JPH08261620A - Vacuum cooling method - Google Patents

Vacuum cooling method

Info

Publication number
JPH08261620A
JPH08261620A JP8748695A JP8748695A JPH08261620A JP H08261620 A JPH08261620 A JP H08261620A JP 8748695 A JP8748695 A JP 8748695A JP 8748695 A JP8748695 A JP 8748695A JP H08261620 A JPH08261620 A JP H08261620A
Authority
JP
Japan
Prior art keywords
cooling
cooled
pressure
temperature
air introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8748695A
Other languages
Japanese (ja)
Inventor
Eiji Abe
英二 阿部
Masaaki Ochi
正明 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP8748695A priority Critical patent/JPH08261620A/en
Publication of JPH08261620A publication Critical patent/JPH08261620A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To cool an article with high efficiency in a short time by dividing a temperature in a cooling tank into several stages of temperature zones in conformity with the type of cooled article and an initial temperature and so forth and setting an evacuation speed in conformity with the article for each temperature zone and cooling the article. CONSTITUTION: An article is housed in a cooling tank 1 air-tightly and the cooling tank 1 is decompressed with a vacuum suction means 2. The evacuation speed of the evacuating means 2 is introduced with air introduction valves 4 to 7 installed to an air supply passage 3. The air introduction valves 4 to 7 and the evacuating means 2 are used to divide the temperature in the cooling tank 1 into several states of temperature zones in conformity with the type of the cooled article and an initial temperature and so forth, thereby setting the evacuation speed in conformity with the cooled article for each temperature zone and cooling the article under control by means of a control device 10. This construction makes it possible to cool with high efficiency in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、被冷却物、例えば加
熱調理された食品等を短時間で冷却するための真空冷却
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum cooling method for cooling an object to be cooled, such as cooked food, in a short time.

【0002】[0002]

【従来の技術】周知のように、加熱調理された食品を容
器詰めして発送する場合、高温のままでは容器の蓋内面
等に水滴が付着し、見栄えが悪くなるのみならず、付着
水分が食品上に滴下して風味を損なうため、冷却後に蓋
をするとか容器詰めを行っている。ところで、大量生産
する弁当等の食品工場においては、この冷却を短時間で
行うことが要求される。そこで、加熱調理された食品を
冷却槽に収容し、該冷却槽を真空排気することにより食
品中の水分を活発に蒸発させ、その蒸発の際の気化潜熱
を食品から奪うことにより冷却する真空冷却方法が注目
されている。しかし、従来の真空冷却方法は、一律に減
圧することによって冷却し、冷却後は急速に大気圧に戻
す(以下、この操作を復圧と称する。)操作を行ってい
るのみであり、食品によっては、形態や性状が破壊或は
変質して商品価値を損なう場合があった。例えば、汁
物、飲料等においては、突沸現象により、容器からの飛
散が生じ、また、かまぼこ、はんぺん等の練り製品や、
テンプラ等の揚げ物の様に表面が堅く内部が粗い状態の
物品に関しては、内部の水分の急激な沸騰により、表面
に割れ等が生じる。即ち、従来の真空冷却方法のように
単に減圧によって冷却し、急速に復圧するという単純で
一元的な操作を行なうのみでは、上述のような食品の冷
却は困難であり、また、食品の商品価値を損なわないよ
うに減圧及び復圧をゆっくりと行なうと冷却時間が多く
かかり、無駄な時間も多い。
2. Description of the Related Art As is well known, when heat-cooked food is packed in a container and shipped, if the temperature remains high, water drops will adhere to the inner surface of the lid of the container and the like, which will not only make it look bad, but will also prevent the adhered moisture from adhering. In order to spoil the flavor by dripping it on food, it is put in a container or a lid after cooling. By the way, in a food factory such as a lunch box that is mass-produced, it is required to perform this cooling in a short time. Therefore, vacuum cooling is performed in which the cooked food is stored in a cooling tank, and the cooling tank is evacuated to actively evaporate the moisture in the food, and the latent heat of vaporization at the time of evaporation is removed from the food to cool it. The method is receiving attention. However, the conventional vacuum cooling method only cools by uniformly reducing the pressure, and then rapidly returns to atmospheric pressure after cooling (hereinafter, this operation is referred to as recompression). In some cases, the form and properties were destroyed or deteriorated to impair the commercial value. For example, in soups, beverages, etc., due to the bumping phenomenon, scattering from the container occurs, and also kneaded products such as kamaboko and rice paste,
Regarding an article having a hard surface and a rough inside such as a deep-fried food such as tempura, the surface thereof is cracked due to the rapid boiling of moisture in the inside. That is, it is difficult to cool foods as described above by simply performing a simple and unified operation of simply cooling by decompressing and rapidly restoring pressure as in the conventional vacuum cooling method, and the commercial value of foods. If decompression and re-compression are performed slowly so as not to damage the cooling time, it takes a long cooling time and a lot of wasted time.

【0003】[0003]

【発明が解決しようとする課題】したがって、この発明
が解決しようとする課題は、被冷却物を、その性状の変
質や形態を破壊することなく、効率良く短時間に冷却す
ることのできる真空冷却方法を提供することである。
SUMMARY OF THE INVENTION Therefore, the problem to be solved by the present invention is to vacuum cool an object to be cooled efficiently and in a short time without deteriorating its properties or destroying its shape. Is to provide a method.

【0004】[0004]

【課題を解決するための手段】この発明は、上述の課題
を解決するためになされたもので、被冷却物を冷却槽内
に収容し、冷却槽内を真空排気することにより被冷却物
中の水分を蒸発させ、その際の気化潜熱を被冷却物から
奪うことにより冷却する方法において、前記冷却槽内の
温度を被冷却物の種類、初期温度等に応じて数段階の温
度帯に分け、夫々の温度帯毎に被冷却物に応じた排気速
度を設定して冷却することを第1の特徴とし、更に、冷
却後に冷却槽を元の圧力に復帰させる際に、前記冷却槽
内の圧力を被冷却物の種類に応じて数段階の圧力帯に分
け、夫々の圧力帯毎に被冷却物に応じた復圧速度を設定
して圧力を復帰させることを第2の特徴とする真空冷却
方法である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, in which an object to be cooled is housed in a cooling tank, and the inside of the object to be cooled is evacuated by vacuum exhaustion. In the method of cooling by evaporating the water content of the product and removing the latent heat of vaporization at that time from the object to be cooled, the temperature in the cooling tank is divided into several temperature zones according to the type of the object to be cooled, the initial temperature, etc. The first feature is that the cooling is performed by setting the exhaust speed according to the object to be cooled for each temperature zone, and when the cooling tank is returned to the original pressure after cooling, the inside of the cooling tank A second feature of the vacuum is that the pressure is divided into several pressure bands according to the type of the object to be cooled, and the pressure is restored by setting the pressure-recovery speed according to the object to be cooled for each pressure band. It is a cooling method.

【0005】[0005]

【作用】この発明に係る方法によれば、被冷却物の種
類、初期温度などに応じて数段階の温度帯に分け、それ
ぞれの温度帯ごとに前記被冷却物に応じた排気速度を設
定することにより、被冷却物内部の水分の急激な蒸発を
防止しながら冷却する。復圧時においては、前記被冷却
物の種類に応じて数段階の圧力帯に分け、それぞれに合
った復圧速度を制御することにより、被冷却物の内外で
の圧力差の急激な変化を防止しながら復圧する。
According to the method of the present invention, the temperature of the object to be cooled is divided into several temperature zones according to the type, the initial temperature, etc., and the exhaust speed corresponding to the object to be cooled is set for each temperature zone. As a result, the object to be cooled is cooled while preventing abrupt evaporation of water. At the time of re-compression, the pressure zone is divided into several stages according to the type of the object to be cooled, and by controlling the pressure re-compression speed that matches each, a rapid change in the pressure difference between the inside and outside of the object to be cooled can be prevented. Pressure is restored while preventing.

【0006】[0006]

【実施例】以下、この発明の具体的実施例を図面に基づ
いて詳細に説明する。図1は、この発明に係る真空冷却
方法の一実施装置例の概略構成を説明するための図面、
図2は、この発明に係る真空冷却方法における冷却パタ
ーンを説明するための線図、図3は、この発明に係る真
空冷却方法における復圧パターンを説明するための線図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a drawing for explaining a schematic configuration of an example of an embodiment of a vacuum cooling method according to the present invention,
FIG. 2 is a diagram for explaining a cooling pattern in the vacuum cooling method according to the present invention, and FIG. 3 is a diagram for explaining a recompression pressure pattern in the vacuum cooling method according to the present invention.

【0007】この発明は、冷却槽内の温度を被冷却物の
種類、初期温度等に応じて数段階の温度帯に分け、夫々
の温度帯毎に被冷却物に応じた排気速度を設定して冷却
する真空冷却方法であるから、真空冷却装置は、図1に
示すように、被冷却物を気密に収容する冷却槽(1) と、
冷却槽(1) を減圧する真空吸引手段(2) と、給気経路
(3) に設けられて真空吸引手段(2) による排気速度を調
節する空気導入弁(4) 〜(7) と、冷却槽(1) 内の温度検
出手段(8) と、この温度検出手段(8) からの信号に基づ
いて真空吸引手段(2) および空気導入弁(4) 〜(7) を制
御するための制御装置(10)とを備えている。更に、冷却
後に冷却槽(1) を元の圧力に復帰させる際に、前記冷却
槽(1) 内の圧力を被冷却物の種類に応じて数段階の圧力
帯に分け、夫々の圧力帯毎に被冷却物に応じた復圧速度
を設定して圧力を復帰させるものであるから、給気経路
(3)に設けられて冷却槽(1) 内への空気の導入速度、す
なわち、復圧速度を調節する空気導入弁(4) 〜(7) と、
冷却槽(1) 内の圧力検出手段(9) と、この圧力検出手段
(9) からの信号に基づいて前記空気導入弁(4) 〜(7) を
制御するための制御装置(10)とを備えている。
According to the present invention, the temperature in the cooling tank is divided into several temperature zones according to the type of the object to be cooled, the initial temperature, etc., and the exhaust speed according to the object to be cooled is set for each temperature zone. Since it is a vacuum cooling method of cooling by cooling, the vacuum cooling device, as shown in FIG. 1, has a cooling tank (1) for hermetically containing an object to be cooled,
Vacuum suction means (2) for decompressing the cooling tank (1) and the air supply path
Air introduction valves (4) to (7) provided in (3) for adjusting the exhaust speed by the vacuum suction means (2), temperature detection means (8) in the cooling tank (1), and this temperature detection means A control device (10) for controlling the vacuum suction means (2) and the air introduction valves (4) to (7) based on the signal from (8) is provided. Furthermore, when returning the cooling tank (1) to the original pressure after cooling, the pressure in the cooling tank (1) is divided into several pressure zones according to the type of the object to be cooled, and each pressure zone is divided into several pressure zones. Since the pressure is restored by setting the pressure recovery speed according to the object to be cooled,
An air introduction valve (4) to (7) provided in (3) for adjusting the introduction speed of air into the cooling tank (1), that is, the recompression pressure speed,
Pressure detection means (9) in the cooling tank (1) and this pressure detection means
A control device (10) for controlling the air introduction valves (4) to (7) based on a signal from (9).

【0008】前記冷却槽(1) は、被冷却物の出入れ等の
作業用の開閉扉(図示省略)を備えており、この開閉扉
は密閉可能な構成のものである。前記真空吸引手段(2)
は、冷却槽(1) に逆止弁(11)を介して接続してある。こ
の真空吸引手段(2) としては、例えば、液封式の真空ポ
ンプや、エジェクター式の真空ポンプを用いることがで
きる。なお、以下の実施例の説明では、液封式の真空ポ
ンプとしている。前記吸気経路(3) は、真空吸引手段
(2) による排気速度を調節するためのものである。すな
わち、各空気導入弁(4) 〜(7) を選択的に開閉すること
により系外から導入される空気量を調整することによ
り、真空吸引手段(2) による真空排気量に対してもれ量
を調整することによって行なわれる。また、この吸気経
路(3) は、冷却後に冷却槽(1) を復圧する場合に、前記
冷却槽(1) 内に外気を導入するためのもので、各空気導
入弁(4) 〜(7) を選択的に開閉することにより、系外か
らの外気の導入量を調節する。なお、この給気経路(3)
の上流端には、冷却槽(1) 内に導入する外気中のほこり
や雑菌等を除去し、被冷却物への付着を防止するための
フィルタ(12)を接続してある。ここで、各空気導入弁
(4) 〜(7) の空気導入量(通気抵抗)は、同じでもよい
が、好ましくは、空気導入量をそれぞれで異なるものと
し、各空気導入弁(4) 〜(7) のうちから適宜の個数を選
択して開閉することにより、空気導入量(通気抵抗)が
同じ場合よりも、多種類の空気導入量に調節できる。ま
た、空気導入弁の個数は、図示する実施例のように4個
に限らないが、この実施例のように空気導入弁を選択的
に開閉する構成であれば、少なくとも2個以上であれば
よく、その個数は後述するように適用する被冷却物の性
状に適用し得る排気速度や復圧速度の組み合わせが得ら
れる個数であればよい。前記制御装置(10)は、前記した
ように温度検出手段(8) ,圧力検出手段(9) からの信号
が入力されるほか、前記の真空吸引手段(2) ならびに空
気導入弁(4) 〜(8) の制御を含め、装置全体の制御を行
う。即ち、この制御装置(5) は、冷却槽(1) 内に被冷却
物を収容した後、前記真空吸引手段(2) を作動させて冷
却槽(1)内を減圧し、冷却槽(1) 内の圧力を低下させて
冷却を行った後、冷却槽(1) 内に空気を導入し、冷却槽
(1) 内を復圧操作する。また、前記制御装置(10)は、前
記温度検出手段(8) ならびに圧力検出手段(9)からの信
号を所定の間隔でもって間欠的に、或は、連続的に入力
し、場合によっては経過時間に応じて、制御装置(10)に
より被冷却物の種類毎に予め設定された手順によって、
各空気導入弁(4) 〜(7) を選択的に開閉動作させる。
The cooling tank (1) is provided with an opening / closing door (not shown) for work such as putting in / out of an object to be cooled and the like, and the opening / closing door has a sealable structure. The vacuum suction means (2)
Is connected to the cooling tank (1) via a check valve (11). As the vacuum suction means (2), for example, a liquid ring type vacuum pump or an ejector type vacuum pump can be used. In the following description of the embodiments, a liquid ring vacuum pump is used. The suction path (3) is a vacuum suction means.
It is for adjusting the pumping speed according to (2). That is, by selectively opening / closing each of the air introduction valves (4) to (7) to adjust the amount of air introduced from outside the system, the amount of vacuum exhausted by the vacuum suction means (2) is leaked. This is done by adjusting the amount. The intake passage (3) is for introducing outside air into the cooling tank (1) when the pressure in the cooling tank (1) is restored after cooling, and each of the air introduction valves (4) to (7) ) Is selectively opened and closed to regulate the amount of outside air introduced from outside the system. In addition, this air supply route (3)
A filter (12) for removing dust, germs and the like in the outside air introduced into the cooling tank (1) and preventing the adhered matter from being cooled is connected to the upstream end of the. Where each air inlet valve
The air introduction amount (ventilation resistance) of (4) to (7) may be the same, but it is preferable that the air introduction amount is different for each and the air introduction valves (4) to (7) are appropriately selected. By selecting and opening and closing the number of the above, it is possible to adjust to various types of air introduction amount as compared with the case where the air introduction amount (ventilation resistance) is the same. Further, the number of air introduction valves is not limited to four as in the illustrated embodiment, but at least two or more as long as the air introduction valves are selectively opened and closed as in this embodiment. The number may be any number as long as a combination of the exhaust speed and the re-pressurization speed applicable to the property of the object to be cooled is obtained as described later. The control device (10) receives the signals from the temperature detecting means (8) and the pressure detecting means (9) as described above, and also receives the vacuum suction means (2) and the air introduction valve (4)- Control the entire device including the control in (8). That is, the control device (5) stores the object to be cooled in the cooling tank (1) and then activates the vacuum suction means (2) to reduce the pressure in the cooling tank (1), ) After cooling by lowering the pressure in the cooling tank, air is introduced into the cooling tank (1) to cool it.
(1) Re-pressurize the inside. Further, the control device (10) intermittently or continuously inputs signals from the temperature detecting means (8) and the pressure detecting means (9) at predetermined intervals, and depending on the case, Depending on the time, by the procedure preset for each type of the object to be cooled by the control device (10),
The air inlet valves (4) to (7) are selectively opened and closed.

【0009】さて、以上の構成の真空冷却装置における
冷却操作例について、前記図2,3を参照しながら説明
する。なお、この発明においては、被冷却物である食品
の種類や、初期温度がどの温度帯にあるかに応じて、各
空気導入弁(4) 〜(7) のうち、全てを閉じるか、1個な
いしは数個を開いて残りを閉じるか、または全てを開放
するかを制御するものであり、図2に示す例では、被冷
却物の初期温度を80℃とし、冷却温度を70℃,60℃,45
℃で分けた各温度帯域A,B,C,D毎に排気速度、す
なわち、冷却速度を制御している。なお、この例におい
ては、各空気導入弁(4) 〜(7) の空気導入量は、空気導
入弁(4) 〜(7) の順に大きくなるように設定してある。
まず、最初の温度帯域A(70〜80℃)では、各空気導入
弁(4) 〜(7) の全て閉じるか、1個を選択して開くこと
により、冷却速度を制御する。この場合、空気導入量の
大きな空気導入弁を開くほど、真空吸引手段(2) による
真空排気量に対してもれ量が大きくなり、冷却槽(1) 内
の減圧速度が減少するため、冷却速度を低下させること
ができる。すなわち、図3に示す温度帯域Aにおいて、
最も左側の曲線は空気導入弁(4)〜(7) をすべて閉鎖し
た状態であり、以下、右側のものは、各空気導入弁(4)
〜(7) を空気導入量が大きくなる順に開けた状態を示し
ており、右側の曲線ほど減圧速度が小さく、冷却速度が
小さい。次の温度帯域B(60〜70℃)では、温度帯域A
同様に各空気導入弁(4) 〜(7)の全て閉じるか、1個を
選択して開くことにより、冷却速度を制御する。なお、
図2においては、説明の簡略化のために、温度帯域Aに
おいて空気導入弁(6) を開放して減圧させた状態(図中
右から二番めの曲線)に引き続いて冷却速度を制御する
場合についてのみ図示してある。この状態では、空気導
入量の最も大きい空気導入弁(7) 以外の弁を全て閉じる
か、1個を選択して開くことにより、冷却速度を制御し
ている。これ以降の温度帯域C(45〜60℃),D(〜45
℃)でも、温度帯域A同様に各空気導入弁(4) 〜(7) の
全て閉じるか、1個を選択して開くことにより、冷却速
度を制御する。なお、温度帯域D(〜45℃)において、
右側の曲線は全空気導入弁(4) 〜(7)を開いた状態、左
側の曲線は全空気導入弁(4) 〜(7) を閉じた状態を示
す。ここで、被冷却物が、汁物、飲料等のように、水分
の含有量が多く、突沸現象を生じやすいものほど、空気
導入量のより大きい(通気抵抗のより小さな)空気導入
弁を選択して開放し、冷却速度を遅くする。また、真空
冷却による前述の不具合は温度帯が下がるにしたがって
起こりにくくなるので、高温側の温度帯域での冷却速度
よりも低温側の温度帯域では、空気導入量のより小さい
(通気抵抗のより大きな)空気導入弁を選択して開放
し、冷却速度を早くするのが、冷却時間を短縮する上で
好ましい。なお、被冷却物がかまぼこや揚げ物等のよう
に水蒸気を内部に閉じ込めて保持する傾向の強いものの
場合は、図2に二点鎖線で示すように、ある温度帯で、
所定時間(例えば1〜2分程度)、一定温度(平衡圧に
対応する飽和温度)を保持し、被冷却物内部の蒸気をゆ
っくりと放出させ、減圧するのがよい。
Now, an example of a cooling operation in the vacuum cooling device having the above structure will be described with reference to FIGS. In the present invention, all of the air introduction valves (4) to (7) are closed or 1 depending on the type of food to be cooled and the temperature range of the initial temperature. It controls whether to open one piece or several pieces and close the rest, or to open all the pieces. In the example shown in FIG. 2, the initial temperature of the object to be cooled is 80 ° C., and the cooling temperature is 70 ° C., 60 ° C. ℃, 45
The exhaust rate, that is, the cooling rate is controlled for each of the temperature zones A, B, C, and D divided by ° C. In this example, the air introduction amount of each of the air introduction valves (4) to (7) is set to increase in the order of the air introduction valves (4) to (7).
First, in the first temperature zone A (70 to 80 ° C.), the cooling rate is controlled by closing all of the air introducing valves (4) to (7) or by opening one of them. In this case, the more the air introduction valve with the larger air introduction amount is opened, the greater the amount of leakage with respect to the amount of vacuum exhausted by the vacuum suction means (2), and the decompression rate in the cooling tank (1) decreases. The speed can be reduced. That is, in the temperature band A shown in FIG.
The leftmost curve is the state in which all of the air introduction valves (4) to (7) are closed.Hereinafter, the one on the right side shows each air introduction valve (4).
(7) shows the state in which the air introduction amount is increased in the order of increasing air introduction amount, and the curve on the right side has a smaller depressurization rate and a smaller cooling rate. In the next temperature band B (60 to 70 ° C), temperature band A
Similarly, the cooling rate is controlled by closing all of the air introduction valves (4) to (7) or by opening one of them. In addition,
In FIG. 2, for simplification of description, the cooling rate is controlled following the state where the air introduction valve (6) is opened and the pressure is reduced in the temperature zone A (second curve from the right in the figure). Only the case is illustrated. In this state, the cooling rate is controlled by closing all the valves except the air introducing valve (7) having the largest air introducing amount or by selectively opening one. Subsequent temperature range C (45-60 ℃), D (-45)
In the same manner as the temperature zone A, the cooling rate is controlled by closing all of the air introducing valves (4) to (7) or by selectively opening one. In the temperature range D (up to 45 ° C),
The curve on the right shows the state in which all air introduction valves (4) to (7) are opened, and the curve on the left shows the state in which all air introduction valves (4) to (7) are closed. Here, an air introduction valve having a larger air introduction amount (smaller ventilation resistance) is selected as the object to be cooled has a large water content such as a soup or a beverage and is likely to cause a bumping phenomenon. To slow down the cooling rate. In addition, the above-mentioned problems due to vacuum cooling become less likely to occur as the temperature zone decreases, so in the temperature zone on the lower temperature side than the cooling rate on the temperature zone on the high temperature side, the air introduction amount is smaller (the ventilation resistance is larger). ) It is preferable to select and open the air introduction valve to increase the cooling rate in order to shorten the cooling time. If the object to be cooled has a strong tendency to confine and retain water vapor inside, such as kamaboko or fried food, as shown by the chain double-dashed line in FIG.
It is preferable to maintain a constant temperature (saturation temperature corresponding to the equilibrium pressure) for a predetermined time (for example, about 1 to 2 minutes), slowly release the vapor inside the object to be cooled, and reduce the pressure.

【0010】以上のようにして、所定の温度まで冷却
後、図3に示すように復圧時も冷却時と同様に空気導入
弁(4) 〜(7) を、今度は戻し弁として機能させ、被冷却
物の種類と圧力関係に応じて、各空気導入弁(4) 〜(7)
のうち、全てを閉じるか、1個ないしは数個を開いて残
りを閉じるか、または全てを開放するかを制御する。図
3に示す例では、圧力帯域を、 150mmHg,400mmHg,600mm
Hgで分けて、各圧力帯域E,F,G,H毎に排気速度、
すなわち、復圧速度を制御している。まず、最初の圧力
帯域E(〜 150mmHg)では、各空気導入弁(4) 〜(7) の
全て開けるか、1個を選択して開くことにより、復圧速
度を制御する。この場合、空気導入量の大きな空気導入
弁を開くほど、冷却槽(1) 内への空気導入量が大きくな
り、復圧速度が増加する。すなわち、図3に示す圧力帯
域Eにおいて、最も左側の曲線は空気導入弁(4)〜(7)
をすべて開放した状態であり、以下、右側のものにした
がって、各空気導入弁(4) 〜(7) を空気導入量が大きく
なるように開けた状態を示しており、右側の曲線ほど復
圧速度が小さい。次の圧力帯域F( 150〜 400mmHg)で
は、前述の圧力帯域E同様に各空気導入弁(4) 〜(7) の
全て閉じるか、1個を選択して開くことにより、復圧速
度を制御する。なお、図3においては、説明の簡略化の
ために、圧力帯域Aにおいて空気導入弁(5) を開放して
復圧させた状態(図中右から二番めの曲線)に引き続い
て復圧速度を制御する場合についてのみ図示してある。
この状態では、空気導入量の最も少ない空気導入弁(4)
以外の1個の弁を選択して開くことにより、復圧速度を
制御している。これ以降の圧力帯域G( 400〜 600mmH
g),H( 600mmHg〜)でも、圧力帯域E同様に各空気
導入弁(4) 〜(7) の全て開けるか、1個を選択して開く
ことにより、冷却速度を制御する。なお、圧力帯域G
( 400〜 600mmHg),H( 600mmHg〜)において、右側
の曲線は空気導入量の最も大きい空気導入弁(7) を開い
た状態、左側の曲線は全空気導入弁(4) 〜(7) を開けた
状態を示す。
As described above, after cooling to a predetermined temperature, as shown in FIG. 3, the air introducing valves (4) to (7) are made to function as return valves at the time of pressure recovery as well as at the time of cooling. , Air introduction valves (4) to (7) according to the type and pressure relationship of the object to be cooled
Controls whether all are closed, one or a few are opened and the rest are closed, or all are opened. In the example shown in Fig. 3, the pressure range is 150mmHg, 400mmHg, 600mm.
Dividing by Hg, pumping speed for each pressure band E, F, G, H,
That is, the re-compression speed is controlled. First, in the first pressure zone E (up to 150 mmHg), the re-compression speed is controlled by opening all of the air introducing valves (4) to (7) or by selectively opening one of them. In this case, as the air introduction valve with the larger air introduction amount is opened, the air introduction amount into the cooling tank (1) is increased and the re-compression speed is increased. That is, in the pressure zone E shown in FIG. 3, the leftmost curve is the air introduction valves (4) to (7).
Shows the state where all the air introduction valves (4) to (7) are opened so that the air introduction amount increases according to the one on the right side. The speed is low. In the next pressure zone F (150 to 400 mmHg), like the above-mentioned pressure zone E, all of the air introduction valves (4) to (7) are closed or one of them is opened to control the re-compression speed. To do. In FIG. 3, for simplification of description, the pressure is continuously restored after the state where the air introduction valve (5) is opened to restore pressure in the pressure zone A (second curve from the right in the figure). It is shown only when controlling the speed.
In this state, the air introduction valve with the smallest air introduction amount (4)
The return pressure speed is controlled by selecting and opening one valve other than. Subsequent pressure zone G (400-600mmH
g) and H (600 mmHg-), the cooling rate is controlled by opening all of the air introduction valves (4)-(7) or by selectively opening one of them as in the pressure zone E. The pressure band G
(400 ~ 600mmHg), H (600mmHg ~), the curve on the right shows the state where the air introduction valve (7) with the largest amount of air is opened, and the curve on the left shows the total air introduction valves (4) to (7). Shows the opened state.

【0011】以上に説明した真空冷却方法は、食品の割
れや汁物の飛散り等の不具合は、単位時間,単位温度,
並びに単位表面積当たりの水分蒸発量の度合いと食品の
組織的性状の度合いとの関連によって生じ、また、嵩の
減少は復圧時の食品内外の圧力差と組織的性状(柔らか
さ等)の度合いとの関連によって生じるという知見に基
づいている。したがって、冷却時においては、被冷却物
毎に各温度帯域における水分蒸発量の度合いを予め実験
等によって求めておき(理論的に求めることもでき
る。)、この度合に基づいて、内部割れや飛び散りを生
じることの無い冷却速度(すなわち対応する排気速度)
を設定することができる。また、復圧時については、被
冷却物毎に各圧力帯域における被冷却物内外の圧力差と
組織的性状(柔らかさ等)の度合いとの関連から、前記
圧力差の限界値を予め実験等によって求めておき、これ
に基づいて、嵩の減少を生じることの無い復圧速度を設
定することができる。たとえば御飯の例を挙げると、急
速に復圧するほど重量方向の嵩の減少がみられるが、嵩
の減少が終了するほぼ 100mmHg以下ではゆっくりと復圧
し、更に、復圧速度を順次調整して復圧することで、よ
り少ない時間で嵩の減少を小さく抑えることが可能とな
る。
In the vacuum cooling method described above, problems such as food cracking and soup splashing can be solved by unit time, unit temperature,
And the degree of water evaporation per unit surface area and the degree of organizational properties of food, and the decrease in bulk is the degree of pressure difference between inside and outside of food at the time of recompression and the degree of organizational properties (softness, etc.). It is based on the finding that it is caused by the relationship with. Therefore, at the time of cooling, the degree of water evaporation amount in each temperature band is previously obtained (or theoretically obtained) for each object to be cooled, and based on this degree, internal cracking or scattering Cooling rate (ie corresponding pumping speed) without
Can be set. Further, at the time of re-pressurization, the limit value of the pressure difference is preliminarily tested from the relationship between the pressure difference between the inside and the outside of the object to be cooled and the degree of organizational property (softness, etc.) in each pressure zone for each object to be cooled. Then, based on this, it is possible to set the re-compression speed without causing a decrease in bulk. For example, with rice, the more the pressure is rapidly reduced, the more the bulk decreases in the direction of weight. By pressing, it becomes possible to suppress the decrease in bulk to a small extent in a shorter time.

【0012】図4は、この発明に係る真空冷却方法の他
の実施装置例の概略構成を説明するための図面である。
前述の図1に示す実施例においては、給気経路(3) に複
数個の空気導入弁(4)〜(7) を使用する場合を示した
が、この図4に示す実施例においては、連続的或は数段
階に空気導入量(通気抵抗)が変えられる電動弁(13)を
使用している。
FIG. 4 is a drawing for explaining the schematic structure of another embodiment of the vacuum cooling method according to the present invention.
In the embodiment shown in FIG. 1 described above, the case where a plurality of air introduction valves (4) to (7) are used in the air supply path (3) has been shown, but in the embodiment shown in FIG. A motor-operated valve (13) whose air introduction amount (ventilation resistance) can be changed continuously or in several steps is used.

【0013】更に、図4に示すように、冷却速度をコン
トロールする方法として、真空吸引手段(2) 自体のリー
ク量を電動弁(14)により連続的或は数段階にコントロー
ルする方法もある。この際、リーク用配管(15)には、前
述の給気経路(3) 同様に、冷却槽(1) 内に導入する外気
中のほこりや雑菌等を除去し、被冷却物への付着を防止
するためのフィルタ(15)を接続してある。更に、真空吸
引手段(2) 自体を制御することにより排気速度を調整す
る構成でもよい。例えば、前出の水封式真空ポンプであ
れば、原動機の回転数を制御することによって、また、
エジェクター式の真空ポンプであれば、給水量を制御す
ること、即ち給水ポンプの回転数を制御することによっ
て行うことができる。また、排気速度と復圧速度の制御
に関しては、以上に述べた各構成をそれぞれの組合わせ
ることができる。なお、冷却速度,並びに復圧速度を段
階的に制御する場合は前述の通りであるが、連続的に制
御する場合は、温度、並びに圧力を連続的に検出し、こ
の検出値に対応させて冷却速度,並びに復圧速度を連続
的に制御すればよいが、実際面では温度帯域、並びに圧
力帯域をあまり細かく分割せず、適宜の範囲毎に制御す
ればよい。
Further, as shown in FIG. 4, as a method of controlling the cooling rate, there is also a method of controlling the leak amount of the vacuum suction means (2) itself by the electric valve (14) continuously or in several steps. At this time, in the leak pipe (15), like the above-mentioned air supply path (3), dust and other germs in the outside air introduced into the cooling tank (1) are removed and adhered to the object to be cooled. A filter (15) for prevention is connected. Furthermore, the exhaust speed may be adjusted by controlling the vacuum suction means (2) itself. For example, in the case of the water-sealed vacuum pump mentioned above, by controlling the rotation speed of the prime mover,
With an ejector-type vacuum pump, this can be done by controlling the amount of water supply, that is, by controlling the number of revolutions of the water supply pump. Further, regarding the control of the exhaust speed and the pressure-recovery speed, the respective configurations described above can be combined with each other. In addition, when controlling the cooling speed and the pressure-recovery speed stepwise, it is as described above. However, when controlling continuously, the temperature and the pressure are continuously detected and the detected values are made to correspond to each other. The cooling rate and the pressure-recovery rate may be controlled continuously, but in practice, the temperature band and the pressure band may not be divided very finely and may be controlled in appropriate ranges.

【0014】[0014]

【発明の効果】以上説明したように、この発明に係る真
空冷却方法によれば、被冷却物の種類や、初期温度など
に応じて数段階の温度帯に分け、それぞれの温度帯ごと
に前記被冷却物に応じた排気速度を設定することによ
り、被冷却物内部の水分の急激な蒸発を防止しながら冷
却し、更に、冷却後の復圧時においては、前記被冷却物
の種類に応じて数段階の圧力帯に分け、それぞれに合っ
た復圧速度を制御することにより、被冷却物内部と雰囲
気圧力の差の急変を防止しながら復圧する構成のため、
従来の真空冷却機で困難とされていた被冷却物の冷却が
容易となる。また、以上の構成により、被冷却物に合っ
た冷却速度を幅広く選択できる。特に、食品を冷却する
に際しては、食品に合った冷却速度を幅広く選択でき、
困難な食品の冷却が容易になるばかりでなく、無駄な冷
却時間を少なく短時間に冷却可能となる。これにより、
割れ、飛散や嵩の減少等の不具合で従来の真空冷却機で
冷却が困難であった食品も、無駄時間無くそれぞれの食
品に合った冷却を行うことができる。
As described above, according to the vacuum cooling method of the present invention, the temperature is divided into several temperature zones according to the type of the object to be cooled, the initial temperature, etc. By setting the exhaust speed according to the object to be cooled, cooling is performed while preventing rapid evaporation of water inside the object to be cooled. By dividing the pressure band into several stages and controlling the recompression pressure speed that matches each, the pressure is restored while preventing a sudden change in the pressure difference between the inside of the object to be cooled and the atmospheric pressure.
It becomes easy to cool the object to be cooled, which has been difficult with the conventional vacuum cooler. Further, with the above configuration, it is possible to select a wide cooling rate suitable for the object to be cooled. In particular, when cooling food, you can select a wide range of cooling rates that match the food,
Not only is it easier to cool difficult foods, but wasteful cooling time is reduced and cooling is possible in a short time. This allows
Even foods that have been difficult to cool with a conventional vacuum cooler due to problems such as cracking, scattering, and reduction in bulk can be cooled according to the respective foods without dead time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る真空冷却方法の一実施装置例の
概略構成を説明するための図面である。
FIG. 1 is a diagram for explaining a schematic configuration of an example of an apparatus for implementing a vacuum cooling method according to the present invention.

【図2】図2は、この発明に係る真空冷却方法における
冷却パターンを説明するための線図である。
FIG. 2 is a diagram for explaining a cooling pattern in the vacuum cooling method according to the present invention.

【図3】図3は、この発明に係る真空冷却方法における
復圧パターンを説明するための線図である。
FIG. 3 is a diagram for explaining a recompression pattern in the vacuum cooling method according to the present invention.

【図4】この発明に係る真空冷却方法の他の実施装置例
の概略構成を説明するための図面である。
FIG. 4 is a diagram for explaining a schematic configuration of another embodiment of the vacuum cooling method according to the present invention.

【符号の説明】[Explanation of symbols]

(1) 冷却槽 (2) 真空吸引手段 (3) 給気経路 (4) 空気導入弁 (5) 空気導入弁 (6) 空気導入弁 (7) 空気導入弁 (8) 温度検出手段 (9) 圧力検出手段 (10) 制御装置 (11) 逆止弁 (12) フィルタ (1) Cooling tank (2) Vacuum suction means (3) Air supply path (4) Air introduction valve (5) Air introduction valve (6) Air introduction valve (7) Air introduction valve (8) Temperature detection means (9) Pressure detection means (10) Control device (11) Check valve (12) Filter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被冷却物を冷却槽(1) 内に収容し、冷却
槽(1) 内を真空排気することにより被冷却物中の水分を
蒸発させ、その際の気化潜熱を被冷却物から奪うことに
より冷却する方法において、前記冷却槽(1) 内の温度を
被冷却物の種類、初期温度等に応じて数段階の温度帯に
分け、夫々の温度帯毎に被冷却物に応じた排気速度を設
定して冷却することを特徴とする真空冷却方法。
1. An object to be cooled is housed in a cooling tank (1), and the inside of the cooling tank (1) is evacuated to evaporate moisture in the object to be cooled, and the latent heat of vaporization at that time is transferred to the object to be cooled. In the method of cooling by taking away from the cooling tank (1), the temperature in the cooling tank (1) is divided into several temperature zones according to the type of the object to be cooled, the initial temperature, etc. A vacuum cooling method characterized in that cooling is performed by setting a pumping speed.
【請求項2】 被冷却物を冷却槽(1) 内に収容し、冷却
槽(1) 内を真空排気することにより被冷却物中の水分を
蒸発させ、その際の気化潜熱を被冷却物から奪うことに
より冷却する方法において、冷却後に冷却槽(1) を元の
圧力に復帰させる際に、前記冷却槽(1) 内の圧力を被冷
却物の種類に応じて数段階の圧力帯に分け、夫々の圧力
帯毎に被冷却物に応じた復圧速度を設定して圧力を復帰
させることを特徴とする真空冷却方法。
2. An object to be cooled is housed in a cooling tank (1), and the inside of the cooling tank (1) is evacuated to evaporate the moisture in the object to be cooled, and the latent heat of vaporization at that time is transferred to the object to be cooled. When the cooling tank (1) is returned to its original pressure after cooling in the method of cooling by taking away from it, the pressure in the cooling tank (1) is divided into several pressure bands according to the type of the object to be cooled. A vacuum cooling method, characterized in that the pressure is restored by setting a pressure-regaining speed according to the object to be cooled for each pressure zone.
JP8748695A 1995-03-20 1995-03-20 Vacuum cooling method Pending JPH08261620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8748695A JPH08261620A (en) 1995-03-20 1995-03-20 Vacuum cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8748695A JPH08261620A (en) 1995-03-20 1995-03-20 Vacuum cooling method

Publications (1)

Publication Number Publication Date
JPH08261620A true JPH08261620A (en) 1996-10-11

Family

ID=13916288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8748695A Pending JPH08261620A (en) 1995-03-20 1995-03-20 Vacuum cooling method

Country Status (1)

Country Link
JP (1) JPH08261620A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148242A (en) * 2012-01-17 2013-08-01 Samson Co Ltd Vacuum cooling apparatus
JP2013146197A (en) * 2012-01-17 2013-08-01 Samson Co Ltd Vacuum cooling device
CN110017660A (en) * 2018-01-08 2019-07-16 Bsh家用电器有限公司 For being quickly cooled down the method and Domestic refrigerator of food in Domestic refrigerator
JP2019208478A (en) * 2018-06-08 2019-12-12 株式会社品川工業所 Manufacturing method of cooled food and vacuum cooling equipment
JP2021085628A (en) * 2019-11-29 2021-06-03 三浦工業株式会社 Vacuum cooling device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338875A (en) * 1986-08-01 1988-02-19 株式会社 日阪製作所 Vacuum cooling method of food

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338875A (en) * 1986-08-01 1988-02-19 株式会社 日阪製作所 Vacuum cooling method of food

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148242A (en) * 2012-01-17 2013-08-01 Samson Co Ltd Vacuum cooling apparatus
JP2013146197A (en) * 2012-01-17 2013-08-01 Samson Co Ltd Vacuum cooling device
CN110017660A (en) * 2018-01-08 2019-07-16 Bsh家用电器有限公司 For being quickly cooled down the method and Domestic refrigerator of food in Domestic refrigerator
CN110017660B (en) * 2018-01-08 2022-04-19 Bsh家用电器有限公司 Method for rapidly cooling food in a domestic refrigeration appliance and domestic refrigeration appliance
JP2019208478A (en) * 2018-06-08 2019-12-12 株式会社品川工業所 Manufacturing method of cooled food and vacuum cooling equipment
JP2021085628A (en) * 2019-11-29 2021-06-03 三浦工業株式会社 Vacuum cooling device

Similar Documents

Publication Publication Date Title
Argyropoulos et al. Assessment of convection, hot‐air combined with microwave‐vacuum and freeze‐drying methods for mushrooms with regard to product quality
WO2010091856A2 (en) Pre-cooked food manufacturing system
JPH08261620A (en) Vacuum cooling method
Cheng et al. Multi-stage vacuum cooling process of cabbage
Muthukumarappan et al. Refrigeration and freezing preservation of vegetables
CN107712557A (en) A kind of drying system
US20060034980A1 (en) Packaged pasteurized fresh fruits and a method for production
JP2004121156A (en) Vacuum cooling apparatus of food and method for carrying out cooling control of the same food
US3239942A (en) Process for drying food
JP2002355020A (en) Vacuum cooler
KR100681419B1 (en) Method for manufacturing pear snack
Zheng et al. Vacuum cooling of foods
JP2004154106A (en) Food frying method and apparatus therefor
US2863779A (en) Method of preparing shrimp in frozen condition
KR102054501B1 (en) Rapid Depressurization Type Vacuum Pre-cooling System
JP2002017318A (en) Method for heat sterilization of solid food and its packaging container
GB2519135A (en) Method of processing and packaging foodstuffs
JP2003235530A (en) Vacuum cooling method
JP5086000B2 (en) Method for producing frozen sushi package
CN116649527B (en) Hydrogen-assisted quick-freezing method for improving freezing rate in phase change stage
EP2066187B1 (en) Method for processing precooked consumable products
JPH11510460A (en) In particular, how to store and prepare food
CN1233537C (en) Normal temperature storing dumpling
JPH0220269A (en) Preservation of thermally cooked food
JP3180064B2 (en) How to defrost food