JP4531913B2 - Transparent electrode plate for organic EL element and organic EL element - Google Patents

Transparent electrode plate for organic EL element and organic EL element Download PDF

Info

Publication number
JP4531913B2
JP4531913B2 JP2000063009A JP2000063009A JP4531913B2 JP 4531913 B2 JP4531913 B2 JP 4531913B2 JP 2000063009 A JP2000063009 A JP 2000063009A JP 2000063009 A JP2000063009 A JP 2000063009A JP 4531913 B2 JP4531913 B2 JP 4531913B2
Authority
JP
Japan
Prior art keywords
organic
transparent electrode
substrate
layer
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000063009A
Other languages
Japanese (ja)
Other versions
JP2001250678A (en
Inventor
正道 赤津
収二 寺崎
久明 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2000063009A priority Critical patent/JP4531913B2/en
Publication of JP2001250678A publication Critical patent/JP2001250678A/en
Application granted granted Critical
Publication of JP4531913B2 publication Critical patent/JP4531913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、一対の電極板に挾持された有機発光(材料)層に電場を印加して発光させる有機EL素子(通称に従い、「エレクトロルミネッセンス」を「EL」と略記する)の少なくとも一方の電極板を構成する透明電極板、ならびに該透明電極板を含む有機EL素子に関する。
【0002】
有機EL素子は、軽量且つ機械的耐久性に優れた自己発光型の素子として、液晶表示素子用のバックライト(補助光源)、常夜灯、道路標識、夜間公告等としての用途が拡大しつつある他、各色発光有機材料の開発とも相まって、薄型、高視野角、高速応答性、高精細の(フルカラー)表示素子としての開発も進みつつある。
【0003】
このような有機EL素子の有機発光層を挾持する一対の電極板のうち、少なくとも発光(表示)面側を構成する一方の電極板としては、透明基板上に、すずドープ酸化インジウム膜(通称に従い、以下「ITO膜」という)で代表される金属酸化物透明電極層を形成した透明電極板が用いられる。
【0004】
透明基板には、透明性に加えて、その上に金属酸化物透明電極層を蒸着により形成するための耐熱性、ならびに平坦な透明電極層を形成してリーク電流や、使用下に透明電極層が基板より局所的に剥離すること、または表面の凹凸により局所的な蒸着不良が起ることが主要な原因と解されているダークスポット(非発光部)の発生という有機EL素子特有の現象による性能低下を防止するため、それ自体で極度の平坦面を有することが必要とされている(例えば特開平11−126689号公報)。このため、透明基板としては、従来より、このような要求特性を良好に満たすガラス基板が用いられてきたが、有機EL素子の軽量性、耐衝撃性または可撓性の一層の向上を図るため、透明樹脂基板の使用も検討されている。透明樹脂基板としては、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリプロピレン等の熱可塑性樹脂からなる基板も提案されている(特開平2−251429号公報)が、これら熱可塑性樹脂は耐熱性および表面平坦性の点で難点があり、精密注型等により表面平坦性に注意して形成された熱硬化性樹脂基板の使用が好ましいとされている(特開平9−129376号公報)。
【0005】
【発明が解決しようとする課題】
しかしながら、本発明者らの研究によれば、精密注型法による熱硬化性樹脂基板も、有機EL素子の透明基板に要求される極度の表面平坦性を満たすものではなく(上記特開平11−126689号公報で推奨する最大表面粗さが10nm以下に対し、上記特開平9−129376号公報の実施例1によれば500μm角の領域内に存在する600オングストローム(60nm)以上の突起数が15個とされている)、その上にITO電極層を形成した際には、上記したダークスポットの発生による性能低下は避けられなかった(後述の比較例1参照)。
【0006】
本発明の主要な目的は、透明樹脂基板を用いた透明電極板によりダークスポットの発生等による有機EL素子の性能低下を防止することにより、信頼性のある有機EL素子を提供することにある。
【0007】
【課題を解決するための手段】
そして、上述の目的を達成するために開発された本発明の有機EL素子用透明電極板が、熱可塑性樹脂基板上に、金属酸化物透明電極層を有してなり、該熱可塑性樹脂基板は、JIS K7122による結晶融解に伴なう潜熱が2.1J/g以下の非晶性樹脂である環状オレフィン系重合体からなり、以下の(イ)〜(ハ)の要件を満たすことを特徴とするものである。
【0008】
(イ)JIS B0601による十点平均粗さRzが4nm以下、且つ最大高低差Ryが20nm以下、である表面平坦性、
(ロ)JIS K0068による飽和吸水率が0.02重量%以下、である低吸水性、および
(ハ)基板を構成する熱可塑性樹脂のJIS K7121による中間点ガラス転移温度Tmgと吸水遊離に伴う吸熱ピーク温度Twpとの差ΔT(=Tmg−Twp)が20℃<ΔT<100℃。
【0009】
また本発明の有機EL素子は、透明電極板と背面電極とからなる電極板の間に有機発光層を配した積層構造を有し、該透明電極板が上記透明電極板からなることを特徴とするものである。
【0010】
本発明者らが、上記目的で研究して、本発明に到達した経緯について若干付言する。
【0011】
上記したように注型法により形成した、熱硬化性樹脂基板は、有機EL素子用透明電極板の基板に要求される表面平坦性を満たすものではなく、その上に金属酸化物透明電極層を形成して得られた透明電極板を用いて得られた有機EL素子においてはダークスポットの発生防止は、困難である(後述の比較例1)。このような表面平坦性の低下は、注型した熱硬化性樹脂の紫外線照射や加熱による硬化に際して、一部樹脂が解重合してモノマーやオリゴマーが生成して、これが表面から脱離する際に表面に微小な凹所、亀裂および盛り上り等を生ずるためであり、むしろ熱硬化性樹脂を基板材料として用いることに伴う不可避的な欠点である。これに対し、本発明者らの知見によれば押出成形条件等を精密に制御することにより、有機EL素子の形成に要求される程度の基板の表面平坦性を有する熱可塑性樹脂シートは既に市販もされている(例えば後述の比較例4で用いられているポリエチレンナフタレートフィルムなど)。しかしながら、本発明者らの研究によれば、このような良好な表面平坦性を有する熱可塑性樹脂シートを単に基板として用いたのでは、ダークスポット等による有機EL素子特有の輝度ムラの発生等の性能低下は避けられない。本発明者等が鋭意研究した結果、透明樹脂基板を用いて、透明電極板を形成した際に発生するダークスポットの発生には、使用する透明樹脂基板の初期的な表面平坦性もさることながら、使用する樹脂の吸水性ならびに加熱下での吸水遊離特性が重要な影響を有することが解明されてきた。透明樹脂基板上に、ITO等の金属酸化物透明電極層を形成するに際しては、基板の洗浄−乾燥−ITO等の金属酸化物透明電極層の蒸着形成−エッチングによるパターニング−洗浄−乾燥等の工程が含まれ、基板樹脂は(純)水を代表とする溶媒ないし洗浄媒体の吸収−加熱乾燥の過程を不可避的に経由する。特に加熱乾燥に際しては、吸水分が多ければ、その放出はかなり急激な応力を、樹脂基板表面ならびにその上の透明電極層に与えるものであり、その後の透明電極層の界面剥離につながる基板表面の変形あるいはクラックの発生、更には蒸着後の透明電極層の直接的な局所剥離が起り得る。また吸水水分は、乾燥工程を経ても製品有機EL素子中の透明電極板中に若干残存して、長期使用中の透明電極形成用金属酸化物の腐食によるより体積の大なる水酸化物化を起し、電極層の膨潤、亀裂等の発生につながる。従って本発明者らは、金属酸化物透明電極層の形成工程も含めて有機EL素子におけるダークスポットの発生防止するためには、使用する樹脂として、極めて小さい吸水性(ロ)を有するとともに、金属酸化物透明電極層中の加熱条件との吸水遊離に伴う吸熱ピーク温度との関係で適切に設定されたガラス転移温度(ハ)を有する樹脂を選定し、且つ選択された樹脂を用いて、製造条件を制御することにより可及的に良好な表面平坦性(イ)を有する樹脂シートないしフィルムを形成することが必要であり、そのためにはむしろ熱可塑性樹脂基板を用いることが望ましいことを知見して本発明に到達したものである。
【0012】
【発明の実施の形態】
図1および2は、それぞれ本発明の一実施例にかかる比較的簡単な構成を有する有機EL素子の模式断面図である。
【0013】
図1を参照して、この例にかかる有機EL素子は、有機発光層1を、表示面側の透明電極板2と背面電極3とからなる一対の電極板により挾持してなる積層構造体の両側に、更に一対の防湿性フィルム4、4を積層してなるものである。本発明に従い、表示面側の透明電極板2は、熱可塑性樹脂基板2a上に金属酸化物透明電極層2bを形成してなり、更に透明電極板2の逆側には、対向する電極として金属酸化物または金属からなる背面電極3が設けられている。透明電極層2および背面電極3を含む積層構造は、更に防湿性フィルムの層4または金属酸化物等からなる他の防湿層5(図2)の積層により封止される。ここで透明電極板2及び背面電極3は、電源6(直流または交流)に接続されるリード線が取り付けられて、有機発光層1に電圧が印加できる仕組みとされている。
【0014】
本発明に従い、表示面側の透明電極板2を構成する透明基板2aは、以下の要件(イ)〜(ハ)を満たす熱可塑性樹脂基板である。(なお、背面電極3は、金属の単層または複層電極であるか、または金属あるいは金属酸化物の透明電極層と透明でない基板との積層物であり得る。必要に応じて、いずれかを選ぶことができる。)
(イ)JIS B0601による十点平均粗さRzが4nm以下、且つ最大高低差Ryが20nm以下、である表面平坦性、
(ロ)JIS K0068による飽和吸水率が0.02重量%以下、である低吸水性、および
(ハ)基板を構成する熱可塑性樹脂のJIS K7121による中間点ガラス転移温度Tmgと吸水遊離に伴う吸熱ピーク温度Twpとの差ΔT(=Tmg−Twp)が20℃<ΔT<100℃。
【0015】
以下、要件(イ)〜(ハ)について逐次説明する。
【0016】
(イ)表面平坦性
熱可塑性樹脂基板2aは、JIS B0601(基準長さ:0.08mm、評価長さ0.04mm)、による十点平均粗さRzが4nm以下、好ましくは2nm以下;最大高低差Ryが20nm以下、好ましくは10nm以下、であるものを用いる。本明細書におけるRz、Ry値は、具体的には、原子間力顕微鏡(セイコー電子(株)製「SPI3800/SPA300HV」)による常温、常圧での測定値に基づく。
【0017】
Rzが4nmを超え、あるいはRyが20nmを超える粗さを有する、すなわち表面平坦性の比較的悪い熱可塑性樹脂基板を用いると、ダークスポットの発生が多くなり、有機EL素子としての発光輝度が小さくなるので、商品としては不適となる。
【0018】
熱可塑性樹脂基板2aは、EL素子の作製に適する厚さであれば、特に制限はないが、強度、可撓性等を考慮して、一般に5〜300μm程度の範囲から適宜選択可能である。その面積は、必要な表示ないし発光面積により決定され、対角長さとして20mm〜2000mm程度のものが多いが、有機発光層1を構成する有機材料の改良により、より大面積の素子開発も期待されている。素子に必要な面積の基板シートは、一般により大なる面積の基板シートから適宜切断されて調製される。
【0019】
上記のような厚さの熱可塑性樹脂シートは、一般に溶液キャスティング(注型)法、溶融押出法、より厚肉成形物からの切削加工等により形成されるが、溶液キャスティング法は、使用する溶媒の蒸発により、また切削加工は機械加工精度の制限より、最大高低差Ryが100〜5000nmというような粗面化は避けられず、とても上述にRz≦4nm、Ry≦20nmというような表面平滑性は期待できない。この表面平坦性を得るには溶融押出法を用いることが好ましい。すなわち、単軸または2軸押出機で樹脂を加熱溶融し、次いでこの溶融樹脂を導管を介してTダイまたはコートハンガーダイなどのフラットダイに導き、このフラットダイのリップ部からシート状またはフィルム状の溶融樹脂を吐出させ、引出す。引出したこの溶融樹脂は、温度管理してなるキャストロールの表面に接触して冷却され、固化したシートまたはフィルムとなる。このとき、溶融樹脂の温度、前記ダイの幅方向の溶融樹脂の吐出量分布、キャストロールの速度及び温度、キャストロールの表面と溶融樹脂との密着性等の条件を精密に制御してなる溶融押出法による熱可塑性樹脂シートまたはフィルムを基板として用いるのが好ましい。この観点で、後述の非吸湿性(ロ)に優れ、代表的な防湿性フィルム4、5の材料であるPCTFE(ポリクロロトリフルオロエチレン)は、その熱分解温度と溶融押出温度が近似しているため、溶融押出法による成形が困難であり、フィルム成形を溶液キャスティング法あるいは切削加工法に頼らざるを得ないので、透明電極板に使用する透明基板材料としては不適である。
【0020】
(ロ)低吸水性
熱可塑性樹脂基板2aは、JIS K0068(カールフィッシャー電量滴定法)による飽和吸水率(JIS K7209)が0.02重量%以下のものを用いる。測定に際しては、JIS K7209に準拠して測定対象フィルムないしシートを一辺が50mmの正方形に切り出した試料片を、50℃に保った恒温槽中で24時間乾燥し、デシケーター中で放冷後、23±2℃の温度に保った純水中に170時間(JIS基準の24時間より延長)放置後、試料片を取り出し、60℃で10分間通気乾燥して試料表面の付着水を除き、その後に、水分量をカールフィッシャー電量滴定法(JIS K0068)で滴定して、飽和吸水率を求める。本明細書中に記載の数値は、三菱化成(株)製電量滴定式水分測定装置「CA−06型」による測定値に基づいている。
【0021】
使用する熱可塑性樹脂基板2aの飽和吸水率が0.02重量%を超えると、おそらくは上述したように、透明電極層2bの形成工程中での水系媒体との接触により吸水し、その後の乾燥による水分放出時の悪影響、製造有機EL素子中の電極板中への水分残量等を通じて、ダークスポットの抑制が困難となる。この特性は、先に述べた基板の要求特性において項目(イ)表面平坦性ならびに項目(ハ)適性ガラス転移温度と同時に満たされる必要があるポリエチレンテレフタレート(飽和吸水率=0.128重量%)は飽和吸水率が大きく不適当であり、ポリエチレンナフタレート(飽和吸水率=0.209重量%)も飽和吸水率が大きく不適当であり、ポリプロピレン(飽和吸水率=0.010重量%)は飽和吸水率は小さいが表面平坦性(十点平均粗さRz=120nm、最大高低差Ry=400nm)が大きく不適当である。飽和吸水率は0.01重量%以下、更には0.005重量%以下であることが特に好ましい。
【0022】
(ハ)適性ガラス転移温度
熱可塑性樹脂基板2aは、これを構成する熱可塑性樹脂のJIS K7121による中間点ガラス転移温度Tmgと吸水遊離に伴う吸熱ピーク温度Twpとの差ΔT(=Tmg−Twp)が20℃<ΔT<100℃の関係を満たすものである必要がある。中間点ガラス転移温度Tmg(JIS K7121)は、昇温速度10℃/分でのDSC(示差走査熱量測定)カーブにおける転移過程の前後のベースラインをもとに、両ベースラインと等距離に引いた中間線とDSCカーブとの交点の温度を示す。また吸水遊離に伴う吸熱ピーク温度Twpは、JIS K7121に定められる転移熱測定方法による昇温速度10℃/分でのDSC曲線上において、結晶融解ピーク温度測定に準じて求めた、但し吸水(おそらくは吸着状態にある水分)の遊離水としての離脱に伴う約60〜90℃の温度範囲での吸熱ピーク温度をいう。
【0023】
該温度差ΔT(=Tmg−Twp)が100℃以上であると、乾燥工程においての吸水状態の衝撃的変化が加わると基板に脆弱な亀裂が入りやすくなり、製品有機EL素子の長期使用において発光面にダークスポットによる非発光部を生じて初期の輝度を維持することが困難となる。他方、該温度差ΔTが20℃以下であると、乾燥工程においての脱水時間が長くなり、製造工程上好ましくないだけでなく、基板上への残存水分のため、上部金属酸化物透明電極層の劣化を生じかねない。アクリル系熱硬化性樹脂(ΔT=12℃、後述比較例1)はこの観点でも好ましくない。また、この観点で好ましくない熱可塑性樹脂としてはポリスチレン、ポリエチレンテレフタレート、硬質塩化ビニル樹脂等がある。
【0024】
(ニ)また基板2aを構成する熱可塑性樹脂は、JIS K7122に準拠して昇温速度10℃でのDSC法により測定した潜熱(融解熱、インジウム標準試料により比較校正)が2.1J/g以下の実質的非結晶性を示すことが好ましい。潜熱が2.1J/gを超える結晶性を示す場合は、溶融押出樹脂シートの冷却過程で球晶の発生により粗面化し易くなるだけでなく、乾燥工程において吸水状態の衝撃的変化が加わると体積変化により、ダークスポットの発生につながるミクロな亀裂が生じ易くなる。
【0025】
上記特性(ハ)および(ニ)の理解のために熱可塑性樹脂基板についての、DSCによる昇温過程での吸熱挙動の典型例を示すグラフを図6に示す。
【0026】
上述の(イ)〜(ニ)の要求特性を与える容易性を考慮して、本発明では、熱可塑性樹脂基板2aとしては、環状オレフィン系重合体(例えば特開平11−216817号公報あるいは特開平8−142263号公報に記載されるもの)を用い、押出特性を満足すべく組成および分子量等に関して配慮するとともに、項目(イ)表面平坦性を満足すべく、先に述べた溶融樹脂の温度、フラットダイの幅方向の溶融樹脂の吐出量分布、キャストロールの速度及び温度、キャストロールの表面と溶融樹脂との密着性等を精密に制御した条件でT−ダイ溶融押出法により得られた厚さ5〜300μm、好ましくは10〜200μmのシートないしフィルムを用いることが好ましい。特に飽和吸水率が約0.001重量%あるいは、それ以下と極めて小さい環状オレフィン系重合体、特にα−オレフィン(エチレンを含む)と環状オレフィンとの共重合体、ノルボルナン環を与えない環状オレフィンモノマーとノルボルナン環を与える環状オレフィンモノマーとの共重合体等からなる、より非晶性および溶融押出特性を改善した環状オレフィン系共重合体の溶融押出シートないしフィルムを用いることが好ましい。
【0027】
本発明の透明電極板(2)は、上記のようにして得られた熱可塑性樹脂基板2aを、必要に応じてアセトン、純水等の媒体による洗浄−乾燥等の前処理を経たのち、その一面に、高周波スパッタリング、DCスパッタリング、ECR(電子サイクロトロン共鳴)プラズマスパッタリング、真空蒸着、イオンプレーティング等により厚さが1〜200nm、好ましくは5〜100nm程度の金属酸化物透明電極層2bを形成することにより得られる。
【0028】
透明電極層2bを構成する金属酸化物としては、ZnO、SnO2、In23等が用いられるが、IZO(亜鉛ドープ酸化インジウム)、ITO(すずドープ酸化インジウム)等がより好ましく、なかでも酸化インジウムに対して1〜50重量%、より好ましくは5〜15重量%程度のSnO2をドープしたITO膜が好ましく用いられる。成膜後の金属酸化物層2bは、必要に応じて、グレーン調整のためのイオンあるいは加熱処理、希塩酸等の希酸もしくはヨウ素酸−塩化第二鉄混液等のエッチング液、あるいはHBr、C22、Cl2、SF6、CF4またはCHF3等のエッチングガスによるパターニング(エッチング)−レジスト除去−(水)洗浄−乾燥等の後処理を経てパターン化される。このようにしてパターニングされた金属酸化物透明電極層2bを有する透明電極板2およびパターニング前の透明電極層2bを有する透明電極板2は、いずれも製品として流通の対象となり得るものであるが、もちろん引き続く有機EL素子の製造工程に連続的に入ることもできる。
【0029】
本発明の透明電極板は上述した図1および図2の有機EL素子の実施例に含まれ、また図3に取り出して示すように、熱可塑性樹脂基板2aの一面に金属酸化物透明電極層2bを形成した二層構造体2であってもよいが、必要に応じて図4に示すように熱可塑性樹脂基板2aと透明電極層2bとの間に接着剤層2cを挿入して透明電極層2bの密着性を改善した積層構造とすることもできる。
【0030】
接着剤層2cを構成する接着剤としては、ウレタン系、ポリエステル系、アクリル系、加水分解性基(アルコキシ基、アセトキシ基、ハロゲン等)と有機官能基(アミノ基、メタクリル基、ビニル基、エポキシ基、メルカプト基等)を導入したシランカップリング剤等を用いても良い。また、表面性を阻害しない範囲で、熱可塑性基板の電極層形成側にあらかじめコロナ処理を行っても良い。このような接着剤層2cが入っても、上記(イ)〜(ハ)、更には(ニ)の特性を満足する熱可塑性樹脂基板2aを使用することによるダークスポットの発生防止等を通じた有機EL素子の信頼性向上効果は実質的に損なわれることはない。
【0031】
また最終的に得られる有機EL素子の耐久性を更に向上するために、本発明の透明電極板には、基板2aのEL素子形成面側、EL素子形成面と逆側(例えば図5として例示)あるいはその両面に防湿層2dを設けて、有機発光層1への水分の到達を可及的に減少させることも好ましい。防湿層2dとしては、薄膜で水分の透過を阻止できる任意の材料が用いられるが、通常は、金属、金属化合物の単独もしくは複合の膜から形成される。例えば、アルミニウム、チタン、クロム、ニッケル等の金属単体、酸化アルミニウム、酸化珪素、酸化チタン、フェライト、酸化銀、酸化クロム、酸化アンチモン、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ジルコニウム、酸化タングステン、酸化銅、酸化ニッケル、酸化バナジュウム、酸化マグシウム、酸化マンガン、酸化ランタン、酸化鉛、酸化カドニウム、酸化ビスマス、等の金属酸化物あるいはこれら金属及び金属化合物の一種もしくは二種以上の組合せを使用する。特に好ましくは酸化珪素である。形成方法は、蒸着やスパッタ法が一般的である。厚みは、50〜500nmで、防湿性と厚くなると透明性や着色が大きくなるのでEL素子の発光性能を阻害しない範囲で厚みを選定する。また防湿層2dとして、前記金属あるいは金属酸化物または金属化合物等の防湿膜を単体であるいはその表面に樹脂のフィルムを積層して用いることができる。この樹脂として、特に制限は無いが、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、シクロオレフィン系樹脂、ポリエチレン、ポリプロピレン、スチレン系樹脂、ポリアミド、ポリビニルアルコール、ポリ酢酸ビニル共重合体、ポリウレタン、ポリフェニレンスルフィッド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルスルフィッド、ポリオキシエチレン、塩化ビニル樹脂、塩化ビニリデン系樹脂、弗化ビニル樹脂、弗化ビニリデン系樹脂、エチレン四弗化エチレン共重合体等の弗素系樹脂、アクリル酸系共重合体、メタクリル酸系共重合体、ユリア樹脂、更にはこれら樹脂の2種類以上の混合物を適宜選ぶことができる。
【0032】
防湿層2dは、積層構造体であっても良く、前記金属あるいは金属酸化物等を単体であるいはその表面に樹脂のフィルムを積層しても良い。このフィルムの層の間に、ポリビニルアルコール等の吸湿性樹脂の層を挾持する構造は特に好ましい。
【0033】
またこの電極面の外側または防湿層2dの外側に、耐候性、防汚性を付与するために、弗化ビニリデン系樹脂、弗化ビニル樹脂、四弗化エチレン樹脂、エチレン四弗化エチレン共重合体等の弗素系樹脂、アクリル酸系共重合体やメタクリル酸系共重合体、ポリエチレンテレフタレート、塩化ビニル等の樹脂の単体またはそれらの2種類以上の混合物からなる樹脂層を設けてもよい。
【0034】
またこれら樹脂は、紫外線吸収剤、紫外線遮蔽剤、光安定剤、顔料、染料、増量剤を必要に応じて0.1重量%〜30重量%含んでも良い。
【0035】
これら樹脂の層の厚さは、特に制限はないが、5μm〜200μmとすることが多い。
【0036】
背面電極3は、表示面側の透明電極板2の構成と実質的に同等としてもよく、または金属の電極による単層又は積層構成としてもよい。
【0037】
有機発光層1の構成は、特に従来の有機EL素子に含まれるものと特に異なるものではない。すなわち、キノリノール誘導体等の金属錯体、スチリルベンゼン系化合物、ジスチリルピラジン誘導体、ポリフェニル化合物、ナフタルイミド誘導体、ペリレン誘導体、オキサジアゾール誘導体、等の各種色素;ベンゾチアゾール系、ベンゾイミダゾール、ベンゾオキサゾール等の螢光増白剤;等の有機発光材料の単独層、あるいは付加的に陽極側に正孔輸送層、および/または陰極側に電子注入層、を必要に応じて設けた多層構造とすることもできる。有機発光層1は、このような単層あるいは多層構造で全体として、例えば5nm〜5000nmの範囲の厚さに形成される。
【0038】
図1の有機EL素子は、このような有機発光層1を、一対の電極板2、3で挾してなる積層構造を一対の防湿性フィルム4、4間に封止することにより得られる。
【0039】
防湿性フィルム4、4としては、PCTFE(ポリクロロトリフルオロエチレン)フィルムが用いられるほか、吸湿性または非吸湿性の樹脂層と無機酸化物または金属の蒸着膜との(交互)積層多層膜(PCT/JP98/01781ならびに特願平11−127437号)も好適に用いられる。これら多層防湿膜の全体厚さは、多くの場合30〜1000μm、特に50〜500μm程度である。
【0040】
図2の有機EL素子では、図1の例における一対の防湿性フィルム4、4の背面側の一方が、上記した防湿層2d(図5)を構成する金属酸化物層等からなる他の防湿性層5に置きかえられ、また電極板2および背面電極3の外側には、それぞれ吸湿性樹脂層(捕水層)7が設けられ、防湿性フィルム4ないし防湿性層5を透過してくる可能性のあるわずかな量の水を捕捉して有機発光層1への水分の透過を抑制することにより、有機発光層1を構成する有機材料の劣化による寿命の低下を抑制している。それ以外の構成は図1のそれと同じである。
【0041】
吸湿性樹脂層7は、例えばポリビニルアルコール(部分ケン化ポリ酢酸ビニル)、ナイロン等の吸湿性樹脂により5〜200μm程度の厚さの層として形成される。
【0042】
なお素子の側方からの水分の侵入をもより効果的に防止するために、防湿性層5に変え、あるいはこれに加えて、素子裏面から側方へと延長するエポキシ樹脂(層)あるいはアクリル系紫外線硬化樹脂(層)の硬化物を設けてもよい。
【0043】
【実施例】
以下、実施例、比較例により本発明を更に具体的に説明する。
【0044】
(実施例1)
環状オレフィン樹脂(日本ゼオン(株)製「ゼオノア」、以下「COC樹脂」と略す)を用い、260℃に設定した軸径50mm且つL/D=26の単軸押出機でCOC樹脂を溶融した。次いで、導管を経由して260℃に設定したダイリップ幅700mmのTダイに導き、ダイリップから溶融吐出させた。次いで、表面温度150℃に設定したキャストロールで等速度で引き取りながら、均一に接触させ固化させて、厚さ50μmのフィルムを得た。このフィルムを基板2aとして用いて、概ね図2に示す層構成の有機EL素子を形成した。但し、この有機EL素子では、透明電極2bおよび背面電極3を直交ストライプ状とし、背面電極3側の捕水性樹脂層7は設けていない。
【0045】
該COC樹脂基板は、原子間力顕微鏡を用いて常温/常圧で行った表面粗さ試験(JIS B0601)により、十点平均粗さRzが1.5nm、最大高低差Ryが4.0nmの表面平坦性を示した。また、カールフィッシャー法(JISK0068)による飽和吸水率(JIS K7209、23℃の蒸留水中、170時間浸漬)が0.001重量%と極めて良好な低吸湿性を示し、昇温速度10℃/分でのDSC測定により、中間点ガラス転移温度Tmg=166℃、吸水遊離に伴う吸熱ピーク温度Twp=73℃、ΔT=Tmg−Twp=93℃、結晶融解潜熱は2.1J/g未満であることを確認した。
【0046】
約8cm×8cm角の上記COC樹脂基板に下記の工程(i)〜(x)を逐次、施して有機EL素子を形成した。
【0047】
(i)上記樹脂基板を、室温にて、まずアセトンで180秒、次いで純水で180秒間、更にアセトンで180秒間洗浄し、(ii)遠赤外線乾燥装置により90℃で約60秒間乾燥した。(iii)次いで、基板を市販のDCマグネトロンスパッタリング装置内に設置し、真空槽内を1×10-3Pa以下に減圧して、基板温度で90℃で10分間保持して更に基板を乾燥した。(iv)その後、DCマグネトロンスパッタリングにより基板の一面に透明電極用に厚さ200nmのITO膜を形成した。(v)次いでITO膜上に、フォトレジスト(東京応化工業製「OFPR」)を塗布し、石英ガラス製フォトマスク(東京応化工業製)を通じて、アラインメント露光し、専用現像像液(東京応化工業製)による現像、10%塩酸水中への常温浸漬によるエッチング、を行いレジスト除去後、更に純水で180秒間洗浄し、アセトンで180秒間洗浄する工程を経て、線幅5mm、ピッチ8mmで、10本のストライプ状ITO電極を形成した基板を、遠赤外加熱装置にて90℃で、120秒間加熱乾燥した。(vi)次に、この基板を真空蒸着装置の基板ホルダーに固定し、槽内を1×10-4Pa以下に減圧し、基板を90℃に加熱し10分間保持した。(vii)その後、キノリール誘導体を配位子とするアルミニウム錯体からなる有機ELの発光層を50nmの厚さに蒸着にて製膜した。(viii)次いで、基板をスパッタ装置に移し、有機EL発光体側面直上間隔0.2mmのところに厚み1mmのアルミ板に幅5mm、間隔3mmの帯状の空間を10本有するメタルマスクをITO電極のパターンに直交するように設置し、該マスクを介してDCスパッタ法にてMg・Ag合金をターゲットとして、ITO膜に直交し幅5mm、間隔3mmの帯状の対向電極パターンからなる厚さ200nmの対向電極を形成した。(ix)次に、各電極からリード線を取り出した後、スパッタ装置にてMg・Ag合金電極上に酸化珪素膜を200nmの厚みに製膜して背面の防湿層とした。(x)次に、厚さ15μmのポリエチレンテレフタレートのフィルムに対して真空蒸着法で厚さ50nmの酸化珪素層を蒸着してなる2層フィルムを形成して、EL素子積層体の表示面側の樹脂基板の上に積層した。更にその上に、60℃の真空乾燥機で100時間乾燥した厚さ30μmのポリビニルアルコールの吸湿膜を積層し、更に前記酸化珪素蒸着ポリエチレンテレフタレートのフィルムを積層した。これら積層方法は、いずれもドライラミネート法を用いた。これにより、8cm×8cm角の有機EL素子を形成した。
【0048】
形成した有機EL素子の対向電極間に直流電圧を加え、10mA/cm2の電流密度で発光させた。その初期発光状態を観察したところ、発光しない島状のダークスポットは観察されなかった。更に、この素子を60℃、90%の雰囲気中で100時間連続発光させ、その後のダークスポットや輝度の低下を測定した。その結果、ダークスポットは、非画素部も含めて3cm×3cmの発光面領域あたり3カ所、輝度の維持率は85%であった。
【0049】
参考例1
使用樹脂基板として、表面平滑な厚さ75μmのポリカーボネート樹脂シート(帝人(株)製「ピュアエース」)を使用する以外は、実施例1と同様にして有機EL素子を形成した。
【0050】
該基板は実施例1と同様の測定の結果、平均粗さRz=0.35nm、最大高低差3.5nm、飽和吸水率=0.016重量%、中間点ガラス転移温度Tmg=152℃、吸水による転移ピーク温度Twp=75℃、潜熱=2.1J/gであった。
【0051】
作成した有機EL素子に直流電圧を加え、10mA/cm2の電流密度で発光させた。その初期発光状態を観察したところ、発光しない島状のダークスポットは観察されなかった。更に、この素子を60℃、90%の雰囲気中で100時間連続発光させ、その後のダークスポットや輝度の低下を測定した。その結果、ダークスポットは3cm四方の発光面で5カ所、輝度の維持率は78%であった。
【0052】
(比較例1)
使用樹脂基板として、厚さ80μmのアクリル樹脂硬化物のシート(アクリル酸2−シアノヘキシルの紫外線硬化物)を使用する以外は、実施例1と同様にして有機EL素子を形成した。
【0053】
該基板は実施例1と同様の測定の結果、平均粗さRz=10nm、最大高低差60nm、飽和吸水率=0.32重量%、中間点ガラス転移温度Tmg=85℃、吸水による転移ピーク温度Twp=73℃、潜熱=8J/gであった。
【0054】
次に、このようにして作成した有機EL素子に直流電圧を加え、10mA/cm2の電流密度で発光させた。その初期発光状態を観察したところ、発光しない島状のダークスポットは3cm四方に27カ所観察された。更に、この素子を60℃、90%の雰囲気中で100時間連続発光させ、その後のダークスポットや輝度の低下を測定した。その結果、ダークスポットは3cm四方の発光面で全面に広がり、100時間後においては全く発光はみられなかった。
【0055】
(比較例2)
使用樹脂基板として、厚さ50μmのポリプロピレン樹脂(住友化学(株)製「ノーブレン」)を使用する以外は、実施例1と同様にして有機EL素子の形成を試みた。
【0056】
該基板は実施例1と同様の測定の結果、平均粗さRz=120nm、最大高低差400nm、飽和吸水率=0.010重量%、中間点ガラス転移温度Tmg=−3℃、吸水による転移ピーク温度Twp=65℃、潜熱=25J/gであった。
【0057】
この樹脂基板に実施例1と同様にEL素子製造工程を適用したところ、スパッタや蒸着工程では、ガラス転移点が低いので基板の加熱や蒸着熱により基板が変形し易く、均一なEL素子を製造する歩留りが悪かった。
【0058】
製造された有機EL素子に直流電圧を加え、10mA/cm2の電流密度で発光させた。その初期発光状態を観察したところ、発光しない島状のダークスポットは3cm四方に53カ所観察された。更に、この素子を60℃、90%の雰囲気中で100時間連続発光させ、その後のダークスポットや輝度の低下を測定した。その結果、ダークスポットが全面に広がり、100時間後には全く発光がみられなかった。
【0059】
(比較例3)
使用樹脂基板として、厚さ50μmのポリエチレンテレフタレートのフィルム(帝人(株)製「テトロンフィルム」)を使用する以外は、実施例1と同様にして有機EL素子を形成した。
【0060】
該基板は実施例1と同様の測定の結果、平均粗さRz=12nm、最大高低差80nm、飽和吸水率=0.125重量%、中間点ガラス転移温度Tmg=76℃、吸水による転移ピーク温度Twp=74℃、潜熱=14J/gであった。
【0061】
作成した有機EL素子に直流電圧を加え、10mA/cm2の電流密度で発光させた。その初期発光状態を観察したところ、発光しない島状のダークスポットは3cm四方に35カ所観察された。更に、この素子を60℃、90%の雰囲気中で100時間連続発光させ、その後のダークスポットや輝度の低下を測定した。その結果、ダークスポットが全面に広がり、100時間後においては全く発光がみられなかった。
【0062】
(比較例4)
使用樹脂基板として、表面平滑な厚さ50μmのポリエチレンナフタレート樹脂のフィルム(帝人(株)製「テオネックスフィルム」)を使用する以外は、実施例1と同様にして有機EL素子を形成した。
【0063】
該基板は実施例1と同様の測定の結果、平均粗さRz=1.8nm、最大高低差9nm、飽和吸水率=0.209重量%、中間点ガラス転移温度Tmg=118℃、吸水による転移ピーク温度Twp=77℃、潜熱=18J/gであった。
【0064】
作成した有機EL素子に直流電圧を加え、10mA/cm2の電流密度で発光させた。その初期発光状態を観察したところ、発光しない島状のダークスポットは3cm四方に46カ所観察された。更に、この素子を60℃、90%の雰囲気中で100時間連続発光させ、その後のダークスポットや輝度の低下を測定した。その結果、ダークスポットが全面に広がり、100時間後においては全く発光がみられなかった。
【0065】
別途、工程管理の目的で、上記実施例1〜2、比較例1〜4の各工程(iii)および(v)の後で、取り出した素子中間体から、試験片を切り出し、JIS K0068(カールフィッシャー電量滴定法)により含有水分率を測定した。その結果を下表1にまとめて記す。
【0066】
【表1】

Figure 0004531913
【0067】
【発明の効果】
上述したように、本発明によれば、基板として、平滑度、吸水性ならびに熱特性を厳密に規定した熱可塑性樹脂基板を用いることにより、耐久性、信頼性に優れた有機EL素子ならびにその透明電極板が与えられる。
【図面の簡単な説明】
【図1】本発明の一実施例にかかる有機EL素子の模式断面図。
【図2】本発明の別の実施例にかかる有機EL素子の模式断面図。
【図3】本発明の透明電極板の一実施例の模式断面図。
【図4】本発明の透明電極板の別の実施例の模式断面図。
【図5】本発明の透明電極板の別の実施例の模式断面図。
【図6】樹脂基板のDSCによる昇温段階での吸熱挙動の典型例を示すグラフ。
【符号の説明】
1:有機発光層
2:透明電極板
2a:熱可塑性樹脂基板
2b:透明電極層
2c:接着剤層
2d:防湿層
3:背面電極
4:防湿性フィルム
5:他の防湿性層
6:電源
7:捕水性樹脂層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to at least one electrode of an organic EL element that emits light by applying an electric field to an organic light emitting (material) layer held between a pair of electrode plates (according to a common name, “electroluminescence” is abbreviated as “EL”). The present invention relates to a transparent electrode plate constituting the plate and an organic EL element including the transparent electrode plate.
[0002]
The organic EL element is a light-emitting element that is lightweight and excellent in mechanical durability, and its use as a backlight (auxiliary light source) for liquid crystal display elements, nightlights, road signs, nighttime notices, etc. is expanding. Together with the development of each color light-emitting organic material, development as a thin, high viewing angle, high-speed response, high-definition (full-color) display element is also progressing.
[0003]
Among the pair of electrode plates that hold the organic light emitting layer of such an organic EL element, as one electrode plate constituting at least the light emitting (display) surface side, a tin-doped indium oxide film (according to the common name) is formed on a transparent substrate. Hereinafter, a transparent electrode plate formed with a metal oxide transparent electrode layer represented by “ITO film” is used.
[0004]
In addition to transparency, the transparent substrate has heat resistance to form a metal oxide transparent electrode layer on it by vapor deposition, and a flat transparent electrode layer to form a leakage current and a transparent electrode layer under use. Due to a phenomenon peculiar to organic EL elements such as the occurrence of dark spots (non-light-emitting portions), which are considered to be mainly caused by local peeling from the substrate or local vapor deposition defects due to surface irregularities. In order to prevent deterioration in performance, it is necessary to have an extremely flat surface by itself (for example, JP-A-11-126589). For this reason, as a transparent substrate, a glass substrate that satisfactorily satisfies such required characteristics has been conventionally used. However, in order to further improve the lightness, impact resistance, or flexibility of the organic EL element. The use of transparent resin substrates is also being studied. As a transparent resin substrate, a substrate made of a thermoplastic resin such as polyethylene terephthalate, polycarbonate, polyethersulfone, polyetheretherketone, or polypropylene has been proposed (Japanese Patent Laid-Open No. 2-251429). It is considered difficult to use a thermosetting resin substrate formed with attention to surface flatness by precision casting or the like in terms of heat resistance and surface flatness (Japanese Patent Laid-Open No. 9-129376). .
[0005]
[Problems to be solved by the invention]
However, according to the study by the present inventors, the thermosetting resin substrate by the precision casting method does not satisfy the extreme surface flatness required for the transparent substrate of the organic EL element (see the above-mentioned JP-A-11-11). The maximum surface roughness recommended in Japanese Patent No. 126689 is 10 nm or less, whereas according to Example 1 of Japanese Patent Laid-Open No. 9-129376, the number of protrusions of 600 angstroms (60 nm) or more existing in a 500 μm square region is 15. When the ITO electrode layer was formed thereon, the above-described performance degradation due to the generation of dark spots was inevitable (see Comparative Example 1 described later).
[0006]
A main object of the present invention is to provide a reliable organic EL element by preventing a performance deterioration of the organic EL element due to generation of dark spots or the like by a transparent electrode plate using a transparent resin substrate.
[0007]
[Means for Solving the Problems]
And the transparent electrode plate for organic EL elements of the present invention developed to achieve the above-mentioned object has a metal oxide transparent electrode layer on the thermoplastic resin substrate, and the thermoplastic resin substrate is , It consists of a cyclic olefin polymer that is an amorphous resin with a latent heat accompanying crystal melting according to JIS K7122 of 2.1 J / g or less, It satisfies the following requirements (a) to (c).
[0008]
(A) Surface flatness having a ten-point average roughness Rz according to JIS B0601 of 4 nm or less and a maximum height difference Ry of 20 nm or less,
(B) Low water absorption with a saturated water absorption of 0.02% by weight or less according to JIS K0068, and
(C) The difference ΔT (= Tmg−Twp) between the intermediate glass transition temperature Tmg according to JIS K7121 of the thermoplastic resin constituting the substrate and the endothermic peak temperature Twp accompanying the absorption of water absorption is 20 ° C. <ΔT <100 ° C.
[0009]
The organic EL device of the present invention has a laminated structure in which an organic light emitting layer is disposed between an electrode plate composed of a transparent electrode plate and a back electrode, and the transparent electrode plate is composed of the transparent electrode plate. It is.
[0010]
The inventors have made researches for the above-mentioned purposes, and give some additional notes on how they reached the present invention.
[0011]
The thermosetting resin substrate formed by the casting method as described above does not satisfy the surface flatness required for the substrate of the transparent electrode plate for organic EL elements, and a metal oxide transparent electrode layer is formed thereon. In the organic EL element obtained using the transparent electrode plate obtained by forming, it is difficult to prevent the occurrence of dark spots (Comparative Example 1 described later). Such a decrease in surface flatness is caused when a part of the resin is depolymerized to form monomers or oligomers when the cast thermosetting resin is cured by ultraviolet irradiation or heating, and this is removed from the surface. This is to cause minute recesses, cracks, and bulges on the surface, but rather an unavoidable drawback associated with the use of a thermosetting resin as the substrate material. On the other hand, according to the knowledge of the present inventors, a thermoplastic resin sheet having surface flatness of the substrate to the extent required for the formation of the organic EL element is already commercially available by precisely controlling the extrusion molding conditions and the like. (For example, a polyethylene naphthalate film used in Comparative Example 4 to be described later). However, according to the researches of the present inventors, when the thermoplastic resin sheet having such a good surface flatness is simply used as a substrate, the occurrence of luminance unevenness peculiar to organic EL elements due to dark spots or the like is caused. Performance degradation is inevitable. As a result of intensive studies by the present inventors, the occurrence of dark spots that occur when a transparent electrode plate is formed using a transparent resin substrate, in addition to the initial surface flatness of the transparent resin substrate used. It has been elucidated that the water absorption property of the resin used and the water absorption property under heating have an important influence. When forming a metal oxide transparent electrode layer such as ITO on a transparent resin substrate, the steps of substrate cleaning-drying-deposition formation of metal oxide transparent electrode layer such as ITO-patterning by etching-cleaning-drying, etc. The substrate resin inevitably goes through the process of absorption-heat drying of a solvent or cleaning medium typified by (pure) water. In particular, during heat drying, if there is a large amount of moisture absorption, the release gives a fairly rapid stress to the resin substrate surface and the transparent electrode layer on the resin substrate surface. Deformation or cracking may occur, and direct local peeling of the transparent electrode layer after vapor deposition may occur. Further, even after the drying process, the water absorption moisture remains slightly in the transparent electrode plate in the product organic EL element, causing a larger volume of hydroxide due to corrosion of the metal oxide for forming the transparent electrode during long-term use. As a result, the electrode layer swells and cracks are generated. Therefore, the present inventors have extremely small water absorption (b) as a resin to be used in order to prevent the occurrence of dark spots in the organic EL element including the step of forming the metal oxide transparent electrode layer, Select a resin having a glass transition temperature (C) appropriately set in relation to the endothermic peak temperature accompanying water absorption and heating conditions in the oxide transparent electrode layer, and manufacture using the selected resin It was found that it is necessary to form a resin sheet or film having surface flatness (a) as good as possible by controlling the conditions, and it is desirable to use a thermoplastic resin substrate for that purpose. Thus, the present invention has been achieved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 are schematic cross-sectional views of an organic EL element having a relatively simple configuration according to an embodiment of the present invention.
[0013]
Referring to FIG. 1, the organic EL element according to this example has a laminated structure in which an organic light emitting layer 1 is held by a pair of electrode plates including a transparent electrode plate 2 and a back electrode 3 on the display surface side. A pair of moisture-proof films 4 and 4 are further laminated on both sides. In accordance with the present invention, the transparent electrode plate 2 on the display surface side is formed by forming a metal oxide transparent electrode layer 2b on a thermoplastic resin substrate 2a, and on the opposite side of the transparent electrode plate 2 is a metal as an opposing electrode. A back electrode 3 made of oxide or metal is provided. The laminated structure including the transparent electrode layer 2 and the back electrode 3 is further sealed by lamination of the moisture-proof film layer 4 or another moisture-proof layer 5 (FIG. 2) made of a metal oxide or the like. Here, the transparent electrode plate 2 and the back electrode 3 are provided with a lead wire connected to a power source 6 (direct current or alternating current) so that a voltage can be applied to the organic light emitting layer 1.
[0014]
According to the present invention, the transparent substrate 2a constituting the transparent electrode plate 2 on the display surface side is a thermoplastic resin substrate that satisfies the following requirements (A) to (C). (Note that the back electrode 3 may be a single-layer or multi-layer electrode of metal, or a laminate of a transparent electrode layer of metal or metal oxide and a non-transparent substrate. You can choose.)
(A) Surface flatness having a ten-point average roughness Rz according to JIS B0601 of 4 nm or less and a maximum height difference Ry of 20 nm or less,
(B) Low water absorption with a saturated water absorption of 0.02% by weight or less according to JIS K0068, and
(C) The difference ΔT (= Tmg−Twp) between the intermediate glass transition temperature Tmg according to JIS K7121 of the thermoplastic resin constituting the substrate and the endothermic peak temperature Twp accompanying the absorption of water absorption is 20 ° C. <ΔT <100 ° C.
[0015]
Hereinafter, the requirements (A) to (C) will be sequentially described.
[0016]
(B) Surface flatness
The thermoplastic resin substrate 2a has a ten-point average roughness Rz of 4 nm or less, preferably 2 nm or less according to JIS B0601 (reference length: 0.08 mm, evaluation length 0.04 mm); the maximum height difference Ry is 20 nm or less, Those having a thickness of 10 nm or less are preferably used. Specifically, the Rz and Ry values in this specification are based on measured values at normal temperature and normal pressure with an atomic force microscope (“SPI3800 / SPA300HV” manufactured by Seiko Denshi Co., Ltd.).
[0017]
When a thermoplastic resin substrate having a roughness with Rz exceeding 4 nm or Ry exceeding 20 nm, that is, with relatively poor surface flatness, dark spots are frequently generated, and the emission luminance as an organic EL element is small. Therefore, it becomes unsuitable as a product.
[0018]
The thermoplastic resin substrate 2a is not particularly limited as long as it has a thickness suitable for the production of an EL element, but in general, it can be appropriately selected from a range of about 5 to 300 μm in consideration of strength, flexibility and the like. The area is determined by the required display or light emission area, and the diagonal length is often about 20 mm to 2000 mm. However, improvement of the organic material constituting the organic light emitting layer 1 is expected to develop a larger area device. Has been. A substrate sheet having an area necessary for the element is generally prepared by appropriately cutting from a substrate sheet having a larger area.
[0019]
The thermoplastic resin sheet having the thickness as described above is generally formed by a solution casting (casting) method, a melt extrusion method, a cutting process from a thicker molded product, etc., but the solution casting method uses a solvent to be used. Due to the evaporation of the surface and the machining due to the limitation of the machining accuracy, roughening such that the maximum height difference Ry is 100 to 5000 nm is unavoidable, and the surface smoothness such as Rz ≦ 4 nm and Ry ≦ 20 nm is very much as described above. Cannot be expected. In order to obtain this surface flatness, it is preferable to use a melt extrusion method. That is, the resin is heated and melted with a single-screw or twin-screw extruder, and then this molten resin is led through a conduit to a flat die such as a T die or a coat hanger die, and a sheet or film is formed from the lip portion of the flat die. The molten resin is discharged and pulled out. The drawn molten resin comes into contact with the surface of the cast roll whose temperature is controlled and is cooled to form a solidified sheet or film. At this time, the molten resin is precisely controlled by controlling the conditions such as the temperature of the molten resin, the distribution amount of the molten resin in the width direction of the die, the speed and temperature of the cast roll, and the adhesion between the surface of the cast roll and the molten resin. It is preferable to use a thermoplastic resin sheet or film obtained by extrusion as a substrate. From this viewpoint, PCTFE (polychlorotrifluoroethylene), which is excellent in non-hygroscopicity (b) described later and is a typical material for moisture-proof films 4 and 5, has a thermal decomposition temperature and a melt extrusion temperature that are close to each other. Therefore, molding by the melt extrusion method is difficult, and film molding must be relied on a solution casting method or a cutting method, so that it is unsuitable as a transparent substrate material used for a transparent electrode plate.
[0020]
(B) Low water absorption
As the thermoplastic resin substrate 2a, one having a saturated water absorption rate (JIS K7209) of 0.02% by weight or less according to JIS K0068 (Karl Fischer coulometric titration method) is used. At the time of measurement, a sample piece obtained by cutting a film or sheet to be measured into a square with a side of 50 mm in accordance with JIS K7209 is dried in a thermostat kept at 50 ° C. for 24 hours, allowed to cool in a desiccator, and then 23 After standing in pure water maintained at a temperature of ± 2 ° C for 170 hours (extended from 24 hours according to JIS standards), the sample piece is taken out and dried by aeration at 60 ° C for 10 minutes to remove water adhering to the sample surface. The water content is titrated by Karl Fischer coulometric titration (JIS K0068) to determine the saturated water absorption. The numerical values described in the present specification are based on the measurement values obtained by a coulometric titration moisture measuring device “CA-06 type” manufactured by Mitsubishi Kasei Co., Ltd.
[0021]
When the saturated water absorption rate of the thermoplastic resin substrate 2a used exceeds 0.02% by weight, as described above, water is absorbed by contact with an aqueous medium in the formation process of the transparent electrode layer 2b, and subsequent drying is performed. It is difficult to suppress dark spots through the adverse effects of moisture release, the amount of moisture remaining in the electrode plate in the manufactured organic EL element, and the like. This characteristic is that in the above-mentioned required characteristics of the substrate, polyethylene terephthalate (saturated water absorption = 0.128% by weight) that must be satisfied simultaneously with the item (ii) surface flatness and the item (iii) suitable glass transition temperature is Saturated water absorption is large and inappropriate. Polyethylene naphthalate (saturated water absorption = 0.209% by weight) is also inappropriate for large saturated water absorption, and polypropylene (saturated water absorption = 0.010% by weight) is saturated water absorption. Although the rate is small, the surface flatness (ten-point average roughness Rz = 120 nm, maximum height difference Ry = 400 nm) is large and inappropriate. The saturated water absorption is particularly preferably 0.01% by weight or less, more preferably 0.005% by weight or less.
[0022]
(C) Appropriate glass transition temperature
The thermoplastic resin substrate 2a has a difference ΔT (= Tmg−Twp) of 20 ° C. <ΔT <100 between the intermediate glass transition temperature Tmg of the thermoplastic resin constituting the thermoplastic resin JIS K7121 and the endothermic peak temperature Twp accompanying water absorption release. It is necessary to satisfy the relationship of ° C. The midpoint glass transition temperature Tmg (JIS K7121) is drawn equidistant from both baselines based on the baseline before and after the transition process in the DSC (Differential Scanning Calorimetry) curve at a heating rate of 10 ° C / min. The temperature at the intersection of the intermediate line and the DSC curve is shown. Further, the endothermic peak temperature Twp accompanying water absorption was determined according to the crystal melting peak temperature measurement on the DSC curve at a heating rate of 10 ° C./min according to the transition heat measurement method defined in JIS K7121, except that the water absorption (probably An endothermic peak temperature in a temperature range of about 60 to 90 ° C. accompanying the separation of water in the adsorbed state as free water.
[0023]
When the temperature difference ΔT (= Tmg−Twp) is 100 ° C. or more, a fragile crack is likely to occur in the substrate when an impact change in the water absorption state is applied in the drying process, and light emission occurs over a long period of use of the product organic EL element. A non-light emitting portion due to a dark spot is generated on the surface, and it becomes difficult to maintain the initial luminance. On the other hand, if the temperature difference ΔT is 20 ° C. or less, the dehydration time in the drying process becomes long, which is not preferable in the manufacturing process, but also due to residual moisture on the substrate, the upper metal oxide transparent electrode layer It can cause deterioration. An acrylic thermosetting resin (ΔT = 12 ° C., Comparative Example 1 described later) is not preferable from this viewpoint. In addition, examples of the thermoplastic resin that is not preferable from this viewpoint include polystyrene, polyethylene terephthalate, and hard vinyl chloride resin.
[0024]
(D) The thermoplastic resin constituting the substrate 2a has a latent heat (heat of fusion, comparative calibration with an indium standard sample) measured by the DSC method at a heating rate of 10 ° C. in accordance with JIS K7122 and 2.1 J / g. It is preferable to exhibit the following substantially non-crystalline property. When the latent heat shows crystallinity exceeding 2.1 J / g, not only is it easy to roughen due to the formation of spherulites in the cooling process of the melt-extruded resin sheet, but an impact change in the water absorption state is added in the drying process. Due to the volume change, micro cracks that lead to the generation of dark spots are likely to occur.
[0025]
In order to understand the above characteristics (c) and (d), a graph showing a typical example of the endothermic behavior in the temperature rising process by DSC for a thermoplastic resin substrate is shown in FIG.
[0026]
Considering the ease of giving the required characteristics (i) to (d) above, In the present invention, As the thermoplastic resin substrate 2a, a cyclic olefin polymer (for example, those described in JP-A-11-216817 or JP-A-8-142263) Use In terms of composition and molecular weight, etc. to satisfy the output characteristics Consider In addition, in order to satisfy the item (b) surface flatness, the temperature of the molten resin described above, the distribution amount of the molten resin in the width direction of the flat die, the speed and temperature of the cast roll, the surface of the cast roll and the melt It is preferable to use a sheet or film having a thickness of 5 to 300 μm, preferably 10 to 200 μm, obtained by a T-die melt extrusion method under conditions in which adhesion to the resin is precisely controlled. In particular A cyclic olefin polymer having a very low saturated water absorption of about 0.001% by weight or less, particularly a copolymer of an α-olefin (including ethylene) and a cyclic olefin, and a cyclic olefin monomer that does not give a norbornane ring; It is preferable to use a melt-extruded sheet or film of a cyclic olefin copolymer, which is made of a copolymer with a cyclic olefin monomer that gives a norbornane ring, etc., and has improved amorphous and melt-extrusion properties.
[0027]
The transparent electrode plate (2) of the present invention is obtained by subjecting the thermoplastic resin substrate 2a obtained as described above to a pretreatment such as washing and drying with a medium such as acetone or pure water as necessary. On one surface, a metal oxide transparent electrode layer 2b having a thickness of 1 to 200 nm, preferably about 5 to 100 nm is formed by high frequency sputtering, DC sputtering, ECR (electron cyclotron resonance) plasma sputtering, vacuum deposition, ion plating, or the like. Can be obtained.
[0028]
Examples of the metal oxide constituting the transparent electrode layer 2b include ZnO and SnO. 2 , In 2 O Three Etc. are used, but IZO (zinc-doped indium oxide), ITO (tin-doped indium oxide), etc. are more preferable, and in particular, SnO of 1 to 50% by weight, more preferably about 5 to 15% by weight with respect to indium oxide. 2 An ITO film doped with is preferably used. The metal oxide layer 2b after the film formation may be prepared by using ions for grain adjustment or heat treatment, an etching solution such as dilute acid such as dilute hydrochloric acid or an iodate-ferric chloride mixture, or HBr, C as necessary. 2 H 2 , Cl 2 , SF 6 , CF Four Or CHF Three Patterning is performed through post-processing such as patterning (etching), resist removal, (water) cleaning, and drying using an etching gas such as. Both the transparent electrode plate 2 having the metal oxide transparent electrode layer 2b patterned in this way and the transparent electrode plate 2 having the transparent electrode layer 2b before patterning can be distributed as products, Of course, it is possible to continuously enter the manufacturing process of the subsequent organic EL element.
[0029]
The transparent electrode plate of the present invention is included in the embodiment of the organic EL device of FIGS. 1 and 2 described above, and as shown in FIG. 3, the metal oxide transparent electrode layer 2b is formed on one surface of the thermoplastic resin substrate 2a. May be a two-layer structure 2 in which an adhesive layer 2c is inserted between the thermoplastic resin substrate 2a and the transparent electrode layer 2b as shown in FIG. It can also be set as the laminated structure which improved the adhesiveness of 2b.
[0030]
Examples of the adhesive constituting the adhesive layer 2c include urethane, polyester, acrylic, hydrolyzable groups (alkoxy group, acetoxy group, halogen, etc.) and organic functional groups (amino group, methacryl group, vinyl group, epoxy). A silane coupling agent into which a group, a mercapto group, etc.) are introduced may be used. Further, the corona treatment may be performed in advance on the electrode layer forming side of the thermoplastic substrate as long as the surface property is not hindered. Even if such an adhesive layer 2c is inserted, organic substances can be produced through prevention of dark spots by using the thermoplastic resin substrate 2a satisfying the above characteristics (a) to (c) and (d). The reliability improvement effect of the EL element is not substantially impaired.
[0031]
Further, in order to further improve the durability of the finally obtained organic EL element, the transparent electrode plate of the present invention includes an EL element forming surface side of the substrate 2a, the side opposite to the EL element forming surface (for example, as shown in FIG. 5). It is also preferable to provide a moisture-proof layer 2d on both sides thereof to reduce the arrival of moisture to the organic light emitting layer 1 as much as possible. As the moisture-proof layer 2d, an arbitrary material that can prevent moisture permeation with a thin film is used, but it is usually formed of a metal or a metal compound alone or a composite film. For example, simple metals such as aluminum, titanium, chromium, nickel, aluminum oxide, silicon oxide, titanium oxide, ferrite, silver oxide, chromium oxide, antimony oxide, zinc oxide, molybdenum oxide, cobalt oxide, zirconium oxide, tungsten oxide, oxidation Metal oxides such as copper, nickel oxide, vanadium oxide, magnesium oxide, manganese oxide, lanthanum oxide, lead oxide, cadmium oxide, and bismuth oxide, or one or a combination of two or more of these metals and metal compounds are used. Particularly preferred is silicon oxide. The forming method is generally vapor deposition or sputtering. The thickness is 50 to 500 nm, and when the moisture resistance is increased, the transparency and coloring increase, so the thickness is selected within a range that does not hinder the light emitting performance of the EL element. Further, as the moisture-proof layer 2d, a moisture-proof film such as the metal, metal oxide or metal compound can be used alone or a resin film can be laminated on the surface thereof. This resin is not particularly limited, but polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, cycloolefin resin, polyethylene, polypropylene, styrene resin, polyamide, polyvinyl alcohol, polyvinyl acetate copolymer, polyurethane, Polyphenylene sulfide, polyether ether ketone, polyimide, polyether sulfide, polyoxyethylene, vinyl chloride resin, vinylidene chloride resin, vinyl fluoride resin, vinylidene fluoride resin, ethylene tetrafluoroethylene copolymer Fluorine-based resins such as acrylic acid-based copolymers, methacrylic acid-based copolymers, urea resins, and a mixture of two or more of these resins can be appropriately selected.
[0032]
The moisture-proof layer 2d may be a laminated structure, and the metal or metal oxide may be used alone or a resin film may be laminated on the surface thereof. A structure in which a layer of a hygroscopic resin such as polyvinyl alcohol is sandwiched between layers of the film is particularly preferable.
[0033]
In addition, in order to provide weather resistance and antifouling properties to the outside of the electrode surface or the moisture proof layer 2d, vinylidene fluoride resin, vinyl fluoride resin, tetrafluoroethylene resin, ethylene tetrafluoroethylene copolymer You may provide the resin layer which consists of single-piece | units or mixtures of 2 or more types of resin, such as fluorine-type resins, such as a coalescence, acrylic acid-type copolymer, methacrylic acid-type copolymer, polyethylene terephthalate, and vinyl chloride.
[0034]
These resins may contain 0.1 wt% to 30 wt% of an ultraviolet absorber, an ultraviolet shielding agent, a light stabilizer, a pigment, a dye, and an extender as necessary.
[0035]
The thickness of these resin layers is not particularly limited, but is often 5 μm to 200 μm.
[0036]
The back electrode 3 may be substantially the same as the structure of the transparent electrode plate 2 on the display surface side, or may be a single layer or a laminated structure of metal electrodes.
[0037]
The configuration of the organic light emitting layer 1 is not particularly different from that included in a conventional organic EL element. That is, various dyes such as metal complexes such as quinolinol derivatives, styrylbenzene compounds, distyrylpyrazine derivatives, polyphenyl compounds, naphthalimide derivatives, perylene derivatives, oxadiazole derivatives; benzothiazoles, benzimidazoles, benzoxazoles, etc. A single layer of an organic light-emitting material such as, or a multilayer structure provided with a hole transport layer on the anode side and / or an electron injection layer on the cathode side as necessary. You can also. The organic light emitting layer 1 is formed in such a single layer or multilayer structure as a whole in a thickness of, for example, 5 nm to 5000 nm.
[0038]
The organic EL element of FIG. 1 is obtained by sealing a laminated structure formed by sandwiching such an organic light emitting layer 1 with a pair of electrode plates 2 and 3 between a pair of moisture-proof films 4 and 4.
[0039]
As the moisture-proof films 4 and 4, a PCTFE (polychlorotrifluoroethylene) film is used, and (alternate) laminated multilayer films of hygroscopic or non-hygroscopic resin layers and inorganic oxide or metal vapor-deposited films ( PCT / JP98 / 01781 and Japanese Patent Application No. 11-127437) are also preferably used. The total thickness of these multilayer moisture-proof films is often about 30 to 1000 μm, particularly about 50 to 500 μm.
[0040]
In the organic EL element of FIG. 2, one of the back sides of the pair of moisture-proof films 4 and 4 in the example of FIG. 1 is made of another moisture-proof layer composed of the above-described metal oxide layer constituting the moisture-proof layer 2d (FIG. 5). The hygroscopic resin layer (water trapping layer) 7 is provided on the outside of the electrode plate 2 and the back electrode 3, respectively, and can pass through the moisture-proof film 4 or the moisture-proof layer 5. By capturing a small amount of water having a property and suppressing the permeation of moisture into the organic light emitting layer 1, a reduction in the life due to deterioration of the organic material constituting the organic light emitting layer 1 is suppressed. The other configuration is the same as that of FIG.
[0041]
The hygroscopic resin layer 7 is formed as a layer having a thickness of about 5 to 200 μm with a hygroscopic resin such as polyvinyl alcohol (partially saponified polyvinyl acetate) or nylon.
[0042]
In order to more effectively prevent the intrusion of moisture from the side of the element, it is changed to the moisture-proof layer 5 or in addition to this, an epoxy resin (layer) or acrylic extending from the back side of the element to the side. A cured product of a system ultraviolet curable resin (layer) may be provided.
[0043]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0044]
Example 1
Using a cyclic olefin resin (“ZEONOR” manufactured by Nippon Zeon Co., Ltd., hereinafter abbreviated as “COC resin”), the COC resin was melted by a single screw extruder having a shaft diameter of 50 mm and L / D = 26 set at 260 ° C. . Then, it was led to a T-die having a die lip width of 700 mm set at 260 ° C. via a conduit, and melt-discharged from the die lip. Next, the film was uniformly contacted and solidified with a cast roll set at a surface temperature of 150 ° C. at a constant speed to obtain a film having a thickness of 50 μm. By using this film as the substrate 2a, an organic EL element having a layer configuration generally shown in FIG. 2 was formed. However, in this organic EL element, the transparent electrode 2b and the back electrode 3 are formed in an orthogonal stripe shape, and the water-absorbing resin layer 7 on the back electrode 3 side is not provided.
[0045]
The COC resin substrate has a ten-point average roughness Rz of 1.5 nm and a maximum height difference Ry of 4.0 nm according to a surface roughness test (JIS B0601) conducted at room temperature / normal pressure using an atomic force microscope. It showed surface flatness. In addition, the saturated water absorption rate according to the Karl Fischer method (JISK0068) (JIS K7209, immersed in distilled water at 23 ° C. for 170 hours) is 0.001% by weight and exhibits a very good low hygroscopicity, and the temperature rising rate is 10 ° C./min. DSC measurement shows that the midpoint glass transition temperature Tmg = 166 ° C., the endothermic peak temperature Twp = 73 ° C. accompanying the release of water absorption, ΔT = Tmg−Twp = 93 ° C., and the crystal melting latent heat is less than 2.1 J / g. confirmed.
[0046]
The following steps (i) to (x) were sequentially performed on the above-mentioned COC resin substrate of about 8 cm × 8 cm square to form an organic EL element.
[0047]
(I) The resin substrate was washed at room temperature, first with acetone for 180 seconds, then with pure water for 180 seconds, then with acetone for 180 seconds, and (ii) dried at 90 ° C. for about 60 seconds with a far-infrared dryer. (Iii) Next, the substrate is placed in a commercially available DC magnetron sputtering apparatus, and the inside of the vacuum chamber is 1 × 10. -3 The pressure was reduced to Pa or lower, and the substrate was held at 90 ° C. for 10 minutes at a substrate temperature to further dry the substrate. (Iv) Thereafter, an ITO film having a thickness of 200 nm was formed on one surface of the substrate for the transparent electrode by DC magnetron sputtering. (V) Next, a photoresist (“OFPR” manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied onto the ITO film, and alignment exposure is performed through a quartz glass photomask (manufactured by Tokyo Ohka Kogyo Co., Ltd.). The resist is removed by developing at 10 ° C. in room temperature hydrochloric acid, followed by washing with pure water for 180 seconds, followed by washing with acetone for 180 seconds, and 10 pieces with a line width of 5 mm and a pitch of 8 mm. The substrate on which the striped ITO electrode was formed was heated and dried at 90 ° C. for 120 seconds with a far infrared heating device. (Vi) Next, this substrate is fixed to the substrate holder of the vacuum evaporation apparatus, and the inside of the tank is 1 × 10. -Four The pressure was reduced to Pa or lower, and the substrate was heated to 90 ° C. and held for 10 minutes. (Vii) Thereafter, an organic EL light-emitting layer made of an aluminum complex having a quinolyl derivative as a ligand was deposited to a thickness of 50 nm by vapor deposition. (Viii) Next, the substrate is transferred to a sputtering apparatus, and a metal mask having ten strip-shaped spaces with a width of 5 mm and a distance of 3 mm on an aluminum plate with a thickness of 1 mm is formed on the ITO electrode at a distance of 0.2 mm directly above the side surface of the organic EL light emitter. Installed perpendicularly to the pattern, facing the 200 nm thickness consisting of a strip-shaped counter electrode pattern perpendicular to the ITO film and having a width of 5 mm and an interval of 3 mm, using the mask as a target with a Mg / Ag alloy by DC sputtering. An electrode was formed. (Ix) Next, after the lead wires were taken out from each electrode, a silicon oxide film having a thickness of 200 nm was formed on the Mg / Ag alloy electrode by a sputtering apparatus to form a moisture-proof layer on the back surface. (X) Next, a two-layer film is formed by vapor-depositing a 50-nm-thick silicon oxide layer on a polyethylene terephthalate film having a thickness of 15 μm by a vacuum deposition method. It laminated | stacked on the resin substrate. Further, a hygroscopic film of polyvinyl alcohol having a thickness of 30 μm which was dried for 100 hours by a vacuum dryer at 60 ° C. was laminated thereon, and further a film of the above-mentioned silicon oxide-deposited polyethylene terephthalate was laminated thereon. All of these lamination methods used a dry lamination method. Thereby, an organic EL element of 8 cm × 8 cm square was formed.
[0048]
A DC voltage is applied between the counter electrodes of the formed organic EL element, and 10 mA / cm 2 The light was emitted at a current density of. When the initial light emission state was observed, no island-like dark spots that did not emit light were observed. Further, this device was allowed to emit light continuously for 100 hours in an atmosphere of 60 ° C. and 90%, and the subsequent dark spot and luminance reduction were measured. As a result, there were three dark spots including a non-pixel portion per 3 cm × 3 cm light emitting surface area, and the luminance maintenance rate was 85%.
[0049]
( Reference example 1 )
An organic EL element was formed in the same manner as in Example 1 except that a polycarbonate resin sheet having a smooth surface and a thickness of 75 μm (“Pure Ace” manufactured by Teijin Limited) was used as the resin substrate used.
[0050]
The substrate was measured in the same manner as in Example 1. As a result, the average roughness Rz = 0.35 nm, the maximum height difference 3.5 nm, the saturated water absorption = 0.016% by weight, the midpoint glass transition temperature Tmg = 152 ° C., the water absorption The transition peak temperature Twp = 75 ° C. and the latent heat = 2.1 J / g.
[0051]
A DC voltage is applied to the prepared organic EL element, and 10 mA / cm 2 The light was emitted at a current density of. When the initial light emission state was observed, no island-like dark spots that did not emit light were observed. Further, this device was allowed to emit light continuously for 100 hours in an atmosphere of 60 ° C. and 90%, and the subsequent dark spot and luminance reduction were measured. As a result, there were 5 dark spots on the 3 cm square light emitting surface, and the luminance maintenance rate was 78%.
[0052]
(Comparative Example 1)
An organic EL element was formed in the same manner as in Example 1 except that an acrylic resin cured sheet having a thickness of 80 μm (an ultraviolet cured product of 2-cyanohexyl acrylate) was used as the resin substrate used.
[0053]
The substrate was measured in the same manner as in Example 1. As a result, average roughness Rz = 10 nm, maximum height difference 60 nm, saturated water absorption = 0.32% by weight, midpoint glass transition temperature Tmg = 85 ° C., transition peak temperature due to water absorption. Twp = 73 ° C. and latent heat = 8 J / g.
[0054]
Next, a direct current voltage was applied to the organic EL device thus prepared, and 10 mA / cm. 2 The light was emitted at a current density of. When the initial light emission state was observed, 27 island-like dark spots that did not emit light were observed in 3 cm squares. Further, this device was allowed to emit light continuously for 100 hours in an atmosphere of 60 ° C. and 90%, and the subsequent dark spot and luminance reduction were measured. As a result, the dark spot spread over the entire surface of the 3 cm square light emitting surface, and no light emission was observed after 100 hours.
[0055]
(Comparative Example 2)
An organic EL element was formed in the same manner as in Example 1 except that a polypropylene resin having a thickness of 50 μm (“Nobrene” manufactured by Sumitomo Chemical Co., Ltd.) was used as the resin substrate used.
[0056]
The substrate was measured in the same manner as in Example 1. As a result, average roughness Rz = 120 nm, maximum height difference 400 nm, saturated water absorption = 0.010% by weight, midpoint glass transition temperature Tmg = −3 ° C., transition peak due to water absorption. Temperature Twp = 65 ° C., latent heat = 25 J / g.
[0057]
When the EL element manufacturing process is applied to this resin substrate in the same manner as in Example 1, the glass transition point is low in the sputtering and vapor deposition process, so that the substrate is easily deformed by heating the substrate and vapor deposition heat, and a uniform EL element is manufactured. The yield to do was bad.
[0058]
A DC voltage is applied to the manufactured organic EL element, and 10 mA / cm. 2 The light was emitted at a current density of. When the initial light emission state was observed, 53 island-like dark spots that did not emit light were observed in 3 cm squares. Further, this device was allowed to emit light continuously for 100 hours in an atmosphere of 60 ° C. and 90%, and then a dark spot and a decrease in luminance were measured. As a result, dark spots spread over the entire surface, and no light emission was observed after 100 hours.
[0059]
(Comparative Example 3)
An organic EL device was formed in the same manner as in Example 1 except that a 50 μm thick polyethylene terephthalate film (“Tetron Film” manufactured by Teijin Limited) was used as the resin substrate.
[0060]
The substrate was measured in the same manner as in Example 1. As a result, average roughness Rz = 12 nm, maximum height difference 80 nm, saturated water absorption = 0.125% by weight, midpoint glass transition temperature Tmg = 76 ° C., transition peak temperature due to water absorption. Twp = 74 ° C. and latent heat = 14 J / g.
[0061]
A DC voltage is applied to the prepared organic EL element, and 10 mA / cm 2 The light was emitted at a current density of. When the initial light emission state was observed, 35 island-like dark spots that did not emit light were observed in 3 cm squares. Further, this device was allowed to emit light continuously for 100 hours in an atmosphere of 60 ° C. and 90%, and the subsequent dark spot and luminance reduction were measured. As a result, dark spots spread over the entire surface, and no light emission was observed after 100 hours.
[0062]
(Comparative Example 4)
An organic EL device was formed in the same manner as in Example 1 except that a film with a smooth surface of 50 μm thick polyethylene naphthalate resin (“Teonex film” manufactured by Teijin Ltd.) was used as the resin substrate.
[0063]
The substrate was measured in the same manner as in Example 1. As a result, the average roughness Rz = 1.8 nm, the maximum height difference 9 nm, the saturated water absorption rate = 0.209% by weight, the midpoint glass transition temperature Tmg = 118 ° C., and the transition due to water absorption. Peak temperature Twp = 77 ° C. and latent heat = 18 J / g.
[0064]
A DC voltage is applied to the prepared organic EL element, and 10 mA / cm 2 The light was emitted at a current density of. When the initial light emission state was observed, 46 island-like dark spots that did not emit light were observed in 3 cm square. Further, this device was allowed to emit light continuously for 100 hours in an atmosphere of 60 ° C. and 90%, and the subsequent dark spot and luminance reduction were measured. As a result, dark spots spread over the entire surface, and no light emission was observed after 100 hours.
[0065]
Separately, for the purpose of process control, after each step (iii) and (v) of Examples 1-2 and Comparative Examples 1-4, a test piece was cut out from the taken out element intermediate, and JIS K0068 (Curl The moisture content was measured by the Fischer coulometric titration method. The results are summarized in Table 1 below.
[0066]
[Table 1]
Figure 0004531913
[0067]
【The invention's effect】
As described above, according to the present invention, by using a thermoplastic resin substrate having strictly defined smoothness, water absorption and thermal characteristics as a substrate, an organic EL element having excellent durability and reliability, and its transparent An electrode plate is provided.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an organic EL element according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view of an organic EL element according to another example of the present invention.
FIG. 3 is a schematic cross-sectional view of one embodiment of the transparent electrode plate of the present invention.
FIG. 4 is a schematic cross-sectional view of another embodiment of the transparent electrode plate of the present invention.
FIG. 5 is a schematic cross-sectional view of another embodiment of the transparent electrode plate of the present invention.
FIG. 6 is a graph showing a typical example of the endothermic behavior of a resin substrate at a temperature rising stage by DSC.
[Explanation of symbols]
1: Organic light emitting layer
2: Transparent electrode plate
2a: Thermoplastic resin substrate
2b: Transparent electrode layer
2c: Adhesive layer
2d: moisture barrier
3: Back electrode
4: Moisture-proof film
5: Other moisture-proof layer
6: Power supply
7: Water-absorbing resin layer

Claims (3)

熱可塑性樹脂基板上に、金属酸化物透明電極層を有してなり、該熱可塑性樹脂基板は、JIS K7122による結晶融解に伴なう潜熱が2.1J/g以下の非晶性樹脂である環状オレフィン系重合体からなり、以下の(イ)〜(ハ)の要件を満たすことを特徴とする有機EL素子用透明電極板:
(イ)JIS B0601による十点平均粗さRzが4nm以下、且つ最大高低差Ryが20nm以下、である表面平坦性、
(ロ)カールフィッシャー法(JIS K0068)による飽和吸水率(JIS K7209)が0.02重量%以下、である低吸水性、および
(ハ)基板を構成する熱可塑性樹脂のJIS K7121による中間点ガラス転移温度Tmgと吸水遊離に伴う吸熱ピーク温度Twpとの差ΔT(=Tmg−Twp)が20℃<ΔT<100℃。
It has a metal oxide transparent electrode layer on a thermoplastic resin substrate, and the thermoplastic resin substrate is an amorphous resin having a latent heat accompanying crystal melting according to JIS K7122 of 2.1 J / g or less. A transparent electrode plate for an organic EL device , comprising a cyclic olefin polymer and satisfying the following requirements (a) to (c):
(A) Surface flatness having a ten-point average roughness Rz according to JIS B0601 of 4 nm or less and a maximum height difference Ry of 20 nm or less,
(B) Low water absorption with saturated water absorption (JIS K7209) of 0.02% by weight or less according to Karl Fischer method (JIS K0068), and (c) Intermediate glass according to JIS K7121 of thermoplastic resin constituting the substrate The difference ΔT (= Tmg−Twp) between the transition temperature Tmg and the endothermic peak temperature Twp associated with water absorption is 20 ° C. <ΔT <100 ° C.
透明電極板と背面電極とからなる両電極の間に有機発光層を配した積層構造を有し、該透明電極板が請求項1に記載の透明電極板からなる有機EL素子。The organic EL element which has a laminated structure which has arrange | positioned the organic light emitting layer between both electrodes which consist of a transparent electrode plate and a back electrode, and this transparent electrode plate consists of a transparent electrode plate of Claim 1 . 更に吸湿性樹脂層および防湿性フィルム層を積層してなる請求項の有機EL素子。Furthermore, the organic EL element of Claim 2 formed by laminating | stacking a hygroscopic resin layer and a moisture-proof film layer.
JP2000063009A 2000-03-08 2000-03-08 Transparent electrode plate for organic EL element and organic EL element Expired - Fee Related JP4531913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000063009A JP4531913B2 (en) 2000-03-08 2000-03-08 Transparent electrode plate for organic EL element and organic EL element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000063009A JP4531913B2 (en) 2000-03-08 2000-03-08 Transparent electrode plate for organic EL element and organic EL element

Publications (2)

Publication Number Publication Date
JP2001250678A JP2001250678A (en) 2001-09-14
JP4531913B2 true JP4531913B2 (en) 2010-08-25

Family

ID=18582941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000063009A Expired - Fee Related JP4531913B2 (en) 2000-03-08 2000-03-08 Transparent electrode plate for organic EL element and organic EL element

Country Status (1)

Country Link
JP (1) JP4531913B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797285B2 (en) * 2001-06-18 2011-10-19 凸版印刷株式会社 Organic electroluminescence device and method for producing the same
JP2003103718A (en) * 2001-09-28 2003-04-09 Kuraray Co Ltd Multilayered structure and method for using the same
JP4534425B2 (en) * 2003-03-24 2010-09-01 日本ゼオン株式会社 Raw material for long polarizing plate protective film and method for producing the same
JP4983021B2 (en) 2003-09-08 2012-07-25 住友金属鉱山株式会社 Transparent conductive laminate, organic EL element using the same, and method for producing the same
JP5021299B2 (en) 2004-03-02 2012-09-05 出光興産株式会社 Organic electroluminescence device
JP5432501B2 (en) * 2008-05-13 2014-03-05 日東電工株式会社 Transparent conductive film and method for producing the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250990A (en) * 1985-04-30 1986-11-08 株式会社東芝 Manufacture of electric field light emitting element
JPH0263736A (en) * 1988-08-30 1990-03-05 Toyobo Co Ltd Transparent conductive film
JPH06228230A (en) * 1993-02-02 1994-08-16 Toagosei Chem Ind Co Ltd Polymerizable composition
JPH06238853A (en) * 1993-02-19 1994-08-30 Toray Ind Inc Resin plate with transparent film and electroconductive film
JPH07153570A (en) * 1993-11-26 1995-06-16 Seikosha Co Ltd El element
JPH08132539A (en) * 1994-11-09 1996-05-28 Mitsui Petrochem Ind Ltd Production of cyclic olefinic resin sheet or film having mirror surface
JPH08142263A (en) * 1994-11-14 1996-06-04 Mitsui Petrochem Ind Ltd Metal/cyclic olefinic resin laminate and production thereof
JPH08236271A (en) * 1995-03-01 1996-09-13 Mitsubishi Chem Corp Organic electroluminescent element and its manufacture
JPH09129376A (en) * 1995-10-30 1997-05-16 Idemitsu Kosan Co Ltd Organic el element
JPH10144469A (en) * 1996-09-12 1998-05-29 Mitsubishi Chem Corp Organic electroluminescent element and manufacture thereof
WO1998046424A1 (en) * 1997-04-17 1998-10-22 Kureha Kagaku Kogyo K.K. Moisture-proofing film and electroluminescent device
JPH11216817A (en) * 1998-01-30 1999-08-10 Nippon Zeon Co Ltd Composite film
JPH11329718A (en) * 1998-05-18 1999-11-30 Nec Corp Method for sealing organic el element
JP2000273618A (en) * 1999-03-26 2000-10-03 Asahi Glass Co Ltd Production of transparent electrically conductive thin film

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250990A (en) * 1985-04-30 1986-11-08 株式会社東芝 Manufacture of electric field light emitting element
JPH0263736A (en) * 1988-08-30 1990-03-05 Toyobo Co Ltd Transparent conductive film
JPH06228230A (en) * 1993-02-02 1994-08-16 Toagosei Chem Ind Co Ltd Polymerizable composition
JPH06238853A (en) * 1993-02-19 1994-08-30 Toray Ind Inc Resin plate with transparent film and electroconductive film
JPH07153570A (en) * 1993-11-26 1995-06-16 Seikosha Co Ltd El element
JPH08132539A (en) * 1994-11-09 1996-05-28 Mitsui Petrochem Ind Ltd Production of cyclic olefinic resin sheet or film having mirror surface
JPH08142263A (en) * 1994-11-14 1996-06-04 Mitsui Petrochem Ind Ltd Metal/cyclic olefinic resin laminate and production thereof
JPH08236271A (en) * 1995-03-01 1996-09-13 Mitsubishi Chem Corp Organic electroluminescent element and its manufacture
JPH09129376A (en) * 1995-10-30 1997-05-16 Idemitsu Kosan Co Ltd Organic el element
JPH10144469A (en) * 1996-09-12 1998-05-29 Mitsubishi Chem Corp Organic electroluminescent element and manufacture thereof
WO1998046424A1 (en) * 1997-04-17 1998-10-22 Kureha Kagaku Kogyo K.K. Moisture-proofing film and electroluminescent device
JPH11216817A (en) * 1998-01-30 1999-08-10 Nippon Zeon Co Ltd Composite film
JPH11329718A (en) * 1998-05-18 1999-11-30 Nec Corp Method for sealing organic el element
JP2000273618A (en) * 1999-03-26 2000-10-03 Asahi Glass Co Ltd Production of transparent electrically conductive thin film

Also Published As

Publication number Publication date
JP2001250678A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
TWI462358B (en) Protected polymeric film
EP1943881B1 (en) Method of manufacturing device having flexible substrate
US10720598B2 (en) Organic light-emitting apparatus and method of manufacturing the same
TWI496123B (en) Substrate section for flexible display device, method of manufacturing the substrate section and method of manuf acturing the display device
KR20020011392A (en) Flexible Organic Electronic Device with Improved Resistance to Oxygen and Moisture Degradation
KR20060109928A (en) Segmented organic light emitting device
US10333100B2 (en) Organic electroluminescent device
WO2010067721A1 (en) Method for manufacturing organic electroluminescent element, and organic electroluminescent element
JP2008135318A (en) Organic electroluminescent element, and its manufacturing method
WO2016009958A1 (en) Organic electroluminescent element
JPH11224781A (en) Organic el display and its manufacture
JP4531913B2 (en) Transparent electrode plate for organic EL element and organic EL element
JP2003203771A (en) Organic light emitting element, display device, and illumination device
JP4325249B2 (en) Method for manufacturing organic electroluminescence element
JP2015191787A (en) Substrate for organic electroluminescent element, organic electroluminescent element, illuminating device, and display device
US20060152136A1 (en) Transparent conductive laminate and display
JP3268819B2 (en) Organic electroluminescent device
JP2008117735A (en) Optical component and organic el (electroluminescence) display element using it
US20060082286A1 (en) Organic electroluminescent device
JP2004342407A (en) Organic electroluminescent element and its manufacturing method
JP5620217B2 (en) Manufacturing method of organic EL device
JP2008108545A (en) Sealing substrate, its manufacturing method and manufacturing method for electroluminescent element panel
JP4538948B2 (en) Method for manufacturing organic electroluminescence display element
JP2011210614A (en) Organic el element and method of manufacturing the same
KR101114350B1 (en) Encapsulating structure of organic lihgt emitting diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees