JP4530670B2 - Anti-fogging polylactic acid biaxially stretched film and method for producing the same - Google Patents
Anti-fogging polylactic acid biaxially stretched film and method for producing the same Download PDFInfo
- Publication number
- JP4530670B2 JP4530670B2 JP2004002001A JP2004002001A JP4530670B2 JP 4530670 B2 JP4530670 B2 JP 4530670B2 JP 2004002001 A JP2004002001 A JP 2004002001A JP 2004002001 A JP2004002001 A JP 2004002001A JP 4530670 B2 JP4530670 B2 JP 4530670B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- polylactic acid
- biaxially stretched
- aqueous
- stretched film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Laminated Bodies (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Paints Or Removers (AREA)
- Biological Depolymerization Polymers (AREA)
Description
本発明は、野菜や果物を含む水物食品包装を目的としたポリ乳酸系二軸延伸フィルムに関し、低温防曇性、耐ブロッキング性、特に防曇持続性に優れたポリ乳酸系二軸延伸フィルムおよびその製造方法に関する。 The present invention relates to a polylactic acid-based biaxially stretched film for the purpose of packaging aquatic foods containing vegetables and fruits. And a manufacturing method thereof.
従来より、機械的強度や耐熱性や寸法安定性に優れる材料としてポリプロピレンやポリエチレンテレフタレートが知られており、これらを用いた二軸延伸フィルムが産業界で幅広く使用されている。しかしながら、これらのプラスチックフィルムは、その使用後に廃棄処理される際に、焼却処理を行うと、焼却時の発熱量が高いためその処理中に焼却炉を傷める恐れがあり、埋め立てによる廃棄処理を行うと、これらのプラスチック類は、化学的、生物学的安定性のためにほとんど分解せずに残留する。そのため、近年の環境保全に対する社会的要求の高まりに伴い、微生物などにより分解可能な生分解性を有し、コンポストでの堆肥化処理が可能な生分解性を有する樹脂からなるフィルムが要求されている。 Conventionally, polypropylene and polyethylene terephthalate are known as materials excellent in mechanical strength, heat resistance, and dimensional stability, and biaxially stretched films using these are widely used in the industry. However, when these plastic films are incinerated after being used, if they are incinerated, the amount of heat generated during incineration is high, which may damage the incinerator during the processing. And these plastics remain almost undegradable due to chemical and biological stability. Therefore, with the recent increase in social demand for environmental conservation, there is a demand for a film made of a biodegradable resin that has biodegradability that can be decomposed by microorganisms and that can be composted in compost. Yes.
生分解性樹脂の中でもポリ乳酸は、各種でんぷん、糖類などを発酵して得られる乳酸を重合した植物由来の原料で、最終的には再び炭酸ガスと水となって地球的規模で環境リサイクルされる理想的なポリマー原料として各種用途に利用され始めている。ポリ乳酸系延伸フィルムは、引張強度、引張弾性率、衝撃強度といった機械的物性に優れるとともに光沢、透明性にも優れており、食品包装を中心とする分野への拡大が期待されている。 Among biodegradable resins, polylactic acid is a plant-derived raw material obtained by polymerizing lactic acid obtained by fermenting various starches, sugars, etc., and is finally recycled on a global scale to carbon dioxide and water. It has begun to be used for various applications as an ideal polymer raw material. Polylactic acid-based stretched films have excellent mechanical properties such as tensile strength, tensile elastic modulus, and impact strength, as well as gloss and transparency, and are expected to expand into fields centered on food packaging.
ポリ乳酸系二軸延伸フィルムを水分を多く含む野菜や果物等の食品包装用途に適用する場合には、包装後約1週間程度の長期の防曇性が強く要求される。一般にポリ乳酸系二軸延伸フィルムは、その表面が疎水性であるため耐水性に優れるが、それ故に水分は微少な水滴としてフィルム表面に付着し易い。そこでポリ乳酸系二軸延伸フィルムが野菜、果物等水分含有食品包装に使用された場合、フィルム内面に凝縮した水が付着し、内容物が見えにくいばかりでなく腐敗を引き起こす。 When the polylactic acid-based biaxially stretched film is applied to food packaging applications such as vegetables and fruits containing a lot of moisture, long-term antifogging properties of about one week after packaging are strongly required. In general, a polylactic acid-based biaxially stretched film is excellent in water resistance because its surface is hydrophobic. Therefore, moisture tends to adhere to the film surface as minute water droplets. Therefore, when the polylactic acid-based biaxially stretched film is used for packaging foods containing moisture such as vegetables and fruits, the condensed water adheres to the inner surface of the film, causing not only the contents to be difficult to see but also causing decay.
一般的にプラスチックフィルム及びシートに防曇性を付与する方法としてショ糖脂肪酸エステル類やグリセリン脂肪酸エステル類を練り込んだり、表面に塗布する方法が採用されている。ところが、ポリ乳酸系二軸延伸フィルムに従来方法を適用すると、練り混み法では十分な防曇性が得られないばかりでなく、フィルム製造時の押出性、製膜性の悪化、加水分解誘因による機械的物性の低下を招き実用的ではない。表面に塗布する方法は、初期の低温防曇性は得られるが、表面のべたつきに伴うフィルム同志のブロッキングや取り扱い時の作業性低下、防曇剤の裏面への移行とそれに伴う防曇性不足、耐水性不足による防曇持続性の低下といった問題が避けられない。ポリ乳酸系フィルムあるいはシートに防曇性を付与させた事例として、特許文献1では、特定量の滑剤と特定量の防曇剤を併用して同時に含ませることにより防曇持続性を改善した例が開示されているが、防曇剤の練り込みによるため十分な防曇性能を得るには添加量を多くする必要があり、ポリ乳酸の分子量低下のみならず押出性、製膜性を損なう恐れがある。特許文献2では水蒸気透過度を規定した果菜包装用フィルムが開示され、特許文献3では、ショ糖ラウリン酸エステルと水溶性樹脂の特定混合比による防曇性樹脂シートが開示されているが、未だ十分な防曇性と耐ブロッキング性を有するポリ乳酸系二軸延伸フィルムに関する事例はない。
本発明は、ポリ乳酸系フィルムに関する従来の上記課題を解決し、低温防曇性に優れ、かつ耐ブロッキング性及び防曇持続性に優れたポリ乳酸系二軸延伸フィルムを提供しようとするものである。 The present invention is to solve the above-mentioned conventional problems relating to polylactic acid-based films, and to provide a polylactic acid-based biaxially stretched film that is excellent in low-temperature antifogging properties and excellent in blocking resistance and antifogging durability. is there.
本発明者らは上記課題を解決するため鋭意研究を行った結果、特定の非イオン系界面活性剤と水性ポリウレタン樹脂及び/又は水性ポリエステル樹脂との混合物からなる塗布層をポリ乳酸系フィルムに形成することにより、フィルム同志のブロッキングや裏面移行の抑制が可能であり、同時に低温防曇性かつ防曇持続性に優れたフィルムが得られることを見出し、本発明に至ったものである。 As a result of intensive studies to solve the above problems, the present inventors formed a coating layer comprising a mixture of a specific nonionic surfactant and an aqueous polyurethane resin and / or an aqueous polyester resin on a polylactic acid film. As a result, it has been found that a film excellent in low-temperature anti-fogging property and anti-fogging sustainability can be obtained at the same time, whereby blocking between the films and the back surface migration can be suppressed.
すなわち本発明は、少なくとも片面に非イオン系界面活性剤(A)と水性ポリウレタン樹脂及び/又は水性ポリエステル樹脂(B)とからなる塗布層を有するポリ乳酸系二軸延伸フィルムであって、前記塗布層の非イオン系界面活性剤(A)と水性ポリウレタン樹脂及び/又は水性ポリエステル樹脂(B)との質量比(A/B)が90/10〜10/90であることを特徴とする防曇性ポリ乳酸系二軸延伸フィルムを要旨とするものである。 That is, the present invention is a polylactic acid-based biaxially stretched film having a coating layer comprising a nonionic surfactant (A) and an aqueous polyurethane resin and / or an aqueous polyester resin (B) on at least one side, The antifogging characterized in that the mass ratio (A / B) of the nonionic surfactant (A) of the layer to the aqueous polyurethane resin and / or the aqueous polyester resin (B) is 90/10 to 10/90. The essential feature is a conductive polylactic acid-based biaxially stretched film.
本発明の防曇性ポリ乳酸系二軸延伸フィルムの塗布層は、特定の非イオン系界面活性剤と水溶性/水分散性ポリマーとからなるため、塗布層の基材フィルムへの密着性が強固になり、非イオン系界面活性剤の背面移行を抑制するため、低温時の防曇性、耐ブロッキング性、特に防曇持続性に優れ、野菜や果物を含む水物食品の包装袋として好適に使用できる。 Since the coating layer of the anti-fogging polylactic acid-based biaxially stretched film of the present invention is composed of a specific nonionic surfactant and a water-soluble / water-dispersible polymer, the coating layer has good adhesion to the base film. Because it is strong and suppresses back migration of nonionic surfactants, it has excellent antifogging and blocking resistance at low temperatures, especially antifogging durability, and is suitable as a packaging bag for marine foods containing vegetables and fruits Can be used for
以下に本発明の実施の形態を説明する。 Embodiments of the present invention will be described below.
本発明のポリ乳酸系二軸延伸フィルムとは、L−乳酸を主構成単位とするホモポリマーあるいはL−乳酸/D−乳酸を主構成単位とするポリ乳酸系樹脂からなるフィルムを指す。本発明のポリ乳酸系二軸延伸フィルムは、二軸延伸による配向結晶化を促進させ、実用強度を発現させるため、L−乳酸/D−乳酸とのモル比(L−乳酸/D−乳酸)が100/0〜94/6(モル比)の組成比を満足させることが好ましい。D−乳酸が6モル%を超えるとポリ乳酸系樹脂は明確な融点を示さなくなり、結晶性に乏しいものとなる。その結果、フィルムの厚み精度が著しく悪化し、なおかつ延伸後の熱固定処理による配向結晶化が進行しにくいため、フィルムの巻き取り時にフィルムに割れや裂けが発生するという問題が生じるだけでなく、二次加工の面でもフィルムテンションによる破断や、ブロッキングによるトラブルが発生する。また、L−乳酸を単独で使用してもよいが、D−乳酸が配合されている方が結晶性が緩和され、製膜性の良いものが得られる。なお、L−乳酸とD−乳酸とは、上記の割合で配合されていれば共重合体であってもよいし、ブレンド体であってもよい。 The polylactic acid biaxially stretched film of the present invention refers to a film made of a homopolymer having L-lactic acid as a main structural unit or a polylactic acid resin having L-lactic acid / D-lactic acid as a main structural unit. The polylactic acid-based biaxially stretched film of the present invention promotes oriented crystallization by biaxial stretching and develops a practical strength. Therefore, the molar ratio with L-lactic acid / D-lactic acid (L-lactic acid / D-lactic acid) Preferably satisfies a composition ratio of 100/0 to 94/6 (molar ratio). When D-lactic acid exceeds 6 mol%, the polylactic acid resin does not show a clear melting point and is poor in crystallinity. As a result, the thickness accuracy of the film is remarkably deteriorated, and the orientation crystallization by the heat setting treatment after stretching is difficult to proceed, so that not only the problem that the film is cracked or torn at the time of winding the film occurs, On the surface of secondary processing, breakage due to film tension and troubles due to blocking occur. Moreover, although L-lactic acid may be used independently, the crystallinity is eased and the film forming property is better when D-lactic acid is blended. The L-lactic acid and D-lactic acid may be a copolymer or a blend as long as they are blended in the above proportions.
また、ポリ乳酸系樹脂の数平均分子量は5万〜30万の範囲であることが好ましく、より好ましくは8万〜15万である。数平均分子量が5万未満の場合、得られるフィルムの機械的強度が不十分となり、かつ延伸、巻き取り工程中での切断も頻繁に起こり操業性の低下を招く。一方、数平均分子量が30万を超えると加熱溶融時の流動性が乏しくなって製膜性が低下する。 The number average molecular weight of the polylactic acid resin is preferably in the range of 50,000 to 300,000, more preferably 80,000 to 150,000. When the number average molecular weight is less than 50,000, the resulting film has insufficient mechanical strength, and also frequently undergoes cutting during the stretching and winding processes, resulting in a decrease in operability. On the other hand, when the number average molecular weight exceeds 300,000, the fluidity at the time of heating and melting becomes poor and the film-forming property is lowered.
ポリ乳酸系樹脂を得るための重合法としては、縮合重合法及び開環重合法のいずれの方法を採用することも可能であり、分子量増大を目的として少量の鎖延長剤、例えばジイソシアネート化合物、ジエポキシ化合物、酸無水物等を使用してもよい。 As a polymerization method for obtaining a polylactic acid-based resin, any of a condensation polymerization method and a ring-opening polymerization method can be adopted, and a small amount of chain extender such as a diisocyanate compound or diepoxy is used for the purpose of increasing the molecular weight. Compounds, acid anhydrides and the like may be used.
ポリ乳酸系樹脂には、製造工程あるいは二次加工工程でのハンドリング、フィルム走行性の面から滑剤を添加してもよい。滑剤としては、シリカ、二酸化チタン、タルク、アルミナ等の安定な金属酸化物、炭酸カルシウム、リン酸カルシウム、硫酸バリウム等の安定な金属塩、ポリメチルメタクリレート、メラミン・ホルムアルデヒド硬化樹脂、メラミン・ベンゾグアナミン等のポリ乳酸に対して不活性な有機樹脂からなるいわゆる有機系ビーズなどが挙げられる。これらの滑剤はいずれか1種類を単独で用いてもよく、また2種類以上を併用してもよい。 A lubricant may be added to the polylactic acid-based resin from the viewpoints of handling in the production process or secondary processing process and film running properties. Lubricants include stable metal oxides such as silica, titanium dioxide, talc, and alumina, stable metal salts such as calcium carbonate, calcium phosphate, and barium sulfate, polymethyl methacrylate, melamine / formaldehyde cured resin, and polyamines such as melamine / benzoguanamine. Examples include so-called organic beads made of an organic resin inert to lactic acid. Any one of these lubricants may be used alone, or two or more may be used in combination.
本発明のポリ乳酸系二軸延伸フィルムは、少なくとも片面に非イオン系界面活性剤(A)と水性ポリウレタン及び/又は水性ポリエステル樹脂(B)とからなる塗布層を形成させることが必要である。 In the polylactic acid biaxially stretched film of the present invention, it is necessary to form a coating layer comprising a nonionic surfactant (A) and an aqueous polyurethane and / or an aqueous polyester resin (B) on at least one surface.
本発明において、非イオン系界面活性剤(A)は、防曇性を発現させるために必要な成分である。非イオン系界面活性剤(A)としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル等比較的水溶性または水分散性に優れたものから選択することが出来るが、防曇性能の観点からポリオキシエチレンソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステルが好ましい。ポリオキシエチレンソルビタン脂肪酸エステルは、脂肪酸の炭素数がC12〜C22かつエチレンオキサイド付加モル数5〜20モルが好ましい。さらに好ましくはエチレンオキサイド20モルを付加させたポリオキシエチレンソルビタンラウリン酸エステル、ポリオキシエチレンソルビタンオレイン酸エステルである。これらのポリオキシエチレンソルビタン脂肪酸エステルは単独使用でも、2種以上の混合使用でもよい。ポリグリセリン脂肪酸エステルは、脂肪酸の炭素数がC12〜C18かつポリグリセリンの重合度が4〜10であることが好ましく、特に重合度10のデカグリセリンが好ましい。またエステル組成はモノエステル化率が60モル%以上であることが水溶性及び塗布性の点から好ましい。さらに好ましくは、デカグリセリンラウリン酸エステル、デカグリセリンオレイン酸エステルである。これらのポリグリセリン脂肪酸エステルは単独使用でも、2種以上の混合使用でもよい。ショ糖脂肪酸エステルは、脂肪酸の炭素数がC12〜C18であるショ糖ラウリン酸エステル、ショ糖オレイン酸エステル、ショ糖ステアリン酸エステルが好ましい。またエステル組成はモノエステル化率が60モル%以上であることが水溶性及び塗布性の点から好ましい。これらのショ糖脂肪酸エステルは単独使用でも、2種以上の混合使用でもよい。 In this invention, a nonionic surfactant (A) is a component required in order to express antifogging property. As the nonionic surfactant (A), polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, polyoxyethylene fatty acid amide, polyoxyethylene sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester and the like are relatively water-soluble. From the viewpoint of anti-fogging performance, polyoxyethylene sorbitan fatty acid ester, polyglycerin fatty acid ester, and sucrose fatty acid ester are preferable. In the polyoxyethylene sorbitan fatty acid ester, the number of carbon atoms of the fatty acid is preferably C12 to C22 and the number of moles of ethylene oxide added is 5 to 20 mol. More preferred are polyoxyethylene sorbitan laurate and polyoxyethylene sorbitan oleate added with 20 mol of ethylene oxide. These polyoxyethylene sorbitan fatty acid esters may be used alone or in combination of two or more. The polyglycerol fatty acid ester preferably has a fatty acid carbon number of C12 to C18 and a polyglycerol polymerization degree of 4 to 10, and decaglycerol of a polymerization degree of 10 is particularly preferable. The ester composition preferably has a monoesterification rate of 60 mol% or more from the viewpoint of water solubility and coatability. More preferred are decaglycerin laurate and decaglycerin oleate. These polyglycerin fatty acid esters may be used alone or in combination of two or more. The sucrose fatty acid ester is preferably a sucrose laurate, sucrose oleate, or sucrose stearate whose fatty acid has C12 to C18 carbon atoms. The ester composition preferably has a monoesterification rate of 60 mol% or more from the viewpoint of water solubility and coatability. These sucrose fatty acid esters may be used alone or in combination of two or more.
上記の非イオン系界面活性剤は水溶性あるいは水分散性を満足させるものであるならば単独、併用は問わない。本発明で特に好適に用いられる非イオン系界面活性剤は、ポリオキシエチレンソルビタンモノラウレート(エチレンオキサイド20モル付加)、デカグリセリンモノラウレートである。 The above nonionic surfactants may be used alone or in combination as long as they satisfy water solubility or water dispersibility. Nonionic surfactants particularly preferably used in the present invention are polyoxyethylene sorbitan monolaurate (20 mol addition of ethylene oxide) and decaglycerin monolaurate.
本発明において、上記の非イオン系界面活性剤(A)と組み合わせて使用される水性ポリウレタン樹脂及び/又は水性ポリエステル樹脂(B)は、非イオン系界面活性剤(A)をポリ乳酸系二軸延伸フィルム表面に、強固に密着させるためのバインダー樹脂として必要であり、これにより塗布層のブロッキング効果及び防曇持続性を向上させることができる。 In the present invention, the water-based polyurethane resin and / or water-based polyester resin (B) used in combination with the nonionic surfactant (A) is a polylactic acid biaxial compound. Necessary as a binder resin for firmly adhering to the surface of the stretched film, whereby the blocking effect and anti-fogging durability of the coating layer can be improved.
本発明において、水性ポリウレタン樹脂及び/又は水性ポリエステル樹脂(B)は、水溶性もしくは水分散性の樹脂を指す。水性ポリウレタン樹脂としては特に限定されず、ポリエステル系ポリウレタン、ポリエーテル系ポリウレタン、ポリウレタンポリ尿素樹脂およびそれらのプレポリマー等が例示できる。このようなポリウレタン樹脂の具体例としては、ポリウレタン樹脂の主鎖または側鎖にカルボン酸塩、スルホン酸塩等の親水基を導入した自己乳化型ポリウレタン樹脂が好ましい。また、ポリ乳酸系二軸延伸フィルムへの密着性、被膜の耐水性、耐熱性等の向上を目的として、イソシアネート化合物、エポキシ化合物、アミノ樹脂等の架橋剤を少量添加しても構わない。水性ポリエステル樹脂としては、各種ポリエステル樹脂およびそれらの変成物が例示できる。このような水性ポリエステル樹脂の具体例としては、テレフタル酸、イソフタル酸、トリメリット酸、ピロメリット酸、2−スルホイソフタル酸、5−スルホイソフタル酸、コハク酸、アジピン酸、セバシン酸、ドデカン二酸等の多価カルボン酸成分と、エチレングリコール、ネオペンチルグリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物などのジオール成分との反応物が挙げられ、アクリル樹脂、エポキシ樹脂などによる変性物も含まれる。 In the present invention, the aqueous polyurethane resin and / or aqueous polyester resin (B) refers to a water-soluble or water-dispersible resin. The aqueous polyurethane resin is not particularly limited, and examples thereof include polyester-based polyurethane, polyether-based polyurethane, polyurethane polyurea resin, and prepolymers thereof. As a specific example of such a polyurethane resin, a self-emulsifying polyurethane resin having a hydrophilic group such as carboxylate or sulfonate introduced into the main chain or side chain of the polyurethane resin is preferable. A small amount of a crosslinking agent such as an isocyanate compound, an epoxy compound, or an amino resin may be added for the purpose of improving the adhesion to the polylactic acid-based biaxially stretched film, the water resistance of the coating, and the heat resistance. Examples of the aqueous polyester resin include various polyester resins and modified products thereof. Specific examples of such an aqueous polyester resin include terephthalic acid, isophthalic acid, trimellitic acid, pyromellitic acid, 2-sulfoisophthalic acid, 5-sulfoisophthalic acid, succinic acid, adipic acid, sebacic acid, dodecanedioic acid. And other diol components such as ethylene glycol, neopentyl glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, cyclohexanedimethanol, and ethylene oxide adduct of bisphenol A. Examples include reactants, and modified products such as acrylic resins and epoxy resins are also included.
本発明において、非イオン系界面活性剤(A)と水性ポリウレタン樹脂及び/又は水性ポリエステル樹脂(B)との質量比(A/B)は、90/10〜10/90であることが必要であり、好ましくは、80/20〜40/60である。質量比をこの範囲に設定することにより、ポリ乳酸系二軸延伸フィルムへの密着性、防曇性、被膜の耐ブロッキング性を満足することが出来る。水性ポリウレタン樹脂及び/又は水性ポリエステル樹脂(B)の配合比を10%未満にすると、耐水性が劣るため防曇持続性が不十分である。またフィルムロールにおいては被覆層の反対側へ非イオン系界面活性剤が移行しやすく、防曇性能がばらつきやブロッキングを生じる。また90%より高くすると防曇効果が乏しくなる。 In the present invention, the mass ratio (A / B) between the nonionic surfactant (A) and the aqueous polyurethane resin and / or the aqueous polyester resin (B) needs to be 90/10 to 10/90. Yes, preferably 80/20 to 40/60. By setting the mass ratio within this range, adhesion to the polylactic acid biaxially stretched film, antifogging properties, and blocking resistance of the coating can be satisfied. When the blending ratio of the aqueous polyurethane resin and / or the aqueous polyester resin (B) is less than 10%, the antifogging durability is insufficient because of poor water resistance. Moreover, in a film roll, a nonionic surfactant tends to transfer to the opposite side of the coating layer, resulting in variations in antifogging performance and blocking. On the other hand, if it is higher than 90%, the antifogging effect becomes poor.
本発明において、ポリ乳酸系フィルムへの前記塗布層の乾燥後被覆量は、0.01〜1g/m2が好ましい。0.01g/m2未満では防曇効果が乏しく、1g/m2を超えると防曇性能に有意な変化が見られず、むしろ被膜の外観不良やブロッキングといった弊害が顕著となり、コスト面からも厚塗りは好ましくない。 In the present invention, the coating amount after drying of the coating layer on the polylactic acid film is preferably 0.01 to 1 g / m 2 . If it is less than 0.01 g / m 2 , the antifogging effect is poor, and if it exceeds 1 g / m 2 , no significant change is observed in the antifogging performance. Thick coating is not preferred.
本発明において、ポリ乳酸系フィルムの表面に前記水溶液または水分散液を塗布する方法としては、公知の任意の塗工法が適用できる。例えばグラビアロール方式、マイヤーバー方式、リバースロール方式、エアーナイフ方式が独立または組み合わせて適用される。塗布を施す対象のフィルムは、ポリマーを溶融押出しし、冷却ロールへのキャスティング後の未延伸フィルム、縦方向に延伸を行った後の一軸延伸フィルムが好ましいが、二軸延伸フィルムでもよい。塗工後にオーブンで乾燥する場合は、未延伸フィルム、一軸延伸フィルム、二軸延伸フィルムの熱変形の起こらない温度条件下で行われるべきであり、好ましくは100℃を超えないようにする。また塗工後に延伸機内の予熱、延伸、熱固定の各ゾーンを利用して乾燥を施してもよい。 In the present invention, any known coating method can be applied as a method of applying the aqueous solution or aqueous dispersion on the surface of the polylactic acid film. For example, a gravure roll method, a Meyer bar method, a reverse roll method, and an air knife method are applied independently or in combination. The film to be coated is preferably an unstretched film after melt-extrusion of the polymer and casting on a cooling roll, or a uniaxially stretched film after stretching in the machine direction, but may be a biaxially stretched film. When drying in an oven after coating, it should be performed under temperature conditions that do not cause thermal deformation of the unstretched film, uniaxially stretched film, and biaxially stretched film, and preferably not exceed 100 ° C. Further, after coating, drying may be performed by using preheating, stretching, and heat setting zones in a stretching machine.
本発明において、未延伸フィルムや一軸延伸フィルムに前記水溶液または水分散液を塗布し、延伸熱処理を経て二軸延伸フィルムを得るいわゆるインラインコート法を用いることが好ましい。すなわち、未延伸ポリ乳酸系フィルムに、前記水溶液又は水分散液を塗布し、続いて二軸方向に延伸するか、または、一軸方向のみに延伸されたポリ乳酸系フィルムに、前記水溶液又は水分散液を塗布し、続いて最初の延伸方向と直角方向に延伸するインラインコート法を用いることが好ましい。この方法は、塗布層厚みを薄くすることが可能であり、かつ基材フィルムへの密着性を高めることが出来る。また1工程で済むためコストダウンにもつながり非常に有益であるが、二軸延伸フィルムに塗布するポストコート法を用いてもよい。 In the present invention, it is preferable to use a so-called in-line coating method in which the aqueous solution or aqueous dispersion is applied to an unstretched film or a uniaxially stretched film, and a biaxially stretched film is obtained through a stretching heat treatment. That is, the aqueous solution or water dispersion is applied to an unstretched polylactic acid film, and then stretched in a biaxial direction, or the polylactic acid film stretched only in a uniaxial direction, the aqueous solution or water dispersion. It is preferable to use an in-line coating method in which a liquid is applied and subsequently stretched in a direction perpendicular to the initial stretching direction. This method can reduce the thickness of the coating layer and can improve the adhesion to the substrate film. Further, since only one step is required, the cost can be reduced, which is very useful, but a post-coating method for applying to a biaxially stretched film may be used.
本発明のポリ乳酸系二軸延伸フィルムの製造方法としては、Tダイ法、インフレーション法、カレンダー法等が例示できるが、Tダイを用いて溶融混練して押し出すTダイ法が好ましい。Tダイ法の製法例としては、ポリ乳酸系重合体さらに可塑剤、滑剤を必要に応じて適量配合したポリ乳酸系樹脂組成物を押出機ホッパーに供給し、押出機を例えばシリンダー温度180〜250℃、Tダイ温度200〜250℃に加熱し、溶融混練して押し出し、20〜40℃に制御された冷却ロールで冷却し、厚み100〜500μmの未延伸シートを得る。 Examples of the method for producing the polylactic acid-based biaxially stretched film of the present invention include a T-die method, an inflation method, a calendar method, and the like. As an example of the production method of the T-die method, a polylactic acid polymer, a polylactic acid resin composition containing a plasticizer and a lubricant in an appropriate amount as needed is supplied to an extruder hopper, and the extruder has a cylinder temperature of 180 to 250, for example. C., T-die temperature is 200 to 250.degree. C., melt kneaded and extruded, and cooled with a cooling roll controlled to 20 to 40.degree. C. to obtain an unstretched sheet having a thickness of 100 to 500 .mu.m.
未延伸シートの二軸延伸方法としては、テンター方式による同軸二軸延伸、金属ロール及びテンターによる逐次二軸延伸法のいずれでもよい。例えば、未延伸フィルムを逐次二軸延伸法によってフィルム化する場合には、得られた未延伸フィルムを駆動ロールの回転速度比によって縦方向にロール表面温度50〜80℃で縦方向に延伸し、引き続き連続して延伸温度70〜100℃で横方向に延伸する。延伸倍率は特に限定されるものではないが、フィルムの機械的特性を考慮すると、少なくとも縦延伸倍率が2.5倍以上であることが好ましく、かつ面倍率が8倍以上であることが好ましい。縦横の延伸倍率が2.5倍未満であると十分な機械的物性が得られず、実用性に劣るものとなる。また延伸倍率の上限は特に限定されるものではないが、8倍を超えるとフィルム破断が起こりやすくなるため、縦横共に2.5〜8.0倍とすることが好ましく、縦延伸倍率が2.5〜5.0倍、横延伸倍率が2.5〜8.0倍であることが好ましい。上記の延伸処理が行われた後、温度100〜150℃で熱固定処理が施され、リラックス率2〜8%の条件下で熱弛緩処理が行われる。 As a biaxial stretching method of the unstretched sheet, any of a coaxial biaxial stretching by a tenter method and a sequential biaxial stretching method by a metal roll and a tenter may be used. For example, when the unstretched film is formed into a film by the sequential biaxial stretching method, the obtained unstretched film is stretched in the longitudinal direction at a roll surface temperature of 50 to 80 ° C. in the longitudinal direction by the rotation speed ratio of the drive roll, Subsequently, the film is continuously stretched in the transverse direction at a stretching temperature of 70 to 100 ° C. The draw ratio is not particularly limited, but considering the mechanical properties of the film, at least the longitudinal draw ratio is preferably 2.5 times or more, and the surface magnification is preferably 8 times or more. If the longitudinal and lateral draw ratios are less than 2.5, sufficient mechanical properties cannot be obtained, resulting in poor practicality. The upper limit of the draw ratio is not particularly limited, but if it exceeds 8 times, film breakage tends to occur. Therefore, the length and width are preferably 2.5 to 8.0 times, and the longitudinal draw ratio is 2. It is preferable that it is 5 to 5.0 times and the transverse draw ratio is 2.5 to 8.0 times. After the above stretching process is performed, a heat setting process is performed at a temperature of 100 to 150 ° C., and a heat relaxation process is performed under a condition of a relaxation rate of 2 to 8%.
本発明のポリ乳酸系二軸延伸フィルムは、少なくとも片面に防曇剤および水性樹脂とからなる混合物の塗布層を積層したものであるが、フィルムと塗布層との積層に際して、両者の密着性を高めるために、予めフィルムの塗布面側に、コロナ放電処理、プラズマ処理、オゾン処理、火炎処理等の表面処理を施してもよい。これらの中では、簡便さの点からコロナ放電処理が最も好ましい。これらの表面処理により、表面張力が40mN/m以上になるように行うことが好ましい。 The polylactic acid-based biaxially stretched film of the present invention is obtained by laminating a coating layer of a mixture comprising an antifogging agent and an aqueous resin on at least one side. In order to increase the surface, a surface treatment such as corona discharge treatment, plasma treatment, ozone treatment, flame treatment, or the like may be applied in advance to the coated surface side of the film. Among these, the corona discharge treatment is most preferable from the viewpoint of simplicity. It is preferable that the surface tension be 40 mN / m or more by these surface treatments.
本発明のポリ乳酸系二軸延伸フィルムの厚みは特に制限なく、用途、要求性能、価格等によって適宜設定すればよい。一般的には、10〜50μm程度の厚さを例示出来る。さらに、フィルムの印刷性、ラミネート性、コーティング適性等を向上させる目的で、塗布面に再度コロナ放電処理を施してもよい。 The thickness of the polylactic acid-based biaxially stretched film of the present invention is not particularly limited, and may be appropriately set depending on the application, required performance, price and the like. Generally, a thickness of about 10 to 50 μm can be exemplified. Furthermore, for the purpose of improving the printability, laminating property, coating suitability, etc. of the film, the coated surface may be subjected to corona discharge treatment again.
本発明のポリ乳酸系二軸延伸フィルムは、必要に応じて顔料、酸化防止剤、可塑剤、紫外線吸収剤、滑剤、結晶核剤、帯電防止剤等を任意の割合で添加あるいは表面塗布することができる。 The polylactic acid-based biaxially stretched film of the present invention may be added or surface-coated with a pigment, an antioxidant, a plasticizer, an ultraviolet absorber, a lubricant, a crystal nucleating agent, an antistatic agent, etc., as required. Can do.
次に、本発明を実施例により説明するが、本発明は下記実施例により制限されるものでない。なお、実施例、比較例に用いた測定法及び評価法は以下の方法により実施した。 EXAMPLES Next, although an Example demonstrates this invention, this invention is not restrict | limited by the following Example. In addition, the measuring method and evaluation method used for the Example and the comparative example were implemented with the following method.
(1)防曇性及び防曇持続性
500mlのガラス容器に50℃の温湯を300ml入れ、フィルムの塗布面を内側にして密封し、5℃の冷蔵庫中に静置し、フィルムの表面状態を経時的に観察した。防曇性は次の4段階で評価した。なお静置時間は1時間、8時間、1日、3日、7日とした。
◎:表面が均一透明で水滴の付着がない。
○:表面は透明で水滴の付着はないが、不均一でゆがんで見える。
△:表面に大きめの水滴が部分的に付着している。
×:全面に微細な水滴が付着し、底が見えない。
(1) Anti-fogging property and anti-fogging durability 300 ml of hot water at 50 ° C. is put in a 500 ml glass container, sealed with the coated surface of the film inside, and left in a refrigerator at 5 ° C. Observed over time. The antifogging property was evaluated in the following four stages. The standing time was 1 hour, 8 hours, 1 day, 3 days, and 7 days.
A: The surface is uniform and transparent, and there is no adhesion of water droplets.
○: The surface is transparent and there is no adhesion of water droplets, but it appears uneven and distorted.
Δ: Large water droplets partially adhere to the surface.
X: A fine water droplet adheres to the whole surface, and the bottom cannot be seen.
(2)耐ブロッキング性
フィルムの塗布面と非塗布面とを重ね合わせて、10kg/cm2の荷重下、40℃×80%RHにて24時間処理した後、フィルム同志の剥離力を測定し、その剥離荷重から耐ブロッキング性を下記基準により評価した。
◎:剥離荷重10g未満
○:剥離荷重10g以上30g未満
△:剥離荷重30g以上100g未満
×:剥離荷重100g以上
(2) Blocking resistance The coated and non-coated surfaces of the film were overlapped and treated for 24 hours at 40 ° C. × 80% RH under a load of 10 kg / cm 2 , and then the peel force between the films was measured. From the peel load, blocking resistance was evaluated according to the following criteria.
A: Peeling load less than 10 g B: Peeling load 10 g or more and less than 30 g Δ: Peeling load 30 g or more and less than 100 g X: Peeling load 100 g or more
(3)フィルム基材への密着性
塗布面にカッターで格子状に切れ込みを100等分入れた後、ニチバン社製粘着テープを用いて剥離試験を行い、塗布層の剥離状況を下記基準により判定した。
◎:剥離部がない
○:剥離部が20個未満
△:剥離部が20個以上80個未満
×:剥離部が80個以上
(3) Adhesion to the film substrate After 100 cuts were cut into a grid pattern on the coated surface with a cutter, a peel test was conducted using a Nichiban adhesive tape, and the peel status of the coated layer was judged according to the following criteria. did.
◎: No peeling part ○: Less than 20 peeling parts Δ: 20 or more and less than 80 peeling parts ×: 80 or more peeling parts
(4)総合評価
上記の各特性値を総合して次の基準に従い4段階評価を行った。
◎:非常に良好
○:良好
△:やや問題有り
×:問題有り
(4) Comprehensive evaluation The above-described characteristic values were combined and evaluated according to the following criteria.
◎: Very good ○: Good △: Somewhat problematic ×: There is a problem
実施例1
非イオン系界面活性剤としてポリオキシエチレンソルビタンモノラウレート(A−1)(東邦化学社製 ソルボンT−20)60質量%と、水分散ポリウレタン樹脂として自己乳化型ポリウレタン樹脂(B−1)(大日本インキ化学工業社製 ハイドランKU−400SF)40質量%とからなる混合物100質量部に対して、アミノ樹脂(大日本インキ化学工業社製 ベッカミンPMN)10質量部を加え、総固形分濃度が5質量%となるよう水で濃度調整して水分散液を調製した。
Example 1
60% by mass of polyoxyethylene sorbitan monolaurate (A-1) (Sorbon T-20 manufactured by Toho Chemical Co., Ltd.) as a nonionic surfactant and a self-emulsifying polyurethane resin (B-1) (as a water-dispersed polyurethane resin) To 100 parts by mass of a mixture consisting of 40% by mass of Dainippon Ink & Chemicals Hydran KU-400SF), 10 parts by mass of an amino resin (Dainippon Ink & Chemicals Becamine PMN) is added, and the total solid content is A water dispersion was prepared by adjusting the concentration with water to 5 mass%.
ポリ乳酸系樹脂(カーギルダウポリマー社製、L−乳酸/D−乳酸=98.5/1.5(モル比)、融点165℃、数平均分子量105,000)100質量部と、アンチブロッキング剤として不定形シリカ(富士シリシア化学社製 サイリシア310P、平均粒径1.4μm)0.1質量部とを配合した樹脂組成物を、90mmφの単軸押出機にてTダイ温度230℃で溶融押出しし、35℃に温度制御されたキャストロールに密着急冷し、厚さ300μmの未延伸シートを得た。 100 parts by mass of a polylactic acid resin (manufactured by Cargill Dow Polymer Co., Ltd., L-lactic acid / D-lactic acid = 98.5 / 1.5 (molar ratio), melting point 165 ° C., number average molecular weight 105,000), antiblocking agent A resin composition blended with 0.1 part by mass of amorphous silica (Silicia 310P manufactured by Fuji Silysia Chemical Co., Ltd., average particle size: 1.4 μm) is melt extruded at a T die temperature of 230 ° C. with a 90 mmφ single screw extruder. Then, the film was closely contacted and rapidly cooled to a cast roll whose temperature was controlled at 35 ° C. to obtain an unstretched sheet having a thickness of 300 μm.
得られた未延伸シートを予熱ロール65℃、延伸ロール75℃で3.0倍に縦方向に延伸し、次いで上記水分散液を、延伸後の塗布量が0.05g/m2となるようマイヤーバーコートによりコートした後、引き続いてテンター内において85℃の延伸温度で横方向に4.0倍延伸した後、横方向の弛緩率を5%として140℃で熱処理を施し、厚さ25μmの逐次二軸延伸フィルムを得た。得られたフィルムの物性を表1に示した。 The obtained unstretched sheet was stretched 3.0 times in the longitudinal direction at a preheating roll of 65 ° C. and a stretching roll of 75 ° C., and then the aqueous dispersion was applied so that the coating amount after stretching was 0.05 g / m 2. After coating with the Mayer bar coat, the film was stretched 4.0 times in the transverse direction at a stretching temperature of 85 ° C. in the tenter, and then heat treated at 140 ° C. with a transverse relaxation rate of 5%. A sequential biaxially stretched film was obtained. Table 1 shows the physical properties of the obtained film.
実施例2〜4
表1に示す非イオン系界面活性剤、水性ポリウレタン樹脂、水性ポリエステル樹脂を用い、質量比、塗布量を変更する以外は実施例1と同様にして逐次二軸延伸フィルムを得た。
Examples 2-4
A biaxially stretched film was obtained in the same manner as in Example 1 except that the nonionic surfactant, aqueous polyurethane resin, and aqueous polyester resin shown in Table 1 were used and the mass ratio and coating amount were changed.
実施例5
ポリ乳酸系樹脂(カーギルダウポリマー社製 L−乳酸/D−乳酸=96.0/4.0(モル比)、融点150℃、数平均分子量105,000)と、表1に示す非イオン系界面活性剤を用い、質量比、塗布量を変更する以外は実施例1と同様にして逐次二軸延伸フィルムを得た。
Example 5
Polylactic acid resin (L-lactic acid / D-lactic acid = 96.0 / 4.0 (molar ratio), melting point 150 ° C., number average molecular weight 105,000, manufactured by Cargill Dow Polymer Co., Ltd.) and nonionic systems shown in Table 1 A sequential biaxially stretched film was obtained in the same manner as in Example 1 except that the surfactant was used and the mass ratio and the coating amount were changed.
比較例1
非イオン系界面活性剤と水性ポリウレタン樹脂及び/又は水性ポリエステル樹脂とからなる塗布層を設けることなく、実施例1と同様にして逐次二軸延伸フィルムを得た。
Comparative Example 1
A sequential biaxially stretched film was obtained in the same manner as in Example 1 without providing a coating layer composed of a nonionic surfactant and an aqueous polyurethane resin and / or an aqueous polyester resin.
比較例2
非イオン系界面活性剤の代わりに、アニオン系界面活性剤(A−4)(アルキルスルホン酸ナトリウム塩、三洋化成工業社製 ケミスタット3033N)を用いる以外は、実施例1と同様にして二軸延伸フィルムを得た。
Comparative Example 2
Biaxial stretching in the same manner as in Example 1 except that anionic surfactant (A-4) (alkyl sulfonic acid sodium salt, Chemistat 3033N manufactured by Sanyo Chemical Industries, Ltd.) was used instead of the nonionic surfactant. A film was obtained.
比較例3〜4
表1に示す非イオン系界面活性剤を用い、質量比を変更する以外は実施例1と同様にして逐次二軸延伸フィルムを得た。
Comparative Examples 3-4
Using the nonionic surfactant shown in Table 1, a biaxially stretched film was obtained in the same manner as in Example 1 except that the mass ratio was changed.
比較例5
水性樹脂としてポリエチレンオキサイド(B−3)(明成化学工業社製 アルコックスR−150、分子量15万)と、表1に示す非イオン系界面活性剤とを用い、質量比、塗布量を変更する以外は実施例1と同様にして逐次二軸延伸フィルムを得た。
Comparative Example 5
Using polyethylene oxide (B-3) (manufactured by Meisei Chemical Co., Ltd., Alcox R-150, molecular weight 150,000) and the nonionic surfactant shown in Table 1 as the aqueous resin, the mass ratio and the coating amount are changed. Except for this, a biaxially stretched film was obtained in the same manner as in Example 1.
実施例に代表される本発明のポリ乳酸系二軸延伸フィルムは、1週間程度の長期防曇性に優れ、同時に耐ブロッキング性、基材密着性に優れている。 The polylactic acid biaxially stretched film of the present invention represented by the examples is excellent in long-term antifogging property for about one week, and at the same time, is excellent in blocking resistance and substrate adhesion.
一方、比較例に代表される本発明を満足しないポリ乳酸系二軸延伸フィルムは、防曇性が不足したり、あるいは基材密着不良及びフィルム同士のブロッキング性の悪化を引き起こした。 On the other hand, the polylactic acid type biaxially stretched film that does not satisfy the present invention represented by the comparative example has insufficient antifogging property, or causes poor substrate adhesion and deterioration of blocking properties between films.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004002001A JP4530670B2 (en) | 2004-01-07 | 2004-01-07 | Anti-fogging polylactic acid biaxially stretched film and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004002001A JP4530670B2 (en) | 2004-01-07 | 2004-01-07 | Anti-fogging polylactic acid biaxially stretched film and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005194383A JP2005194383A (en) | 2005-07-21 |
JP4530670B2 true JP4530670B2 (en) | 2010-08-25 |
Family
ID=34817354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004002001A Expired - Fee Related JP4530670B2 (en) | 2004-01-07 | 2004-01-07 | Anti-fogging polylactic acid biaxially stretched film and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4530670B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007331154A (en) * | 2006-06-13 | 2007-12-27 | Mitsubishi Plastics Ind Ltd | Polylactic acid-based biaxially stretched film and its manufacturing method |
JP2008285610A (en) * | 2007-05-18 | 2008-11-27 | Risu Pack Co Ltd | Polylactic acid-based resin sheet and molded article formed of its sheet |
KR101712177B1 (en) * | 2010-06-29 | 2017-03-07 | 코오롱인더스트리 주식회사 | Shrink Films and Manufacturing method thereof |
GB201405491D0 (en) * | 2014-03-27 | 2014-05-14 | Dupont Nutrition Biosci Aps | Coating of a surface |
JP6841021B2 (en) * | 2016-12-01 | 2021-03-10 | Dic株式会社 | Active energy ray-curable anti-fog composition and cured product using this |
JP7296608B2 (en) * | 2017-10-04 | 2023-06-23 | 株式会社ベルグリーンワイズ | Storage bag for keeping fruits and vegetables fresh |
CN108340670B (en) * | 2018-03-27 | 2023-09-12 | 深圳市三上高分子环保新材料股份有限公司 | Double-stretching polylactic acid film, namely film coating and processing equipment thereof |
CN115491087B (en) * | 2022-07-04 | 2023-09-01 | 岳阳长岭设备研究所有限公司 | Anti-sedimentation type water-based heat insulation coating and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1086307A (en) * | 1996-04-18 | 1998-04-07 | Mitsui Petrochem Ind Ltd | Aliphatic polyester coating film |
JP2002012687A (en) * | 2000-06-28 | 2002-01-15 | Unitika Ltd | Polylactic acid-based biaxially oriented film with excellent antistaticity and method for producing the same |
-
2004
- 2004-01-07 JP JP2004002001A patent/JP4530670B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1086307A (en) * | 1996-04-18 | 1998-04-07 | Mitsui Petrochem Ind Ltd | Aliphatic polyester coating film |
JP2002012687A (en) * | 2000-06-28 | 2002-01-15 | Unitika Ltd | Polylactic acid-based biaxially oriented film with excellent antistaticity and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2005194383A (en) | 2005-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10843447B2 (en) | Heat-sealable and peelable polyester film, use thereof and process for production thereof | |
JP5513604B2 (en) | Biaxially oriented metallized polylactic acid film with high metal adhesion and high barrier properties | |
US20100330382A1 (en) | Biaxially oriented polylactic acid film with improved moisture barrier | |
KR100576528B1 (en) | Transparent polyester film with high oxygen barrier property and manufacturing method thereof | |
JP4405120B2 (en) | Polylactic acid biaxially stretched laminated film with heat sealability | |
US20100104882A1 (en) | Aliphatic polyester sheet and molded body composed of the same | |
US8574695B2 (en) | Biodegradable composite barrier film | |
KR19990078206A (en) | Sealable polyester film with high oxygen barrier, its use and process for its production | |
TWI710589B (en) | Polyamide film and method for producing the same | |
JP5011633B2 (en) | Polyester film | |
WO2021200489A1 (en) | Biaxially stretched polyamide film | |
US20050287380A1 (en) | Adhesion-promoting polyester film comprising poly(m-xyleneadipamide) | |
JP4530670B2 (en) | Anti-fogging polylactic acid biaxially stretched film and method for producing the same | |
WO2010002205A2 (en) | Biodegradable flexible film | |
KR19990078208A (en) | Transparent polyester film with high oxygen barrier and additional functionality, its use and process for its production | |
JP2004051959A (en) | Aliphatic polyester film and laminated product | |
JP4418161B2 (en) | Heat-sealable polylactic acid-based biaxially stretched film | |
JP2010090370A (en) | Laterally highly stretched aliphatic polyester-based film and laminated film | |
KR20150055974A (en) | Matt heat shrinkable polyester film | |
JP2007331154A (en) | Polylactic acid-based biaxially stretched film and its manufacturing method | |
JP2005225992A (en) | Antistatic polylactic acid-based biaxially oriented film | |
US20070160818A1 (en) | Biaxially stretched polyester film | |
JP2000198913A (en) | Easily tearable biaxially oriented polylactate film | |
JP3703795B2 (en) | Polylactic acid-based biaxially stretched film with excellent fusing and sealing properties | |
JP2004359948A (en) | Biaxially oriented polylactic acid film for forming and container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100518 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100608 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |