JP2004359948A - Biaxially oriented polylactic acid film for forming and container - Google Patents

Biaxially oriented polylactic acid film for forming and container Download PDF

Info

Publication number
JP2004359948A
JP2004359948A JP2004143216A JP2004143216A JP2004359948A JP 2004359948 A JP2004359948 A JP 2004359948A JP 2004143216 A JP2004143216 A JP 2004143216A JP 2004143216 A JP2004143216 A JP 2004143216A JP 2004359948 A JP2004359948 A JP 2004359948A
Authority
JP
Japan
Prior art keywords
film
polylactic acid
elongation
biaxially stretched
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004143216A
Other languages
Japanese (ja)
Other versions
JP4543743B2 (en
Inventor
Hiroshi Niinumadate
浩 新沼舘
Hiroyuki Tanaka
裕之 田中
Kenichi Yakushido
健一 藥師堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004143216A priority Critical patent/JP4543743B2/en
Publication of JP2004359948A publication Critical patent/JP2004359948A/en
Application granted granted Critical
Publication of JP4543743B2 publication Critical patent/JP4543743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biaxially oriented polylactic acid film for forming, capable of giving a formed product excellent in heat resistance, without being deteriorated in formability, and to provide a container given from the same. <P>SOLUTION: This biaxially oriented polylactic acid film for forming consists mainly of a lactic acid-based resin, wherein the film has such a stress at 100% elongation and an elongation at break in the machine direction and the transverse direction of the film at 60°C as satisfying inequalities (1) and (2): (1) 70≤F100a+F100b≤110 [F100a is the stress (MPa) at 100% elongation in the machine direction of the film at 60°C; and F100b is the stress (MPa) at 100% elongation in the transverse direction of the film at 60°C]; and (2) 460≤La+Lb≤800 [La is the elongation (%) at break in the machine direction of the film at 60°C; and Lb is the elongation (%) at break in the transverse direction of the film at 60°C]. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は成形用二軸延伸ポリ乳酸フィルムに関する。特に詳しくは、成形性を損なうことなく耐熱性に優れた成形品を得ることができる成形用二軸延伸ポリ乳酸フィルムおよびそれを用いて得られる容器に関する。   The present invention relates to a biaxially stretched polylactic acid film for molding. More particularly, the present invention relates to a biaxially stretched polylactic acid film for molding capable of obtaining a molded article having excellent heat resistance without impairing moldability, and a container obtained using the same.

従来、ポリ乳酸を始めとする脂肪族ポリエステルフィルムは自然環境に廃棄された際に分解すること、例えば土壌中で自然に加水分解した後に微生物によって無害な分解物となることを特徴として開発され、特に食品容器の分野では、食品と一緒にコンポスト処理を行うことによって生分解可能であることから注目されている。例えば、ポリ乳酸または乳酸とその他のヒドロキシカルボン酸のコポリマーを主成分とする熱可塑性ポリマー組成物を予備成形した後、特定の条件でブロー成形して容器を得る方法などが知られている(特許文献1)。   Conventionally, aliphatic polyester films such as polylactic acid are degraded when discarded in the natural environment, for example, have been developed to be characterized as being harmless by microorganisms after being naturally hydrolyzed in soil, In particular, in the field of food containers, attention has been paid to biodegradability by composting with food. For example, a method is known in which a thermoplastic polymer composition containing polylactic acid or a copolymer of lactic acid and another hydroxycarboxylic acid as a main component is preformed and then blow molded under specific conditions to obtain a container (patented). Reference 1).

しかしながら、ポリ乳酸は耐熱性に劣るため、このような製法で得られた容器は低温での使用に限定した用途でしか用いることができなかった。   However, since polylactic acid is inferior in heat resistance, containers obtained by such a production method can be used only for applications limited to use at low temperatures.

特許文献2では、フィルムを延伸することにより耐熱性を向上させることが開示されているが、ここに開示される製膜技術においては、100℃を越えるアニールを施したフィルムは良好な成形性を達成できていない。   Patent Document 2 discloses that heat resistance is improved by stretching a film. However, in the film forming technology disclosed herein, a film that has been annealed at a temperature higher than 100 ° C. has good moldability. Not achieved.

さらに、特許文献3,4においても延伸フィルムを容器状の成形品に加工した例が挙げられているが、これらの例はフィルム延伸後にアニールが全くなされていない。   Furthermore, Patent Documents 3 and 4 also disclose examples in which a stretched film is processed into a container-like molded product, but in these examples, no annealing is performed after the film is stretched.

一般に、フィルムは十分なアニール(ヒートセット、熱固定)を施すことにより、熱寸法安定性、経時安定性等の諸物性を安定させることができるが、特許文献3,4によるフィルムは加熱加工時の寸法安定性に欠ける不十分なものであった。   In general, a film can be subjected to sufficient annealing (heat setting, heat setting) to stabilize various physical properties such as thermal dimensional stability and aging stability. Was inadequate, lacking in dimensional stability.

特許文献5では、延伸かつ熱固定された熱成形用ポリ乳酸フィルムについて開示がなされている。本文献では融点の低い樹脂を積層することにより抗張力を低下させ、所望の成形性を達成し得たものである。しかしながら、融点の低い樹脂を用いることにより耐熱性の低下を引き起こすため、耐熱性が不十分なものであった。   Patent Document 5 discloses a stretched and heat-set polylactic acid film for thermoforming. In this document, a resin having a low melting point is laminated to lower the tensile strength and achieve a desired moldability. However, the use of a resin having a low melting point causes a decrease in heat resistance, so that heat resistance is insufficient.

特許文献6は、製膜条件として70℃の延伸温度で、2.5×2.5倍、あるいは2.5×3.0倍の延伸を施し熱処理を施したフィルムを成形容器に使用した例が記載されているが、これらの例では、本明細書の比較例3に示すように成形性が不十分なものであった。
特開平6−23828号公報(請求項1等) 特開平8−73628号公報 ([0032]、実施例9〜13、比較例10〜14) 特開2001−150531号公報(実施例1等) 特開2001−162676号公報(実施例1等) 特開2003−291294号公報 ([0019]〜[0020]、実施例1、13等) 特開平9−25345号公報(実施例1、2)
Patent Document 6 discloses an example in which, as a film forming condition, a film that has been stretched 2.5 × 2.5 times or 2.5 × 3.0 times at a stretching temperature of 70 ° C. and subjected to heat treatment is used for a forming container. However, in these examples, as shown in Comparative Example 3 of the present specification, the moldability was insufficient.
JP-A-6-23828 (Claim 1 etc.) JP-A-8-73628 ([0032], Examples 9 to 13, Comparative Examples 10 to 14) JP 2001-15053 A (Example 1 and the like) JP 2001-162676 A (Example 1 and the like) JP-A-2003-291294 ([0019] to [0020], Examples 1, 13 etc.) JP-A-9-25345 (Examples 1 and 2)

本発明は、かかる課題を解決するために、成形性を損なうことなく耐熱性に優れた成形品を得ることができる成形用二軸延伸ポリ乳酸フィルムおよびそれを用いて得られる容器に関するものである。   The present invention relates to a biaxially stretched polylactic acid film for molding capable of obtaining a molded article excellent in heat resistance without impairing moldability, and a container obtained by using the same, in order to solve such problems. .

上記課題を達成するするため、本発明の成形用二軸延伸フィルムは次の構成を有する。   In order to achieve the above object, a biaxially stretched film for molding of the present invention has the following constitution.

すなわち、主にポリ乳酸系樹脂からなる成形用二軸延伸フィルムであって、60℃におけるフィルム長手方向及び幅方向の100%伸長時の応力および破断伸度が、下式(1)および(2)を満足することを特徴とする成形用二軸延伸ポリ乳酸フィルムである。   That is, it is a biaxially stretched film for molding mainly composed of a polylactic acid-based resin, and the stress and elongation at break at 100 ° C. in the longitudinal and width directions of the film at 60 ° C. are expressed by the following formulas (1) and (2). The present invention is a biaxially stretched polylactic acid film for molding, characterized by satisfying (1).

70≦F100a+F100b≦110…(1)
460≦La+Lb≦800 …(2)
ここで、F100aは60℃におけるフィルム長手方向の100%伸長時の応力(MPa)、F100bは60℃におけるフィルム幅方向の100%伸長時の応力(MPa)、Laは60℃におけるフィルム長手方向の破断伸度(%)、Lbは60℃におけるフィルム幅方向の破断伸度(%)を示す。
70 ≦ F100a + F100b ≦ 110 (1)
460 ≦ La + Lb ≦ 800 (2)
Here, F100a is the stress (MPa) at the time of 100% elongation in the film longitudinal direction at 60 ° C., F100b is the stress (MPa) at the time of 100% elongation in the film width direction at 60 ° C., and La is the stress in the film longitudinal direction at 60 ° C. The breaking elongation (%) and Lb indicate the breaking elongation (%) in the film width direction at 60 ° C.

また、上記成形用二軸ポリ乳酸フィルムの好ましい態様として、フィルムの厚みが50〜500μmでフィルムヘイズが7%以下であること、フィルム長手方向および幅方向の70℃における貯蔵弾性率が1GPa以上3GPa以下であること、120℃におけるフィルムの長手方向および幅方向の熱収縮率が5%以下であること、フィルムのカルボキシル基末端濃度が30当量/103kg以下であることを特徴とする。 In a preferred embodiment of the biaxial polylactic acid film for molding, the film has a thickness of 50 to 500 μm and a film haze of 7% or less, and has a storage elastic modulus of 1 GPa or more and 3 GPa at 70 ° C. in the longitudinal and width directions of the film. The film is characterized in that the heat shrinkage in the longitudinal direction and the width direction at 120 ° C. is 5% or less, and the carboxyl group terminal concentration of the film is 30 equivalents / 10 3 kg or less.

本発明の成形用二軸ポリ乳酸フィルムによれば、成形性を損なうことなく、成形して得られた容器の耐熱性、透明性が良好で、弁当容器など食品包装用容器として特に好適な成形用二軸延伸ポリ乳酸フィルムを得ることができる。   According to the biaxial polylactic acid film for molding of the present invention, the heat resistance and transparency of the container obtained by molding are good without impairing the moldability, and the molding is particularly suitable as a food packaging container such as a lunch box container. Biaxially stretched polylactic acid film can be obtained.

本発明のポリ乳酸樹脂とは、L−乳酸および/またはD−乳酸を主たる構成成分とするポリマーであるが、乳酸以外の他の共重合成分を含んでいてもよい。他のモノマー単位としては、エチレングリコール、プロピレングリコール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオ−ル、デカンジオール、1,4−シクロヘキサンジメタノ−ル、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ビスフェノ−ルA、ポリエチレングリコール、ポリプロピレングリコールおよびポリテトラメチレングリコールなどのグリコール化合物、シュウ酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ビス(p−カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4´−ジフェニルエーテルジカルボン酸、5−ナトリウムスルホイソフタル酸、5−テトラブチルホスホニウムイソフタル酸などのジカルボン酸、グリコール酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸、カプロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトン、1,5−オキセパン−2−オンなどのラクトン類を挙げることができる。上記他の共重合成分の共重合量は、全単量体成分に対し、0〜30モル%であることが好ましく、0〜10モル%であることがより好ましい。また、ポリ乳酸以外の熱可塑性樹脂を0〜30重量%混合して用いても良い。   The polylactic acid resin of the present invention is a polymer containing L-lactic acid and / or D-lactic acid as a main component, but may contain a copolymer component other than lactic acid. Other monomer units include ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, glycerin, pentaerythritol , Bisphenol A, glycol compounds such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol, oxalic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, cyclohexanedicarboxylic acid, terephthalic acid, Isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracenedicarboxylic acid, 4,4'-diphenylether dicarbo Acid, 5-sodium sulfoisophthalic acid, dicarboxylic acid such as 5-tetrabutylphosphonium isophthalic acid, glycolic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxycarboxylic acid such as hydroxybenzoic acid, caprolactone, Lactones such as valerolactone, propiolactone, undecalactone, and 1,5-oxepan-2-one can be mentioned. The copolymerization amount of the other copolymerization component is preferably 0 to 30 mol%, more preferably 0 to 10 mol%, based on all monomer components. Further, a thermoplastic resin other than polylactic acid may be used in a mixture of 0 to 30% by weight.

本発明に用いられるポリ乳酸樹脂は、適度な製膜、延伸適性および実用的な機械特性を満足させるため、重量平均分子量が5万以上、さらに好ましくは8万以上であることが好ましい。   The polylactic acid resin used in the present invention preferably has a weight average molecular weight of 50,000 or more, more preferably 80,000 or more, in order to satisfy appropriate film formation, stretchability and practical mechanical properties.

なお、ここでいう重量平均分子量とは、ゲルパーミテーションクロマトグラフィーで測定したポリメチルメタクリレート(PMMA)換算の分子量をいう。   Here, the weight average molecular weight means a molecular weight in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography.

また、本発明の効果が損なわれない範囲であれば、取扱性、加工性、物性を調整する目的で、可塑剤、滑剤、無機粒子、有機粒子、熱安定剤、着色防止剤、紫外線吸収剤、光安定剤、酸化防止剤等の添加剤を0.01〜10重量%含有させてもよい。   In addition, as long as the effects of the present invention are not impaired, in order to adjust handleability, processability, and physical properties, a plasticizer, a lubricant, an inorganic particle, an organic particle, a heat stabilizer, a coloring inhibitor, and an ultraviolet absorber. , A light stabilizer, an antioxidant and the like may be contained in an amount of 0.01 to 10% by weight.

本発明の成形用二軸延伸フィルムは、良好な成形性と成形後の耐熱性を両立させるため、60℃におけるフィルム長手方向及び幅方向の100%伸長時の応力および破断伸度が、下式(1)および(2)を満足することを特徴とする成形用二軸延伸ポリ乳酸フィルムである。   The biaxially stretched film for molding of the present invention has good stress and elongation at break at 100 ° C. in the longitudinal and width directions of the film at 60 ° C. A biaxially stretched polylactic acid film for molding, characterized by satisfying (1) and (2).

70≦F100a+F100b≦110 …(1)
460≦La+Lb≦800 …(2)
ここで、F100aは60℃におけるフィルム長手方向の100%伸長時の応力(MPa)、F100bは60℃におけるフィルム幅方向の100%伸長時の応力(MPa)、Laは60℃におけるフィルム長手方向の破断伸度(%)、Lbは60℃におけるフィルム幅方向の破断伸度(%)を示す。
70 ≦ F100a + F100b ≦ 110 (1)
460 ≦ La + Lb ≦ 800 (2)
Here, F100a is the stress (MPa) at the time of 100% elongation in the film longitudinal direction at 60 ° C., F100b is the stress (MPa) at the time of 100% elongation in the film width direction at 60 ° C., and La is the stress in the film longitudinal direction at 60 ° C. The breaking elongation (%) and Lb indicate the breaking elongation (%) in the film width direction at 60 ° C.

本発明の成形用二軸延伸フィルムにおいては、成形性と耐熱性を満足するために、式(1)に示す通り60℃におけるフィルム長手方向及び幅方向の100%伸長時の応力の和が70MPa以上110MPa以下、好ましくは80MPa以上100MPaで、なおかつ式(2)に示す通り60℃におけるフィルム長手方向及び幅方向の破断伸度の和が460%以上800%以下、好ましくは500%以上700%以下である必要がある。60℃におけるフィルム長手方向及び幅方向の100%伸長時の応力の和が70MPaより小さい場合や60℃におけるフィルム長手方向及び幅方向の破断伸度の和が800%より大きい場合、フィルムを成形して得られる容器の耐熱性が劣ったものとなってしまい、60℃におけるフィルム長手方向及び幅方向の100%伸長時の応力の和が110MPaより大きい場合や60℃におけるフィルム長手方向及び幅方向の破断伸度の和が460%より小さい場合は、成形性に劣ったフィルムとなってしまう。   In the biaxially stretched film for molding of the present invention, in order to satisfy moldability and heat resistance, the sum of stress at the time of 100% elongation in the film longitudinal direction and width direction at 60 ° C. is 70 MPa as shown in the formula (1). Not less than 110 MPa, preferably not less than 80 MPa and not less than 100 MPa, and the sum of elongation at break in the film longitudinal direction and width direction at 60 ° C. as shown in the formula (2) is not less than 460% and not more than 800%, preferably not less than 500% and not more than 700%. Need to be When the sum of the stresses at 100% elongation in the film longitudinal direction and the width direction at 60 ° C. is less than 70 MPa, or when the sum of the elongation at break in the film longitudinal direction and the width direction at 60 ° C. is more than 800%, the film is formed. The heat resistance of the resulting container is inferior, and the sum of stresses at 100% elongation in the film longitudinal direction and the width direction at 60 ° C. is greater than 110 MPa or in the film longitudinal direction and the width direction at 60 ° C. If the sum of the elongations at break is smaller than 460%, a film having poor moldability will result.

ここで、式(1)および(2)を満足するためには、溶融押出して得られる無配向フィルムは二軸方向に延伸を行い、延伸後に定長で熱処理を行うことによって配向結晶化した二軸延伸フィルムとすることが必要であるが、成形性と耐熱性を両立するためには配向と結晶化を高度にバランスすることによって上記式(1)および(2)を満足することが重要である。   Here, in order to satisfy the formulas (1) and (2), the non-oriented film obtained by melt extrusion is stretched in the biaxial direction, and is heat-treated at a constant length after the stretching to obtain the oriented and crystallized film. Although it is necessary to form an axially stretched film, in order to achieve both moldability and heat resistance, it is important to satisfy the above formulas (1) and (2) by highly balancing orientation and crystallization. is there.

本発明の成形用二軸延伸ポリ乳酸フィルムはフィルム長手方向および幅方向の70℃における貯蔵弾性率が1GPa以上3GPa以下、さらに好ましくは1.5GPa以上3GPa以下であることが好ましい。フィルム長手方向または幅方向の70℃における貯蔵弾性率が1GPaより小さい場合、フィルムを成形して得られる容器の耐熱性が低くなってしまい、高温、例えば60〜70℃で使用した場合に変形しやすくなってしまうため好ましくない。また、ポリ乳酸系二軸延伸フィルムでは一般にフィルム長手方向または幅方向の70℃における貯蔵弾性率を3GPaより大きくすることは困難であるが、3GPaより大きな値となった場合、成形性に劣るフィルムになりやすい。   The biaxially stretched polylactic acid film for molding of the present invention preferably has a storage elastic modulus at 70 ° C. in the longitudinal direction and width direction of the film of 1 GPa or more and 3 GPa or less, more preferably 1.5 GPa or more and 3 GPa or less. When the storage elastic modulus at 70 ° C. in the longitudinal direction or width direction of the film is less than 1 GPa, the heat resistance of the container obtained by forming the film becomes low, and the container is deformed when used at a high temperature, for example, 60 to 70 ° C. It is not preferable because it becomes easier. In general, it is difficult to make the storage elastic modulus at 70 ° C. in the longitudinal or width direction of the polylactic acid-based biaxially stretched film larger than 3 GPa. Easy to be.

本発明の成形用二軸延伸ポリ乳酸フィルムの厚さは好ましい成形性および容器の強度を得るためには、好ましくは50μm以上500μm、さらに好ましくは150μm以上300μm以下であることである。フィルム厚みが50μmより小さい場合は成形時にフィルム破れが発生しやすくなり成形性が悪化するだけでなく、成形できた場合でも容器強度が弱くなってしまうといった問題が発生しやすくなる。また、フィルム厚みが500μmより大きい場合は、成形前の加熱が長時間必要になってしまい、うまく成形できた場合でも脆くなりやすいといった問題が発生しやすくなる。   The thickness of the biaxially stretched polylactic acid film for molding of the present invention is preferably 50 μm or more and 500 μm, more preferably 150 μm or more and 300 μm or less, in order to obtain preferable moldability and strength of the container. If the film thickness is less than 50 μm, the film is likely to be broken during molding and the moldability is deteriorated. In addition, even if the film can be molded, the problem that the strength of the container becomes weak tends to occur. On the other hand, when the film thickness is larger than 500 μm, heating before molding is required for a long time, and the problem that brittleness is liable to occur even when molding is performed easily occurs.

また、本発明の成形用二軸延伸ポリ乳酸フィルムは、フィルムを成形加工あるいは印刷加工等の加熱加工を行う際の寸法安定性や、成形品の寸法安定性の点から、120℃における30分加熱時の熱収縮率が、フィルムの長手方向(MD方向)、および幅方向(TD)ともに、5%以下であることが好ましい。より好ましくは−1〜4%、さらに好ましくは−0.5〜3%の範囲である。熱収縮率が大きいと印刷や成形などのフィルム加熱加工時にフィルムが大きく収縮したり、この範囲より小さいと加熱加工時にフィルムが伸びる場合があり、皺ができるなど工程トラブルや成形品の外観を悪化させてしまう。フィルムの熱収縮率を上記範囲とする方法については、特に限定されるものでないが、例えばフィルム製造工程においてあらかじめフィルムを10%以下の範囲で弛緩させながら120〜160℃程度のフィルムの融点以下の比較的高い温度で加熱処理(熱固定)する方法や、一度巻き取ったフィルムを加熱オーブン中で弛緩させながら120〜160℃程度の温度で熱処理をする方法などが挙げられる。   In addition, the biaxially stretched polylactic acid film for molding of the present invention has a dimensional stability at the time of performing a heating process such as a molding process or a printing process, and a dimensional stability of a molded product. The heat shrinkage ratio during heating is preferably 5% or less in both the longitudinal direction (MD direction) and the width direction (TD) of the film. It is more preferably in the range of -1 to 4%, and further preferably in the range of -0.5 to 3%. If the heat shrinkage rate is large, the film may shrink greatly during film heating processing such as printing or molding, and if it is less than this range, the film may elongate during heat processing, wrinkling may cause process troubles and deteriorate the appearance of molded products Let me do it. The method for setting the heat shrinkage of the film to the above range is not particularly limited. A method of performing a heat treatment (heat setting) at a relatively high temperature, a method of performing a heat treatment at a temperature of about 120 to 160 ° C. while relaxing the once wound film in a heating oven, and the like are included.

本発明の成形用二軸延伸ポリ乳酸フィルムは、フィルムおよびこれを用いて得られる容器の分解による強度低下を抑制し耐熱性を良好とする点から、フィルムのカルボキシル基末端濃度が30当量/103kg以下であることが好ましく、より好ましくは20当量/103kg以下、さらに好ましくは10当量/103kg以下である。ポリ乳酸系樹脂中のカルボキシル基末端濃度が30当量/103kgを超える場合には、フィルムおよび容器が高温多湿条件下あるいは熱水との接触条件下で使用される際に加水分解により強度が低下し、容器などの成形品が脆くなり割れやすい等といった問題が発生する場合がある。 The biaxially stretched polylactic acid film for molding of the present invention has a carboxyl group terminal concentration of 30 equivalents / 10 from the viewpoint of suppressing a decrease in strength due to decomposition of the film and a container obtained by using the film and improving heat resistance. It is preferably at most 3 kg, more preferably at most 20 equivalents / 10 3 kg, further preferably at most 10 equivalents / 10 3 kg. If the carboxyl group terminal concentration in the polylactic acid-based resin exceeds 30 equivalents / 10 3 kg, the strength of the film and the container due to hydrolysis when used under high-temperature and high-humidity conditions or in contact with hot water. In some cases, such a problem may occur that a molded article such as a container becomes brittle and easily cracked.

フィルムのカルボキシル基末端濃度を30当量/103kg以下とする方法としては、例えば、ポリ乳酸系樹脂の合成時の触媒や熱履歴により制御する方法、フィルム製膜時の押出温度を低下あるいは滞留時間を短時間化する等熱履歴を低減する方法、反応型化合物を用いカルボキシル基末端を封鎖する方法等が挙げられる。 Examples of the method for reducing the carboxyl group terminal concentration of the film to 30 equivalents / 10 3 kg or less include a method of controlling the catalyst and the heat history at the time of synthesizing the polylactic acid resin, and a method of lowering or retaining the extrusion temperature during film formation. Examples thereof include a method of reducing the heat history, such as shortening the time, and a method of blocking the terminal of the carboxyl group using a reactive compound.

反応型化合物を用いカルボキシル基末端を封鎖する方法としては、フィルム中のカルボキシル基末端の少なくとも一部が封鎖されていることが好ましく、全量が封鎖されていることがより好ましい。   As a method of blocking the terminal of the carboxyl group using a reactive compound, it is preferable that at least a part of the terminal of the carboxyl group in the film is blocked, and it is more preferable that the entire amount is blocked.

また、反応型化合物としては、例えば、脂肪族アルコールやアミド化合物等の縮合反応型化合物やカルボジイミド化合物、エポキシ化合物、オキサゾリン化合物等の付加反応型化合物が挙げられるが、反応時に余分な副生成物が発生しにくい点で付加反応型化合物が好ましい。   In addition, examples of the reaction type compound include condensation reaction type compounds such as aliphatic alcohols and amide compounds and addition reaction type compounds such as carbodiimide compounds, epoxy compounds and oxazoline compounds. Addition-reaction-type compounds are preferred because they hardly occur.

本発明の成形用二軸延伸ポリ乳酸フィルムは、単層フィルムでも良いが、少なくとも2層以上からなる積層フィルムとして、少なくとも一方の表層における有機粒子および/または無機粒子の含有量を他の層よりも高くすることによってフィルム状態でのブロッキング防止、成形時の金型との離型性、容器形態での使用時に傷が付きにくくすることができる。   The biaxially stretched polylactic acid film for molding of the present invention may be a single-layer film, but as a laminated film composed of at least two layers, the content of organic particles and / or inorganic particles in at least one surface layer is higher than that of other layers. By increasing the height, it is possible to prevent blocking in a film state, release from a mold at the time of molding, and to prevent scratches when used in a container form.

また、ブロッキング防止、帯電防止、離型性付与、耐傷付き性改良などの目的で、表面にコーティング機能層を設けることが有効であり、この機能層の形成には、成形用二軸延伸ポリ乳酸フィルムの製造工程内で行うインラインコーティング法、成形用二軸延伸ポリ乳酸フィルムの巻き取り後に行うオフラインコーティング法を用いることができる。   It is also effective to provide a coating functional layer on the surface for the purpose of preventing blocking, antistatic, imparting releasability, improving scratch resistance, and the like. An in-line coating method performed in the film manufacturing process and an off-line coating method performed after winding the biaxially stretched polylactic acid film for molding can be used.

次に、本発明の成形用二軸延伸ポリ乳酸フィルムを製造する方法について説明する。   Next, a method for producing the biaxially oriented polylactic acid film for molding of the present invention will be described.

本発明の成形用二軸延伸ポリ乳酸フィルムを製造する際には、主にポリ乳酸樹脂からなる樹脂を乾燥後押出機に供給し、無配向フィルムを得る。本発明の製造方法においては、上記のとおりにして得られた未延伸フィルムを二軸延伸する。この延伸は、インフレーション法、同時二軸延伸法、逐次二軸延伸法などの既存の延伸フィルムの製造法により行うことができるが、成形性と耐熱性を両立するフィルムの配向状態を制御しやすいこと、また、製膜速度を高速にできることから逐次二軸延伸法が好ましい。逐次二軸延伸法を行う場合、Tダイから押し出したシートを金属冷却ロール上に静電印加して密着させ、無延伸フィルムを得、加熱ロールの周速差を用いてフィルム長手方向の延伸を行い、次いでクリップでフィルム両端を把持してテンター内でフィルム幅方向に延伸し、さらにクリップで幅方向に把持した状態で熱処理を行うテンター式逐次二軸延伸法が好ましく用いられる。   In producing the biaxially stretched polylactic acid film for molding of the present invention, a resin mainly composed of a polylactic acid resin is dried and then supplied to an extruder to obtain a non-oriented film. In the production method of the present invention, the unstretched film obtained as described above is biaxially stretched. This stretching can be performed by an existing stretched film manufacturing method such as an inflation method, a simultaneous biaxial stretching method, and a sequential biaxial stretching method, but it is easy to control the orientation state of the film that achieves both moldability and heat resistance. In addition, the sequential biaxial stretching method is preferable because the film forming speed can be increased. When performing the sequential biaxial stretching method, the sheet extruded from the T-die is electrostatically applied to and adhered to the metal cooling roll to obtain a non-stretched film, and the film is stretched in the longitudinal direction of the film using the peripheral speed difference of the heating roll. Then, a tenter-type sequential biaxial stretching method in which both ends of the film are gripped with clips and stretched in the width direction of the film in the tenter, and heat treatment is performed with the clips held in the width direction, is preferably used.

特に、テンター式逐次二軸延伸を行う場合の好ましい製膜方法を以下に示すが、これに限定されるものではない。   In particular, a preferable film forming method in the case of performing a tenter-type sequential biaxial stretching is described below, but is not limited thereto.

すなわち、例えば、減圧下、100〜150℃で3時間以上乾燥を行ったポリ乳酸系樹脂チップを押出機に供給し、リップ間隔2〜3mmのTダイより押出し、表面温度30〜40℃の金属製冷却ロール上に、直径0.5mmのワイヤー状電極を用いて静電印加して密着させ、無配向キャストフィルムを得る。こうして得られた無延伸フィルムを加熱ロール上を搬送することによって縦延伸を行う温度まで昇温する。   That is, for example, a polylactic acid-based resin chip that has been dried at 100 to 150 ° C. for 3 hours or more under reduced pressure is supplied to an extruder, extruded from a T die having a lip interval of 2 to 3 mm, and a metal having a surface temperature of 30 to 40 ° C. A non-oriented cast film is obtained by applying electrostatic force using a wire-shaped electrode having a diameter of 0.5 mm on the cooling roll and making it adhere. The unstretched film thus obtained is heated on a heating roll to a temperature at which longitudinal stretching is performed.

昇温には赤外線ヒーターなど補助的な加熱手段を併用しても良い。このようにして昇温した未配向フィルムを加熱ロール間の周速差を用いてフィルム長手方向に延伸を行うが、本発明の目的を達成するためには、長手方向の延伸を2回以上に分割して行い、2回目の延伸温度を1回目の延伸温度より低い温度で行うことが好ましい。具体的には長手方向の延伸を2回に分けて行い、1回目として75℃〜90℃で1.2〜1.8倍程度の延伸を行った後、2回目として1回目の延伸温度より1〜10℃程度低い温度で、2回の延伸全体で延伸倍率が2.2〜3.0倍、特に好ましくは2.2〜2.8倍となるように延伸を行うことが好ましい。
長手方向の延伸を段階的に行うことにより、フィルムの100%伸長時の応力および破断伸度を成形性と耐熱性とを両立する特定の範囲にすることが可能となることに加え、透明性の良好なフィルムを得られる点で特に好ましい。
An auxiliary heating means such as an infrared heater may be used in combination for the temperature increase. The unoriented film thus heated is stretched in the film longitudinal direction by using a peripheral speed difference between the heating rolls. In order to achieve the object of the present invention, the stretching in the longitudinal direction is performed twice or more. It is preferable that the second stretching is performed at a temperature lower than the first stretching temperature. Specifically, the stretching in the longitudinal direction is divided into two times, the first stretching is performed at about 75 to 90 ° C. and about 1.2 to 1.8 times, and then the second stretching is performed at a temperature lower than the first stretching temperature. Stretching is preferably performed at a temperature as low as about 1 to 10 ° C. such that the stretching ratio becomes 2.2 to 3.0 times, particularly preferably 2.2 to 2.8 times in the entire two stretching steps.
By performing the stretching in the longitudinal direction stepwise, the stress and the elongation at break at the time of 100% elongation of the film can be set in a specific range in which both the moldability and the heat resistance are compatible, and the transparency is also increased. It is particularly preferable in that a film having a good quality can be obtained.

長手方向の延伸を行った一軸延伸フィルムをいったん冷却した後、両端をクリップで把持してフィルム幅方向の延伸を行う。延伸温度に至るまで一定幅で昇温した後、75〜85℃で2.3〜3.0倍、好ましくは2.3〜2.8倍の倍率でフィルム幅方向に延伸し、一定幅もしくは0〜7%の弛緩処理を行いながら100〜150℃の範囲で熱処理を行う。フィルムの幅方向の性能差を低減するためには、長手方向の延伸温度よりも1〜15℃低い温度で幅方向の延伸を行うことが好ましく、続けて幅方向の延伸を行った後、熱処理を行う前にいったんフィルムを冷却することがさらに好ましい。   After the uniaxially stretched film having been stretched in the longitudinal direction is once cooled, the film is stretched in the film width direction by holding both ends with clips. After raising the temperature at a constant width up to the stretching temperature, the film is stretched in the film width direction at a temperature of 75 to 85 ° C. at a magnification of 2.3 to 3.0 times, preferably 2.3 to 2.8 times, or a constant width or The heat treatment is performed in the range of 100 to 150 ° C. while performing the relaxation treatment of 0 to 7%. In order to reduce the difference in performance in the width direction of the film, it is preferable to perform the stretching in the width direction at a temperature lower by 1 to 15 ° C. than the stretching temperature in the longitudinal direction. It is more preferable to cool the film once before performing the above.

上記のような製造方法を採用することにより、上記した式(1)および(2)を満足する本発明にかかる成形用二軸延伸ポリ乳酸フィルムを得ることができる。特に、本発明において、フィルムの厚みを50〜500μm、フィルムヘイズを7%以下とするには、例えば、ポリ乳酸系樹脂に添加する無機粒子または有機粒子の含有量を0.08重量%以下とし、熱処理温度を100〜140℃の範囲とすることが好ましい。また、フィルム長手方向および幅方向の70℃における貯蔵弾性率を1GPa以上3GPa以下であるようにするには、縦方向および横方向の延伸温度を75〜85℃とすることによって、式(1)のF100a+F100bを80以上110以下にすることで達成することができる。ただし、上述の好ましい延伸温度および熱処理温度は、縦延伸と横延伸時の配向のバランス、配向と結晶化度のバランスが重要であるため、必ずしもこれに限定されるものではない。   By employing the manufacturing method as described above, it is possible to obtain the biaxially stretched polylactic acid film for molding according to the present invention, which satisfies the above formulas (1) and (2). In particular, in the present invention, in order to reduce the film thickness to 50 to 500 μm and the film haze to 7% or less, for example, the content of inorganic or organic particles to be added to the polylactic acid resin is set to 0.08% by weight or less. Preferably, the heat treatment temperature is in the range of 100 to 140C. Further, in order to make the storage elastic modulus at 70 ° C. in the longitudinal direction and the width direction of the film not less than 1 GPa and not more than 3 GPa, the stretching temperature in the longitudinal direction and the transverse direction is set to 75 to 85 ° C. Can be achieved by setting F100a + F100b to be equal to or greater than 80 and equal to or less than 110. However, the above preferred stretching temperature and heat treatment temperature are not necessarily limited to the above because the balance between the orientation in the longitudinal stretching and the transverse stretching and the balance between the orientation and the crystallinity are important.

本発明の成形用二軸延伸ポリ乳酸フィルムは、真空成形、真空圧空成形、プラグアシスト成型、ストレート成型、フリードローイング成型、プラグアンドリング成型、スケルトン成型等、従来から知られている各種成型法を用いて容器とした場合、高い耐熱性を有するといった利点があり、コンビニエンスストアや病院食として使用される弁当容器など食品包装用容器として特に好適に用いることができる。   The biaxially stretched polylactic acid film for molding of the present invention can be formed by various conventionally known molding methods such as vacuum forming, vacuum pressure forming, plug assist forming, straight forming, free drawing forming, plug and ring forming, and skeleton forming. When used as a container, it has the advantage of having high heat resistance, and can be particularly suitably used as a food packaging container such as a lunch box used as a convenience store or hospital food.

以下、実施例により本発明をさらに説明する。
[特性の測定方法]
(1)60℃における100%伸長時の応力、破断伸度
恒温槽を備えたオリエンテック社製TENSILON UCT−100を用いて、60℃における応力−歪み測定を行った。サンプルは、測定方向に長さ200mm、幅10mmの短冊状に切り出し、JIS K−7127に規定された方法にしたがって測定を行い、60℃におけるフィルム長手方向の100%伸長時の応力F100a(MPa)、60℃におけるフィルム幅方向の100%伸長時の応力F100b(MPa)、60℃におけるフィルム長手方向の破断伸度La(%)、60℃におけるフィルム幅方向の破断伸度Lb(%)を求めた。初期引張チャック間距離は、100mmとし、引張速度は、300mm/分とした。サンプルを変更して20回行い、平均値を用いた。
(2)ヘイズ
JIS K 6714−58に準じて、SEP−H−2系濁度計(日本精密光学社製)を用いてヘイズを測定した。
(3)70℃における貯蔵弾性率
セイコーインスツルメンツ社のDMS6100を用いて測定を行った。幅10mm、長さ20mmのサンプルを用い、引張モード、測定周波数1Hzで、25℃から100℃まで2℃/分で昇温中の粘弾性特性の測定を行い、70℃における貯蔵弾性率を求めた。
(4)フィルムの熱収縮率
長手方向に250mm、幅方向10mmにフィルム試料を切り出し、この試料を長さ方向に1gの荷重を加えて吊し、120℃の熱風オーブン内で30分間加熱処理した。加熱処理前後での標線間距離200mmの寸法変化量から熱収縮率(%)を求めた。幅方向の熱収縮率も同様にして測定した。なお、熱収縮率のマイナス(−)値はフィルムの伸びを示す。
(5)フィルム中のカルボキシル基末端濃度
フィルムを0.5g秤量し、o−クレゾール10mlに溶解した後、クロロホルム、ジクロロメタンを適量添加後、0.02規定のKOHメタノール溶液での滴定によりカルボキシル基末端濃度(当量/103kg)を測定した。
(6)成形性−1
絞り比0.7のカップ状の金型(金型温度:30℃)を用いて真空圧空成形を行った。150℃のヒーターを用いてフィルム温度が80℃になる様に昇温した後、真空圧空成形を行い、以下の基準で評価した。
Hereinafter, the present invention will be further described with reference to examples.
[Method of measuring characteristics]
(1) Stress at 100% elongation at 60 ° C., elongation at break Stress-strain at 60 ° C. was measured using TENSILON UCT-100 manufactured by Orientec equipped with a thermostat. The sample is cut out into a strip having a length of 200 mm and a width of 10 mm in the measurement direction, and the measurement is performed according to the method specified in JIS K-7127, and the stress F100a (MPa) at 60 ° C. at the time of 100% elongation in the longitudinal direction of the film. , A stress F100b (MPa) at 100% elongation in the film width direction at 60 ° C., a breaking elongation La (%) in the film longitudinal direction at 60 ° C., and a breaking elongation Lb (%) in the film width direction at 60 ° C. Was. The initial distance between the tensile chucks was 100 mm, and the tensile speed was 300 mm / min. The sample was changed 20 times and the average value was used.
(2) Haze Haze was measured using a SEP-H-2 turbidity meter (manufactured by Nippon Seimitsu Kogaku Co., Ltd.) according to JIS K 6714-58.
(3) Storage elastic modulus at 70 ° C. Measurement was performed using DMS6100 manufactured by Seiko Instruments Inc. Using a sample having a width of 10 mm and a length of 20 mm, the viscoelasticity was measured at a temperature of 2 ° C./min from 25 ° C. to 100 ° C. in a tensile mode at a measurement frequency of 1 Hz, and the storage elastic modulus at 70 ° C. was determined. Was.
(4) Thermal Shrinkage of Film A film sample was cut out in a lengthwise direction of 250 mm and a widthwise direction of 10 mm, and the sample was hung by applying a load of 1 g in the lengthwise direction and heat-treated in a 120 ° C. hot air oven for 30 minutes. . The heat shrinkage (%) was determined from the dimensional change at a distance between mark lines of 200 mm before and after the heat treatment. The heat shrinkage in the width direction was measured in the same manner. The minus (-) value of the heat shrinkage indicates the elongation of the film.
(5) Carboxyl group terminal concentration in the film 0.5 g of the film was weighed, dissolved in 10 ml of o-cresol, and chloroform and dichloromethane were added in appropriate amounts. The concentration (equivalent / 10 3 kg) was measured.
(6) Formability-1
Vacuum pressure molding was performed using a cup-shaped mold with a drawing ratio of 0.7 (mold temperature: 30 ° C.). After the temperature was raised using a heater at 150 ° C. so that the film temperature became 80 ° C., vacuum and pressure forming was performed, and the evaluation was performed according to the following criteria.

同様にして、絞り比0.9のカップ状金型(金型温度:50℃)、180℃のヒーターを用いてフィルム温度が120℃となるようにして、真空圧空成形を行い評価した。   Similarly, a cup-shaped mold having a drawing ratio of 0.9 (mold temperature: 50 ° C.) and a heater at 180 ° C. were used so that the film temperature was set to 120 ° C., and evaluation was performed by performing vacuum pressure forming.

○:成形できた。   :: Moldable.

△:成形できたが、コーナー部が戻ったため角部が丸くなった。   Δ: Molding was possible, but the corners were rounded because the corners returned.

×:成形できず破れた。
(7)成形性−2成形後の容器のヘイズ
成形性評価で得られた絞り比0.7の容器の底部を切り出し、JIS K 6714−58に準じて、SEP−H−2系濁度計(日本精密光学社製)を用いてヘイズを測定した。ヘイズ10%以上を不良と判定した。
(8)耐熱性−1
成形性評価で得られた絞り比0.7の容器に70℃のお湯を注ぎ、熱変形の度合いを目視で以下の基準で評価した。
X: It could not be molded and was torn.
(7) Moldability-2 Haze of container after molding The bottom of the container having a draw ratio of 0.7 obtained in the evaluation of moldability was cut out, and the SEP-H-2 turbidimeter was measured according to JIS K 6714-58. The haze was measured using (manufactured by Nippon Seimitsu Optical Co., Ltd.). A haze of 10% or more was determined to be defective.
(8) Heat resistance-1
Hot water at 70 ° C. was poured into the container having a draw ratio of 0.7 obtained in the evaluation of moldability, and the degree of thermal deformation was visually evaluated according to the following criteria.

○:ほとんど変形が見られない。   :: Almost no deformation was observed.

△:熱変形するが、自立しお湯がこぼれない。   Δ: Deforms thermally, but does not spill hot water.

×:熱変形が大きく、自立できずお湯がこぼれる。
(9)耐熱性−2
フィルムを110℃の加圧温水中で30分間処理した後、長さ200mm、幅10mmの短冊状に切り出し、オリエンテック社製TENSILON UCT−100を用いて、23℃にて引張試験を行い、破断強度(MPa)を測定した。初期引張チャック間距離は、100mmとし、引張速度は、300mm/分とした。フィルムの長手方向、幅方向について、測定を行い、平均値を用いて、以下の基準で評価した。
X: Thermal deformation is large, hot water is spilled due to independence.
(9) Heat resistance-2
After treating the film in pressurized hot water at 110 ° C for 30 minutes, cut into strips of 200 mm in length and 10 mm in width, and subjected to a tensile test at 23 ° C using TENSILON UCT-100 manufactured by Orientec to break. The strength (MPa) was measured. The initial distance between the tensile chucks was 100 mm, and the tensile speed was 300 mm / min. The film was measured in the longitudinal direction and the width direction, and evaluated using the average value according to the following criteria.

◎:破断強度が100MPa以上。   A: The breaking strength is 100 MPa or more.

○:破断強度が70MPa以上、100MPa未満。   :: The breaking strength is 70 MPa or more and less than 100 MPa.

△:破断強度が50MPa以上、70MPa未満。   Δ: The breaking strength is 50 MPa or more and less than 70 MPa.

×:破断強度が50MPa未満。

(脂肪族ポリエステル樹脂の準備)
・脂肪族ポリエステル樹脂A:重量平均分子量約20万のL−ポリ乳酸(融点170℃)を用いた。
・脂肪族ポリエステル樹脂B:脂肪族ポリエステル樹脂Aに対し、公知の二軸押出機を用いて200℃でシリカ粒子(富士シリシア化学(株)製サイリシア)を添加量が3.0重量%となるように混練し、マスターペレットとした。
(実施例1)
脂肪族ポリエステル樹脂Aと脂肪族ポリエステル樹脂Bを各々120℃、5時間、5torrの真空下で減圧乾燥した後、脂肪族ポリエステル樹脂Aを98重量%、脂肪族ポリエステル樹脂Bを2重量%の割合で混合して用いた。混合した原料チップを押出機に供給し、Tダイ口金温度200℃でフィルム状に押し出し、30℃に冷却したドラム上にキャストして未延伸フィルムを作製した。連続して加熱ロール間で2回に分けてフィルム長手方向の延伸を行った。1回目の延伸は88℃で1.5倍、2回目の延伸は85℃で1.7倍とした。この一軸延伸フィルムをいったん冷却ロール上で冷却した後、両端をクリップで把持してテンター内に導き、78℃の温度で加熱しつつ横方向に2.5倍延伸し、幅方向に固定した状態で140℃、10秒間の熱処理を行い、厚さ150μmの二軸延伸ポリ乳酸フィルムを得た(製膜条件を表1に示す)。
X: The breaking strength is less than 50 MPa.

(Preparation of aliphatic polyester resin)
Aliphatic polyester resin A: L-polylactic acid having a weight average molecular weight of about 200,000 (melting point 170 ° C.) was used.
Aliphatic polyester resin B: The amount of silica particles (Thylysia, manufactured by Fuji Silysia Chemical Ltd.) becomes 3.0% by weight with respect to aliphatic polyester resin A at 200 ° C. using a known twin-screw extruder. To obtain a master pellet.
(Example 1)
After the aliphatic polyester resin A and the aliphatic polyester resin B were each dried under reduced pressure at 120 ° C. for 5 hours under a vacuum of 5 torr, 98% by weight of the aliphatic polyester resin A and 2% by weight of the aliphatic polyester resin B were used. And used as a mixture. The mixed raw material chips were supplied to an extruder, extruded into a film at a T die die temperature of 200 ° C., and cast on a drum cooled to 30 ° C. to produce an unstretched film. The film was stretched in the longitudinal direction of the film two times continuously between the heating rolls. The first stretching was 1.5 times at 88 ° C., and the second stretching was 1.7 times at 85 ° C. After the uniaxially stretched film is once cooled on a cooling roll, both ends are gripped with clips and guided into a tenter, stretched 2.5 times in the lateral direction while being heated at a temperature of 78 ° C., and fixed in the width direction. At 140 ° C. for 10 seconds to obtain a biaxially stretched polylactic acid film having a thickness of 150 μm (film forming conditions are shown in Table 1).

得られたフィルムのフィルム特性は表2に示した通りであり、成形性、成形後の容器の耐熱性に優れたフィルムであった。
(実施例2、3、比較例1、2)
製膜条件を表1のように変更した以外は実施例1と同様にして二軸延伸ポリ乳酸フィルムを得た。得られたフィルムの特性を表2に示す。
The film properties of the obtained film were as shown in Table 2, and the film was excellent in moldability and heat resistance of the container after molding.
(Examples 2, 3 and Comparative Examples 1, 2)
A biaxially stretched polylactic acid film was obtained in the same manner as in Example 1, except that the film forming conditions were changed as shown in Table 1. Table 2 shows the properties of the obtained film.

実施例2、3のフィルムは式(1)、(2)を満足し良好な成形性、耐熱性を有するが、比較例1のフィルムは式(1)の上限、式(2)の下限を外れ成形性の劣るものであり、比較例2のフィルムは式(1)の下限を外れ耐熱性の劣るものであった。
(実施例4)
押出温度を190℃とし、延伸後の熱処理を弛緩させつつ施したこと以外は実施例2と同様にして、二軸延伸ポリ乳酸フィルムを得た。得られたフィルム特性は表2に示した通りであり、成形性、成形後の耐熱性に優れたものであった。
(実施例5)
脂肪族ポリエステル樹脂Aを98.5重量%、脂肪族ポリエステル樹脂Bを1重量%、末端封鎖剤としてビス(2,6−ジイソプロピルフェニル)カルボジイミド0.5重量%を混合して用い、表1に示したとおり、製膜条件を変更すること以外は、実施例1と同様にして二軸延伸ポリ乳酸フィルムを得た。得られたフィルム特性は表2に示した通りであり、成形性、成形後の耐熱性に優れたものであった。
(比較例3)
実施例1と同様にして得られた未延伸フィルムを長手方向に70℃で2.5倍にロール延伸し、次いでテンター内で幅方向に70℃で2.5倍に延伸し、テンター内で160℃、25秒間熱処理して、厚み300μmの二軸延伸ポリ乳酸フィルムを得た。このフィルムは式(1)の上限、式(2)の下限を外れ成形性の劣るものであった。
(比較例4)
押出温度を230℃とし、製膜条件を表1のように変更すること以外は、実施例1と同様にして、二軸延伸ポリ乳酸フィルムを得た。このフィルムは、式(1)
の下限を外れ、耐熱性の劣るものであった。また、加圧温水処理後の強度も不十分であった。
The films of Examples 2 and 3 satisfy the formulas (1) and (2) and have good moldability and heat resistance, but the film of Comparative Example 1 has an upper limit of the formula (1) and a lower limit of the formula (2). It was inferior in moldability, and the film of Comparative Example 2 was out of the lower limit of the formula (1) and inferior in heat resistance.
(Example 4)
A biaxially stretched polylactic acid film was obtained in the same manner as in Example 2, except that the extrusion temperature was 190 ° C. and the heat treatment after stretching was performed while relaxing. The properties of the obtained film were as shown in Table 2, and were excellent in moldability and heat resistance after molding.
(Example 5)
98.5% by weight of the aliphatic polyester resin A, 1% by weight of the aliphatic polyester resin B, and 0.5% by weight of bis (2,6-diisopropylphenyl) carbodiimide as a terminal blocking agent were mixed and used. As shown, a biaxially stretched polylactic acid film was obtained in the same manner as in Example 1 except that the film forming conditions were changed. The properties of the obtained film were as shown in Table 2, and were excellent in moldability and heat resistance after molding.
(Comparative Example 3)
The unstretched film obtained in the same manner as in Example 1 was roll-stretched 2.5 times in the longitudinal direction at 70 ° C., and then stretched 2.5 times in the width direction at 70 ° C. in the tenter. Heat treatment was performed at 160 ° C. for 25 seconds to obtain a biaxially stretched polylactic acid film having a thickness of 300 μm. This film deviated from the upper limit of the formula (1) and the lower limit of the formula (2) and was inferior in moldability.
(Comparative Example 4)
A biaxially stretched polylactic acid film was obtained in the same manner as in Example 1 except that the extrusion temperature was 230 ° C. and the film forming conditions were changed as shown in Table 1. This film has the formula (1)
And the heat resistance was inferior. Further, the strength after the pressurized hot water treatment was insufficient.

Figure 2004359948
Figure 2004359948

Figure 2004359948
Figure 2004359948

本発明の成形用二軸延伸ポリ乳酸フィルムは、真空成形、真空圧空成形、プラグアシスト成型、ストレート成型、フリードローイング成型、プラグアンドリング成型、スケルトン成型等、従来から知られている各種成型法を用いて容器とした場合、高い耐熱性を有するといった利点があり、コンビニエンスストアや病院食として使用される弁当容器など食品包装用容器として特に好適な成形用二軸延伸ポリ乳酸フィルムであり、有用である。   The biaxially stretched polylactic acid film for molding of the present invention can be formed by various conventionally known molding methods such as vacuum forming, vacuum pressure forming, plug assist forming, straight forming, free drawing forming, plug and ring forming, and skeleton forming. When used as a container, it has the advantage of having high heat resistance, and is a biaxially stretched polylactic acid film for molding particularly suitable as a food packaging container such as a lunch box used as a convenience store or a hospital food, and is useful. is there.

Claims (6)

主にポリ乳酸系樹脂からなる成形用二軸延伸ポリ乳酸フィルムであって、60℃におけるフィルム長手方向及び幅方向の100%伸長時の応力および破断伸度が、下式(1)および(2)を満足することを特徴とする成形用二軸延伸ポリ乳酸フィルム。
70≦F100a+F100b≦110…(1)
460≦La+Lb≦800…(2)
ここで、F100aは60℃におけるフィルム長手方向の100%伸長時の応力(MPa)、F100bは60℃におけるフィルム幅方向の100%伸長時の応力(MPa)、Laは60℃におけるフィルム長手方向の破断伸度(%)、Lbは60℃におけるフィルム幅方向の破断伸度(%)を示す。
A biaxially stretched polylactic acid film for molding mainly composed of a polylactic acid-based resin, wherein the stress and elongation at break at 100 ° C. in the longitudinal and width directions of the film at 60 ° C. are expressed by the following formulas (1) and (2) A biaxially stretched polylactic acid film for molding, characterized by satisfying (1).
70 ≦ F100a + F100b ≦ 110 (1)
460 ≦ La + Lb ≦ 800 (2)
Here, F100a is the stress (MPa) at the time of 100% elongation in the film longitudinal direction at 60 ° C., F100b is the stress (MPa) at the time of 100% elongation in the film width direction at 60 ° C., and La is the stress in the film longitudinal direction at 60 ° C. The breaking elongation (%) and Lb indicate the breaking elongation (%) in the film width direction at 60 ° C.
フィルムの厚みが50〜500μm、フィルムヘイズが7%以下であることを特徴とする請求項1に記載の成形用二軸延伸ポリ乳酸フィルム。 The biaxially stretched polylactic acid film for molding according to claim 1, wherein the film has a thickness of 50 to 500 µm and a film haze of 7% or less. フィルム長手方向および幅方向の70℃における貯蔵弾性率が1GPa以上3GPa以下であることを特徴とする請求項1または2に記載の成形用二軸延伸ポリ乳酸フィルム。 The biaxially stretched polylactic acid film for molding according to claim 1 or 2, wherein the storage elastic modulus at 70 ° C in the film longitudinal direction and the width direction is 1 GPa or more and 3 GPa or less. 120℃におけるフィルムの長手方向および幅方向の熱収縮率が5%以下であることを特徴とする請求項1ないし3のいずれかに記載の成形用二軸延伸ポリ乳酸フィルム。 The biaxially stretched polylactic acid film for molding according to any one of claims 1 to 3, wherein a heat shrinkage in a longitudinal direction and a width direction of the film at 120 ° C is 5% or less. フィルムのカルボキシル基末端濃度が30当量/103kg以下であることを特徴とする請求項1ないし4のいずれかに記載の成形用二軸延伸ポリ乳酸フィルム。 The biaxially stretched polylactic acid film for molding according to any one of claims 1 to 4, wherein the carboxyl group terminal concentration of the film is 30 equivalents / 10 3 kg or less. 請求項1ないし5のいずれかに記載の成形用二軸延伸ポリ乳酸フィルムを加熱成形して得られることを特徴とする容器。 A container obtained by heating the biaxially stretched polylactic acid film for molding according to any one of claims 1 to 5.
JP2004143216A 2003-05-14 2004-05-13 Biaxially stretched polylactic acid film and container for molding Expired - Fee Related JP4543743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143216A JP4543743B2 (en) 2003-05-14 2004-05-13 Biaxially stretched polylactic acid film and container for molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003135489 2003-05-14
JP2004143216A JP4543743B2 (en) 2003-05-14 2004-05-13 Biaxially stretched polylactic acid film and container for molding

Publications (2)

Publication Number Publication Date
JP2004359948A true JP2004359948A (en) 2004-12-24
JP4543743B2 JP4543743B2 (en) 2010-09-15

Family

ID=34067206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143216A Expired - Fee Related JP4543743B2 (en) 2003-05-14 2004-05-13 Biaxially stretched polylactic acid film and container for molding

Country Status (1)

Country Link
JP (1) JP4543743B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063502A (en) * 2006-09-09 2008-03-21 Tohcello Co Ltd Polylactic acid based thermoformed product
WO2014157597A1 (en) * 2013-03-25 2014-10-02 帝人株式会社 Resin composition
JP2014205797A (en) * 2013-04-15 2014-10-30 Dic株式会社 Styrenic oriented sheet and molded product of the same
JP5810915B2 (en) * 2010-07-06 2015-11-11 東レ株式会社 Biaxially oriented polyester film for molding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273212A (en) * 1999-03-26 2000-10-03 Toyobo Co Ltd Aliphatic polyester-based oriented film
JP2003025427A (en) * 2001-07-19 2003-01-29 Unitika Ltd Polylactic acid biaxially oriented film
WO2003008178A1 (en) * 2001-07-19 2003-01-30 Toyo Seikan Kaisha, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273212A (en) * 1999-03-26 2000-10-03 Toyobo Co Ltd Aliphatic polyester-based oriented film
JP2003025427A (en) * 2001-07-19 2003-01-29 Unitika Ltd Polylactic acid biaxially oriented film
WO2003008178A1 (en) * 2001-07-19 2003-01-30 Toyo Seikan Kaisha, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063502A (en) * 2006-09-09 2008-03-21 Tohcello Co Ltd Polylactic acid based thermoformed product
JP5810915B2 (en) * 2010-07-06 2015-11-11 東レ株式会社 Biaxially oriented polyester film for molding
WO2014157597A1 (en) * 2013-03-25 2014-10-02 帝人株式会社 Resin composition
US9745446B2 (en) 2013-03-25 2017-08-29 Teijin Limited Resin composition
JP2014205797A (en) * 2013-04-15 2014-10-30 Dic株式会社 Styrenic oriented sheet and molded product of the same

Also Published As

Publication number Publication date
JP4543743B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP7254730B2 (en) Copolyester raw materials for amorphous films, heat-shrinkable polyester films, heat-shrinkable labels, and packages
EP1449867B1 (en) Window of polylactic acid based resin films
JP5162900B2 (en) Polylactic acid-based resin laminate sheet and molded article thereof
KR20090125770A (en) Aliphatic polyester sheet and molded body composed of the same
JP2008169239A (en) Polyester film
JP2003181919A (en) Biodegradable heat-shrinkable film and shrink package using the same
JP3328418B2 (en) Heat-shrinkable polylactic acid film
JP2004075713A (en) Polyester film, polyester film for molding and molding member using the same
WO2002034818A1 (en) Biaxially oriented aliphatic polyester film and process for producing the same
JP4543743B2 (en) Biaxially stretched polylactic acid film and container for molding
JP2004051959A (en) Aliphatic polyester film and laminated product
JP2010006934A (en) Easily tearable polyester film
JP2009107669A (en) Packaging bag
JP2004034451A (en) Method for manufacturing heat-shrinkable polyester film
JP2007106996A (en) Wrap film and its manufacturing method
JP2006124662A (en) Biaxially oriented polylactic acid film, molding composed of the same and substrate
JP2004202702A (en) Easily tearable laminated polyester film
JP2007210190A (en) Polylactic acid-based resin laminated sheet and molded body made of this laminated sheet
JP2005144726A (en) Laminated film
JP2005219487A (en) Laminated film
JP2005335309A (en) Metal vapor deposition biaxially oriented polyester film
JP7248092B2 (en) polyester film.
JP2018184508A (en) Polyester film
JP2005096386A (en) Biaxially oriented polyester resin film for folding
JP4623265B2 (en) Biaxially stretched polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees