JP4353091B2 - Protein and peptide detection method - Google Patents

Protein and peptide detection method Download PDF

Info

Publication number
JP4353091B2
JP4353091B2 JP2004361677A JP2004361677A JP4353091B2 JP 4353091 B2 JP4353091 B2 JP 4353091B2 JP 2004361677 A JP2004361677 A JP 2004361677A JP 2004361677 A JP2004361677 A JP 2004361677A JP 4353091 B2 JP4353091 B2 JP 4353091B2
Authority
JP
Japan
Prior art keywords
protein
detecting
substrate
peptide
peptide according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004361677A
Other languages
Japanese (ja)
Other versions
JP2006170717A (en
Inventor
渉 高田
兼久 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004361677A priority Critical patent/JP4353091B2/en
Publication of JP2006170717A publication Critical patent/JP2006170717A/en
Application granted granted Critical
Publication of JP4353091B2 publication Critical patent/JP4353091B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、特異的に蛋白質又はペプチドを捕捉する物質を用いて、標識化された蛋白質又はペプチドを捕捉する検出方法に関するものである。   The present invention relates to a detection method for capturing a labeled protein or peptide using a substance that specifically captures the protein or peptide.

遺伝子活性の評価や、薬物効果の分子レベルでの生理的プロセスを解読するための試みは、伝統的にゲノミクスに焦点が当てられてきたが、プロテオミクスは、細胞の生物学的機能についてより詳細な情報を提供する。プロテオミクスは、遺伝子レベルというよりもむしろ、蛋白質レベルでの発現を検出しそして定量することによる、遺伝子活性の定性的かつ定量的な測定を含む。また、蛋白質の翻訳後修飾、蛋白質間の相互作用など遺伝子にコードされない事象の研究を含む。   Attempts to decipher the genetic activity and the molecular processes of drug effects at the molecular level have traditionally focused on genomics, but proteomics is more detailed about the biological functions of cells. Provide information. Proteomics involves the qualitative and quantitative measurement of gene activity by detecting and quantifying expression at the protein level, rather than at the gene level. It also includes studies of events that are not encoded by genes such as post-translational modifications of proteins and interactions between proteins.

「生命の設計図」であるゲノムの構造が明らかにされ、膨大なゲノム情報の入手が可能となった今日、プロテオミクス研究はますます盛んになっており、それに伴って生理活性物質検出の迅速高効率(ハイスループット)化が求められている。この目的の分子アレイとして、DNAチップが開発され、実用化されつつある。一方、生体機能において最も複雑で多様性の高い蛋白質の検出に関してはプロテインチップが提唱され、近年研究が進められている。プロテインチップとは、蛋白質、またはそれを捕捉する分子をチップ(微小な基板)表面に固定化したものを総称する。   Now that the structure of the genome, which is the “blueprint of life”, has been clarified and a large amount of genome information has become available, proteomics research has become increasingly popular, and as a result, rapid detection of bioactive substances has been accelerated. There is a need for higher efficiency (high throughput). A DNA chip has been developed and put into practical use as a molecular array for this purpose. On the other hand, protein chips have been proposed for the detection of the most complex and highly diverse proteins in biological functions, and research has been promoted in recent years. A protein chip is a generic term for a protein or a molecule that captures it immobilized on a chip (micro substrate) surface.

しかし、現状のプロテインチップは一般にDNAチップの延長線上に位置付けられて開発がなされているため、ガラス基板上に蛋白質、またはそれを捕捉する分子をチップ表面に固定化する検討がなされている(例えば特許文献1参照)。   However, since the current protein chip is generally developed on the extension line of the DNA chip, studies have been made to immobilize a protein or a molecule for capturing the protein on the glass substrate on the surface of the chip (for example, Patent Document 1).

蛋白質等の検体の検出および定量において一般的に用いられている方法にサンドイッチ法がある。この方法は、固相に抗体(一次抗体)を結合させ、不溶化した抗体に標的となる蛋白をトラップさせ、次いで標的蛋白の別のエピトープを認識して結合する標識抗体(二次抗体)を反応させて、この標識物を測定することで蛋白を定量的に測定する方法である(例えば非特許文献1参照)。しかしこの方法では、例えばプロテインチップのように、一度に大量種の蛋白を検出しようとした場合、各々の標的蛋白に対して互いに競合しない複数種の抗体が必要となるため、条件の最適化は解決すべき多くの問題を含んでいる。   There is a sandwich method as a method generally used in detection and quantification of specimens such as proteins. In this method, an antibody (primary antibody) is bound to a solid phase, a target protein is trapped by an insolubilized antibody, and then a labeled antibody (secondary antibody) that recognizes and binds to another epitope of the target protein is reacted. Thus, the protein is quantitatively measured by measuring the label (see, for example, Non-Patent Document 1). However, this method requires multiple types of antibodies that do not compete with each other for each target protein when detecting a large amount of proteins at once, such as a protein chip. It contains many problems to be solved.

また、蛋白質を捕捉する分子(以下、捕捉分子と略す)を基板上に固定化した後、例えばサンドイッチ法のように該表面上で他の蛋白質(抗原抗体反応の場合、抗原に相当)と反応させ、更に、標識された蛋白質を反応させ最終的に検出機等で検出する場合、捕捉分子が固定されていない部分に該分子以外の蛋白質、すなわち、抗原や標識された蛋白質が固定されると、検出時にノイズとなり信号対雑音比(S/N比)を低下させる原因となり、検出精度を低下させる(例えば非特許文献2参照)。   In addition, after immobilizing a protein-capturing molecule (hereinafter abbreviated as a capturing molecule) on a substrate, it reacts with another protein (corresponding to an antigen in the case of an antigen-antibody reaction) on the surface as in the sandwich method, for example. In addition, when a labeled protein is reacted and finally detected by a detector or the like, a protein other than the molecule, that is, an antigen or a labeled protein is immobilized on a portion where the capture molecule is not immobilized. , It becomes noise at the time of detection, causing a reduction in the signal-to-noise ratio (S / N ratio), and lowering the detection accuracy (see Non-Patent Document 2, for example).

このため通常のサンドイッチ法では、一次抗体を固定化した後に抗原および二次抗体の非特異吸着を防止するため、吸着防止剤のコーティングが行われるが、これらの非特異吸着防止能は十分でない。また、一次抗体を固定化した後に吸着防止剤をコーティングするため、固定化した蛋白質の上にコーティングされてしまう場合があり、二次抗体と反応できないという問題があった。このため、一次抗体固定化後の吸着防止剤コーティング工程がなく、かつ生理活性物質の非特異吸着量の少ないバイオチップが求められている。   For this reason, in the usual sandwich method, after the primary antibody is immobilized, in order to prevent nonspecific adsorption of the antigen and the secondary antibody, coating with an adsorption inhibitor is performed, but these nonspecific adsorption preventing ability is not sufficient. In addition, since the adsorption inhibitor is coated after immobilizing the primary antibody, it may be coated on the immobilized protein, and there is a problem that it cannot react with the secondary antibody. Therefore, there is a need for a biochip that does not have an adsorption inhibitor coating step after immobilization of the primary antibody and has a small amount of non-specific adsorption of a physiologically active substance.

一方、すべての蛋白質(プロテオーム)の変動をプロファイリングする技術面では、超微量の蛋白質や数ナノリットルというような超微量の溶液の操作を可能とするマイクロフルイディクスの技術や、チップ上での前処理、分離、検出を目標とする「ラボ・オン・チップ」の概念が重要となってくる。この技術においては、サンプルである蛋白質などの生理活性物質が、流路内に固定化されたキャプチャーと特異的に反応し、かつキャプチャー部以外の流路の内壁への非特異吸着を抑制することが必要となる。
特開2001−116750号公報 「酵素免疫測定法」、石川榮治、河合忠、宮井潔編、医学書院、1987年、p.44-45 「DNAマイクロアレイ実戦マニュアル」、林崎良英、岡崎康司編、羊土社、2000年、p.57
On the other hand, in terms of the technical aspects of profiling fluctuations in all proteins (proteomes), microfluidics technology that enables the manipulation of ultra-trace amounts of proteins and ultra-small quantities of solutions such as several nanoliters, and on-chip The concept of “lab-on-a-chip” that targets processing, separation, and detection becomes important. In this technology, a physiologically active substance such as protein as a sample reacts specifically with the capture immobilized in the flow path, and suppresses non-specific adsorption to the inner wall of the flow path other than the capture part. Is required.
JP 2001-116750 A "Enzyme immunoassay", Yuji Ishikawa, Tadashi Kawai, Kiyoshi Miyai, Medical School, 1987, p.44-45 “DNA Microarray Practice Manual”, Yoshihide Hayashizaki, Koji Okazaki, Yodosha, 2000, p.57

本発明の目的は、吸着防止剤をコーティングすることなしに、生理活性物質を基板表面の任意の位置に固定化し、検体中の複数種の標的蛋白質又はペプチドを同時に捕捉し、高感度でハイスループットな蛋白質又はペプチドの検出方法を提供することである。   An object of the present invention is to immobilize a physiologically active substance at an arbitrary position on the surface of a substrate without coating an adsorption inhibitor, and simultaneously capture a plurality of types of target proteins or peptides in a specimen with high sensitivity and high throughput. It is to provide a method for detecting a protein or peptide.

すなわち、本発明は、以下の通りである。
(1)基体表面に生理活性物質である抗体を固定し、該抗体との相互作用により検体中の蛋白質又はペプチドを特異的に捕捉して該蛋白質又は該ペプチドを検出する方法であって、
(a)基体表面にホスホリルコリン基を有する単量体とブチルメタクリレート基を有する単量体の二元共重合体であるポリマーを塗布する工程、
(b)該ポリマー上に抗体を固定化する工程、
(c)検体中の蛋白質又はペプチドを標識化する工程、
(d)工程(b)で得られた基体に工程(c)で得られた検体を接触させる工程、
を含むことを特徴とする蛋白質又はペプチドの検出方法。
(2)検体中の蛋白質又はペプチドの標識化方法が蛍光標識法、酵素標識法、ビオチン標識法から選択された少なくとも1種の方法である(1)記載の蛋白質又はペプチドの検出方法。
(3)蛍光標識法で用いる物質がCy3、Cy5、FITC(fluorescein isothiocyanate)、ローダミンから選択された少なくとも1種である(2)記載の蛋白質又はペプチドの検出方法。
(4)酵素標識法で用いる物質がペルオキシダーゼ、アルカリフォスファターゼ、酸フォスファターゼ、グルコースオキシダーゼから選択された少なくとも1種である(2)記載の蛋白質又はペプチドの検出方法。
(5)前記ホスホリルコリン基が2-メタクリロイルオキシエチルホスホリルコリン基である(1)〜(4)いずれか記載の蛋白質又はペプチドの検出方法。
(6)前記生理活性物質が基体表面にスポット状に固定化されている(1)〜(4)いずれか記載の蛋白質又はペプチドの検出方法。
(7)複数種の生理活性物質のスポットが基体表面の同一区画中に存在している請求項記載の蛋白質又はペプチドの検出方法。
(8)基体の形状がスライドグラス状である(1)〜(7)いずれか記載の蛋白質又はペプチドの検出方法。
(9)基体が微細流路を有しており、微細流路内に生理活性物質が固定化されていることを特徴とする(1)〜(8)いずれか記載の蛋白質又はペプチドの検出方法。
(10)基体の材質がプラスチックである(1)〜(9)いずれか記載の蛋白質又はペプチドの検出方法。
(11)プラスチックがポリカーボネート、ポリエチレン、ポリプロピレン、ポリスチレン、飽和環状ポリオレフィン、ポリペンテン、ポリアミド、又はそれらの共重合体よりなる群より選択された少なくとも1種である(10)記載の蛋白質又はペプチドの検出方法。
That is, the present invention is as follows.
(1) the antibody is a physiologically active substance fixed to the substrate surface, a method of detecting the protein or the peptide to specifically capture proteins or peptides in the sample by interaction with the antibody,
(A) A step of applying a polymer which is a binary copolymer of a monomer having a phosphorylcholine group and a monomer having a butyl methacrylate group on the surface of the substrate,
(B) immobilizing an antibody on the polymer;
(C) a step of labeling the protein or peptide in the specimen,
(D) a step of bringing the specimen obtained in step (c) into contact with the substrate obtained in step (b);
A method for detecting a protein or peptide, comprising:
(2) The protein or peptide detection method according to (1), wherein the protein or peptide labeling method in the specimen is at least one method selected from a fluorescent labeling method, an enzyme labeling method, and a biotin labeling method.
(3) The method for detecting a protein or peptide according to (2), wherein the substance used in the fluorescent labeling method is at least one selected from Cy3, Cy5, FITC (fluorescein isothiocyanate), and rhodamine.
(4) The method for detecting a protein or peptide according to (2), wherein the substance used in the enzyme labeling method is at least one selected from peroxidase, alkaline phosphatase, acid phosphatase, and glucose oxidase.
(5) The method for detecting a protein or peptide according to any one of (1) to (4), wherein the phosphorylcholine group is a 2-methacryloyloxyethyl phosphorylcholine group.
(6) The method for detecting a protein or peptide according to any one of (1) to (4), wherein the physiologically active substance is immobilized in a spot shape on the surface of the substrate.
(7) The method for detecting a protein or peptide according to claim 6 , wherein spots of a plurality of types of physiologically active substances are present in the same section of the substrate surface.
(8) The method for detecting a protein or peptide according to any one of (1) to (7), wherein the substrate has a slide glass shape.
(9) The method for detecting a protein or peptide according to any one of (1) to (8), wherein the substrate has a fine channel, and a physiologically active substance is immobilized in the fine channel. .
(10) The method for detecting a protein or peptide according to any one of (1) to (9), wherein the base material is plastic.
(11) The method for detecting a protein or peptide according to (10), wherein the plastic is at least one selected from the group consisting of polycarbonate, polyethylene, polypropylene, polystyrene, saturated cyclic polyolefin, polypentene, polyamide, or a copolymer thereof. .

本発明の蛋白質又はペプチドの検出方法によれば、吸着防止剤をコーティングすることなしに、生理活性物質を基板表面の任意の位置に固定化し、それ以外の部分への不要な生理活性物質の吸着および結合を抑制し、また、検体中の全蛋白質及びペプチドを標識することにより、検体中の複数種の標的蛋白質又はペプチドを同時に捕捉し、高感度でハイスループットな蛋白質又はペプチドの検出ができる。   According to the protein or peptide detection method of the present invention, the physiologically active substance is immobilized at an arbitrary position on the surface of the substrate without coating with an adsorption inhibitor, and the unnecessary physiologically active substance is adsorbed to other portions. In addition, by suppressing the binding and by labeling all the proteins and peptides in the sample, a plurality of types of target proteins or peptides in the sample can be simultaneously captured, and the protein or peptide can be detected with high sensitivity and high throughput.

本発明に使用する基体は、基体表面にホスホリルコリン基を有するポリマーがコートされていることを特徴とする。ホスホリルコリン基を有するポリマーは、生体膜(リン脂質二重層膜)類似の構造を有しているポリマーであって、生理活性物質の吸着を抑制する効果を有する(例えばIshihara K, Tsuji T, Kurosaki T, Nakabayashi N, Journal of Biomedical Materials Research, 28(2), pp.225-232, (1994)4など)。   The substrate used in the present invention is characterized in that the substrate surface is coated with a polymer having a phosphorylcholine group. A polymer having a phosphorylcholine group is a polymer having a structure similar to a biological membrane (phospholipid bilayer membrane), and has an effect of suppressing adsorption of a physiologically active substance (for example, Ishihara K, Tsuji T, Kurosaki T Nakabayashi N, Journal of Biomedical Materials Research, 28 (2), pp.225-232, (1994) 4).

ホスホリルコリン基は、例えば2−メタクリロイルオキシエチルホスホリルコリン、2−メタクリロイルオキシエトキシエチルホスホリルコリン、6−メタクリロイルオキシヘキシルホスホリルコリン、10−メタクリロイルオキシエトキシノニルホスホリルコリン、アリルホスホリルコリン、ブテニルホスホリルコリン、ヘキセニルホスホリルコリン、オクテニルホスホリルコリン、デセニルホスホリルコリン等を挙げられるが、2−メタクリロイルオキシエチルホスホリルコリンが好ましい。   Examples of the phosphorylcholine group include 2-methacryloyloxyethyl phosphorylcholine, 2-methacryloyloxyethoxyethylphosphorylcholine, 6-methacryloyloxyhexylphosphorylcholine, 10-methacryloyloxyethoxynonylphosphorylcholine, allylphosphorylcholine, butenylphosphorylcholine, hexenylphosphorylcholine, octenylphosphorylcholine, Although senyl phosphorylcholine etc. are mentioned, 2-methacryloyloxyethyl phosphorylcholine is preferable.

基板表面とポリマーとの結合は、共有結合、静電的相互作用、水素結合、疎水効果による結合等どのような結合様式であっても良いが、表面処理の簡易性等の観点から、基板表面とポリマーとの疎水効果によって結合していることが好ましい。   The bonding between the substrate surface and the polymer may be any bonding mode such as covalent bonding, electrostatic interaction, hydrogen bonding, or hydrophobic effect bonding, but from the viewpoint of simplicity of surface treatment, the substrate surface It is preferable that the polymer and the polymer are bonded by a hydrophobic effect.

また、本発明に使用するポリマーは、ホスホリルコリン基以外に他の基を含んでもよく、ホスホリルコリン基を有する単量体とブチルメタクリレート基を有する単量体との二元共重合体が好ましい。   The polymer used in the present invention may contain other groups in addition to the phosphorylcholine group, and is preferably a binary copolymer of a monomer having a phosphorylcholine group and a monomer having a butyl methacrylate group.

(基体の素材)
基体の素材は、通常ガラス、金属その他を用いることができるが、本発明に使用する基体の素材としては、表面処理の容易性、量産性の観点から、プラスチックを使用し、特に熱可塑性樹脂が好ましい。熱可塑性樹脂としては、蛍光発生量の少ないものが好ましい。例えばポリエチレン、ポリプロピレン、ポリペンテン等の直鎖状ポリオレフィン、ポリカーボネート、ポリスチレン、ポリアミド、飽和環状ポリオレフィン、含フッ素樹脂等を用いることが好ましく、耐熱性、耐薬品性、低蛍光性、成形性に特に優れる飽和環状ポリオレフィンを用いることがより好ましい。ここで飽和環状ポリオレフィンとは、環状オレフィン構造を有する重合体単独または環状オレフィンとα−オレフィンとの共重合体を水素添加した飽和重合体等を指す。
(Base material)
The base material can be usually glass, metal or the like, but the base material used in the present invention is a plastic from the viewpoint of ease of surface treatment and mass productivity, and in particular, a thermoplastic resin. preferable. As a thermoplastic resin, a thing with little fluorescence generation amount is preferable. For example, it is preferable to use linear polyolefin such as polyethylene, polypropylene, polypentene, polycarbonate, polystyrene, polyamide, saturated cyclic polyolefin, fluorine-containing resin, etc., and saturation that is particularly excellent in heat resistance, chemical resistance, low fluorescence, and moldability. It is more preferable to use a cyclic polyolefin. Here, the saturated cyclic polyolefin refers to a polymer having a cyclic olefin structure or a saturated polymer obtained by hydrogenating a copolymer of a cyclic olefin and an α-olefin.

(基体の形状)
本発明に使用する基体の形状は特に限定しないが、スライドガラス状等の平板、マイクロビーズ状等が挙げられる。更に基体が表面に微細流路を有しており、微細流路内に生理活性物質を固定化することも好ましい。
(Base shape)
The shape of the substrate used in the present invention is not particularly limited, and examples thereof include a flat plate such as a slide glass and a microbead. Furthermore, it is also preferable that the substrate has a fine channel on the surface and the physiologically active substance is immobilized in the fine channel.

(生理活性物質の固定化)
本発明において生理活性物質を基体上に固定化する際には、生理活性物質を溶解または分散した液体を点着する方法が好ましい。
生理活性物質を溶解または分散した液体のpHは8〜10であることが好ましく、pH9.0〜9.9がより好ましい。固定化後は、固定化されなかった生理活性物質を除去するため、純水や緩衝液で洗浄することが好ましい。
生理活性物質としては、抗体を用いることが好ましい。
又、生理活性物質が基体表面にスポット状に固定化されていることが好ましく、更には複数種の生理活性物質のスポットが基体表面の同一区画中に存在していることが好ましい。
(Immobilization of physiologically active substances)
In the present invention, when the physiologically active substance is immobilized on the substrate, a method of spotting a liquid in which the physiologically active substance is dissolved or dispersed is preferable.
The pH of the liquid in which the physiologically active substance is dissolved or dispersed is preferably 8 to 10, and more preferably pH 9.0 to 9.9. After immobilization, it is preferable to wash with pure water or a buffer solution in order to remove the physiologically active substance that has not been immobilized.
An antibody is preferably used as the physiologically active substance.
Further, it is preferable that the physiologically active substance is immobilized on the surface of the substrate in the form of spots, and it is further preferable that spots of a plurality of types of physiologically active substances are present in the same section of the substrate surface.

(検体の標識化)
検体となる蛋白質又はペプチドを標識化する方法としては、例えば蛍光標識、酵素標識、ビオチン標識等が挙げられ、いずれの方法も利用できる。
蛍光標識法の場合、Cy3、Cy5、FITC(fluorescein isothiocyanate)、ローダミン等の物質を使用する。
酵素標識法の場合、ペルオキシダーゼ、アルカリフォスファターゼ、酸フォスファターゼ、グルコースオキシダーゼ等の物質を使用する。
(Labeling of specimen)
Examples of a method for labeling a protein or peptide serving as a specimen include a fluorescent label, an enzyme label, and a biotin label, and any method can be used.
In the case of the fluorescent labeling method, substances such as Cy3, Cy5, FITC (fluorescein isothiocyanate), rhodamine and the like are used.
In the case of the enzyme labeling method, substances such as peroxidase, alkaline phosphatase, acid phosphatase, glucose oxidase and the like are used.

(蛋白質及びペプチドの検出)
生理活性物質が固定化された基体に、標識化された検体を含む液体を接触させることによって、検体中の蛋白質又はペプチドが補足される。
本発明において、検出する蛋白質又はペプチドを溶解または分散した液体のpHは6.0〜9.5であることが好ましい。この範囲内であれば、検出する蛋白質及びペプチドが変性する恐れがなく好ましい。
(Detection of proteins and peptides)
The protein or peptide in the specimen is supplemented by bringing a liquid containing the labeled specimen into contact with the substrate on which the physiologically active substance is immobilized.
In the present invention, the pH of the liquid in which the protein or peptide to be detected is dissolved or dispersed is preferably 6.0 to 9.5. If it is in this range, there is no fear that the protein and peptide to be detected are denatured, which is preferable.

以下、実施例を挙げて本発明を更に具体的に説明するが、この発明の技術的範囲はこれら実施例に限定されるものではない。
(実施例)
飽和環状ポリオレフィン樹脂をスライドガラス形状(寸法:76mm×26mm×1mm)に加工して固相基板を作成した。固相基板を2−メタクリロイルオキシエチルホスホリルコリン−ブチルメタクリレート共重合体の0.5重量%エタノール溶液に浸漬することにより、基板表面にホスホリルコリン基を有するポリマーを導入した。
次に、自動スポッターを用いて表1に示した希釈倍率(濃度)で、pHが9.5に調整された一次抗体である抗マウスIgG2a抗体を該基板にスポットし、24時間静置して固定化させた。固定化後、0.05%Tween20含有のPBSで洗浄を行った。その後、抗原であるマウスIgG2a抗体および血清蛋白の全混合物をNHS−Cy3によりCy3標識したもの(マウスIgG2a抗体濃度:19nmol/L)、または血清蛋白の全混合物のみをNHS−Cy3によりCy3標識したものを接触させて基板上で抗原抗体反応を起こさせ、各スポットおよびスポット部以外の部分(バックグラウンド)について蛍光量測定を行い、その際の抗原あり/なしのシグナル比、およびS/N比(Signal/noise ratio)を計算した。結果を表1に示す。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.
(Example)
A saturated cyclic polyolefin resin was processed into a slide glass shape (dimensions: 76 mm × 26 mm × 1 mm) to prepare a solid phase substrate. The solid phase substrate was immersed in a 0.5 wt% ethanol solution of 2-methacryloyloxyethyl phosphorylcholine-butyl methacrylate copolymer to introduce a polymer having a phosphorylcholine group on the substrate surface.
Next, an anti-mouse IgG2a antibody, which is a primary antibody having a pH adjusted to 9.5, was spotted on the substrate at the dilution rate (concentration) shown in Table 1 using an automatic spotter and allowed to stand for 24 hours. And fixed. After immobilization, washing with PBS containing 0.05% Tween 20 was performed. Thereafter, the whole mixture of mouse IgG2a antibody and serum protein as antigens was Cy3 labeled with NHS-Cy3 (mouse IgG2a antibody concentration: 19 nmol / L), or only the whole mixture of serum proteins was Cy3 labeled with NHS-Cy3 To cause an antigen-antibody reaction on the substrate, and measure the amount of fluorescence for each spot and the portion (background) other than the spot portion. At that time, the signal ratio with and without the antigen, and the S / N ratio ( Signal / noise ratio) was calculated. The results are shown in Table 1.

(比較例)
飽和環状ポリオレフィン樹脂をスライドガラス形状(寸法:76mm×26mm×1mm)に加工した。基板表面に親水化処理を施したのち、アミノ基含有アルキルシランの2%水溶液中に浸漬後、熱処理を施して表面にアミノ基を導入した。これを1%グルタルアルデヒド水溶液中に浸漬することにより、表面のアミノ基とグルタルアルデヒドを反応させ、アルデヒド基を導入した。
次に、自動スポッターを用いて表1に示した希釈倍率(濃度)で、pHが9.5に調整された一次抗体である抗マウスIgG2a抗体を該基板にスポットし、24時間静置して固定化させた。固定化後、非特異吸着防止の為に大日本製薬(株)製免疫実験用ブロッキング剤「ブロックエース」を純水で4倍希釈した溶液に該基板を浸し、室温で1時間静かに振とうした。その後、0.05%Tween20含有のPBSで洗浄を行った。続いて、抗原であるマウスIgG2a抗体および血清蛋白の全混合物をNHS−Cy3によりCy3標識したもの(マウスIgG2a抗体濃度:19nmol/L)、または血清蛋白の全混合物のみをNHS−Cy3によりCy3標識したものを接触させて基板上で抗原抗体反応を起こさせ、各スポットおよびスポット部以外の部分(バックグラウンド)について蛍光量測定を行い、その際の抗原あり/なしのシグナル比、およびS/N比(Signal/noise ratio)を計算した。結果を表1に示す。
(Comparative example)
The saturated cyclic polyolefin resin was processed into a slide glass shape (dimensions: 76 mm × 26 mm × 1 mm). After subjecting the substrate surface to hydrophilization, the substrate was immersed in a 2% aqueous solution of an amino group-containing alkylsilane, and then subjected to heat treatment to introduce amino groups on the surface. This was immersed in a 1% glutaraldehyde aqueous solution to react the surface amino groups with glutaraldehyde to introduce aldehyde groups.
Next, an anti-mouse IgG2a antibody, which is a primary antibody having a pH adjusted to 9.5, was spotted on the substrate at the dilution rate (concentration) shown in Table 1 using an automatic spotter and allowed to stand for 24 hours. And fixed. After immobilization, the substrate is dipped in a solution obtained by diluting Blocking Ace, a blocking agent for immunological experiments manufactured by Dainippon Pharmaceutical Co., Ltd., 4 times with pure water to prevent nonspecific adsorption, and gently shaken at room temperature for 1 hour. did. Thereafter, washing was performed with PBS containing 0.05% Tween20. Subsequently, the whole mixture of antigen mouse IgG2a antibody and serum protein was labeled with CyS with NHS-Cy3 (mouse IgG2a antibody concentration: 19 nmol / L), or only the whole mixture of serum proteins was labeled with CyS with NHS-Cy3. An antigen-antibody reaction is caused on the substrate by contacting the sample, and the amount of fluorescence is measured for each spot and the portion other than the spot (background). At that time, the signal ratio with and without the antigen, and the S / N ratio (Signal / noise ratio) was calculated. The results are shown in Table 1.

実施例および比較例における蛍光量の測定には、Packard BioChip Technologies社製バイオチップスキャナー「ScanArray」を用いた。測定条件は、レーザー出力90%、PMT感度55%、励起波長550nm、測定波長570nm、解像度30μmであった。
実施例は、抗原ありのスポットシグナル強度では比較例に劣るが、抗原なしのスポットシグナル強度値は比較例に比べて低く、抗原あり/抗原なしのシグナル比は比較例と同程度またはそれ以上の結果となった。さらに、スポット部以外の蛍光強度(バックグラウンド)は比較例よりも格段に低く、S/N比は実施例の方が非常に高い結果となった。すなわち、高感度な蛋白質及びペプチドの検出ができたと言える。
A biochip scanner “ScanArray” manufactured by Packard BioChip Technologies was used to measure the amount of fluorescence in Examples and Comparative Examples. The measurement conditions were laser output 90%, PMT sensitivity 55%, excitation wavelength 550 nm, measurement wavelength 570 nm, and resolution 30 μm.
The example is inferior to the comparative example in the spot signal intensity with the antigen, but the spot signal intensity value without the antigen is lower than the comparative example, and the signal ratio with / without the antigen is about the same or higher than the comparative example. As a result. Furthermore, the fluorescence intensity (background) other than the spot portion was much lower than that of the comparative example, and the S / N ratio was much higher in the example. That is, it can be said that highly sensitive protein and peptide were detected.

Figure 0004353091
* 固定化抗体濃度は、
希釈倍率2倍:3.3μmol/L
希釈倍率8倍:0.83μmol/L
Figure 0004353091
* Immobilized antibody concentration is
Dilution factor 2 times: 3.3 μmol / L
Dilution factor 8 times: 0.83 μmol / L

本発明の蛋白質又はペプチドの検出方法によれば、吸着防止剤をコーティングすることなしに、生理活性物質を基板表面の任意の位置に固定化し、それ以外の部分への不要な生理活性物質の吸着および結合を抑制し、また、検体中の全蛋白質及びペプチドを標識することにより、検体中の複数種の標的蛋白質及びペプチドを同時に捕捉し、高感度でハイスループットな蛋白質及びペプチドの検出ができるので、マイクロフルイディクスを含む各種バイオチップの検出方法に適用できる。

According to the protein or peptide detection method of the present invention, the physiologically active substance is immobilized at an arbitrary position on the surface of the substrate without coating with an adsorption inhibitor, and the unnecessary physiologically active substance is adsorbed to other portions. And binding, and by labeling all proteins and peptides in the sample, multiple types of target proteins and peptides in the sample can be captured simultaneously, allowing high-sensitivity and high-throughput detection of proteins and peptides. It can be applied to various biochip detection methods including microfluidics.

Claims (11)

基体表面に生理活性物質である抗体を固定し、該抗体との相互作用により検体中の蛋白質又はペプチドを特異的に捕捉して該蛋白質又は該ペプチドを検出する方法であって、
(a)基体表面にホスホリルコリン基を有する単量体とブチルメタクリレート基を有する単量体の二元共重合体であるポリマーを塗布する工程、
(b)該ポリマー上に抗体を固定化する工程、
(c)検体中の蛋白質又はペプチドを標識化する工程、
(d)工程(b)で得られた基体に工程(c)で得られた検体を接触させる工程、
を含むことを特徴とする蛋白質又はペプチドの検出方法。
The antibody is a physiologically active substance on the substrate surface and fixed, a method of detecting the protein or the peptide to specifically capture proteins or peptides in the sample by interaction with the antibody,
(A) A step of applying a polymer which is a binary copolymer of a monomer having a phosphorylcholine group and a monomer having a butyl methacrylate group on the surface of the substrate,
(B) immobilizing an antibody on the polymer;
(C) a step of labeling the protein or peptide in the specimen,
(D) a step of bringing the specimen obtained in step (c) into contact with the substrate obtained in step (b);
A method for detecting a protein or peptide, comprising:
検体中の蛋白質又はペプチドの標識化方法が蛍光標識法、酵素標識法、ビオチン標識法から選択された少なくとも1種の方法である請求項記載の蛋白質又はペプチドの検出方法。 Protein or labeling method is fluorescence labeling of the peptides in the sample, enzymatic labeling, detection method of a protein or peptide of at least one of claims 1, wherein a method selected from biotin-labeling method. 蛍光標識法で用いる物質がCy3、Cy5、FITC(fluorescein isothiocyanate)、ローダミンから選択された少なくとも1種である請求項記載の蛋白質又はペプチドの検出方法。 The method for detecting a protein or peptide according to claim 2 , wherein the substance used in the fluorescent labeling method is at least one selected from Cy3, Cy5, FITC (fluorescein isothiocyanate), and rhodamine. 酵素標識法で用いる物質がペルオキシダーゼ、アルカリフォスファターゼ、酸フォスファターゼ、グルコースオキシダーゼから選択された少なくとも1種である請求項記載の蛋白質又はペプチドの検出方法。 The method for detecting a protein or peptide according to claim 2 , wherein the substance used in the enzyme labeling method is at least one selected from peroxidase, alkaline phosphatase, acid phosphatase, and glucose oxidase. 前記ホスホリルコリン基が2-メタクリロイルオキシエチルホスホリルコリン基である請求項1〜いずれか記載の蛋白質又はペプチドの検出方法。 The method for detecting a protein or peptide according to any one of claims 1 to 4 , wherein the phosphorylcholine group is a 2-methacryloyloxyethyl phosphorylcholine group. 前記生理活性物質が基体表面にスポット状に固定化されている請求項1〜4いずれか記載の蛋白質又はペプチドの検出方法。 The method for detecting a protein or peptide according to any one of claims 1 to 4, wherein the physiologically active substance is immobilized in a spot shape on the surface of the substrate. 複数種の生理活性物質のスポットが基体表面の同一区画中に存在している請求項記載の蛋白質又はペプチドの検出方法。 The method for detecting a protein or peptide according to claim 6 , wherein spots of a plurality of types of physiologically active substances are present in the same section of the substrate surface. 基体の形状がスライドグラス状である請求項1〜いずれか記載の蛋白質又はペプチドの検出方法。 The method for detecting a protein or peptide according to any one of claims 1 to 7 , wherein the substrate has a slide glass shape. 基体が微細流路を有しており、微細流路内に生理活性物質が固定化されていることを特徴とする請求項1〜いずれか記載の蛋白質又はペプチドの検出方法。 The method for detecting a protein or peptide according to any one of claims 1 to 8 , wherein the substrate has a fine channel, and a physiologically active substance is immobilized in the fine channel. 基体の材質がプラスチックである請求項1〜いずれか記載の蛋白質又はペプチドの検出方法。 The method for detecting a protein or peptide according to any one of claims 1 to 9 , wherein the substrate is made of plastic. プラスチックがポリカーボネート、ポリエチレン、ポリプロピレン、ポリスチレン、飽和環状ポリオレフィン、ポリペンテン、ポリアミド、又はそれらの共重合体よりなる群より選択された少なくとも1種である請求項10記載の蛋白質又はペプチドの検出方法。 The method for detecting a protein or peptide according to claim 10 , wherein the plastic is at least one selected from the group consisting of polycarbonate, polyethylene, polypropylene, polystyrene, saturated cyclic polyolefin, polypentene, polyamide, or a copolymer thereof.
JP2004361677A 2004-12-14 2004-12-14 Protein and peptide detection method Expired - Fee Related JP4353091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361677A JP4353091B2 (en) 2004-12-14 2004-12-14 Protein and peptide detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361677A JP4353091B2 (en) 2004-12-14 2004-12-14 Protein and peptide detection method

Publications (2)

Publication Number Publication Date
JP2006170717A JP2006170717A (en) 2006-06-29
JP4353091B2 true JP4353091B2 (en) 2009-10-28

Family

ID=36671646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361677A Expired - Fee Related JP4353091B2 (en) 2004-12-14 2004-12-14 Protein and peptide detection method

Country Status (1)

Country Link
JP (1) JP4353091B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100062475A1 (en) * 2007-01-16 2010-03-11 Sumitomo Bakelite Company Particle for medical use, particle for anlaysis and method of producing the same

Also Published As

Publication number Publication date
JP2006170717A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
Cretich et al. Protein and peptide arrays: recent trends and new directions
US20200096502A1 (en) Analyte Detection
Kusnezow et al. Antibody microarray‐based profiling of complex specimens: systematic evaluation of labeling strategies
JP2009545739A (en) Method for determining analyte concentration using analyte sensor molecules bound to a porous membrane
JP4434971B2 (en) Microparticles for capture beads and capture beads and biochips using the same
JP4530895B2 (en) Solid phase carrier for peptide immobilization and method of using the same
JP4534817B2 (en) Protein detection method and peptide detection method
JP5148818B2 (en) New solid support and use thereof
JP2010504513A (en) Blood type determination
US20090156422A1 (en) Device and method to detect analytes
JP2007285835A (en) Plate for bioplate, manufacturing method therefor and the bioplate
JP2004198402A (en) Microarray and its manufacturing method
JP2007155691A (en) Substance measuring method, and measuring composition
JP4197279B2 (en) Biologically-derived substance detection substrate and manufacturing method thereof
JP4862412B2 (en) Biochip manufacturing method
WO2018154814A1 (en) Biomaterial immobilizing method and uses thereof
WO2006071132A1 (en) Biological microchip for multiple parallel immunoassay of compounds and immunoassay methods using said microchip
JP4353091B2 (en) Protein and peptide detection method
JP2005504988A (en) Calibration microarray
JP2008215894A (en) Detection method of protein and detecting method of peptide
JP4353073B2 (en) Biochip and manufacturing method thereof
JP4347211B2 (en) Biochip substrate and biochip
EP3505934A1 (en) A sensor body for binding and/or enriching and/or detecting an analyte in a sample
JP2005069788A (en) Method for detecting phosphorylated protein
WO2006062427A1 (en) Method for quantitatively detecting biological toxins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140807

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees