JP4530895B2 - Solid phase carrier for peptide immobilization and method of using the same - Google Patents
Solid phase carrier for peptide immobilization and method of using the same Download PDFInfo
- Publication number
- JP4530895B2 JP4530895B2 JP2005095367A JP2005095367A JP4530895B2 JP 4530895 B2 JP4530895 B2 JP 4530895B2 JP 2005095367 A JP2005095367 A JP 2005095367A JP 2005095367 A JP2005095367 A JP 2005095367A JP 4530895 B2 JP4530895 B2 JP 4530895B2
- Authority
- JP
- Japan
- Prior art keywords
- peptide
- solid phase
- phase carrier
- immobilizing
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Peptides Or Proteins (AREA)
Description
本発明は、ペプチドを固相表面に配置・固定する為の固相担体およびその使用方法に関する。 The present invention relates to a solid phase carrier for arranging and fixing a peptide on the solid phase surface and a method for using the same.
遺伝子活性の評価や、薬物効果の分子レベルでの生理的プロセスを解読するための試みは、伝統的にゲノミクスに焦点が当てられてきたが、プロテオミクスは、細胞の生物学的機能についてより詳細な情報を提供する。プロテオミクスは、遺伝子レベルというよりもむしろ、蛋白質レベルでの発現を検出しそして定量することによる、遺伝子活性の定性的かつ定量的な測定を含む。また、蛋白質の翻訳後修飾、蛋白質間の相互作用など遺伝子にコードされない事象の研究を含む。 Attempts to assess gene activity and decipher the molecular processes of drug effects at the molecular level have traditionally focused on genomics, but proteomics is more in-depth about the biological functions of cells. Provide information. Proteomics involves the qualitative and quantitative measurement of gene activity by detecting and quantifying expression at the protein level, rather than at the gene level. It also includes studies of events that are not encoded by genes such as post-translational modifications of proteins and interactions between proteins.
「生命の設計図」であるゲノムの構造が明らかにされ、膨大なゲノム情報の入手が可能となった今日、プロテオミクス研究はますます盛んになっており、それに伴って生理活性物質検出の迅速高効率(ハイスループット)化が求められている。この目的の分子アレイとして、DNAチップが開発され、実用化されつつある。一方、生体機能において最も複雑で多様性の高い蛋白質の検出に関してはプロテインチップが提唱され、近年研究が進められている。プロテインチップとは、蛋白質、またはそれを捕捉する分子をチップ(微小な基板)表面に固定化したものを総称する。 Now that the structure of the genome, which is the “blueprint of life”, has been clarified and a large amount of genome information has become available, proteomics research is becoming increasingly popular, and as a result, rapid detection of bioactive substances There is a need for higher efficiency (high throughput). A DNA chip has been developed and put into practical use as a molecular array for this purpose. On the other hand, protein chips have been proposed for the detection of the most complex and highly diverse proteins in biological functions, and research has been promoted in recent years. A protein chip is a generic term for a protein or a molecule that captures it immobilized on a chip (micro substrate) surface.
しかし、現状のプロテインチップは一般にDNAチップの延長線上に位置付けられて開発がなされているため、ガラス基板上に蛋白質、またはそれを捕捉する分子をチップ表面に固定化する検討がなされている(例えば特許文献1参照)。 However, since the current protein chip is generally developed by being positioned on the extension line of the DNA chip, studies have been made to immobilize a protein or a molecule for capturing the protein on a glass substrate on the surface of the chip (for example, Patent Document 1).
一方で、高機能性分子であるタンパク質を、その機能を保持させたまま効率良く基材表面に固定化し、更にその特異的な相互作用を定量的に検出するということは、克服すべき課題も多く非常に困難を極める。その為、タンパク質の機能をミメティックできる、比較的安定な低分子としてペプチドを利用する場面が増えつつある。ペプチドはコンビナトリアルに合成する技術が確立されてきており、ペプチドアレイはハイスループットな生理活性物質検出という目的に合った手法であると言える。 On the other hand, immobilizing proteins, which are highly functional molecules, efficiently on the substrate surface while maintaining their functions, and quantitatively detecting their specific interactions also has problems to be overcome. Many are extremely difficult. For this reason, there are an increasing number of situations where peptides are used as relatively stable small molecules that can mimic protein functions. Techniques for synthesizing peptides in a combinatorial manner have been established, and it can be said that a peptide array is a technique suitable for the purpose of high-throughput bioactive substance detection.
蛋白質やペプチド等の検体の検出および定量について、ペプチドを固相担体に固定化する場合について考えると、ELISA様の抗原抗体反応によって検出や定量を行う方法が考えられる。すなわち、固相表面にペプチドを結合させ、次いで固定化したペプチドを認識して結合する抗体(一次抗体)を反応させ、更に一次抗体を認識して結合する標識抗体(二次抗体)を反応させ、この標識物を測定することで蛋白やペプチドを定量的に測定する方法である。
この手法を用いる事で、抗体が認識するエピトープを探索したり、特定のタンパク質に結合する抗体をスクリーニングする、などといった作業がハイスループットに行うことが可能となる。(例えば非特許文献1)
Regarding the detection and quantification of analytes such as proteins and peptides, considering the case where peptides are immobilized on a solid support, a method of detecting and quantifying by an ELISA-like antigen-antibody reaction can be considered. That is, the peptide is bound to the solid surface, and then the antibody that recognizes and binds to the immobilized peptide (primary antibody) is reacted, and further, the labeled antibody that recognizes and binds to the primary antibody (secondary antibody) is reacted. This is a method for quantitatively measuring proteins and peptides by measuring the label.
By using this technique, it is possible to search for an epitope recognized by an antibody or screen an antibody that binds to a specific protein, etc., with high throughput. (For example, Non-Patent Document 1)
またペプチドはタンパク質の断片である為、あるタンパク質に作用する酵素が認識して反応する部位のペプチドを用いる事で、酵素とタンパク質の反応をミメティックする事が可能となる。すなわち、種々のペプチドから作製したペプチドアレイを用いて、特定の酵素の基質や阻害剤のスクリーニングを行うことが可能となる。(例えば非特許文献1) Moreover, since a peptide is a fragment of a protein, it is possible to mimic the reaction between an enzyme and a protein by using a peptide at a site where an enzyme acting on a protein recognizes and reacts. That is, it is possible to screen for a substrate or an inhibitor of a specific enzyme using a peptide array prepared from various peptides. (For example, Non-Patent Document 1)
非常に有用であるペプチドアレイだが、ペプチドは低分子であるがゆえに、タンパク質のように担体表面に物理化学吸着させることは難しい。よって、ペプチドを固定化する為に、担体表面に反応性官能基を導入し、共有結合によってペプチドを固定化する必要がある。これまでは、数段階の処理工程を経てガラス表面に官能基を導入していた。その為ペプチドアレイの作製に時間と手間がかかり、便利性や汎用性に欠けるといった欠点があった。 Although it is a very useful peptide array, since peptides are small molecules, it is difficult to physicochemically adsorb them on a carrier surface like proteins. Therefore, in order to immobilize the peptide, it is necessary to introduce a reactive functional group on the surface of the carrier and immobilize the peptide by a covalent bond. Until now, functional groups have been introduced into the glass surface through several stages of processing. For this reason, it takes time and labor to produce a peptide array, and there are drawbacks such as lack of convenience and versatility.
また、ペプチドを基板上に固定化した後、該表面上で他のタンパク質(ELISA法の場合は一次抗体に相当)と反応させ、更に、標識されたタンパク質(同じく二次抗体に相当)を反応させ最終的に検出機等で検出する場合、ペプチドが固定されていない部分にペプチド以外のタンパク質、すなわち、抗体や標識されたタンパク質が固定されると、検出時にノイズとなり信号対雑音比(S/N比)を低下させる原因となり、検出精度を低下させる(例えば非特許文献2参照)。 In addition, after immobilizing the peptide on the substrate, it reacts with other proteins (corresponding to the primary antibody in the case of ELISA) on the surface, and further reacts with the labeled protein (also corresponding to the secondary antibody). Finally, when detecting with a detector or the like, if a protein other than a peptide, that is, an antibody or a labeled protein is fixed to a portion where the peptide is not fixed, noise is detected at the time of detection, and the signal to noise ratio (S / N ratio) is reduced, and detection accuracy is reduced (see, for example, Non-Patent Document 2).
このため、抗体や標識されたタンパク質の非特異吸着を防止するため、ブロッキング剤のコーティングが必要となるが、これらの非特異吸着防止能は十分でない。また、ペプチドを固定化した後にブロッキング剤をコーティングするため、固定化したペプチドの上にコーティングされてしまう場合があり、一次抗体と反応しにくいという問題があった。このため、ペプチド固定化後のブロッキング工程がなく、かつ生理活性物質の非特異吸着量の少ないバイオチップが求められている。 For this reason, in order to prevent nonspecific adsorption | suction of an antibody or a labeled protein, the coating of a blocking agent is needed, but these nonspecific adsorption | suction prevention ability is not enough. In addition, since the blocking agent is coated after immobilizing the peptide, it may be coated on the immobilized peptide, resulting in a problem that it is difficult to react with the primary antibody. For this reason, there is a need for a biochip that does not have a blocking step after peptide immobilization and has a small amount of non-specific adsorption of physiologically active substances.
一方、すべてのタンパク質(プロテオーム)の変動をプロファイリングする技術面では、超微量のタンパク質や数ナノリットルというような超微量の溶液の操作を可能とするマイクロフルイディクスの技術や、チップ上での前処理、分離、検出を目標とする「ラボ・オン・チップ」の概念が重要となってくる。この技術においては、サンプルであるタンパク質などの生理活性物質が、流路内に固定化されたキャプチャーと特異的に反応し、かつキャプチャー部以外の流路の内壁への非特異吸着を抑制することが必要となる。
本発明の目的は、簡便で短時間評価が可能なペプチド固定化用の固相担体及び固相担体の使用方法を提供することである。 An object of the present invention is to provide a solid phase carrier for immobilizing peptides and a method for using the solid phase carrier, which are simple and can be evaluated in a short time.
本発明は以下のとおりである。
(1)固相表面にペプチドを固定化し、固定化した該ペプチドと特異的に反応する生理活性物質を作用させ、該ペプチドと特異的に反応した生理活性物質、又は特異的に反応した該ペプチドを蛍光、発光又は発色を用いて検出する際に用いる固相担体であって、固相材質がプラスチックからなり、かつ固相表面にホスホリルコリン基を有する単量体及び活性エステル基を有する単量体を共重合して得られる高分子物質を有することを特徴とするペプチド固定化用固相担体。
(2)固相の形態が、平板状基板、マイクロウェルプレート、微細流路を有する基板、又はマイクロビーズである(1)記載のペプチド固定化用固相担体。
(3)前記ホスホリルコリン基が2−メタクリロイルオキシエチルホスホリルコリン基である(1)又は(2)記載のペプチド固定化用固相担体。
(4)前記活性エステル基がp − ニトロフェニルエステル基又はN − ヒドロキシスクシンイミドエステル基である(1)〜(3)いずれか記載のペプチド固定化用固相担体。
(5)前記高分子物質が更にブチルメタクリレート基を含む単量体との共重合体である(1)記載のペプチド固定化用固相担体。
(6)前記プラスチックがポリカーボネート、ポリエチレン、ポリプロピレン、ポリスチレン、飽和環状ポリオレフィン、ポリペンテン、ポリアミド、又はそれらの共重合体よりなる群より選択された少なくとも1 種である(1)〜(5) いずれか記載のペプチド固定化用固相担体。
(7)(1)〜(6) いずれか記載のペプチド固定化用固相担体にペプチドを固定化した固相担体。
(8)(1)〜(6)いずれか記載のペプチド固定化用固相担体の使用方法であって、
(a)固相表面にペプチドを固定化する工程、
(b)該ペプチドと特異的に反応する生理活性物質を作用させる工程、及び(c)該ペプチドと特異的に反応した生理活性物質又は特異的に反応した該ペプチドを蛍光、発光又は発色を用いて検出する工程、を含むペプチド固定化用固相担体の使用方法。
(9)前記ペプチドと特異的に反応する生理活性物質が蛋白質である(8)記載のペプチド固定化用固相担体の使用方法。
The present invention is as follows.
(1) Immobilizing a peptide on a solid surface, allowing a physiologically active substance that reacts specifically with the immobilized peptide to act, and reacting specifically with the peptide, or specifically reacting with the peptide Is a solid phase carrier used when detecting a substance using fluorescence, luminescence or color development, wherein the solid phase material is made of plastic, and the monomer having a phosphorylcholine group on the solid phase surface and the monomer having an active ester group A solid phase carrier for immobilizing a peptide, comprising a polymer substance obtained by copolymerization of
(2) The solid phase carrier for immobilizing a peptide according to (1), wherein the solid phase is a flat substrate, a microwell plate, a substrate having a fine channel, or microbeads.
(3) The solid phase carrier for immobilizing a peptide according to (1) or (2), wherein the phosphorylcholine group is a 2-methacryloyloxyethyl phosphorylcholine group.
(4) The solid phase carrier for peptide immobilization according to any one of (1) to (3), wherein the active ester group is a p-nitrophenyl ester group or an N-hydroxysuccinimide ester group.
( 5 ) The solid phase carrier for immobilizing a peptide according to ( 1 ), wherein the polymer substance is a copolymer with a monomer further containing a butyl methacrylate group.
( 6 ) Any one of (1) to ( 5 ), wherein the plastic is at least one selected from the group consisting of polycarbonate, polyethylene, polypropylene, polystyrene, saturated cyclic polyolefin, polypentene, polyamide, or a copolymer thereof. Solid phase carrier for immobilizing peptides.
( 7 ) A solid phase carrier in which a peptide is immobilized on the solid phase carrier for peptide immobilization according to any one of (1) to ( 6 ).
( 8 ) A method for using the solid phase carrier for immobilizing a peptide according to any one of (1) to ( 6 ),
(A) a step of immobilizing the peptide on the solid surface,
(B) a step of allowing a physiologically active substance that specifically reacts with the peptide to act, and (c) a physiologically active substance that specifically reacts with the peptide or the specifically reacted peptide that uses fluorescence, luminescence, or color development. Using the solid phase carrier for immobilizing a peptide, comprising the step of detecting by the method.
( 9 ) The method for using a solid phase carrier for immobilizing a peptide according to ( 8 ), wherein the physiologically active substance that specifically reacts with the peptide is a protein.
本発明の固相担体によれば、ペプチドを効率よく簡単に固相担体に結合する事が可能となり、また、タンパク質や蛍光色素の非特異吸着を効果的に抑制する事から、簡便かつハイスループットなペプチドアレイやペプチドプレートの評価、ペプチド抗体のスクリーニング等が可能となる。 According to the solid phase carrier of the present invention, peptides can be efficiently and easily bound to the solid phase carrier, and non-specific adsorption of proteins and fluorescent dyes can be effectively suppressed. Evaluation of peptide arrays and peptide plates, screening of peptide antibodies, and the like are possible.
本発明の担体は、固相表面にホスホリルコリン基及び活性エステル基を有する高分子物質を有することを特徴とする。ホスホリルコリン基と活性エステル基とを有する高分子物質は、タンパク質や蛍光物質の非特異的吸着を抑制する性質とペプチドを固定化する性質とを併せ持つポリマーである。ホスホリルコリン基を有するポリマーは、生体膜(リン脂質二重層膜)類似の構造を有しているポリマーであって、生理活性物質の吸着を抑制する効果を有する(例えばIshihara K, Tsuji T, Kurosaki T, Nakabayashi N, Journal of Biomedical Materials Research, 28(2), pp.225-232, (1994)4など)。また、活性エステルはペプチドを固定化する役割を果たす。上記ポリマーの特性により、固相担体表面への生理活性物質や蛍光物質の非特異的吸着を効果的に抑制する事が可能となり、その結果、固相担体表面に固定化したペプチドと特異的に反応した生理活性物質のみを捕獲する事が可能となる。 The carrier of the present invention is characterized by having a polymer substance having a phosphorylcholine group and an active ester group on the solid surface. A polymer substance having a phosphorylcholine group and an active ester group is a polymer having both the property of suppressing nonspecific adsorption of proteins and fluorescent materials and the property of immobilizing peptides. A polymer having a phosphorylcholine group is a polymer having a structure similar to a biological membrane (phospholipid bilayer membrane), and has an effect of suppressing adsorption of a physiologically active substance (for example, Ishihara K, Tsuji T, Kurosaki T Nakabayashi N, Journal of Biomedical Materials Research, 28 (2), pp.225-232, (1994) 4). The active ester plays a role of immobilizing the peptide. Due to the characteristics of the above polymer, it is possible to effectively suppress non-specific adsorption of physiologically active substances and fluorescent substances on the surface of the solid phase carrier. As a result, the peptide immobilized on the surface of the solid phase carrier is specifically inhibited. Only the reacted physiologically active substance can be captured.
本発明に使用するホスホリルコリン基としては、例えば2−メタクリロイルオキシエチルホスホリルコリン、2−メタクリロイルオキシエトキシエチルホスホリルコリン、6−メタクリロイルオキシヘキシルホスホリルコリン、10−メタクリロイルオキシエトキシノニルホスホリルコリン、アリルホスホリルコリン、ブテニルホスホリルコリン、ヘキセニルホスホリルコリン、オクテニルホスホリルコリン、デセニルホスホリルコリン等を挙げられるが、2−メタクリロイルオキシエチルホスホリルコリンがより好ましい。 Examples of the phosphorylcholine group used in the present invention include 2-methacryloyloxyethyl phosphorylcholine, 2-methacryloyloxyethoxyethylphosphorylcholine, 6-methacryloyloxyhexylphosphorylcholine, 10-methacryloyloxyethoxynonylphosphorylcholine, allylphosphorylcholine, butenylphosphorylcholine, hexenylphosphorylcholine. Octenyl phosphorylcholine, decenyl phosphorylcholine and the like, and 2-methacryloyloxyethyl phosphorylcholine is more preferable.
本発明に使用する活性エステル基としては、例えばp−ニトロフェニルエステル基、N−ヒドロキシスクシンイミドエステル基、コハク酸イミドエステル基、フタル酸イミドエステル基、5−ノルボルネン−2,3−ジカルボキシイミドエステル基、等が好ましく、p−ニトロフェニルエステル基又はN−ヒドロキシスクシンイミドエステル基がより好ましい。
本発明に使用する高分子物質は、ホスホリルコリン基を有する単量体及び活性エステル基を有する単量体を共重合して得られる高分子物質であることが好ましい。更にホスホリルコリン基及び活性エステル基以外に他の基を含んでもよく、ブチルメタクリレート基を含む単量体との共重合体が好ましい。
Examples of the active ester group used in the present invention include p-nitrophenyl ester group, N-hydroxysuccinimide ester group, succinimide ester group, phthalimide ester group, 5-norbornene-2,3-dicarboximide ester Group, etc. are preferable, and p-nitrophenyl ester group or N-hydroxysuccinimide ester group is more preferable.
The polymer substance used in the present invention is preferably a polymer substance obtained by copolymerizing a monomer having a phosphorylcholine group and a monomer having an active ester group. Furthermore, in addition to the phosphorylcholine group and the active ester group, other groups may be contained, and a copolymer with a monomer containing a butyl methacrylate group is preferred.
(固相担体の素材)
本発明の固相担体は、固相材質がプラスチックであることを特徴とする。
プラスチックとしては、熱可塑性樹脂、熱硬化性樹脂を用いることができるが、熱可塑性樹脂の方が製造効率の観点から好ましい。熱可塑性樹脂としては、蛍光発生量の少ないものが好ましく、例えばポリエチレンやポリプロピレン等の直鎖状ポリオレフィン、ポリカーボネート、ポリスチレン、ポリアミド、環状ポリオレフィン、含フッ素樹脂等が挙げられる。耐熱性、耐薬品性、低蛍光性、成形性に特に優れる環状ポリオレフィンを用いることがより好ましい。ここで環状ポリオレフィンとは、環状オレフィン構造を有する重合体単独または環状オレフィンとα―オレフィンとの共重合体を水素添加した飽和重合体をさす。
(Material of solid support)
The solid phase carrier of the present invention is characterized in that the solid phase material is plastic.
As the plastic, a thermoplastic resin or a thermosetting resin can be used, but the thermoplastic resin is preferable from the viewpoint of production efficiency. As the thermoplastic resin, those that generate a small amount of fluorescence are preferable, and examples thereof include linear polyolefins such as polyethylene and polypropylene, polycarbonates, polystyrenes, polyamides, cyclic polyolefins, and fluorine-containing resins. It is more preferable to use a cyclic polyolefin that is particularly excellent in heat resistance, chemical resistance, low fluorescence, and moldability. Here, the cyclic polyolefin refers to a saturated polymer obtained by hydrogenating a polymer having a cyclic olefin structure or a copolymer of a cyclic olefin and an α-olefin.
前者の例としては、例えばノルボルネン、ジシクロペンタジエン、テトラシクロドデセンに代表されるノルボルネン系モノマー、および、これらのアルキル置換体を開環重合して得られる重合体を水素添加して製造される飽和重合体である。 Examples of the former are produced by hydrogenating norbornene monomers represented by, for example, norbornene, dicyclopentadiene, and tetracyclododecene, and polymers obtained by ring-opening polymerization of these alkyl-substituted products. It is a saturated polymer.
後者の共重合体はエチレンやプロピレン、イソプロピル、1−ブテン、3−メチル−1−ブテン、1−ペンテン、3−メチル−1−ペンテン、1−ヘキセン、1−オクテン等のα―オレフィンと環状オレフィン系モノマーのランダム共重合体を水素添加することにより製造される飽和重合体である。共重合体では、エチレンとの共重合体が最も好ましい。
これら樹脂は単独で用いてもよく、2種類またはそれ以上の共重合体あるいは混合物であってもよい。また、樹脂成分以外に繊維状、球状その他の形状を有する無機物あるいは有機物充填材、または各種添加剤成分を含んでもよい。
The latter copolymer is cyclic with α-olefins such as ethylene, propylene, isopropyl, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 1-hexene and 1-octene. It is a saturated polymer produced by hydrogenating a random copolymer of olefinic monomers. As the copolymer, a copolymer with ethylene is most preferable.
These resins may be used alone, or two or more copolymers or a mixture may be used. Further, in addition to the resin component, an inorganic or organic filler having a fibrous shape, a spherical shape, or other shapes, or various additive components may be included.
(固相担体の形状)
固相担体の形状としては、平板状基板、マイクロウェルプレート、マイクロビーズ、微細流路形状を有した基板等が挙げられる。
マイクロビーズ表面にペプチドを固定化させた担体の場合、基板やプレートに固定化させた場合に比べペプチドを固定化できる表面積が大幅に増加するため、結果的に多くの検出目的となるタンパク質を捕獲でき、S/N比の増加が可能となる。
また微細流路内にペプチドを固定化した場合、ペプチドが検出目的となるタンパク質を捕獲できる頻度が相対的に増加するため、反応時間の短縮ができる。
さらには、ペプチドを固定化したマイクロビーズを微細流路内に封入した場合、前記の利点の両方が達成できる。
(Shape of solid support)
Examples of the shape of the solid phase carrier include a flat substrate, a microwell plate, microbeads, and a substrate having a fine channel shape.
In the case of a carrier with a peptide immobilized on the microbead surface, the surface area on which the peptide can be immobilized is greatly increased compared to the case of immobilizing the peptide on a substrate or plate, resulting in the capture of many proteins for detection purposes. It is possible to increase the S / N ratio.
Further, when the peptide is immobilized in the fine channel, the frequency at which the peptide can capture the protein to be detected increases relatively, so that the reaction time can be shortened.
Furthermore, when the microbeads on which the peptide is immobilized are encapsulated in a fine channel, both of the above-mentioned advantages can be achieved.
(ペプチドの固定化)
本発明においてペプチドを固相上に固定化する際には、ペプチドを溶解又は分散させる液体を付着する方法が好ましい。ペプチドを溶解又は分散した液体のpHは8〜10であることが好ましく、pH9.0〜9.5がより好ましい。下限値未満だと固定化反応の効率が著しく低下し、上限値を超えるとペプチドが変性する可能性が高くなる。
ペプチド付着後は、固相表面のホスホリルコリン基の特性により、界面活性剤を含む水や緩衝液で洗浄することで、ペプチドと反応しうるタンパク質や蛍光物質の固相表面への非特異吸着を抑制することが可能となる。しかし、タンパク質や蛍光物質に固相表面の活性エステルと反応しうる官能基が多く含まれる場合、ペプチドを固定化した以外の固相表面に残存する活性エステルの不活性化処理をアルカリ化合物、あるいは一級アミノ基を有する化合物で行うことが好ましい。
アルカリ化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、リン酸水素二ナトリウム、水酸化カルシウム、水酸化マグネシウム、ホウ酸ナトリウム、水酸化リチウム、リン酸カリウムなどを好ましく用いることができる。
一級アミノ基を有する化合物としては、グリシン、9−アミノアクアジン、アミノブタノール、4−アミノ酪酸、アミノカプリル酸、アミノエタノール、5−アミノ−2,3−ジヒドロ−1,4−ペンタノール、アミノエタンチオール塩酸塩、アミノエタンチオール硫酸、2−(2−アミノエチルアミノ)エタノール、リン酸二水素2−アミノエチル、硫酸水素アミノエチル、4−(2−アミノエチル)モルホリン、5−アミノフルオレセイン、6−アミノヘキサン酸、アミノヘキシルセルロース、p−アミノ馬尿酸、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール、5−アミノイソフタル酸、アミノメタン、アミノフェノール、2−アミノオクタン、2−アミノオクタン酸、1−アミノ−2−プロパノール、3−アミノ−1−プロパノール、3−アミノプロペン、3−アミノプロピオニトリル、アミノピリジン、11−アミノウンデカン酸、アミノサリチル酸、アミノキノリン、4−アミノフタロニトリル、3−アミノフタルイミド、p−アミノプロピオフェノン、アミノフェニル酢酸、アミノナフタレンなどを好ましく用いることができ、水酸化ナトリウム、アミノエタノール、グリシンがより好ましい。
(Immobilization of peptides)
In the present invention, when a peptide is immobilized on a solid phase, a method of attaching a liquid for dissolving or dispersing the peptide is preferable. The pH of the liquid in which the peptide is dissolved or dispersed is preferably 8 to 10, more preferably pH 9.0 to 9.5. If it is less than the lower limit, the efficiency of the immobilization reaction is remarkably reduced, and if it exceeds the upper limit, the possibility that the peptide is denatured increases.
After the peptide is attached, due to the properties of the phosphorylcholine group on the surface of the solid phase, washing with water or a buffer containing a surfactant suppresses nonspecific adsorption of proteins and fluorescent substances that can react with the peptide to the solid surface. It becomes possible to do. However, if the protein or fluorescent substance contains many functional groups that can react with the active ester on the solid phase surface, the inactive treatment of the active ester remaining on the solid phase surface other than the peptide immobilized is treated with an alkali compound or It is preferable to carry out with a compound having a primary amino group.
As the alkali compound, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, disodium hydrogen phosphate, calcium hydroxide, magnesium hydroxide, sodium borate, lithium hydroxide, potassium phosphate, etc. are preferably used. Can do.
Examples of the compound having a primary amino group include glycine, 9-amino aquadine, aminobutanol, 4-aminobutyric acid, aminocaprylic acid, aminoethanol, 5-amino-2,3-dihydro-1,4-pentanol, amino Ethanethiol hydrochloride, aminoethanethiolsulfuric acid, 2- (2-aminoethylamino) ethanol, 2-aminoethyl dihydrogen phosphate, aminoethyl hydrogensulfate, 4- (2-aminoethyl) morpholine, 5-aminofluorescein, 6-aminohexanoic acid, aminohexyl cellulose, p-aminohippuric acid, 2-amino-2-hydroxymethyl-1,3-propanediol, 5-aminoisophthalic acid, aminomethane, aminophenol, 2-aminooctane, 2 -Aminooctanoic acid, 1-amino-2-propanol, 3-amino- -Propanol, 3-aminopropene, 3-aminopropionitrile, aminopyridine, 11-aminoundecanoic acid, aminosalicylic acid, aminoquinoline, 4-aminophthalonitrile, 3-aminophthalimide, p-aminopropiophenone, aminophenyl Acetic acid, aminonaphthalene and the like can be preferably used, and sodium hydroxide, aminoethanol and glycine are more preferable.
(固定化するペプチドの配列)
活性エステル基との反応性を高めるため、固定化するペプチドにはシステイン残基やリジン残基を導入することが好ましい。システインやリジン残基の導入位置はペプチド鎖末端であることが望ましい。
(Sequence of peptide to be immobilized)
In order to increase the reactivity with the active ester group, it is preferable to introduce a cysteine residue or a lysine residue into the peptide to be immobilized. The introduction position of cysteine or lysine residue is preferably at the end of the peptide chain.
以下、実施例を挙げて本発明を更に具体的に説明するが、この発明の技術的範囲はこれら実施例に限定されるものではない。
(実施例)
ポリスチレン樹脂製の96ウェルマイクロプレート(住友ベークライト製 ELISA用プレートS MS-8496F)の各ウェルを2−メタクリロイルオキシエチルホスホリルコリン−ブチルメタクリレート−p−ニトロフェニルカルボニルオキシエチルメタクリレート共重合体の0.3重量%エタノール溶液150mlに浸漬することにより、基材表面にホスホリルコリン基を有するポリマーを導入した。
次に、リン酸緩衝液を用いて20mg/mlに希釈し、pHが9.0に調整されたソマトスタチンペプチド100mlを添加したウェルと、リン酸緩衝液100mlのみを添加したウェルを準備し、37℃で2時間静置してペプチド固定化させた後に、0.05%Tween20含有のPBSで洗浄を行った。その後、一次抗体である市販のウサギ抗ソマトスタチン抗体(biomeda社製 416M)および市販のビオチン標識ヒツジ抗ウサギIgG抗体(Serotec社製 2AB02B)を用いて抗原抗体反応を起こさせ、更に市販のペルオキシダーゼ標識アビジン(ICN社製 55898)を用いて酵素標識した。その後、ペルオキシダーゼ用発色キット(住友ベークライト社製 ML−1120T)を用いて、過酸化水素を基質とする発色反応を行い、発色基質として用いたTMBZ(3,3‘,5,5’テトラメチルベンチジン)の吸光度を測定した。その際のシグナル値、ブランク値、およびS/N比(Signal/noise ratio)を計算した。結果を表1に示す。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.
(Example)
Each well of a polystyrene resin 96-well microplate (Sumitomo Bakelite ELISA plate S MS-8496F) was treated with 0.3 weight of 2-methacryloyloxyethyl phosphorylcholine-butyl methacrylate-p-nitrophenylcarbonyloxyethyl methacrylate copolymer. A polymer having phosphorylcholine groups was introduced onto the surface of the substrate by immersing in 150 ml of a% ethanol solution.
Next, a well added with 100 ml of somatostatin peptide diluted to 20 mg / ml using a phosphate buffer and adjusted to pH 9.0 and a well added with only 100 ml of phosphate buffer were prepared. After allowing to stand at 2 ° C. for 2 hours to immobilize the peptide, it was washed with PBS containing 0.05% Tween20. Thereafter, an antigen-antibody reaction was caused by using a commercially available rabbit anti-somatostatin antibody (416M manufactured by biomeda) and a commercially available biotin-labeled sheep anti-rabbit IgG antibody (2AB02B manufactured by Serotec), which are primary antibodies, and further commercially available peroxidase-labeled avidin. (An ICN 55898) was used for enzyme labeling. Then, using a color kit for peroxidase (ML-1120T manufactured by Sumitomo Bakelite Co., Ltd.), a color reaction using hydrogen peroxide as a substrate was performed, and TMBZ (3,3 ′, 5,5 ′ tetramethyl bench used as a color substrate was used. The absorbance of gin) was measured. The signal value, blank value, and S / N ratio (Signal / noise ratio) at that time were calculated. The results are shown in Table 1.
(比較例)
表面にカルボキシル基が直接結合した、ポリスチレン樹脂製の96ウェルマイクロプレート(住友ベークライト製 ELISA用プレートカルボ MS-8796F)をペプチド固定化用基材として用いた。
PBS(pH5.8)で10mg/mlに調製したWSC(1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩)100mlを各ウェルに添加し、37℃で2時間静置した。反応後、PBS(pH5.8)で洗浄し、PBS(pH5.8)で20mg/mlに希釈したソマトスタチンペプチド100mlと、PBS(pH5.8)100mlのみを添加したウェルを準備し、37℃で2時間反応させた後に、0.05%Tween20含有のPBSで洗浄を行った。
ペプチドと反応させるタンパク質が基材表面へ非特異吸着するのを抑制する為、ブロッキング剤として5%スキムミルク溶液300mlを各ウェルに添加し、室温で2時間静置した後、0.05%Tween20含有のPBSで洗浄を行った。
その後、実施例と同様に、市販のウサギ抗ソマトスタチン抗体(biomeda社製 416M)および市販のビオチン標識ヒツジ抗ウサギIgG抗体(Serotec社製 2AB02B)を用いて抗原抗体反応を起こさせ、更にペルオキシダーゼ標識アビジン(ICN社製 55898)を用いて酵素標識した。その後、ペルオキシダーゼ用発色キット(住友ベークライト社製 ML−1120T)を用いて、過酸化水素を基質とする発色反応を行い、発色基質として用いたTMBZ(3,3‘,5,5’テトラメチルベンチジン)の吸光度を測定した。その際のシグナル値、ブランク値、およびS/N比(Signal/noise ratio)を計算した。結果を表1に示す。
(Comparative example)
A 96-well microplate made of polystyrene resin having a carboxyl group directly bonded to its surface (Sumitomo Bakelite ELISA plate carbo MS-8796F) was used as a substrate for peptide immobilization.
100 ml of WSC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride) prepared to 10 mg / ml with PBS (pH 5.8) was added to each well and allowed to stand at 37 ° C. for 2 hours. After the reaction, the wells were prepared by washing with PBS (pH 5.8) and adding 100 ml of somatostatin peptide diluted to 20 mg / ml with PBS (pH 5.8) and 100 ml of PBS (pH 5.8) at 37 ° C. After reacting for 2 hours, washing was performed with PBS containing 0.05% Tween20.
In order to suppress non-specific adsorption of the protein to be reacted with the peptide to the substrate surface, 300 ml of 5% skim milk solution was added to each well as a blocking agent, allowed to stand at room temperature for 2 hours, and then containing 0.05% Tween 20 Washed with PBS.
Thereafter, in the same manner as in Examples, an antigen-antibody reaction was caused by using a commercially available rabbit anti-somatostatin antibody (biomeda 416M) and a commercially available biotin-labeled sheep anti-rabbit IgG antibody (Serotec 2AB02B), and further peroxidase-labeled avidin. (An ICN 55898) was used for enzyme labeling. Then, using a color kit for peroxidase (ML-1120T manufactured by Sumitomo Bakelite Co., Ltd.), a color reaction using hydrogen peroxide as a substrate was performed, and TMBZ (3,3 ′, 5,5 ′ tetramethyl bench used as a color substrate was used. The absorbance of gin) was measured. The signal value, blank value, and S / N ratio (Signal / noise ratio) at that time were calculated. The results are shown in Table 1.
使用した試薬の希釈倍率(濃度)は以下のとおりである。
ウサギ抗ソマトスタチン抗体(10mg/ml): 250倍希釈で使用
ビオチン標識ヒツジ抗ウサギIgG抗体(1mg/ml):5000倍希釈で使用
ペルオキシダーゼ標識アビジン(5mg):1000倍希釈で使用
The dilution ratio (concentration) of the used reagent is as follows.
Rabbit anti-somatostatin antibody (10 mg / ml): used at 250-fold dilution Biotin-labeled sheep anti-rabbit IgG antibody (1 mg / ml): used at 5000-fold dilution Peroxidase-labeled avidin (5 mg): used at 1000-fold dilution
実施例および比較例における吸光度の測定には、TECAN社製SPECTRAFLUORを用い、測定波長450nm、参照波長620nmで測定した。
実施例は、シグナル値は比較例に比べて高く、ブランク値は比較例に比べて低かった。SN比に関しても、実施例は比較例に比べて高く、高感度でのペプチドの検出が可能であった。更に実施例は、基材表面の活性化やタンパク質の非特異吸着を防ぐ為の操作などは一切不要であり、比較例に比べて操作が簡便であり、評価時間も短縮された。
The absorbance in Examples and Comparative Examples was measured using a SPECTRAFLUOR manufactured by TECAN at a measurement wavelength of 450 nm and a reference wavelength of 620 nm.
In the example, the signal value was higher than that of the comparative example, and the blank value was lower than that of the comparative example. Regarding the S / N ratio, the Examples were higher than the Comparative Examples, and the peptides could be detected with high sensitivity. Furthermore, the examples do not require any operations for activating the surface of the base material or preventing nonspecific adsorption of proteins, and the operations are simpler than the comparative examples, and the evaluation time is shortened.
本発明のペプチド固定化用固相担体を用いることで、ブロッキング剤をコーティングすることなしに、ペプチドを固相担体の任意の位置に固定化し、それ以外の部分への不要な生理活性物質や蛍光物質の吸着および結合を抑制することでき、高感度でハイスループットなペプチドアレイやペプチドプレートの評価が可能となる。また形状の自由度も高く、マイクロビーズやマイクロフルイディクスを含む各種バイオチップの検出方法に適用できる。 By using the solid phase carrier for immobilizing a peptide of the present invention, the peptide can be immobilized at an arbitrary position of the solid phase carrier without coating with a blocking agent, and unnecessary physiologically active substances and fluorescence to other portions can be immobilized. Adsorption and binding of substances can be suppressed, and high-sensitivity and high-throughput peptide arrays and peptide plates can be evaluated. Moreover, it has a high degree of freedom in shape, and can be applied to various biochip detection methods including microbeads and microfluidics.
Claims (9)
( a ) 固相表面にペプチドを固定化する工程、
( b ) 該ペプチドと特異的に反応する生理活性物質を作用させる工程、及び( c ) 該ペプチドと特異的に反応した生理活性物質又は特異的に反応した該ペプチドを蛍光、発光又は発色を用いて検出する工程、を含むペプチド固定化用固相担体の使用方法。 A method for using the solid phase carrier for immobilizing a peptide according to any one of claims 1 to 6 ,
(A) a step of immobilizing the peptide on the solid phase surface;
(B) a step of causing a physiologically active substance that specifically reacts with the peptide to act; and (c) a physiologically active substance that specifically reacts with the peptide or the peptide that specifically reacts with fluorescence, luminescence, or color development. Using the solid phase carrier for immobilizing a peptide, comprising the step of detecting by the method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005095367A JP4530895B2 (en) | 2005-03-29 | 2005-03-29 | Solid phase carrier for peptide immobilization and method of using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005095367A JP4530895B2 (en) | 2005-03-29 | 2005-03-29 | Solid phase carrier for peptide immobilization and method of using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006275769A JP2006275769A (en) | 2006-10-12 |
JP4530895B2 true JP4530895B2 (en) | 2010-08-25 |
Family
ID=37210690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005095367A Expired - Fee Related JP4530895B2 (en) | 2005-03-29 | 2005-03-29 | Solid phase carrier for peptide immobilization and method of using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4530895B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9168532B2 (en) | 2013-01-24 | 2015-10-27 | Sabic Global Technologies B.V. | Microwell plate |
US9180456B2 (en) | 2013-01-24 | 2015-11-10 | Sabic Global Technologies B.V. | Microwell plate |
US9186674B2 (en) | 2013-01-24 | 2015-11-17 | Sabic Global Technologies B.V. | Polycarbonate microfluidic articles |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008232899A (en) * | 2007-03-22 | 2008-10-02 | Sumitomo Bakelite Co Ltd | Substrate and its usage |
EP3560949A4 (en) | 2016-12-22 | 2020-10-21 | Zeon Corporation | Oligopeptide search method, oligopeptide, modified peptide, and immunoassay method |
CA3198897A1 (en) * | 2019-12-13 | 2021-03-19 | Autonomous Medical Devices Inc. | Apparatus and method for point-of-care, rapid, field-deployable diagnostic testing of covid-19, viruses, antibodies and markers |
WO2023013640A1 (en) * | 2021-08-02 | 2023-02-09 | Spiber株式会社 | Porous body and method for producing same |
CN117769616A (en) * | 2021-08-02 | 2024-03-26 | 丝芭博株式会社 | Synthetic leather and method for producing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003075448A (en) * | 2001-09-03 | 2003-03-12 | Fuji Photo Film Co Ltd | Surface for biosensor |
JP2004340722A (en) * | 2003-05-15 | 2004-12-02 | Fujirebio Inc | Polyamino acid carrier |
JP2005037331A (en) * | 2003-07-18 | 2005-02-10 | Sumitomo Bakelite Co Ltd | Substrate for detecting substance derived from organism and its manufacturing method |
JP2006184015A (en) * | 2004-12-24 | 2006-07-13 | Sumitomo Bakelite Co Ltd | Biochip and substrate therefor |
-
2005
- 2005-03-29 JP JP2005095367A patent/JP4530895B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003075448A (en) * | 2001-09-03 | 2003-03-12 | Fuji Photo Film Co Ltd | Surface for biosensor |
JP2004340722A (en) * | 2003-05-15 | 2004-12-02 | Fujirebio Inc | Polyamino acid carrier |
JP2005037331A (en) * | 2003-07-18 | 2005-02-10 | Sumitomo Bakelite Co Ltd | Substrate for detecting substance derived from organism and its manufacturing method |
JP2006184015A (en) * | 2004-12-24 | 2006-07-13 | Sumitomo Bakelite Co Ltd | Biochip and substrate therefor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9168532B2 (en) | 2013-01-24 | 2015-10-27 | Sabic Global Technologies B.V. | Microwell plate |
US9180456B2 (en) | 2013-01-24 | 2015-11-10 | Sabic Global Technologies B.V. | Microwell plate |
US9186674B2 (en) | 2013-01-24 | 2015-11-17 | Sabic Global Technologies B.V. | Polycarbonate microfluidic articles |
Also Published As
Publication number | Publication date |
---|---|
JP2006275769A (en) | 2006-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4530895B2 (en) | Solid phase carrier for peptide immobilization and method of using the same | |
JP5552474B2 (en) | Polymer compound for medical material and biochip substrate using the polymer compound | |
Sola et al. | Synthesis of clickable coating polymers by postpolymerization modification: applications in microarray technology | |
GB2422335A (en) | Biochip | |
JP4434971B2 (en) | Microparticles for capture beads and capture beads and biochips using the same | |
ES2377349T3 (en) | Surface modification | |
JP2010117189A (en) | Substrate for immobilizing physiological active substance | |
JP2007285835A (en) | Plate for bioplate, manufacturing method therefor and the bioplate | |
JP4534817B2 (en) | Protein detection method and peptide detection method | |
JP4706533B2 (en) | Solid phase carrier for immobilizing physiologically active substance and method of using the same | |
JP2005037331A (en) | Substrate for detecting substance derived from organism and its manufacturing method | |
JP5614179B2 (en) | Polymer compound for medical material and biochip substrate using the polymer compound | |
JP4862412B2 (en) | Biochip manufacturing method | |
JP2006084393A (en) | Biochip | |
JP2008215894A (en) | Detection method of protein and detecting method of peptide | |
JP2013148484A (en) | Manufacturing method of biochip, and biochip | |
JP4347211B2 (en) | Biochip substrate and biochip | |
JP4353091B2 (en) | Protein and peptide detection method | |
JP2014224710A (en) | Immunoassay carrier having fine rugged surface | |
JP2005069788A (en) | Method for detecting phosphorylated protein | |
JP2020112486A (en) | Detection method of composite body, and carrier and detection kit to be used in the method | |
JP4353073B2 (en) | Biochip and manufacturing method thereof | |
JP4706502B2 (en) | Method for producing solid phase carrier | |
JP4921088B2 (en) | Analytical device manufacturing method and coating composition | |
JP2005030913A (en) | Biochip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20091215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100608 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100608 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4530895 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140618 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |