JP2014205797A - Styrenic oriented sheet and molded product of the same - Google Patents

Styrenic oriented sheet and molded product of the same Download PDF

Info

Publication number
JP2014205797A
JP2014205797A JP2013084824A JP2013084824A JP2014205797A JP 2014205797 A JP2014205797 A JP 2014205797A JP 2013084824 A JP2013084824 A JP 2013084824A JP 2013084824 A JP2013084824 A JP 2013084824A JP 2014205797 A JP2014205797 A JP 2014205797A
Authority
JP
Japan
Prior art keywords
styrene
resin
impact
sheet
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013084824A
Other languages
Japanese (ja)
Other versions
JP6075632B2 (en
Inventor
福喜多 剛
Takeshi Fukukita
剛 福喜多
大吾 野々川
Daigo Nonokawa
大吾 野々川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2013084824A priority Critical patent/JP6075632B2/en
Publication of JP2014205797A publication Critical patent/JP2014205797A/en
Application granted granted Critical
Publication of JP6075632B2 publication Critical patent/JP6075632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a molded product by using together an impact-resistant styrenic resin, a polylactic acid, and a polyphenylene ether resin without damaging usefulness of each, and especially to provide a styrenic oriented film and a molded product of the same, which intended to satisfy both strength of a molded product, oil resistance, and working characteristics.SOLUTION: Provided is a styrenic oriented sheet obtained by biaxially drawing a styrenic resin composition comprising an impact-resistant styrenic resin (A), polylactic acid (B), and a polyphenylene ether resin (C); and a molded product obtained by molding the same.

Description

本発明は、耐衝撃性スチレン系樹脂とポリ乳酸とポリフェニレンエーテル系樹脂を含有する樹脂組成物を延伸してなるシート及び該シートを成形してなる成形品に関する。   The present invention relates to a sheet formed by stretching a resin composition containing an impact-resistant styrene-based resin, polylactic acid, and polyphenylene ether-based resin, and a molded article formed by molding the sheet.

近年、生分解性を有する各種ポリマーを含有したプラスチック製品を使用することは、環境保護の観点からも、植物由来原料の使用が石油資源節約の観点からも好ましいことが一般消費者にも認識されるようになり、工業製品にも生分解性ポリマー、植物由来ポリマーを原料とする試みが広く行われてきている。   In recent years, it has been recognized by general consumers that the use of plastic products containing various biodegradable polymers is preferable from the viewpoint of environmental protection and the use of plant-derived materials from the viewpoint of saving petroleum resources. Attempts to use biodegradable polymers and plant-derived polymers as raw materials have been widely conducted for industrial products.

特にポリ乳酸は、植物由来かつ生分解性を有するポリマーであり、かつ生分解性ポリマーの中でも、比較的高い融点と強靭性、透明性、耐薬品性を兼ね備えている点から、実用上優れたポリマーと認識されている。   In particular, polylactic acid is a plant-derived and biodegradable polymer, and among the biodegradable polymers, it is practically superior because it has a relatively high melting point, toughness, transparency, and chemical resistance. Recognized as a polymer.

一方、スチレン系樹脂は、成形加工性に優れ、剛性などの実用物性に優れている。そこで、これら樹脂の特長をそれぞれ生かす検討がなされている。例えば、スチレン系樹脂とポリ乳酸とを配合し、流動性の確保及び機械物性の改良を行う検討がなされている。(例えば、特許文献1参照)。しかしながら、スチレン系樹脂とポリ乳酸の相溶性は非常に悪く、単純に配合・溶融混合しただけでは、市場が求める物性やそれぞれの樹脂特性を活かした製品設計をすることは困難である。また、スチレン系樹脂、ポリ乳酸ならびにポリフェニレンエーテル系樹脂の3原系にすることで、機械物性の低下を抑制しながら、加工特性(流動性)の改良の検討が行われている。(例えば、特許文献2参照)しかしながら、上記理由と同様に、単純に配合・溶融混合しただけでは、各樹脂の特性を十分活かした製品設計ができていないのが実情である。   On the other hand, the styrene resin is excellent in moldability and practical physical properties such as rigidity. Therefore, studies have been made to make use of the characteristics of these resins. For example, studies have been made on blending a styrene resin and polylactic acid to ensure fluidity and improve mechanical properties. (For example, refer to Patent Document 1). However, the compatibility between styrene-based resins and polylactic acid is very poor, and it is difficult to design products that take advantage of the physical properties required by the market and the characteristics of each resin by simply blending and melting and mixing. In addition, by using a ternary system of styrene resin, polylactic acid and polyphenylene ether resin, improvement of processing characteristics (fluidity) is being studied while suppressing deterioration of mechanical properties. (For example, refer to Patent Document 2) However, as in the above-described reason, it is a fact that a product design that fully utilizes the characteristics of each resin cannot be achieved by simply blending and melt-mixing.

特開2008−050426号公報JP 2008-050426 A 特開2009−221438号公報JP 2009-22214 A

上記実情に鑑み、本発明が解決しようとする課題は、耐衝撃性スチレン系樹脂、ポリ乳酸及びポリフェニレンエーテル系樹脂の有するそれぞれの有用性を損なうことなくこれらを併用してなる成形品を得ることであり、特に成形品の強度、耐油性並びに加工特性の両立を図ったスチレン系延伸シート及びその成形品を提供することにある。   In view of the above circumstances, the problem to be solved by the present invention is to obtain a molded article using these in combination without impairing the usefulness of each of impact-resistant styrene resin, polylactic acid and polyphenylene ether resin. In particular, it is an object of the present invention to provide a styrene-based stretched sheet and a molded product thereof that are compatible with the strength, oil resistance, and processing characteristics of the molded product.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、耐衝撃性スチレン系樹脂とポリ乳酸並びにポリフェニレンエーテル系樹脂と配合した樹脂組成物を二軸方向に延伸してなるシートが、実用的な物性を有すると共に、成形性及び耐油性に優れる成形品を提供できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have obtained a sheet obtained by stretching a resin composition containing an impact-resistant styrene resin, polylactic acid, and polyphenylene ether resin in a biaxial direction. However, the present inventors have found that it is possible to provide a molded product having practical physical properties and excellent in moldability and oil resistance, and completed the present invention.

すなわち本発明は、耐衝撃性スチレン系樹脂とポリ乳酸並びにポリフェニレンエーテル系樹脂とを含有するスチレン系樹脂組成物を二軸延伸してなることを特徴とするスチレン系延伸シート、及びこれを成形してなる成形品を提供するものである。   That is, the present invention provides a styrene-based stretched sheet characterized by biaxially stretching a styrene-based resin composition containing an impact-resistant styrene-based resin, polylactic acid, and polyphenylene ether-based resin, and molding the same. To provide a molded product.

本発明のスチレン系延伸シートは、加工性に優れ、得られる成形品は機械的強度・耐油性が良好である。また、植物由来の樹脂を配合することで環境負荷低減することができ、各種汎用成形体に使用することも可能となり、環境保護の観点から好ましい。   The styrene-based stretched sheet of the present invention is excellent in processability, and the resulting molded product has good mechanical strength and oil resistance. Moreover, it can reduce an environmental load by mix | blending a plant-derived resin, and can also be used for various general purpose molded objects, and is preferable from a viewpoint of environmental protection.

以下に本発明を詳細に説明する。
本発明で用いられる(A)成分の耐衝撃性スチレン系樹脂としては、ゴム等の成分が含まれるポリスチレン系樹脂であれば良く、例えば、スチレン単独の重合体からなる連続相にゴム状重合体がグラフト重合して粒子分散してなる樹脂として、一般的に入手できるものを用いることができる。耐衝撃性スチレン系樹脂に含まれるゴム成分としては、ポリブタジエン、スチレン−ブタジエン共重合体、ポリイソプレン、ブタジエン−イソプレン共重合体などが挙げられる。特に、ポリブタジエン、スチレン−ブタジエン共重合体として含まれていることが好ましい。
The present invention is described in detail below.
The impact-resistant styrene resin of the component (A) used in the present invention may be a polystyrene resin containing a component such as rubber. For example, a rubber-like polymer in a continuous phase composed of a polymer of styrene alone. As the resin obtained by graft polymerization and particle dispersion, those generally available can be used. Examples of the rubber component contained in the impact-resistant styrene resin include polybutadiene, styrene-butadiene copolymer, polyisoprene, and butadiene-isoprene copolymer. In particular, it is preferably contained as a polybutadiene or styrene-butadiene copolymer.

本発明で使用する耐衝撃性スチレン系樹脂(A)の流動性としては、延伸成形時の加工特性と、二次成形時での厚み均一性の観点から、1〜10g/10min.の範囲にあることが好ましい。   The fluidity of the impact-resistant styrenic resin (A) used in the present invention is 1 to 10 g / 10 min. From the viewpoint of processing characteristics during stretch molding and thickness uniformity during secondary molding. It is preferable that it exists in the range.

また、耐衝撃性スチレン系樹脂(A)内のゴム成分の含有率としては衝撃強度と延伸成形時の加工特性との両立の観点から、2.0〜15.0質量%であることが好ましい。   Further, the content of the rubber component in the impact-resistant styrene resin (A) is preferably 2.0 to 15.0% by mass from the viewpoint of coexistence of impact strength and processing characteristics at the time of stretch molding. .

本発明で用いるポリ乳酸(B)は、例えば、とうもろこしやイモ類などから得たでんぷんを糖化して、更に乳酸菌により乳酸を得て、次に乳酸を環化反応させてラクチドとし、これを開環重合して得られる、一般的に入手可能なポリ乳酸(B)を用いることができる。また、石油からラクチドを合成し、これを開環重合して得たポリ乳酸でも、あるいは石油から乳酸を得て、これを直接脱水縮合して得たポリ乳酸を用いても良い。   The polylactic acid (B) used in the present invention is obtained by, for example, saccharifying starch obtained from corn, potatoes, etc., further obtaining lactic acid by lactic acid bacteria, and then cyclizing the lactic acid to form lactide. Generally available polylactic acid (B) obtained by ring polymerization can be used. Also, polylactic acid obtained by synthesizing lactide from petroleum and ring-opening polymerization thereof, or polylactic acid obtained by obtaining lactic acid from petroleum and directly dehydrating and condensing it may be used.

また、ポリ乳酸を構成する乳酸は、L−乳酸とD−乳酸を混合して用いることもできるが、得られる延伸シートの耐熱性に優れる点から、L−乳酸もしくはD−乳酸の何れか一方の異性体からなるものであることが好ましく、具体的には、D体含有率(原料として用いる乳酸全体質量に対するD−乳酸の割合)が3.0%以下であるものが好ましい。   The lactic acid constituting the polylactic acid can be used by mixing L-lactic acid and D-lactic acid. However, either one of L-lactic acid or D-lactic acid is preferred because the stretched sheet obtained has excellent heat resistance. It is preferable that it is what consists of an isomer of this, and, specifically, the thing with a D-isomer content rate (ratio of D-lactic acid with respect to the total mass of lactic acid used as a raw material) is 3.0% or less.

さらに、ポリ乳酸(B)には、主たる構成モノマーであるD−乳酸およびL−乳酸以外に他の成分が共重合されても良い。他の共重合成分としては、エチレングリコール、プロピレングリコール、ブタンジオール、シュウ酸、アジピン酸、セバシン酸等を挙げることが可能である。このような共重合成分は、全単量体成分中、通常0〜30モル%の含有量とすることが好ましく、さらに0〜10モル%であることがより好ましい。   Furthermore, other components may be copolymerized with polylactic acid (B) in addition to D-lactic acid and L-lactic acid, which are main constituent monomers. Examples of other copolymer components include ethylene glycol, propylene glycol, butanediol, oxalic acid, adipic acid, and sebacic acid. Such a copolymer component is preferably contained in an amount of generally 0 to 30 mol%, more preferably 0 to 10 mol%, in all monomer components.

ポリ乳酸(B)の分子量や分子量分布は、実質的に成形加工が可能であれば特に限定されないが、重量平均分子量としては、好ましくは1万〜40万、より好ましくは4万〜20万の範囲である。   The molecular weight and molecular weight distribution of polylactic acid (B) are not particularly limited as long as it can be substantially molded, but the weight average molecular weight is preferably 10,000 to 400,000, more preferably 40,000 to 200,000. It is a range.

本発明で用いるポリフェニレンエーテル系樹脂(C)は下記一般式(1)で表される繰り返し単位からなる単独重合体、或いは共重合体であり、1種類からなるものであっても、置換基の異なる2種以上の樹脂の混合物であっても良い。   The polyphenylene ether resin (C) used in the present invention is a homopolymer or copolymer composed of a repeating unit represented by the following general formula (1). It may be a mixture of two or more different resins.

Figure 2014205797
[式(1)中、R、R、R、Rはそれぞれ独立して、水素原子、ハロゲン原子、置換基を有していても良いアルキル基、アルコキシ基又は置換基を有していても良いアリール基であり、nは繰り返し数である。]
Figure 2014205797
[In Formula (1), R 1 , R 2 , R 3 and R 4 each independently have a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group or a substituent which may have a substituent. And n is the number of repetitions. ]

上記一般式(1)で表される単独重合体としては、例えば、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−エチル−1,4−フェニレン)エーテル、ポリ(2,6−ジエチル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−n−プロピル−1,4−フェニレン)エーテル、ポリ(2,6−ジ−n−プロピル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−n−ブチル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−イソプロピル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−クロロエチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−ヒドロキシエチル−1,4−フェニレン)エーテル、ポリ(2,6−ジクロロ−1,4−フェニレン)エーテル等が挙げられる。   Examples of the homopolymer represented by the general formula (1) include poly (2,6-dimethyl-1,4-phenylene) ether and poly (2-methyl-6-ethyl-1,4-phenylene). Ether, poly (2,6-diethyl-1,4-phenylene) ether, poly (2-ethyl-6-n-propyl-1,4-phenylene) ether, poly (2,6-di-n-propyl-) 1,4-phenylene) ether, poly (2-methyl-6-n-butyl-1,4-phenylene) ether, poly (2-ethyl-6-isopropyl-1,4-phenylene) ether, poly (2- Methyl-6-chloroethyl-1,4-phenylene) ether, poly (2-methyl-6-hydroxyethyl-1,4-phenylene) ether, poly (2,6-dichloro-1,4-phenylene) ether Etc. The.

又、共重合体としては、例えば、2,6−ジメチルフェノールと2,3,6−トリメチルフェノールとの共重合体、2,6−ジメチルフェノールとo−クレゾールとの共重合体、2,6−ジメチルフェノールと2,3,6−トリメチルフェノールとの共重合体等が挙げられる。   Examples of the copolymer include a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-dimethylphenol and o-cresol, -A copolymer of dimethylphenol and 2,3,6-trimethylphenol and the like.

これらの中でも特に好ましいポリフェニレンエーテル系樹脂(C)としては、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、2,6−ジメチルフェノールと2,3,6−トリメチルフェノールとの共重合体、またはこれらの混合物である。   Among these, particularly preferred polyphenylene ether resins (C) are poly (2,6-dimethyl-1,4-phenylene) ether, co-polymerization of 2,6-dimethylphenol and 2,3,6-trimethylphenol. It is a coalescence or a mixture thereof.

本発明で用いるポリフェニレンエーテル系樹脂(C)の製造方法としては、特に限定されるものではなく、種々の方法で得られるものであり、例えば、米国特許第3306874号明細書、同第3306875号明細書、同第3257357号明細書、同第3257358号明細書、特開昭50−51197号公報、特公昭52−17880号公報、及び同63−152628号公報等に記載された製造方法等が挙げられる。   The method for producing the polyphenylene ether-based resin (C) used in the present invention is not particularly limited, and can be obtained by various methods. For example, US Pat. Nos. 3,306,874 and 3,306,875 , 3257357, 3257358, JP-A-50-51197, JP-B52-17880, and 63-152628, etc. It is done.

本発明で用いるポリフェニレンエーテル系樹脂(C)中には、本発明の効果を損なわない範囲において、他の種々のフェニレンエーテルユニットを部分構造として含んでいてもよい。前記フェニレンエーテルユニットとしては、例えば、2−(ジアルキルアミノメチル)−6−メチルフェニレンエーテルユニットや、2−(N−アルキル−N−フェニルアミノメチル)−6−メチルフェニレンエーテルユニット等が挙げられる。また、PPE樹脂の主鎖中にジフェノキノン等が少量結合したものであっても良い。更には、マレイン酸、フマル酸、クロロマレイン酸、シス−4−シクロヘキセン−1,2−ジカルボン酸及びこれらの酸無水物等やこれら不飽和ジカルボン酸の2個のカルボキシル基のうちの1個または2個がエステルになっているもの、アリルグリシジルエーテル、グリシジルアクリレート、グリシジルメタアクリレート、エポキシ化天然油脂等、アリルアルコール、4−ペンテン−1−オール、1,4−ペンタジエン−3−オールなどの一般式C2n−3OH(nは正の整数)の不飽和アルコール、一般式C2n−5OH、C2n−7OH(nは正の整数)等の不飽和アルコール等によって変性されているPPE樹脂であっても良い。これらの変性PPE樹脂は、それぞれ単独で用いても良いし、2種以上を組み合わせて用いても良い。 The polyphenylene ether resin (C) used in the present invention may contain other various phenylene ether units as a partial structure within the range not impairing the effects of the present invention. Examples of the phenylene ether unit include a 2- (dialkylaminomethyl) -6-methylphenylene ether unit and a 2- (N-alkyl-N-phenylaminomethyl) -6-methylphenylene ether unit. Further, a small amount of diphenoquinone or the like may be bonded to the main chain of the PPE resin. Furthermore, one of two carboxyl groups of maleic acid, fumaric acid, chloromaleic acid, cis-4-cyclohexene-1,2-dicarboxylic acid and acid anhydrides thereof, and these unsaturated dicarboxylic acids or General ones such as those in which two are esters, allyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, epoxidized natural oil, allyl alcohol, 4-penten-1-ol, 1,4-pentadien-3-ol, etc. Unsaturated alcohols of the formula C n H 2n-3 OH (n is a positive integer), unsaturated alcohols such as the general formulas C n H 2n-5 OH, C n H 2n-7 OH (n is a positive integer), etc. PPE resin modified by the above may be used. These modified PPE resins may be used alone or in combination of two or more.

本発明で用いるポリフェニレンエーテル系樹脂(C)の分子量(ゲル透過クロマトグラフィーで決定された数平均分子量)としては、通常1,000〜100,000、好ましくは6,000〜60,000である。また、PPE樹脂(A)の還元粘度(0.5g/dlクロロホルム溶液、30℃、ウベローデ型粘度管で測定)は、通常0.30dl/g〜0.55dl/gの範囲内であり、好ましくは、0.35dl/g〜0.50dl/gの範囲である。尚、本発明において、2種以上の還元粘度の異なるポリフェニレンエーテル樹脂(C)をブレンドしたものであっても使用することができる。   The molecular weight (number average molecular weight determined by gel permeation chromatography) of the polyphenylene ether resin (C) used in the present invention is usually 1,000 to 100,000, preferably 6,000 to 60,000. The reduced viscosity (measured with 0.5 g / dl chloroform solution, 30 ° C., Ubbelohde type viscosity tube) of the PPE resin (A) is usually in the range of 0.30 dl / g to 0.55 dl / g, preferably Is in the range of 0.35 dl / g to 0.50 dl / g. In the present invention, even a blend of two or more polyphenylene ether resins (C) having different reduced viscosities can be used.

本発明で用いるポリフェニレンエーテル系樹脂(C)については、低温での押出加工を安定化させるために、事前にスチレン系樹脂と溶融混錬して、調整することもできる。   The polyphenylene ether resin (C) used in the present invention can be adjusted by melt kneading with a styrene resin in advance in order to stabilize the extrusion process at a low temperature.

耐衝撃性スチレン系樹脂(A)とポリ乳酸(B)及びポリフェニレンエーテル系樹脂(C)の合計を100質量%としたときの、それぞれの成分の含有率としては、耐衝撃性スチレン系樹脂(A)が50〜90質量%、ポリ乳酸(B)が5〜35質量%、ポリフェニレンエーテル系樹脂(C)が5〜40質量%の範囲であることが好ましい。ポリ乳酸(B)が35重量%を超えると、樹脂組成物のビカット軟化点温度や熱変形温度が耐衝撃性スチレン系樹脂よりも低下することがあり、最終成形品としての耐熱性が不足する虞がある。また、ポリ乳酸(B)5重量%未満の場合は、配合量が少ないため、環境対応の観点から石油由来樹脂との差別化が難しいため好ましくない。ポリフェニレンエーテル系樹脂(C)が40質量%を超えると耐熱性が高く、延伸加工や二次加工がしづらくなることがある。一方で、ポリフェニレンエーテル系樹脂(C)が5重量%未満の場合は、用途によっては耐熱性が不足することがある。付与が十分でなく好ましくない。   When the total of the impact-resistant styrene resin (A), polylactic acid (B), and polyphenylene ether resin (C) is 100% by mass, the content of each component is as follows. A) is preferably in the range of 50 to 90% by mass, polylactic acid (B) in the range of 5 to 35% by mass, and polyphenylene ether-based resin (C) in the range of 5 to 40% by mass. When the polylactic acid (B) exceeds 35% by weight, the Vicat softening point temperature and the heat distortion temperature of the resin composition may be lower than those of the impact-resistant styrenic resin, resulting in insufficient heat resistance as a final molded product. There is a fear. Moreover, when the amount of polylactic acid (B) is less than 5% by weight, the blending amount is small, so that it is difficult to differentiate from petroleum-derived resins from the viewpoint of environmental friendliness. If the polyphenylene ether-based resin (C) exceeds 40% by mass, the heat resistance is high, and stretching and secondary processing may be difficult. On the other hand, when the polyphenylene ether-based resin (C) is less than 5% by weight, the heat resistance may be insufficient depending on the application. The application is not sufficient and not preferable.

また、本発明では、耐衝撃性スチレン系樹脂(A)とポリ乳酸(B)及びポリフェニレンエーテル系樹脂(C)とを配合して用いるものであるが、必要に応じてそのほかの樹脂や各種添加剤を併用してもよい。   In the present invention, the impact-resistant styrenic resin (A), polylactic acid (B), and polyphenylene ether resin (C) are blended and used. An agent may be used in combination.

各種添加剤としては、例えば、帯電防止剤、酸化防止剤、紫外線吸収剤、滑剤、安置ブロッキング剤、熱安定化剤などが挙げられる。   Examples of the various additives include an antistatic agent, an antioxidant, an ultraviolet absorber, a lubricant, an anti-blocking agent, and a heat stabilizer.

本発明のスチレン系延伸シートは、上記樹脂組成物を用い、長手方向と幅方向の二軸延伸を行うものである。延伸工程を経ることによって、樹脂の分子鎖が配列し、成形品の強度と耐油性の向上を図ることが可能となる。   The styrene-based stretched sheet of the present invention uses the above resin composition and performs biaxial stretching in the longitudinal direction and the width direction. By passing through the stretching step, the resin molecular chains are arranged, and the strength and oil resistance of the molded product can be improved.

また、二軸延伸シートの熱収縮応力(ORS)は、ASTM D1504に準拠し、乾式加熱によりシート温度120℃において発現する応力の最大値であり、縦及び横方向の熱収縮応力は、0.2〜1.0MPaであることが好ましい。熱収縮応力が小さい場合には、成形品の強度が不足することがあり、また熱収縮応力が大きいと二次成形時の型再現性で問題が生じることがある。   In addition, the heat shrinkage stress (ORS) of the biaxially stretched sheet is the maximum value of the stress developed at a sheet temperature of 120 ° C. by dry heating in accordance with ASTM D1504. It is preferably 2 to 1.0 MPa. If the heat shrinkage stress is small, the strength of the molded product may be insufficient, and if the heat shrinkage stress is large, there may be a problem in mold reproducibility during secondary molding.

本発明のスチレン系延伸シートの厚みについては、特に限定されるものではないが、二次加工によって成形品を得る際の取扱い容易性と、成形品としての強度の観点から、70〜500μmの範囲になるようにすることが好ましく、100〜300μmの範囲であることがより好ましい。   Although it does not specifically limit about the thickness of the styrene-type stretched sheet of this invention, From the viewpoint of the handleability at the time of obtaining a molded article by secondary processing, and the intensity | strength as a molded article, it is the range of 70-500 micrometers. It is preferable to make it become, and it is more preferable that it is the range of 100-300 micrometers.

本発明のスチレン系延伸シートは、上記の各成分を溶媒に溶かした溶液を均一に混合し、その溶液から溶媒を除去後、製膜して得ることも可能であるが、溶媒への原料の溶解、溶媒除去などの工程が不要で、実用的な製造方法である溶融製膜法を採用することが好ましい。溶融製膜法とは、各成分を溶融混練することにより、シートを製造する方法である。その溶融製膜方法については、特に制限はなく、ニーダー、ロールミル、バンバリーミキサー、単軸又は二軸押出機等の通常使用されている種々の混合機を用いて樹脂組成物を得た後、溶融混合樹脂をスリット状の口金に導き、冷却キャスティングドラム上にシート状に押出し、Tダイ法やタッチロールキャスト法等を用いてシートを得る方法等が挙げられる。これらの溶融製膜法の中でも生産性の観点から、単軸押出機又は二軸押出機を使用してシート化する方法が好ましく、混合性の点で二軸押出機を使用してシート化する方法が更に好ましい。   The styrene-based stretched sheet of the present invention can be obtained by uniformly mixing a solution obtained by dissolving each of the above components in a solvent, removing the solvent from the solution, and then forming a film. It is preferable to employ a melt film-forming method, which is a practical production method, without requiring steps such as dissolution and solvent removal. The melt film-forming method is a method for producing a sheet by melting and kneading each component. The melt film forming method is not particularly limited, and after obtaining a resin composition using various commonly used mixers such as a kneader, a roll mill, a Banbury mixer, a single-screw or twin-screw extruder, it is melted. Examples thereof include a method in which the mixed resin is introduced into a slit-shaped base, extruded into a sheet shape on a cooling casting drum, and a sheet is obtained using a T-die method, a touch roll casting method, or the like. Among these melt film forming methods, from the viewpoint of productivity, a method of forming a sheet using a single-screw extruder or a twin-screw extruder is preferable, and in terms of mixing properties, a sheet is formed using a twin-screw extruder. The method is further preferred.

また、樹脂の混合順序についても特に制限はなく、例えば、耐衝撃性スチレン系樹脂(A)とポリ乳酸(B)及びポリフェニレンエーテル系樹脂(C)とをドライブレンドした後、溶融混練機に供する方法や、予め耐衝撃性スチレン系樹脂(A)とポリフェニレンエーテル系樹脂(C)を溶融混練したマスターバッチを作製した後、このマスターバッチとポリ乳酸(B)とを溶融混練した後、製膜する方法、予めホモポリスチレン(GPPS)とポリフェニレンエーテル系樹脂(C)のマスターバッチを作成後、耐衝撃性スチレン系樹脂(A)とポリ乳酸(B)及び調整したマスターバッチを溶融混連した後、製膜する方法等が挙げられる。   The order of mixing the resins is not particularly limited. For example, the impact-resistant styrene resin (A), the polylactic acid (B), and the polyphenylene ether resin (C) are dry blended and then supplied to a melt kneader. The method, or after preparing a masterbatch in which the impact-resistant styrene resin (A) and the polyphenylene ether resin (C) are melt-kneaded in advance, the masterbatch and polylactic acid (B) are melt-kneaded, and then a film is formed After preparing a master batch of homopolystyrene (GPPS) and polyphenylene ether resin (C) in advance, after melt-mixing the impact-resistant styrene resin (A) and polylactic acid (B) and the adjusted master batch And a method of forming a film.

また、必要に応じて、その他の添加剤を同時に溶融混練する方法や、予め耐衝撃性スチレン系樹脂(A)とその他の添加剤を溶融混練したマスターバッチを作製した後、このマスターバッチと耐衝撃性スチレン系樹脂(A)とポリ乳酸(B)及びポリフェニレンエーテル系樹脂(C)とを溶融混練する方法を用いても良い。   In addition, if necessary, a method of melt-kneading other additives at the same time, or preparing a master batch in which an impact-resistant styrene resin (A) and other additives are melt-kneaded in advance, A method of melt kneading the impact styrene resin (A), the polylactic acid (B), and the polyphenylene ether resin (C) may be used.

また、各成分を溶融混練する時の温度は180℃〜260℃の範囲であることが好ましく、ポリ乳酸(B)の劣化を防ぐ観点、及び、ポリ乳酸(B)と耐衝撃性スチレン系樹脂(A)の混練性の観点から、各成分を溶融混練する時の温度は200℃〜250℃の範囲であることがより好ましい。   Further, the temperature at which each component is melt-kneaded is preferably in the range of 180 ° C. to 260 ° C., from the viewpoint of preventing the deterioration of polylactic acid (B), and polylactic acid (B) and an impact-resistant styrene resin. From the viewpoint of kneadability of (A), the temperature at which each component is melt-kneaded is more preferably in the range of 200 ° C to 250 ° C.

スチレン系延伸シートの延伸倍率は、少なくとも一方向において1.3〜8.0倍であり、好ましくは1.7〜6.0倍であり、より好ましくは1.5〜4.0倍である。また、延伸温度は、70〜150℃の範囲である。スチレン系延伸シートは、延伸後、延伸による配向が緩和するのを防ぐ観点、及び、結晶化の進行による成形性の低下を防ぐ観点から、延伸温度以下で冷却することが好ましく、20〜60℃で冷却することがより好ましい。   The draw ratio of the styrene-based stretched sheet is 1.3 to 8.0 times in at least one direction, preferably 1.7 to 6.0 times, and more preferably 1.5 to 4.0 times. . Moreover, extending | stretching temperature is the range of 70-150 degreeC. The styrene-based stretched sheet is preferably cooled below the stretching temperature from the viewpoint of preventing the orientation due to stretching from being relaxed after stretching and from the viewpoint of preventing the deterioration of formability due to the progress of crystallization. More preferably, the cooling is performed.

スチレン系延伸シートの延伸条件の好ましい一例は、2.0〜2.5倍にロール延伸した後、2.0〜2.5倍にテンター延伸した0.21mmスチレン系延伸シートを製造する場合、テンター延伸温度は80〜140℃であり、冷却温度は40〜70℃である。   A preferable example of the stretching conditions of the styrene-based stretched sheet is to roll-stretch 2.0 to 2.5 times and then produce a 0.21 mm styrene-stretched sheet that is tenter-stretched 2.0 to 2.5 times. The tenter stretching temperature is 80 to 140 ° C, and the cooling temperature is 40 to 70 ° C.

また、延伸倍率を2.5倍から3.0倍に変更する場合、同一ORSのシートを得るには、大まかな目安として、延伸温度を2〜7℃上げるのが好ましい。   Moreover, when changing a draw ratio from 2.5 times to 3.0 times, in order to obtain the same ORS sheet, it is preferable to raise the drawing temperature by 2 to 7 ° C. as a rough guide.

また、得られるスチレン系延伸シートに帯電防止性や防曇性等を付与するために、その表面を界面活性剤等で被覆する場合には、少なくとも延伸シートの一表面に、適当な濃度に調整した界面活性剤等の水溶液を、スクィーズロールコーター、エアーナイフコーター、ナイフコーター、スプレーコーター、グラビアロールコーター、バーコーター等の種々の方法により塗布した後、塗布した水溶液を乾燥する方法が挙げられる。また、特に被覆膜の均一性を向上させる観点からは、シート表面をコロナ処理した後、上記の方法で界面活性剤等を塗布するのが好ましい。コロナ処理の強度は、シートの表面を水との接触角が80〜30°になるように調整するのが好ましく、より好ましくは接触角が70〜35°になるように調整することである。シートの表面と水との接触角の好ましい上限は被覆膜の均一性を向上させるための値であり、好ましい接触角の下限は、シートをロール状に巻いた場合にブロッキングを防ぐための値である。   In addition, when the surface is coated with a surfactant or the like in order to impart antistatic properties or antifogging properties to the resulting styrene-based stretched sheet, at least one surface of the stretched sheet is adjusted to an appropriate concentration. Examples include a method in which an aqueous solution such as a surfactant is applied by various methods such as a squeeze roll coater, an air knife coater, a knife coater, a spray coater, a gravure roll coater, and a bar coater, and then the applied aqueous solution is dried. In particular, from the viewpoint of improving the uniformity of the coating film, it is preferable to apply a surfactant or the like by the above method after corona treatment of the sheet surface. The strength of the corona treatment is preferably adjusted so that the contact angle with water is 80 to 30 °, more preferably the contact angle is 70 to 35 °. The preferred upper limit of the contact angle between the surface of the sheet and water is a value for improving the uniformity of the coating film, and the preferred lower limit of the contact angle is a value for preventing blocking when the sheet is rolled up. It is.

上記で得られたスチレン系延伸シートは、熱成形により二次加工して成形品とすることができる。熱成形方法としては、熱板接触加熱成形法、真空成形法、真空圧空成形法、プラグアシスト成形法等が好ましく用いられる。成形品の厚みの均一性や、成形品の生産効率の観点からは熱板接触加熱成形法が特に好ましいが、特に透明性を重視する場合は間接加熱による真空成形法や真空圧空成形法を、また、深絞り成形を行う場合はプラグアシスト成形法を採用することも可能である。   The styrene-based stretched sheet obtained above can be secondarily processed by thermoforming into a molded product. As the thermoforming method, a hot plate contact heat forming method, a vacuum forming method, a vacuum / pressure forming method, a plug assist forming method, or the like is preferably used. The hot plate contact heating molding method is particularly preferable from the viewpoint of the uniformity of the thickness of the molded product and the production efficiency of the molded product, but when the transparency is particularly important, the vacuum molding method by indirect heating or the vacuum / pressure forming method is used. In addition, when performing deep drawing, a plug assist molding method can be employed.

これらの成形法を用いたスチレン系延伸シートの二次成形は、シートロールを用い連続的に行っても良いし、カット版のシートを用い1ショット毎に成形しても良い。以下、好ましい成形品製造条件の一例を挙げる。   Secondary molding of the styrene-based stretched sheet using these molding methods may be performed continuously using a sheet roll, or may be molded for each shot using a cut plate sheet. Hereinafter, an example of preferable molded article manufacturing conditions will be given.

熱板接触加熱成形法により、本発明のスチレン系延伸シートを成形する場合の好ましい熱板温度条件は、成形品の型再現性や成形サイクルの観点(下限)、及び、成形品の透明性やレインドロップの発生の観点(上限)から、熱板温度を樹脂混合物のビカット軟化温度+10〜50℃とし、より好ましくは+15〜40℃とし、更に好ましくは+20〜35℃とする。また、加熱時間(シートを真空及び/又は圧空で熱板に接触させている時間と、これが終了しシートを金型へ伸ばすために真空及び/又は圧空になるまでの遅れ時間の合計)は、0.5〜15.0秒が好ましい。   Preferred hot plate temperature conditions for molding the styrene stretched sheet of the present invention by hot plate contact heating molding method include mold reproducibility and molding cycle viewpoint (lower limit), transparency of the molded product, From the viewpoint of the occurrence of raindrops (upper limit), the hot plate temperature is set to the Vicat softening temperature of the resin mixture +10 to 50 ° C, more preferably +15 to 40 ° C, and further preferably +20 to 35 ° C. In addition, the heating time (the time for which the sheet is brought into contact with the hot plate in vacuum and / or compressed air and the total delay time until the sheet is vacuumed and / or compressed in order to extend the sheet to the mold) 0.5-15.0 seconds are preferable.

成形品の形状は、容器の蓋、トレー、フードパック、ブリスターパック、その他各種パック、ケース等、特に制限されないが、本発明のスチレン系延伸シート及びその成形品の特徴である成形性、耐油性、耐衝撃性の観点から、食品包装用であることが好ましく、特に容器トレーとしての使用が好ましい。   The shape of the molded product is not particularly limited, such as container lids, trays, food packs, blister packs, various other packs, cases, etc., but the moldability and oil resistance characteristic of the styrene stretched sheet of the present invention and the molded products thereof are not limited. From the viewpoint of impact resistance, it is preferably for food packaging, and particularly preferably used as a container tray.

また、特に本発明の延伸シートから得られる成形品は耐油性に優れる観点より、内容物の食品として、油成分を含むものであっても、好適に用いることができる。   In particular, from the viewpoint of excellent oil resistance, a molded product obtained from the stretched sheet of the present invention can be suitably used even if it contains an oil component as a food product.

以下、実施例を挙げて本発明をさらに説明するが、本発明はこれら実施例に何ら限定されるものではない。特に断りのない限り、部及び%はいずれも質量基準である。   EXAMPLES Hereinafter, although an Example is given and this invention is further demonstrated, this invention is not limited to these Examples at all. Unless otherwise indicated, both parts and% are based on mass.

尚、得られたシートの熱収縮応力、耐油性、成形強度、耐熱性については、以下の方法で測定し、評価した。   The thermal shrinkage stress, oil resistance, molding strength, and heat resistance of the obtained sheet were measured and evaluated by the following methods.

(1)熱収縮応力(ORS)
ASTM D−1504を準拠して測定を行った。
(1) Thermal contraction stress (ORS)
Measurement was performed in accordance with ASTM D-1504.

(2)耐油性
得られたスチレン系延伸シートを100×20mmの短冊に切り出し、直径90mmの紙管に巻きつけ、食用油(ホワイトF−2:不二精機株式会社製)を塗布し、60℃の恒温装置で静置して、経時変化により短冊にクラックが入る時間を確認した。尚、24時間(1440分)を経過しても変化のないものは、1440分以上とした。
(2) Oil resistance The obtained styrene-based stretched sheet was cut into a strip of 100 × 20 mm, wound around a paper tube having a diameter of 90 mm, and edible oil (white F-2: manufactured by Fuji Seiki Co., Ltd.) was applied. It left still with the constant temperature apparatus of ° C, and time for a crack to enter into a strip by time-dependent change was checked. In addition, what did not change even if 24 hours (1440 minutes) passed was set to 1440 minutes or more.

(3)成形強度(耐折強度)
JIS P8115に基づき、縦方向と横方向の平均が10回未満を×、10回以上〜15回未満を○、15回以上を◎とした。
(3) Molding strength (folding strength)
Based on JIS P8115, when the average of the vertical direction and the horizontal direction is less than 10 times, x is 10 times or more to less than 15 times, and 15 times or more is ◎.

(4)成形性及び耐熱性
深さ27mm、開口部95mm×95mmの容器を熱板接触加熱成形法(加熱温度1.2秒、成形遅れ時間1.5秒、成形時間2.0秒、加熱圧力0.1MPa、成形圧力0.4MPa、金型温度50℃にて成形)で得られた成形品について、表面荒れが生じずに成形できたものを○、表面荒れやその他成形不良が生じたものを×とした。さらに、75℃の熱風乾燥機中に5分間放置後、外観を目視した。外観変形がないものを○、一部変形のあるものを△、大変形のあるものを×とした。
(4) Formability and heat resistance A container having a depth of 27 mm and an opening of 95 mm × 95 mm is heated and heated by a hot plate contact method (heating temperature 1.2 seconds, molding delay time 1.5 seconds, molding time 2.0 seconds, heating For molded products obtained with a pressure of 0.1 MPa, a molding pressure of 0.4 MPa, and a mold temperature of 50 ° C., those that could be molded without surface roughness occurred, and surface roughness and other molding defects occurred. The thing was set as x. Furthermore, after leaving for 5 minutes in a 75 degreeC hot air dryer, the external appearance was visually observed. The case where there was no external deformation was indicated as ◯, the case where there was a partial deformation was indicated as Δ, and the case where there was a large deformation was indicated as ×.

(5)流動性
流動性については、耐衝撃性スチレン系樹脂及び汎用ポリスチレン(GPPS)については、200℃、5kg荷重、ポリ乳酸については、210℃、2.16kg荷重にて測定した。
(5) Fluidity The fluidity was measured at 200 ° C. and 5 kg load for impact-resistant styrene resin and general-purpose polystyrene (GPPS), and at 210 ° C. and 2.16 kg load for polylactic acid.

耐衝撃性スチレン系樹脂(A)としては以下のものを使用した。
(A−1):流動性が2.0g/10min、樹脂中のゴム成分含有率が7%のスチレン系樹脂
(A−2):流動性が4.0g/10min、樹脂中のゴム成分含有量が10%のスチレン系樹脂
(A−3):流動性が10.0g/10min、樹脂中のゴム成分含有量が3%のスチレン系樹脂
The following were used as impact-resistant styrene resin (A).
(A-1): Styrenic resin having a fluidity of 2.0 g / 10 min and a rubber component content of 7% in the resin (A-2): Fluidity of 4.0 g / 10 min, containing a rubber component in the resin Styrenic resin having an amount of 10% (A-3): styrene resin having a fluidity of 10.0 g / 10 min and a rubber component content of 3% in the resin

上記樹脂の合成方法については下記の通りである。
(A−1):スチレンモノマー90部、トルエン10部、ブタジエンゴムを6部、t−ブチルパーオキシベンゾエートを300ppm(モノマー比)加え、攪拌式の反応槽において、130℃で1.5時間、140℃〜180℃で3.5時間反応させ、未反応のモノマー及びトルエンを230℃、真空度70〜30Torr.で除去し、精製することで得た。
The method for synthesizing the resin is as follows.
(A-1): 90 parts of styrene monomer, 10 parts of toluene, 6 parts of butadiene rubber, 300 ppm of t-butyl peroxybenzoate (monomer ratio), and 1.5 hours at 130 ° C. in a stirred reaction vessel The reaction was carried out at 140 ° C. to 180 ° C. for 3.5 hours. And purified by purification.

(A−2):(A−1)の条件において、ブタジエンゴムを8%にした以外は同様の条件で合成することで、上記樹脂を得た。   (A-2): Under the conditions of (A-1), the above resin was obtained by synthesis under the same conditions except that the butadiene rubber was changed to 8%.

(A−3):(A−1)の条件において、ブタジエンゴムを2.5%にした以外は同様の条件で合成することで、上記樹脂を得た。   (A-3): The above resin was obtained by synthesis under the same conditions except that the butadiene rubber was changed to 2.5% under the conditions of (A-1).

ポリ乳酸(B)としては、Nature Works社製 4032D(流動性7g/10min.、D体:1.4%、重量平均分子量:18万)を使用した。   As polylactic acid (B), 4032D (flowability 7 g / 10 min., D-form: 1.4%, weight average molecular weight: 180,000) manufactured by Nature Works was used.

今回の実施例においては、ポリフェニレンエーテル系樹脂(C)は以下の方法で調整したものを使用した。三菱エンジニアリングプラスチックス社製PX−100F(ポリ(2,6−ジメチル−1,4−フェニレン)エーテル樹脂、0.38dl/g(クロロホルム中30℃))と汎用ポリスチレン(GPPS:MFR:5.0g/10min.(200℃、5kg荷重))を重量比70:30でドライブレンドし、ニ軸押出機を使用して(溶融温度300℃)、マスターバッチを調整した。   In this example, the polyphenylene ether resin (C) prepared by the following method was used. PX-100F (poly (2,6-dimethyl-1,4-phenylene) ether resin, 0.38 dl / g (30 ° C. in chloroform)) and general-purpose polystyrene (GPPS: MFR: 5.0 g) manufactured by Mitsubishi Engineering Plastics / 10 min. (200 ° C., 5 kg load)) was dry blended at a weight ratio of 70:30, and a masterbatch was prepared using a twin screw extruder (melting temperature 300 ° C.).

実施例1
耐衝撃性スチレン系樹脂(A−1)/ポリ乳酸(B)/ポリフェニレンエーテル系樹脂(C)=55/25/20の比率で、直径30mmのスクリューを有する2軸押出機(日本製鋼所製 TEX30α−31.5BW−5V)に供給し、溶融、混練し、T−ダイよりシートを押し出して、そのシートをロールで冷却、再加熱した後、ロール群の速度差により、シートをシート流れ方向(MDとする)に2.0倍延伸した。さらにテンターにより、シートをシート流れ方向に対して直交方向(TDとする)に2.0倍延伸して、厚み0.25mmのシートを得た。
Example 1
Impact-resistant styrene resin (A-1) / polylactic acid (B) / polyphenylene ether resin (C) = 55/25/20 twin screw extruder (manufactured by Nippon Steel) TEX30α-31.5BW-5V), melt, knead, extrude the sheet from the T-die, cool the sheet with a roll, reheat, and then roll the sheet in the sheet flow direction due to the speed difference of the roll group (MD) was stretched 2.0 times. Further, the sheet was stretched 2.0 times in a direction orthogonal to the sheet flow direction (referred to as TD) by a tenter to obtain a sheet having a thickness of 0.25 mm.

実施例2
実施例1のTD及びMDの延伸倍率を2.5倍にした以外は同等の方法でシートを得た。
Example 2
A sheet was obtained by the same method except that the draw ratio of TD and MD in Example 1 was 2.5 times.

実施例3
実施例1において、耐衝撃性スチレン系樹脂を(A−2)に変えた以外は同等の方法でシートを得た。
Example 3
A sheet was obtained in the same manner as in Example 1 except that the impact-resistant styrene resin was changed to (A-2).

実施例4
実施例3の条件で、TD及びMDの延伸倍率を2.5倍にした以外は同等の方法でシートを得た。
Example 4
A sheet was obtained by the same method except that the stretching ratio of TD and MD was 2.5 times under the conditions of Example 3.

実施例5
実施例1において、耐衝撃性スチレン系樹脂を(A−3)に変えた以外は同等の方法でシートを得た。
Example 5
In Example 1, a sheet was obtained by the same method except that the impact-resistant styrene resin was changed to (A-3).

実施例6
実施例5の条件で、TD及びMDの延伸倍率を2.5倍にした以外は同等の方法でシートを得た。
Example 6
A sheet was obtained by the same method except that the stretching ratio of TD and MD was 2.5 times under the conditions of Example 5.

実施例7
実施例1において、耐衝撃性スチレン系樹脂(A−1)/ポリ乳酸(B)/ポリフェニレンエーテル系樹脂(C)=75/5/20の比率に変更した以外は同等の方法でシートを得た。
Example 7
A sheet was obtained in the same manner as in Example 1 except that the ratio was changed to the ratio of impact-resistant styrene resin (A-1) / polylactic acid (B) / polyphenylene ether resin (C) = 75/5/20. It was.

実施例8
実施例7のTD及びMDの延伸倍率を2.5倍にした以外は同等の方法でシートを得た。
Example 8
A sheet was obtained by the same method except that the draw ratio of TD and MD in Example 7 was 2.5.

実施例9
実施例7において、耐衝撃性スチレン系樹脂を(A−2)に比率に変えた以外は同等の方法でシートを得た。
Example 9
In Example 7, a sheet was obtained by the same method except that the impact-resistant styrenic resin was changed to the ratio (A-2).

実施例10
実施例9の条件で、TD及びMDの延伸倍率を2.5倍にした以外は同等の方法でシートを得た。
Example 10
A sheet was obtained by the same method except that the stretching ratio of TD and MD was 2.5 times under the conditions of Example 9.

実施例11
実施例7において、耐衝撃性スチレン系樹脂を(A−3)に変えた以外は同等の方法でシートを得た。
Example 11
In Example 7, a sheet was obtained by the same method except that the impact-resistant styrene resin was changed to (A-3).

実施例12
実施例11の条件で、TD及びMDの延伸倍率を2.5倍にした以外は同等の方法でシートを得た。
Example 12
A sheet was obtained by the same method except that the stretching ratio of TD and MD was 2.5 times under the conditions of Example 11.

実施例13
実施例1において、耐衝撃性スチレン系樹脂(A−1)/ポリ乳酸(B)/ポリフェニレンエーテル系樹脂(C)=55/5/40の比率に変更した以外は同等の方法でシートを得た。
Example 13
A sheet was obtained in the same manner as in Example 1 except that the ratio was changed to the ratio of impact-resistant styrene resin (A-1) / polylactic acid (B) / polyphenylene ether resin (C) = 55/5/40. It was.

実施例14
実施例13のTD及びMDの延伸倍率を2.5倍にした以外は同等の方法でシートを得た。
Example 14
A sheet was obtained by the same method except that the draw ratio of TD and MD in Example 13 was 2.5.

実施例15
実施例13において、耐衝撃性スチレン系樹脂を(A−2)に変えた以外は同等の方法でシートを得た。
Example 15
In Example 13, a sheet was obtained by the same method except that the impact-resistant styrene resin was changed to (A-2).

実施例16
実施例15の条件で、TD及びMDの延伸倍率を2.5倍にした以外は同等の方法でシートを得た。
Example 16
A sheet was obtained by the same method except that the stretching ratio of TD and MD was 2.5 times under the conditions of Example 15.

実施例17
実施例13において、耐衝撃性スチレン系樹脂を(A−3)に変えた以外は同等の方法でシートを得た。
Example 17
In Example 13, a sheet was obtained by the same method except that the impact-resistant styrene resin was changed to (A-3).

実施例18
実施例17の条件で、TD及びMDの延伸倍率を2.5倍にした以外は同等の方法でシートを得た。
Example 18
A sheet was obtained by the same method except that the stretching ratio of TD and MD was 2.5 times under the conditions of Example 17.

比較例1
実施例1において、耐衝撃性スチレン系樹脂(A−1)を単独で使用した以外は同等の方法でシートを得た。
Comparative Example 1
In Example 1, a sheet was obtained by the same method except that the impact-resistant styrene resin (A-1) was used alone.

比較例2
実施例1において、無延伸(TD及びMD延伸倍率1.0倍)にした以外は同様にしてシートを得た
Comparative Example 2
A sheet was obtained in the same manner as in Example 1 except that the film was not stretched (TD and MD stretch ratio: 1.0).

比較例3
実施例1において、耐衝撃性スチレン系樹脂(A−1)/ポリ乳酸(B)=65/35にした以外は同様の条件でシートを得た。
Comparative Example 3
A sheet was obtained under the same conditions as in Example 1, except that the impact-resistant styrene resin (A-1) / polylactic acid (B) = 65/35.

評価結果を表1〜3に示す。   The evaluation results are shown in Tables 1-3.

Figure 2014205797
Figure 2014205797

Figure 2014205797
Figure 2014205797

Figure 2014205797
Figure 2014205797

Figure 2014205797
Figure 2014205797

Figure 2014205797
Figure 2014205797

Figure 2014205797
Figure 2014205797

Claims (9)

耐衝撃性スチレン系樹脂(A)とポリ乳酸(B)とポリフェニレンエーテル系樹脂(C)を含有するスチレン系樹脂組成物を二軸延伸してなることを特徴とするスチレン系延伸シート。 A styrene-based stretched sheet obtained by biaxially stretching a styrene-based resin composition containing an impact-resistant styrene-based resin (A), polylactic acid (B), and polyphenylene ether-based resin (C). 前記耐衝撃性スチレン系樹脂(A)とポリ乳酸(B)とポリフェニレンエーテル系樹脂(C)の使用割合が(A)/(B)/(C)で表される質量比として、50〜90/5〜35/5〜40の範囲である請求項1記載のスチレン系延伸シート。 As a mass ratio represented by (A) / (B) / (C), the use ratio of the impact-resistant styrene resin (A), polylactic acid (B), and polyphenylene ether resin (C) is 50 to 90. The styrene-based stretched sheet according to claim 1, which is in a range of / 5 to 35/5 to 40. 前記耐衝撃性スチレン系樹脂(A)が、スチレン単独の重合体からなる連続相にゴム状重合体がグラフト重合してなるものである請求項1又は2記載のスチレン系延伸シート。 The stretched styrene-based sheet according to claim 1 or 2, wherein the impact-resistant styrene-based resin (A) is obtained by graft polymerization of a rubbery polymer on a continuous phase composed of a polymer of styrene alone. 前記耐衝撃性スチレン系樹脂(A)中のゴム成分の含有率が2.0〜15質量%のものである請求項3記載のスチレン系延伸シート。 The styrene-based stretched sheet according to claim 3, wherein the content of the rubber component in the impact-resistant styrene-based resin (A) is 2.0 to 15% by mass. 前記スチレン系樹脂組成物を延伸倍率が縦方向1.3〜8.0倍、横方向1.3〜8.0倍に二軸延伸したものである請求項1〜4の何れか1項記載のスチレン系延伸シート。 5. The styrene resin composition is a biaxially stretched stretch ratio of 1.3 to 8.0 times in the longitudinal direction and 1.3 to 8.0 times in the transverse direction. 5. Styrene-based stretched sheet. 縦方向の熱収縮応力が0.2〜1.0MPaであり、横方向の熱収縮応力が0.2〜1.0MPaである請求項1〜5の何れか1項記載のスチレン系延伸シート。 The styrene-based stretched sheet according to any one of claims 1 to 5, wherein the heat shrinkage stress in the longitudinal direction is 0.2 to 1.0 MPa, and the heat shrinkage stress in the transverse direction is 0.2 to 1.0 MPa. 請求項1〜6の何れか1項記載のスチレン系延伸シートを熱成形法によって成形してなるものであることを特徴とする成形品。 A molded article obtained by molding the styrene-based stretched sheet according to any one of claims 1 to 6 by a thermoforming method. 食品包装用である請求項7記載の成形品。 The molded article according to claim 7, which is used for food packaging. 前記食品が、油成分を含有するものである請求項8記載の成形品。 The molded article according to claim 8, wherein the food contains an oil component.
JP2013084824A 2013-04-15 2013-04-15 Styrene stretched sheet and molded product thereof Active JP6075632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013084824A JP6075632B2 (en) 2013-04-15 2013-04-15 Styrene stretched sheet and molded product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013084824A JP6075632B2 (en) 2013-04-15 2013-04-15 Styrene stretched sheet and molded product thereof

Publications (2)

Publication Number Publication Date
JP2014205797A true JP2014205797A (en) 2014-10-30
JP6075632B2 JP6075632B2 (en) 2017-02-08

Family

ID=52119628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013084824A Active JP6075632B2 (en) 2013-04-15 2013-04-15 Styrene stretched sheet and molded product thereof

Country Status (1)

Country Link
JP (1) JP6075632B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168153A (en) * 1990-10-31 1992-06-16 Asahi Chem Ind Co Ltd Biaxially drawn sheet
JP2004204128A (en) * 2002-12-26 2004-07-22 Mitsubishi Plastics Ind Ltd Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet, and thermoformed product using the sheet
JP2004359948A (en) * 2003-05-14 2004-12-24 Toray Ind Inc Biaxially oriented polylactic acid film for forming and container
JP2008050426A (en) * 2006-08-23 2008-03-06 Ps Japan Corp Resin composition comprising styrene resin and polylactic acid
JP2008297389A (en) * 2007-05-30 2008-12-11 Dic Corp Polylactic acid resin composition, extruded sheet and vessel
JP2009221438A (en) * 2008-03-18 2009-10-01 Mitsubishi Engineering Plastics Corp Polyphenylene ether resin composition and molded item
JP2010126646A (en) * 2008-11-27 2010-06-10 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition for laser welding and composite molding product thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168153A (en) * 1990-10-31 1992-06-16 Asahi Chem Ind Co Ltd Biaxially drawn sheet
JP2004204128A (en) * 2002-12-26 2004-07-22 Mitsubishi Plastics Ind Ltd Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet, and thermoformed product using the sheet
JP2004359948A (en) * 2003-05-14 2004-12-24 Toray Ind Inc Biaxially oriented polylactic acid film for forming and container
JP2008050426A (en) * 2006-08-23 2008-03-06 Ps Japan Corp Resin composition comprising styrene resin and polylactic acid
JP2008297389A (en) * 2007-05-30 2008-12-11 Dic Corp Polylactic acid resin composition, extruded sheet and vessel
JP2009221438A (en) * 2008-03-18 2009-10-01 Mitsubishi Engineering Plastics Corp Polyphenylene ether resin composition and molded item
JP2010126646A (en) * 2008-11-27 2010-06-10 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition for laser welding and composite molding product thereof

Also Published As

Publication number Publication date
JP6075632B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP5717451B2 (en) Heat resistant resin composition and foamed molded body
JP5758491B2 (en) Polyamide / poly (arylene ether) compositions, articles and methods
JP5729623B2 (en) Injection-molded article with poly (arylene ether) -block copolymer composition
JP2014205761A (en) Heat resistant resin foam sheet and container
US20150166777A1 (en) Polyolefin composition with poly(phenylene ether) filler and article thereof
CN1217993C (en) Poly (arglene ether) polyolefin composition and articles derived therefrom
JP6421825B2 (en) Styrene foam sheet and molded body using the same
JPH0616807A (en) Epoxy-functional polyphenylene ether with low gel content, its production, and composition containing copolymer produced therefrom
JP6075632B2 (en) Styrene stretched sheet and molded product thereof
JP2008248156A (en) Resin composition for biaxially stretched styrenic resin sheet and sheet and molding using the same
JP5824271B2 (en) Packaging container
JP6187707B2 (en) Styrene foam sheet and molded body using the same
JP5726735B2 (en) Expandable thermoplastic polymer blend
JP2007291366A (en) Resin composition for biaxially oriented styrenic resin sheet, and sheet and formed article using the same
JP6206701B2 (en) Styrene stretched sheet and molded product thereof
JP4716585B2 (en) Resin composition sheet
WO2000064973A1 (en) Compositions of styrenic block copolymer resin and polyphenylene ether resin
JP2015071678A (en) Heat-resistant resin composition, and foam molding of the same
JP6267130B2 (en) Composition for the production of hydrophilic polystyrene products
JPH11172062A (en) Styrene resin composition
JP6647003B2 (en) Molded product for piping
JP6533456B2 (en) Food container
JP3029042B2 (en) Biaxially stretched sheet
JP3364236B2 (en) Biaxially stretched heat-resistant styrene resin sheet
KR20160110479A (en) Poly(phenylene ether) composition and article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161228

R151 Written notification of patent or utility model registration

Ref document number: 6075632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250