on the pressure in the tank is not simply set to the same value. At the initial stage of the cooling operation, the width of the proportional band is set to be small and as the cooling operation proceeds. Increase the width of the proportional band. At time A, the pressure in the tank is set to 1.0 kPa from 0% of the slow cooling valve opening to 9.1 kPa to the pressure of the slow cooling valve to 100% at the tank pressure of 10.1 kPa. When the tank internal pressure is different by 0.1 kPa, the opening degree of the slow cooling valve is changed by 10%. Here, since the width of the proportional band is set narrow, even when the pressure in the tank is slightly different, the opening change amount of the slow cooling valve becomes large.

次の説明点である時間B時点の場合、槽内圧力−27.9kPaで徐冷弁の開度0%から槽内圧力−30.9kPaで徐冷弁の開度100%までの3.0kPa分で設定しており、槽内圧力が0.3kPa分異なった場合に徐冷弁の開度は10%分変化することになる。ここでは時間Aほどではないが比例帯の幅は比較的狭いものであるため、槽内圧力が少し異なった場合でも徐冷弁の開度変更量は比較的大きなものとなる。   In the case of time B, which is the next explanation point, 3.0 kPa from 0% of the slow cooling valve opening at the tank pressure -27.9 kPa to 100 kPa opening of the slow cooling valve at the tank pressure -30.9 kPa. When the tank pressure is different by 0.3 kPa, the opening degree of the slow cooling valve changes by 10%. Here, although not as much as time A, the width of the proportional band is relatively narrow, so even if the tank pressure is slightly different, the opening change amount of the slow cooling valve is relatively large.

その次の説明点である時間Cが経過した時点の場合、槽内圧力−47.5kPaで徐冷弁の開度0%から槽内圧力−52.5kPaで徐冷弁の開度100%までの5.0kPa分で設定しており、槽内圧力が0.5kPa分異なった場合に徐冷弁の開度は10%分変化することになる。ここでは時間Bよりも更に槽内圧力が大きく変化していなければ徐冷弁の開度は変化しないが、後で説明する時間D及び時間Eの場合のほどではなく、説明の範囲内では中間的な設定となる。   When time C, which is the next explanatory point, has elapsed, from 0% of the slow cooling valve at a tank internal pressure of -47.5 kPa to 100% of the opening of the slow cooling valve at a tank internal pressure of -52.5 kPa. Of 5.0 kPa, and when the pressure in the tank differs by 0.5 kPa, the opening of the slow cooling valve changes by 10%. Here, the opening degree of the slow cooling valve does not change unless the pressure in the tank further changes more than the time B, but it is not as in the case of time D and time E described later, and is within the range of the description. Setting.

時間Dの経過時点の場合は、槽内圧力−67.9kPaで徐冷弁の開度0%から槽内圧力−74.9kPaで徐冷弁の開度100%までの7.0kPa分で設定しており、槽内圧力が0.7kPa分異なった場合に徐冷弁の開度は10%分変化することになる。ここでは時間Cよりも更に槽内圧力が大きく変化していなければ徐冷弁の開度は変化しないことになり、徐冷弁の開度変化は比較的緩やかなものとなる。   When the time D has elapsed, the pressure is set at 7.0 kPa from 0% of the slow cooling valve opening at the tank pressure -67.9 kPa to 100% opening of the slow cooling valve at the tank pressure -74.9 kPa. When the pressure in the tank differs by 0.7 kPa, the opening degree of the slow cooling valve changes by 10%. Here, if the tank pressure does not change much more than the time C, the opening degree of the slow cooling valve will not change, and the opening degree change of the slow cooling valve will be relatively gradual.

時間Eの経過時点の場合は、槽内圧力−89.1kPaで徐冷弁の開度0%から槽内圧力−98.1kPaで徐冷弁の開度100%までの9.0kPa分で設定しており、槽内圧力が0.9kPa分異なった場合に徐冷弁の開度は10%分変化することになる。ここでは槽内圧力が大きく変化していなければ徐冷弁の開度は変化しないため、徐冷弁の開度変化は緩やかなものとなる。   When the time E has elapsed, the pressure is set at 9.0 kPa from 0% of the slow cooling valve opening at the tank pressure -89.1 kPa to 100% opening of the slow cooling valve at the tank pressure -98.1 kPa. When the pressure in the tank is different by 0.9 kPa, the opening degree of the slow cooling valve is changed by 10%. Here, since the opening degree of the slow cooling valve does not change unless the pressure in the tank is largely changed, the opening degree change of the slow cooling valve becomes gentle.

目標圧力に対する徐冷弁3の開度を定めた比例帯の設定を、低真空時には狭くしておいて、高真空になるほど比例帯の幅が広くなるようにしておくことにより、低真空時には徐冷弁の開度がすぐに変化し、高真空になるほど徐冷弁の開度変化は緩やかになる。このようにするのは、低真空時には冷却槽内圧力に対する冷却槽内圧力に対する温度の変化量は比較的小さなものとなり、逆に高真空時には冷却槽内圧力に対する温度の変化量は比較的大きなものとなるためである。このことにより、低真空時には槽内圧力を目標圧力に近づけるために徐冷弁の開度を変更しても目標圧力にまで達しないことになり、逆に高真空時には槽内圧力を目標圧力に近づけるために徐冷弁の開度を変更すると目標圧力を通り過ぎてしまうということになりがちであった。   By setting the proportional band that defines the opening degree of the slow cooling valve 3 with respect to the target pressure to be narrow at low vacuum, the width of the proportional band becomes wider as the vacuum becomes higher. The opening degree of the cold valve changes immediately, and the opening degree change of the slow cooling valve becomes gentler as the vacuum becomes higher. This is because the amount of change in temperature relative to the pressure in the cooling tank relative to the pressure in the cooling tank is relatively small during low vacuum, and the amount of change in temperature relative to the pressure in the cooling tank is relatively large during high vacuum. This is because. Therefore, even if the opening of the slow cooling valve is changed in order to bring the pressure inside the tank closer to the target pressure at low vacuum, the target pressure will not be reached. If the opening degree of the slow cooling valve is changed to make it closer, the target pressure tends to be passed.

この場合、冷却運転初期の低真空時には比例帯の幅を狭くし、徐冷弁の開度変更量が大きくなるようにすることによって、徐冷弁の開度変更量不足による目標圧力からのずれの発生が防止されることになる。逆に冷却運転終期の真空度が高い時期の場合、比例帯の幅を広くし、徐冷弁の開度変更量が小さくなるようにすることによって、徐冷弁の開度変更量過多による目標圧力からのずれの発生が防止されることになる。このことにより、真空冷却の工程で槽内温度は目標温度に沿うように制御することができ、被冷却物の突沸現象の抑制や冷却時間短縮の効果を得ることができる。   In this case, when the vacuum is low at the beginning of the cooling operation, the width of the proportional band is narrowed so that the amount of change in the opening degree of the slow cooling valve becomes large. Is prevented from occurring. Conversely, when the degree of vacuum at the end of the cooling operation is high, the target of the excessive amount of change in the opening of the slow cooling valve is set by increasing the width of the proportional band and reducing the amount of change in the opening of the slow cooling valve. Generation of deviation from pressure is prevented. Thereby, the temperature in the tank can be controlled to match the target temperature in the vacuum cooling step, and the effect of suppressing the bumping phenomenon of the object to be cooled and shortening the cooling time can be obtained.

また、冷却運転が終了した時点では冷却槽2内は高真空となっており、冷却槽2内から被冷却物7を取り出すことができないため、真空解除の工程を行う必要がある。真空解除の場合は、空気取り入れ弁8を開くことで冷却槽2内へ空気の導入を行う。この場合も、圧力が急激に変化すると問題が発生するような場合には、徐々に真空解除を行う徐戻しが行われる。徐戻しを行う場合も、高真空時には比例帯の幅を大きくし、工程が進んで真空度が下がるにつれて比例帯の幅が小さくなるように設定しておく。この場合も徐冷時と同様に、高真空時には空気取り入れ弁8の開度変更量を小さくすることで、槽内圧力を目標圧力に近づけるために空気取り入れ弁8の開度を変更すると目標圧力を通り過ぎてしまうということを防ぎ、低真空時には空気取り入れ弁8の開度変更量が大きくなるようにすることで、槽内圧力を目標圧力に近づけるために空気取り入れ弁8の開度を変更したが目標圧力まで達しないということを防ぐ。このことにより、復圧工程でも槽内温度は目標温度に沿うように制御することができ、復圧時でも被冷却物の変形防止や復圧時間短縮の効果を得ることができる。   Moreover, since the inside of the cooling tank 2 is a high vacuum at the time of completion | finish of cooling operation, and the to-be-cooled object 7 cannot be taken out from the inside of the cooling tank 2, it is necessary to perform the process of vacuum release. In the case of releasing the vacuum, air is introduced into the cooling tank 2 by opening the air intake valve 8. Also in this case, when a problem occurs when the pressure changes abruptly, the gradual return for gradually releasing the vacuum is performed. Also in the case of performing slow return, the width of the proportional band is set to be large at high vacuum, and the width of the proportional band is decreased as the degree of vacuum decreases as the process proceeds. Also in this case, if the opening of the air intake valve 8 is changed in order to bring the pressure inside the tank closer to the target pressure by reducing the amount of change of the opening of the air intake valve 8 during high vacuum, the target pressure is changed. The opening of the air intake valve 8 has been changed to bring the pressure inside the tank closer to the target pressure by preventing the air from passing through and increasing the amount of change in the opening of the air intake valve 8 during low vacuum. Prevents the pressure from reaching the target pressure. Accordingly, the temperature in the tank can be controlled so as to follow the target temperature even in the pressure-recovery step, and an effect of preventing deformation of the object to be cooled and shortening the pressure-reduction time can be obtained even at the time of pressure-return.

なお、本発明は以上説明した実施例に限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。   The present invention is not limited to the embodiments described above, and many modifications can be made by those having ordinary knowledge in the art within the technical idea of the present invention.

1 真空発生装置
2 冷却槽
3 徐冷弁
4 徐冷用配管
5 圧力検出装置
6 運転制御装置
7 被冷却物
8 空気取り入れ弁
9 真空配管



1 Vacuum generator
2 Cooling tank
3 Slow cooling valve 4 Slow cooling pipe 5 Pressure detection device 6 Operation control device 7 Object to be cooled 8 Air intake valve 9 Vacuum piping



Claims (2)

被冷却物を収容する冷却槽と、冷却槽内の空気を排出する真空発生装置を持ち、冷却槽の内部を真空化することで、冷却槽に収容した被冷却物の冷却を行う真空冷却装置であって、途中に徐冷弁を持った徐冷用配管を設け、真空冷却時に徐冷弁を通じて徐冷用の空気を導入することによって減圧速度を低下させる徐冷運転を行えるようにしており、真空冷却運転時には、冷却槽内の圧力を検出する圧力検出装置によって検出した槽内圧力と、経過時間に対応させて設定しておいた目標圧力を比較し、槽内圧力が目標圧力に近づくように徐冷弁の開度を調節するようにしている真空冷却装置において、徐冷運転を行う場合、冷却槽内の真空度が低い時期には目標圧力と槽内圧力の差に対する徐冷弁開度変更量の比例帯幅を小さくすることで、槽内圧力が目標圧力から少し外れた場合でも徐冷弁の開度を比較的大きく変更し、真空冷却運転が進むことで冷却槽内の真空度が高くなるにつれて、目標圧力と槽内圧力の差に対する徐冷弁開度変更量の比例帯幅は大きくなっていくようにすることで、槽内圧力が目標圧力から上記と同じだけ外れた場合でも徐冷弁の開度変更量は比較的小さくなる設定を行っていることを特徴とする真空冷却装置。 A vacuum cooling device having a cooling tank for storing the object to be cooled and a vacuum generator for discharging the air in the cooling tank, and cooling the object to be cooled stored in the cooling tank by evacuating the inside of the cooling tank In addition, a slow cooling pipe having a slow cooling valve is provided in the middle so that a slow cooling operation can be performed to reduce the decompression speed by introducing air for slow cooling through the slow cooling valve during vacuum cooling. During the vacuum cooling operation, the tank pressure detected by the pressure detection device that detects the pressure in the cooling tank is compared with the target pressure set corresponding to the elapsed time, and the tank pressure approaches the target pressure. In the vacuum cooling device in which the opening degree of the slow cooling valve is adjusted in this way, when performing the slow cooling operation, the slow cooling valve with respect to the difference between the target pressure and the pressure in the tank when the degree of vacuum in the cooling tank is low by reducing the proportional band width of opening change amount, the bath As the pressure relatively large change the opening of the slow cooling valve even if just outside the target pressure, the degree of vacuum in the cooling tank is increased by a vacuum cooling operation progresses, for the difference between the target pressure and the intracisternal pressure By making the proportional band width of the slow cooling valve opening change amount larger, even when the tank pressure deviates from the target pressure by the same amount as above, the opening change amount of the slow cooling valve becomes relatively small. A vacuum cooling device characterized by setting. 請求項1に記載の真空冷却装置において、真空冷却終了後に冷却槽内を復圧させるための、空気取り入れ弁を持った復圧装置を設け、復圧時も、経過時間に対応させて設定した目標圧力となるように空気取り入れ弁の開度を調節するようにしており、その際には冷却槽内の真空度が高い時期には目標圧力と槽内圧力の差に対する空気取り入れ弁開度変更量の比例帯幅を大きくし、復圧運転が進むことで冷却槽内の真空度が低くなるにつれて目標圧力と槽内圧力の差に対する空気取り入れ弁開度変更量の比例帯幅は小さくなっていくような設定を行っていることを特徴とする真空冷却装置。 2. The vacuum cooling device according to claim 1, wherein a return pressure device having an air intake valve is provided for returning the pressure in the cooling tank after completion of the vacuum cooling, and is set according to the elapsed time even when the pressure is returned. The opening of the air intake valve is adjusted so that the target pressure becomes the same. In this case, when the degree of vacuum in the cooling tank is high, the opening of the air intake valve with respect to the difference between the target pressure and the tank pressure The proportional band width of the air intake valve opening change amount with respect to the difference between the target pressure and the tank pressure decreases as the degree of vacuum in the cooling tank decreases by increasing the proportional band width of the change amount and proceeding with the reverse pressure operation. The vacuum cooling device is characterized in that it is set so that it goes on.
JP2012007344A 2012-01-17 2012-01-17 Vacuum cooling device Active JP5950437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007344A JP5950437B2 (en) 2012-01-17 2012-01-17 Vacuum cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012007344A JP5950437B2 (en) 2012-01-17 2012-01-17 Vacuum cooling device

Publications (2)

Publication Number Publication Date
JP2013148242A JP2013148242A (en) 2013-08-01
JP5950437B2 true JP5950437B2 (en) 2016-07-13

Family

ID=49045902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007344A Active JP5950437B2 (en) 2012-01-17 2012-01-17 Vacuum cooling device

Country Status (1)

Country Link
JP (1) JP5950437B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6196849B2 (en) * 2013-09-06 2017-09-13 株式会社サムソン Vacuum cooling device
JP6215091B2 (en) * 2014-03-07 2017-10-18 株式会社サムソン Vacuum cooling device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835754A (en) * 1994-07-26 1996-02-06 Waaku:Kk Device and method for cooling food
JPH08261620A (en) * 1995-03-20 1996-10-11 Miura Co Ltd Vacuum cooling method
JP4134802B2 (en) * 2002-06-10 2008-08-20 三浦工業株式会社 Vacuum cooling method
JP4532833B2 (en) * 2003-01-16 2010-08-25 三浦工業株式会社 Vacuum cooling method
JP4428271B2 (en) * 2005-03-25 2010-03-10 三浦工業株式会社 Vacuum cooler, overcooling prevention device, and vacuum cooling method

Also Published As

Publication number Publication date
JP2013148242A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP6601275B2 (en) Vacuum cooling device
JP5251557B2 (en) Cooling device and cooling method
CN103438547A (en) Control method of electronic expansion valve
JP5950437B2 (en) Vacuum cooling device
JP6095912B2 (en) Vacuum cooling device
JP6396599B2 (en) Turbine control unit with thermal stress control device as main control device
JP6362467B2 (en) Vacuum cooling device
JP5898967B2 (en) Vacuum cooling device
KR20150113866A (en) Superheated steam recycling apparatus and method for using same
JP2024059645A (en) Method in a press
CN106163684A (en) It is cooled to the cooling section of corresponding specified parameter doubly
JP5291139B2 (en) Rotating fluid transport machine system and control method of rotating fluid transport machine
JP2016080202A (en) Heat source system, and cooling water control device and control method therefor
US10684632B2 (en) Pressure control device and pressure control system
JP2004218958A (en) Vacuum cooling method
JP2019016233A (en) Temperature control device and heating control method
JP2015222230A (en) Output control method of nuclear power plant and output control system
JP2008248395A (en) Plasma treating apparatus and pressure control method of plasma treating apparatus
KR102026964B1 (en) Substrate processing apparatus and temperature controling method of substrate processing apparatus
US10253653B2 (en) Exhaust chamber cooling apparatus and steam turbine power generating facility
JP6537405B2 (en) Vacuum cooling system
JP6215091B2 (en) Vacuum cooling device
JP2004218957A (en) Vacuum cooling method
JP2010181041A (en) Cooling device and cooling method
JP2010263834A (en) Heat sterilizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5950437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150