JP4529171B2 - Method for removing carbonyl sulfide in gas - Google Patents
Method for removing carbonyl sulfide in gas Download PDFInfo
- Publication number
- JP4529171B2 JP4529171B2 JP2004037879A JP2004037879A JP4529171B2 JP 4529171 B2 JP4529171 B2 JP 4529171B2 JP 2004037879 A JP2004037879 A JP 2004037879A JP 2004037879 A JP2004037879 A JP 2004037879A JP 4529171 B2 JP4529171 B2 JP 4529171B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- carbonyl sulfide
- sulfide
- solid catalyst
- hydrogen chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 title claims description 252
- 238000000034 method Methods 0.000 title claims description 59
- 239000007789 gas Substances 0.000 claims description 204
- 239000003054 catalyst Substances 0.000 claims description 82
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 55
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 55
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 55
- 238000006243 chemical reaction Methods 0.000 claims description 53
- 239000000428 dust Substances 0.000 claims description 51
- 239000011949 solid catalyst Substances 0.000 claims description 49
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 36
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 36
- 239000012719 wet electrostatic precipitator Substances 0.000 claims description 29
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 28
- 238000006460 hydrolysis reaction Methods 0.000 claims description 22
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 18
- 230000007062 hydrolysis Effects 0.000 claims description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 17
- 239000012718 dry electrostatic precipitator Substances 0.000 claims description 17
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 16
- 230000000694 effects Effects 0.000 claims description 15
- 239000002699 waste material Substances 0.000 claims description 15
- 230000003009 desulfurizing effect Effects 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 238000006477 desulfuration reaction Methods 0.000 description 13
- 230000023556 desulfurization Effects 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 238000002309 gasification Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 9
- 239000002737 fuel gas Substances 0.000 description 9
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000002574 poison Substances 0.000 description 4
- 231100000614 poison Toxicity 0.000 description 4
- 238000002407 reforming Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 229910000423 chromium oxide Inorganic materials 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 239000003034 coal gas Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- IHNDUGMUECOVKK-UHFFFAOYSA-N aluminum chromium(3+) oxygen(2-) Chemical compound [O-2].[Cr+3].[O-2].[Al+3] IHNDUGMUECOVKK-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000012716 precipitator Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- -1 coke oven gas Chemical compound 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Electrostatic Separation (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Industrial Gases (AREA)
Description
本発明は、コークス炉ガス、転炉ガス、廃棄物ガス化改質炉ガス等の硫化カルボニルを含有するガスから固体触媒を用いて硫化カルボニルを除去する方法に関する。 The present invention relates to a method for removing carbonyl sulfide from a gas containing carbonyl sulfide such as coke oven gas, converter gas, waste gasification reformer gas, etc., using a solid catalyst.
製鉄業などにおけるコークス炉ガス、転炉ガス、高炉ガス、石油精製業における種々の発生ガス、石炭および重質炭化水素のガス化プロセスにおける発生ガス、廃棄物のガス化における発生ガス、さらには種々の産業における煙道ガスなどのガスには有害成分である硫化カルボニルなどの硫黄分が含まれているため、従来から、これらのガスから硫化カルボニルを除去することが行われている。 Coke oven gas in the steel industry, converter gas, blast furnace gas, various generated gas in the oil refining industry, generated gas in the gasification process of coal and heavy hydrocarbons, generated gas in waste gasification, and various Since gases such as flue gas in this industry contain sulfur components such as carbonyl sulfide, which are harmful components, carbonyl sulfide has been conventionally removed from these gases.
硫化カルボニルを除去する方法としては、乾式法と湿式法とがあるが、湿式法はプロセスが複雑であり、処理するガス量によっては経済的に不利になる場合があるので、乾式法が多く採用されている。
乾式法には、モレキュラーシーブ、吸着剤を用いる吸着法、吸収剤を用いる吸収法、触媒を用いて硫化カルボニルを加水分解する触媒法等が挙げられる。
There are two methods for removing carbonyl sulfide: the dry method and the wet method, but the wet method is complicated and the process may be economically disadvantageous depending on the amount of gas to be treated. Has been.
Examples of the dry method include a molecular sieve, an adsorption method using an adsorbent, an absorption method using an absorbent, and a catalyst method in which carbonyl sulfide is hydrolyzed using a catalyst.
特許文献1には、炭酸カリウムおよび/または炭酸ナトリウムをアルミナに担持した触媒を用いて、硫化カルボニルを含有するガスを前記触媒に接触させて下記の反応により、硫化カルボニルを加水分解し硫化水素に変換することが記載されている。
COS+H2O → H2S+CO2
In Patent Document 1, using a catalyst in which potassium carbonate and / or sodium carbonate is supported on alumina, a gas containing carbonyl sulfide is brought into contact with the catalyst and carbonyl sulfide is hydrolyzed to hydrogen sulfide by the following reaction. The conversion is described.
COS + H 2 O → H 2 S + CO 2
特許文献2には、触媒を用いてガス中に含まれている硫化カルボニルを加水分解する場合、処理ガス中に含まれる二酸化硫黄及び三酸化硫黄が触媒を被毒し、長期運転が困難になるため、二酸化硫黄、三酸化硫黄を含むガス中の硫化カルボニルを加水分解触媒の存在下に加水分解して除去する方法において、二酸化硫黄、三酸化硫黄を除去した後、硫化カルボニルを加水分解する硫化カルボニルの除去方法が記載されている。 In Patent Document 2, when carbonyl sulfide contained in a gas is hydrolyzed using a catalyst, sulfur dioxide and sulfur trioxide contained in the treatment gas poison the catalyst, and long-term operation becomes difficult. Therefore, in the method of hydrolyzing and removing carbonyl sulfide in a gas containing sulfur dioxide and sulfur trioxide in the presence of a hydrolysis catalyst, sulfur dioxide which hydrolyzes carbonyl sulfide after removing sulfur dioxide and sulfur trioxide. A method for removing the carbonyl is described.
特許文献3には、硫化カルボニル(COS)触媒による加水分解反応において、必要な水蒸気が過剰に供給されると、COS触媒の活性点となる細孔内に水分が凝縮して触媒としての性能が低下し、加水分解反応が低下すると云う問題があることに鑑みて、COS転化触媒の触媒性能低下時に、バイパス弁を開けて生成ガスをバイパスに流すと共に、COS転化器に空気または不活性ガスを供給することによって前記COS転化触媒の触媒性能を向上できるようにしたガス精製装置が記載されている。 In Patent Document 3, in the hydrolysis reaction using a carbonyl sulfide (COS) catalyst, when excessive water vapor is supplied, moisture is condensed in the pores serving as the active sites of the COS catalyst, and the performance as a catalyst is described. In view of the problem that the hydrolysis reaction is lowered, the catalyst performance of the COS conversion catalyst is lowered, and when the catalyst performance is lowered, the bypass gas is opened to flow the generated gas to the bypass, and air or an inert gas is supplied to the COS converter. There is described a gas purification device which can improve the catalytic performance of the COS conversion catalyst by supplying.
特許文献4には、硫化カルボニルの加水分解用触媒の耐久性の向上と寿命の延長を目的として、向上させるために、アルミナに炭酸カリウムおよび/または炭酸ナトリウムを担持した硫化カルボニルの加水分解用触媒において、該触媒における細孔径を3〜30nmとし、細孔の容積を0.3cm3/g以上とした硫化カルボニルの加水分解用触媒が記載されている。 Patent Document 4 discloses a carbonyl sulfide hydrolysis catalyst in which potassium carbonate and / or sodium carbonate is supported on alumina for the purpose of improving the durability and extending the life of the carbonyl sulfide hydrolysis catalyst. Describes a catalyst for hydrolysis of carbonyl sulfide having a pore diameter of 3 to 30 nm and a pore volume of 0.3 cm 3 / g or more.
特許文献5には、廃棄物をガス化溶融処理して得られる燃料ガスには、硫化カルボニルの他に塩化水素が含まれており、この塩化水素が炭酸カリウムをアルミナに担持した触媒の硫化カルボニル加水分解活性に大きな影響を与えることから、硫化カルボニルおよび塩化水素を含有するガスを、アルミナに炭酸セシウムを担持した触媒と接触せしめて、前記ガス中の硫化カルボニルを加水分解する硫化カルボニルの加水分解方法が記載されている。 In Patent Document 5, the fuel gas obtained by gasifying and melting waste contains hydrogen chloride in addition to carbonyl sulfide, and the catalyst is a carbonyl sulfide catalyst in which potassium carbonate is supported on alumina. Hydrolysis of carbonyl sulfide which hydrolyzes carbonyl sulfide in the gas by bringing a gas containing carbonyl sulfide and hydrogen chloride into contact with a catalyst in which cesium carbonate is supported on alumina, because it greatly affects the hydrolysis activity. A method is described.
ところで、石炭を燃料とする将来の発電方式の中で、石炭ガス化複合発電システム(IGCC:Integrated Coal Gasification Combined Cycle)が注目されており、このシステムはガス化炉、ガス精製装置、ガスタービン等の装置から構成されているが、燃料として用いる石炭ガスをガス精製装置で処理して石炭ガス中に含まれる硫化カルボニル及び硫化水素を除去する必要がある。
しかしながら、石炭ガスの精製のために上記の従来法を適用しても、触媒活性が低下し、安定した操業を行うことができないという問題があった。
By the way, among the future power generation methods using coal as fuel, an integrated coal gasification combined cycle (IGCC) system has attracted attention. This system is a gasification furnace, gas refining device, gas turbine, etc. However, it is necessary to remove the carbonyl sulfide and hydrogen sulfide contained in the coal gas by treating the coal gas used as fuel with a gas refining device.
However, even if the above-described conventional method is applied for the purification of coal gas, there is a problem that the catalytic activity is lowered and stable operation cannot be performed.
本発明は硫化カルボニルを含有するガスから硫化カルボニルを触媒を用いて加水分解反応によって除去するに際し、触媒活性を低下させることなく安定した操業を可能にする硫化カルボニルの除去方法を提供することを目的とする。 An object of the present invention is to provide a method for removing carbonyl sulfide that enables stable operation without reducing the catalytic activity when removing carbonyl sulfide from a gas containing carbonyl sulfide by a hydrolysis reaction using a catalyst. And
本発明者らは、前記した従来技術の問題点を解決するために鋭意検討した結果、硫化カルボニル含有ガス中に含まれるダストが触媒の活性を低下させることを見出して本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems of the prior art, the present inventors have found that dust contained in the carbonyl sulfide-containing gas decreases the activity of the catalyst, thereby completing the present invention. It was.
(1)ガス中の硫化カルボニルの除去方法であって、
乾式又は湿式電気集塵機によりガス中のダスト濃度を10mg/m 3 N以下に除塵し、除塵されたガスを固体触媒充填層に供給し、硫化カルボニルを硫化水素に変換した後に該硫化水素を脱硫することを特徴とするガス中の硫化カルボニルの除去方法。
(2)上記除塵されたガスを80℃以上で120℃より低い温度に加熱して固体触媒充填層に供給することを特徴とする上記(1)のガス中の硫化カルボニル除去方法。
(3)上記除塵されたガスを80℃以上で120℃より低い温度に加熱し相対湿度を20%以下にして固体触媒充填層に供給することを特徴とする上記(1)のガス中の硫化カルボニル除去方法。
(4)上記固体触媒充填層に供給するガスの温度を該固体触媒の活性度に応じて変化させることとし、固体触媒の硫化カルボニルを硫化水素に転化する転化率が低下したら固体触媒充填層に供給するガスの温度を高くすることを特徴とする上記(1)〜(3)のガス中の硫化カルボニルの除去方法。
(5)上記ガスが塩化水素を含有し、塩化水素除去装置によりガス中の塩化水素濃度を50ppm以下にし、塩化水素を除去したガスを乾式又は湿式電気集塵機に供給することを特徴とする上記(1)〜(4)のガス中の硫化カルボニル除去方法。
(6)上記ガスが塩化水素及び硫化水素を含有し、塩化水素除去装置によりガス中の塩化水素濃度を50ppm以下にした後、硫化水素除去装置により硫化水素を除去し、塩化水素及び硫化水素を除去したガスを湿式電気集塵機に供給することを特徴とする上記(1)〜(4)のガス中の硫化カルボニル除去方法。
(1) A method for removing carbonyl sulfide in a gas,
The dust concentration in the gas is removed to 10 mg / m 3 N or less by a dry or wet electrostatic precipitator , the removed gas is supplied to the solid catalyst packed bed, and the carbonyl sulfide is converted into hydrogen sulfide, and then the hydrogen sulfide is desulfurized. A method for removing carbonyl sulfide in a gas.
(2) The method for removing carbonyl sulfide in the gas according to (1), wherein the dust-removed gas is heated to a temperature of 80 ° C. or higher and lower than 120 ° C. and supplied to the solid catalyst packed bed .
(3) sulfide in the gas of the above (1), wherein said supplying the dust gas and heated to a temperature below 120 ° C. at 80 ° C. or higher relative humidity solid catalyst packed bed was 20% or less Carbonyl removal method.
(4) The temperature of the gas supplied to the solid catalyst packed bed is changed according to the activity of the solid catalyst, and when the conversion rate for converting the carbonyl sulfide of the solid catalyst to hydrogen sulfide is lowered, the solid catalyst packed bed is The method for removing carbonyl sulfide in the gases (1) to (3) above , wherein the temperature of the gas to be supplied is increased .
(5) The gas described above, wherein the gas contains hydrogen chloride, the hydrogen chloride concentration in the gas is reduced to 50 ppm or less by a hydrogen chloride removal device, and the gas from which hydrogen chloride has been removed is supplied to a dry or wet electrostatic precipitator ( A method for removing carbonyl sulfide in the gas of 1) to (4).
(6) The above gas contains hydrogen chloride and hydrogen sulfide. After the hydrogen chloride concentration in the gas is reduced to 50 ppm or less by the hydrogen chloride removal device, the hydrogen sulfide is removed by the hydrogen sulfide removal device, and hydrogen chloride and hydrogen sulfide are removed. The method for removing carbonyl sulfide in the gas according to the above (1) to (4) , wherein the removed gas is supplied to a wet electrostatic precipitator .
(7)上記ガスが、廃棄物を溶融ガス化改質処理又は廃棄物の焼却灰を溶融処理した際に発生するガスであることを特徴とする上記(1)〜(6)のガス中の硫化カルボニルの除去方法。
(8)上記固体触媒がアルミナに炭酸カリウムおよび/または炭酸ナトリウムを担持した硫化カルボニルの加水分解用触媒であることを特徴とする上記(1)〜(7)のガス中の硫化カルボニルの除去方法。
(9)ガス中の硫化カルボニルを除去する硫化カルボニル除去装置であって、
ガス中のダスト濃度を10mg/m 3 N以下に除塵する乾式又は湿式電気集塵機と、
除塵されたガスを受けてガス中の硫化カルボニルを硫化水素に変換する固体触媒充填塔と、
該固体触媒充填塔からガスを受けてガス中の該硫化水素を脱硫する硫化水素除去装置と
を設けたことを特徴とするガス中の硫化カルボニルの除去装置。
(10)上記乾式又は湿式電気集塵機と上記固体触媒充填塔の間にガスを加熱する加熱装置を設けたことを特徴とする上記(9)のガス中の硫化カルボニルの除去装置。
(11)上記乾式又は湿式電気集塵機と上記固体触媒充填塔の間にガスの相対湿度を低める除湿装置を設けたことを特徴とする上記(9)のガス中の硫化カルボニルの除去装置。
(12)上記乾式又は湿式電気集塵機の前にガス中の塩化水素を除去する塩化水素除去装置を設けたことを特徴とする上記(9)〜(11)のガス中の硫化カルボニルの除去装置。
(7) The gas is a gas generated when the waste is melted and gasified and reformed or the incinerated ash of the waste is melted . Method for removing carbonyl sulfide.
(8) The method for removing carbonyl sulfide in the gas according to any one of (1) to (7 ) above, wherein the solid catalyst is a catalyst for hydrolysis of carbonyl sulfide in which potassium carbonate and / or sodium carbonate is supported on alumina. .
(9) A carbonyl sulfide removing device for removing carbonyl sulfide in a gas,
A dry or wet electrostatic precipitator that removes the dust concentration in the gas to 10 mg / m 3 N or less;
A solid catalyst packed tower that receives the dust-removed gas and converts carbonyl sulfide in the gas into hydrogen sulfide;
A hydrogen sulfide removing device for receiving a gas from the packed column and desulfurizing the hydrogen sulfide in the gas;
An apparatus for removing carbonyl sulfide in a gas , characterized by comprising:
(10) The apparatus for removing carbonyl sulfide in the gas according to (9), wherein a heating device for heating the gas is provided between the dry or wet electrostatic precipitator and the solid catalyst packed tower.
(11) The apparatus for removing carbonyl sulfide in gas according to (9) above, wherein a dehumidifying device for reducing the relative humidity of the gas is provided between the dry or wet electrostatic precipitator and the solid catalyst packed tower .
(12) The apparatus for removing carbonyl sulfide in a gas according to any one of (9) to (11), wherein a hydrogen chloride removing device for removing hydrogen chloride in the gas is provided in front of the dry or wet electrostatic precipitator .
(13)上記塩化水素除去装置と上記湿式電気集塵機との間に硫化水素除去装置を設けたことを特徴とする上記(12)に記載のガス中の硫化カルボニルの除去装置。
(14)上記固体触媒がアルミナに炭酸カリウムおよび/または炭酸ナトリウムを担持した硫化カルボニルの加水分解用触媒であることを特徴とする上記(9)〜(13)のいずれかに記載のガス中の硫化カルボニルの除去装置。
(13) The apparatus for removing carbonyl sulfide in a gas as described in (12) above, wherein a hydrogen sulfide removing apparatus is provided between the hydrogen chloride removing apparatus and the wet electrostatic precipitator.
(14) The gas according to any one of (9) to (13), wherein the solid catalyst is a catalyst for hydrolysis of carbonyl sulfide in which potassium carbonate and / or sodium carbonate is supported on alumina. Carbonyl sulfide removal equipment.
本発明の硫化カルボニルの除去方法によれば、硫化カルボニル含有ガス中に含まれるダストによる触媒の被毒がないため、触媒活性が長時間保持でき、長期間にわたる操業が可能となる。 According to the method for removing carbonyl sulfide of the present invention, since the catalyst is not poisoned by dust contained in the carbonyl sulfide-containing gas, the catalytic activity can be maintained for a long time, and operation for a long time is possible.
本発明の硫化カルボニルの除去方法を、廃棄物をガス化溶融処理して得られる硫化カルボニルを含有する燃料ガスを例にとって図1に基づいて説明する。 The method for removing carbonyl sulfide according to the present invention will be described with reference to FIG. 1 by taking as an example a fuel gas containing carbonyl sulfide obtained by gasifying and melting waste.
図1に示されたガス化改質方式は次のプロセスから構成されている。
1.プレス・脱ガスチャンネル
(1)廃棄物の圧縮、(2)乾燥・熱分解
2.高温反応炉・均質化炉
(3)ガス化溶融、(4)スラグの均質化、(5)ガスの改質
3.ガス精製
(6)ガスの急冷(急冷・酸洗浄、酸洗浄)、(7)ガス精製(アルカリ洗浄、脱硫、除湿)
4.水処理
(8)水処理(沈殿、脱塩等)
5.ガスの利用
(9)ガスの発電利用
The gasification reforming method shown in FIG. 1 includes the following processes.
1. Press / degas channel (1) Waste compression, (2) Drying and pyrolysis 2. High-temperature reactor / homogenization furnace (3) Gasification and melting, (4) Slag homogenization, (5) Gas reforming Gas purification (6) Gas quenching (quenching, acid cleaning, acid cleaning), (7) Gas purification (alkali cleaning, desulfurization, dehumidification)
4). Water treatment (8) Water treatment (precipitation, desalination, etc.)
5. Use of gas (9) Use of power generation of gas
この方式をフローに沿って説明すると次の通りである。
都市ごみ等の処理ごみはプレス機で圧縮された後、乾燥熱分解工程で間接加熱により加熱乾留されて高温反応炉内に送られる。高温反応炉の下部にはバーナーが配置され、このバーナーによって炉内に燃料ガスと酸素とが導入され、この酸素ガスが乾留物中の炭素をガス化し、一酸化炭素と二酸化炭素が生成する。また、高温水蒸気が存在する場合には炭素と水蒸気とによる水性ガス化反応が生じて一酸化炭素と水素とが生成される。更に、有機化合物は熱分解して一酸化炭素と水素が生成する。上記の反応の結果、高温反応炉の炉頂部から粗合成ガスが回収される。
高温反応炉から回収される粗合成ガスに対して、冷却塔で循環水を噴射することによってガスの温度を約1200℃から約70℃にまで急速冷却し、ダイオキシン類の再合成を阻止する。
This method will be described along the flow as follows.
Wastes such as municipal waste are compressed by a press machine, and then heated and distilled by indirect heating in a dry pyrolysis process and sent into a high temperature reactor. A burner is disposed at the lower part of the high-temperature reactor, and fuel gas and oxygen are introduced into the furnace by the burner, and the oxygen gas gasifies carbon in the dry distillate to produce carbon monoxide and carbon dioxide. In addition, when high-temperature steam is present, a water gasification reaction occurs between carbon and steam to generate carbon monoxide and hydrogen. Further, the organic compound is thermally decomposed to generate carbon monoxide and hydrogen. As a result of the above reaction, crude synthesis gas is recovered from the top of the high temperature reactor.
The crude synthesis gas recovered from the high temperature reactor is rapidly cooled from about 1200 ° C. to about 70 ° C. by injecting circulating water in the cooling tower to prevent resynthesis of dioxins.
冷却塔にて冷却された粗合成ガスは、酸洗浄塔にて酸性水によって洗浄され、粗合成ガス中に含まれるPbなどの重金属成分と塩素分は洗浄液中に溶け込む。酸洗浄された合成ガスは、アルカリ洗浄塔にて水洗され残塩素分を除去され(脱HCl)、脱硫塔にて脱硫(鉄キレートによる無機硫黄の除去:脱H2S)の各処理を受けて燃料ガスとなる。
この回収ガスは、鉄キレートによりH2Sについては脱硫されている。しかしCOSが残るため、燃料ガスとしてエンジンを稼働させる場合、排煙SOX規制を遵守する条件として脱COSが必要となる場合がある。
The crude synthesis gas cooled in the cooling tower is washed with acidic water in the acid washing tower, and heavy metal components such as Pb and chlorine contained in the crude synthesis gas are dissolved in the washing liquid. The acid-washed synthesis gas is washed with water in an alkali washing tower to remove residual chlorine (deHCl), and desulfurized (removal of inorganic sulfur with iron chelate: dehydrogenation H 2 S) in a desulfurization tower. Fuel gas.
This recovered gas is desulfurized with respect to H 2 S by iron chelate. However, since COS remains, when operating the engine as fuel gas, de-COS may be necessary as a condition for complying with the flue gas SOX regulations.
本発明においては、このCOSを固体触媒充填層に導いて触媒を用いて下記の反応によって硫化水素に変換し、この硫化水素を脱硫処理することによってCOSを除去する。
COS+H2O → H2S+CO2
In the present invention, this COS is led to a solid catalyst packed bed and converted into hydrogen sulfide by the following reaction using a catalyst, and this hydrogen sulfide is desulfurized to remove COS.
COS + H 2 O → H 2 S + CO 2
試験によると、ダストを含有するガスを触媒層に通すとダストが触媒(脱硫剤)の表面に付着して触媒の表面が黒く変色し脱硫率が低下した。この触媒を粉砕して実ガスで脱硫率を測定すると、同様に粉砕したバージン品の脱硫率とほぼ同じ値となった。このことから、脱硫剤内部は劣化しておらず、ダストが脱硫剤表面の細孔を閉塞することによって触媒の有効面積が減少し、内部へのガス拡散が遅くなることが劣化の原因と考えられる。また、ダスト付着により圧力損失が増大するので、長期運転が不可能となる。 According to the test, when a gas containing dust was passed through the catalyst layer, the dust adhered to the surface of the catalyst (desulfurization agent), the surface of the catalyst turned black, and the desulfurization rate decreased. When this catalyst was pulverized and the desulfurization rate was measured with an actual gas, the desulfurization rate of the pulverized virgin product was almost the same. From this, the inside of the desulfurizing agent is not deteriorated, and the effective area of the catalyst is reduced by dust clogging the pores on the surface of the desulfurizing agent, and the gas diffusion to the inside is slowed down. It is done. Moreover, since pressure loss increases due to dust adhesion, long-term operation becomes impossible.
このため、本発明においては、COS含有ガスに除塵処理を施して、ダストを除去されたCOS含有ガスを固体触媒充填層に通して、COSの加水分解処理を行う。この場合、固体触媒充填層に導入されるCOS含有ガス中のダスト濃度は10mg/m3N以下であることが好ましく、3mg/m3N以下であることがより好ましい。
なお、本発明におけるダスト濃度とはJIS Z 8808で測定されるものである。
For this reason, in the present invention, the COS-containing gas is subjected to dust removal treatment, and the COS-containing gas from which dust has been removed is passed through the solid catalyst packed bed to perform COS hydrolysis treatment. In this case, the dust concentration in the COS-containing gas introduced into the solid catalyst packed bed is preferably 10 mg / m 3 N or less, and more preferably 3 mg / m 3 N or less.
The dust concentration in the present invention is measured according to JIS Z 8808.
ダストを除去する手段としては公知の集塵機を用いることができる。フィルターを用いてろ過する方法も採用することができるが、メンテナンスの費用がかかるので、好ましくは乾式又は湿式電気集塵機を用いることができる。 As a means for removing dust, a known dust collector can be used. Although a method of filtering using a filter can also be employed, since a maintenance cost is required, a dry or wet electrostatic precipitator can be preferably used.
乾式電気集塵機は、集塵電極に付着したダストをクリーニングする方法として、機械的衝撃を与えてダストを剥離落下させて回収する形式の集塵機であり、湿式電気集塵機は、集塵電極に付着したダストをクリーニングする方法として、噴霧散水によってダストを洗い流す形式の集塵機である。このうち、湿式電気集塵機はミストを含むガスにも適用可能であり、また、ダスト性状に性能が影響されることがなく、メンテナンスも簡単である等の理由で特に好ましい。ただし、湿式電気集塵機を用いた場合には別途廃水処理設備が必要となるという短所もある。 A dry electrostatic precipitator is a type of dust collector that collects dust by peeling off and dropping mechanically as a method of cleaning the dust adhering to the dust collecting electrode, and the wet electrostatic precipitator is a type of dust adhering to the dust collecting electrode. As a method for cleaning, a dust collector of a type in which dust is washed away by spray watering. Among these, the wet electrostatic precipitator is particularly preferable because it can be applied to a gas containing mist, the performance is not affected by the dust properties, and the maintenance is simple. However, there is a disadvantage that a separate wastewater treatment facility is required when a wet electrostatic precipitator is used.
廃棄物をガス化処理して得られた燃料ガス中には、塩化水素ガスが含まれている。塩化水素が混入した硫化カルボニル含有ガスに対して、炭酸カリウムをアルミナに担持した触媒を用いて、硫化カルボニルの加水分解試験を行ったところ、該触媒の硫化カルボニルの加水分解活性は小さく(硫化カルボニルの転化率が小さい)、該活性の持続性(触媒寿命)が短くなる。すなわち、ガス中に混入した塩化水素は触媒の加水分解活性に大きな影響を与える。
このため、本発明においては、固体触媒充填層に導入されるガス中の塩化水素濃度を50ppm以下にまで下げることが好ましい。
Hydrogen chloride gas is contained in the fuel gas obtained by gasifying the waste. A carbonyl sulfide hydrolysis test was conducted on a carbonyl sulfide-containing gas mixed with hydrogen chloride using a catalyst in which potassium carbonate was supported on alumina. As a result, the hydrolysis activity of the catalyst was small (carbonyl sulfide). ), The sustainability of the activity (catalyst life) is shortened. That is, hydrogen chloride mixed in the gas greatly affects the hydrolysis activity of the catalyst.
For this reason, in this invention, it is preferable to reduce the hydrogen chloride concentration in the gas introduced into the solid catalyst packed bed to 50 ppm or less.
触媒としては、硫化カルボニルを加水分解する固体触媒であれば特に制約なく用いることができる。ガス中の硫化カルボニルを触媒を用いて加水分解するための触媒としては、下記の(1)〜(3)を挙げることができるる。 As the catalyst, any solid catalyst that hydrolyzes carbonyl sulfide can be used without any particular limitation. Examples of the catalyst for hydrolyzing the carbonyl sulfide in the gas using the catalyst include the following (1) to (3).
(1)アルカリ化酸化クロム−酸化アルミニウム触媒を用いる方法
この方法は、CO含有の工程ガス中に含まれる硫黄化合物(COS,CS2)を選択的に接触加水分解するに際し、工程ガスをH2Oの存在下にアルカリ化酸化クロム−酸化アルミニウム触媒の上に通す選択接触加水分解法である。しかしながら、この方法は、反応温度が100〜350℃でかつ圧力が例えば9.2気圧と高く、設備的、経済的に問題がある。
(1) Method Using Alkaline Chromium Oxide-Aluminum Oxide Catalyst In this method, when the sulfur compound (COS, CS 2 ) contained in the CO-containing process gas is selectively hydrolyzed, the process gas is converted to H 2. Selective catalytic hydrolysis in the presence of O over an alkalized chromium oxide-aluminum oxide catalyst. However, this method has a reaction temperature of 100 to 350 ° C. and a pressure as high as 9.2 atm.
(2)アルミナと水酸化ナトリウム、水酸化カリウムからなる触媒を用いる方法
アルミナと水酸化ナトリウムおよび/または水酸化カリウムからなる触媒を用いた硫化カルボニルの加水分解法である。この方法は、担持物が強塩基性物質であるため、触媒製造時に、アルミナ中に不純物として含まれている酸化ケイ素が溶解し、触媒としての強度低下、崩壊という問題を生じる。
(2) A method using a catalyst comprising alumina, sodium hydroxide and potassium hydroxide A carbonyl sulfide hydrolysis method using a catalyst comprising alumina and sodium hydroxide and / or potassium hydroxide. In this method, since the supported material is a strongly basic substance, silicon oxide contained as an impurity in alumina is dissolved during the production of the catalyst, causing problems such as a decrease in strength and collapse as a catalyst.
(3)炭酸カリウム、炭酸ナトリウムをアルミナに担持した触媒を用いる方法
炭酸カリウムおよび/または炭酸ナトリウムをアルミナに担持した触媒を用い、硫化カルボニルを含有するガスを触媒に接触させて硫化カルボニルを加水分解し硫化水素に転化するガス中の硫化カルボニルの除去方法である。本方法は常温に近い温度、かつ常圧付近で硫化カルボニルの除去を行うことができる。
本発明においては前記(3)の炭酸カリウム、炭酸ナトリウムをアルミナに担持した触媒を加水分解用の触媒として用いることが好ましい。
(3) Method using a catalyst in which potassium carbonate and sodium carbonate are supported on alumina Using a catalyst in which potassium carbonate and / or sodium carbonate is supported on alumina, carbonyl sulfide is hydrolyzed by contacting the catalyst with a gas containing carbonyl sulfide. This is a method for removing carbonyl sulfide in the gas converted to hydrogen sulfide. This method can remove carbonyl sulfide at a temperature close to normal temperature and near normal pressure.
In the present invention, the catalyst (3) in which potassium carbonate and sodium carbonate are supported on alumina is preferably used as a catalyst for hydrolysis.
ガス中に水分が含まれていると、この水分のアルミナの平衡吸着分が触媒表面に吸着し、細孔を閉塞することによって触媒が被毒される。平衡吸着量はガス温度の相対湿度に依存し、ガス露点が高いほど吸着量が多くなり、約20%程度細孔が閉塞されるとガスの拡散が急激に低下し、脱硫が起こりにくくなる。このため、本発明においては、固体触媒充填層に導入されるガスの相対湿度が20%以下であるようにして、水分による触媒の被毒を防止することが好ましい。
図3に、温度と相対湿度との関係を示す。
When moisture is contained in the gas, the equilibrium adsorbed part of the alumina of this moisture is adsorbed on the catalyst surface, and the catalyst is poisoned by closing the pores. The equilibrium adsorption amount depends on the relative humidity of the gas temperature. The higher the gas dew point, the larger the adsorption amount. When the pores are clogged by about 20%, the gas diffusion rapidly decreases and desulfurization hardly occurs. For this reason, in the present invention, it is preferable to prevent poisoning of the catalyst by moisture so that the relative humidity of the gas introduced into the solid catalyst packed bed is 20% or less.
FIG. 3 shows the relationship between temperature and relative humidity.
COS脱硫剤では温度を上げると活性が急激に上昇し、高脱硫率が得られることが確認されている。従って、脱硫装置を安定的に運転するためには、触媒の活性度に応じて温度を制御することが好ましい。
これについて更に説明すると、COSの転化反応(COS+H2O→H2S+CO2)はCOS濃度の一次反応で表される。
It has been confirmed that with a COS desulfurizing agent, when the temperature is raised, the activity rapidly increases and a high desulfurization rate can be obtained. Therefore, in order to operate the desulfurization apparatus stably, it is preferable to control the temperature according to the activity of the catalyst.
This will be further described. The COS conversion reaction (COS + H 2 O → H 2 S + CO 2 ) is represented by a primary reaction of COS concentration.
反応速度r=−dCCOS/dt=kmCCOS
Ln(CCOS f/CCOS 0)=−km・τ
Ln(1/(1−X))=km/SV …(1)
但し、CCOS :COS濃度
CCOS 0 :入側COS濃度
CCOS f :出側COS濃度
X :脱硫率=(CCOS 0−CCOS f)/CCOS 0
τ :通ガス時間
SV :空間速度(ガス量/触媒量)
Reaction rate r = −dC COS / dt = kmC COS
Ln (C COS f / C COS 0 ) = − km · τ
Ln (1 / (1-X)) = km / SV (1)
However, C COS : COS concentration C COS 0 : Incoming COS concentration C COS f : Outgoing COS concentration
X: Desulfurization rate = (C COS 0 −C COS f ) / C COS 0
τ: Gas passage time
SV: space velocity (gas amount / catalyst amount)
また、一般に反応定数(km)に及ぼす温度の影響については下記のアレニウスの式で表される。
km=km0・exp(−Q/R(T−T0)) …(2)
但し、km0:基準の温度での反応定数
Q :活性化エネルギー
R :ガス定数
T :操業温度
T0 :基準温度
In general, the influence of temperature on the reaction constant (km) is expressed by the following Arrhenius equation.
km = km 0 · exp (−Q / R (T−T 0 )) (2)
However, km 0 : Reaction constant at reference temperature Q: Activation energy R: Gas constant T: Operating temperature T 0 : Reference temperature
上記のことから、COSの転化反応の反応定数は、温度の上昇により増大するので、触媒の活性度が低下してきた場合には反応温度を上昇させることによって反応定数を増大させることが好ましい。但し、100℃以上ではその効果は小さい。 From the above, the reaction constant of the COS conversion reaction increases with an increase in temperature. Therefore, when the activity of the catalyst decreases, it is preferable to increase the reaction constant by increasing the reaction temperature. However, the effect is small at 100 ° C. or higher.
COSの転化率は上記したような温度の影響を受けるほか、固体触媒充填層の空間速度によっても影響を受け、空間速度が大きくなると転化率が低下する。本発明においては、固体触媒充填層でのガスの空間速度は500〜5000/h、温度は40〜250℃であることが好ましく、また、空間速度が500〜2000/hで、該温度は80〜120℃であることがより好ましい。 The conversion rate of COS is affected not only by the temperature as described above but also by the space velocity of the solid catalyst packed bed, and the conversion rate decreases as the space velocity increases. In the present invention, the space velocity of the gas in the solid catalyst packed bed is preferably 500 to 5000 / h, and the temperature is preferably 40 to 250 ° C. The space velocity is 500 to 2000 / h, and the temperature is 80 More preferably, it is -120 degreeC.
集塵機として湿式電気集塵機を用いた場合には、湿式電気集塵機の前に塩化水素除去装置を設けることが好ましい。これは、湿式電気集塵機では極板表面を洗浄する水を循環させているが、塩化水素除去装置を設けない場合には、循環水のpHが低下し、循環水により電気集塵機の電極表面が腐食され、例えば1000時間以上の長期運転には問題があるので、この腐食を防止するためである。
また、前述したように、高温反応炉から回収される粗合成ガスは冷却塔で水を噴射することによって急冷され、塩化水素は水に吸収されるが、粗合成ガスは多くの塩化水素を含むため冷却塔の循環液はpH2程度の酸性水となり、このpH2の循環液では塩化水素を十分回収できない。このため、冷却塔でPH2の循環液で冷却した後、酸洗塔などの塩化水素除去装置でガスとpH7の循環液とを接触させることによりガス中の塩化水素を回収する。
When a wet electric dust collector is used as the dust collector, it is preferable to provide a hydrogen chloride removing device in front of the wet electric dust collector. This is because the wet electrostatic precipitator circulates water that cleans the surface of the electrode plate. However, if no hydrogen chloride removal device is installed, the pH of the circulating water is lowered, and the electrode surface of the electrostatic precipitator is corroded by the circulating water. In order to prevent this corrosion, for example, there is a problem in long-term operation for 1000 hours or more.
In addition, as described above, the crude synthesis gas recovered from the high temperature reactor is quenched by injecting water in the cooling tower, and hydrogen chloride is absorbed by water, but the crude synthesis gas contains a lot of hydrogen chloride. Therefore, the circulating liquid in the cooling tower becomes acidic water having a pH of about 2, and this pH 2 circulating liquid cannot sufficiently recover hydrogen chloride. Therefore, after cooling with a circulating solution of PH2 in a cooling tower, hydrogen chloride in the gas is recovered by bringing the gas into contact with the circulating solution of pH 7 with a hydrogen chloride removing device such as a pickling tower.
また、塩化水素除去装置で塩化水素を除去されたガス中に100ppm程度の硫化水素が含まれている場合には、このガスを湿式電気集塵機に通すと、湿式電気集塵機で除塵する際にガス中の硫化水素が洗浄液中に溶解して、H2SO3を生成して洗浄液が強酸となる。従って、塩化水素の場合と同様に、洗浄水をそのまま循環使用すると電極を強酸で洗浄することになり、電極を溶かしてしまうため、1000時間以上の長期運転には問題がある。 In addition, when about 100 ppm of hydrogen sulfide is contained in the gas from which hydrogen chloride has been removed by the hydrogen chloride removal device, if this gas is passed through a wet electrostatic precipitator, The hydrogen sulfide dissolves in the cleaning liquid to produce H 2 SO 3 and the cleaning liquid becomes a strong acid. Therefore, as in the case of hydrogen chloride, if the wash water is circulated and used as it is, the electrode is washed with a strong acid, and the electrode is dissolved, so there is a problem in long-term operation of 1000 hours or more.
そこで、塩化水素除去装置の後でかつ湿式電気集塵機の前に硫化水素除去装置を設けることが好ましい。このように、塩化水素除去装置で塩化水素を除去した後、ガス中に含まれる硫化水素を硫化水素除去装置で除去してから湿式電気集塵機を通ガスするフローにすることにより、100ppm程度の硫化水素を含有するガスを処理する場合でも長期運転が可能となる。 Therefore, it is preferable to provide a hydrogen sulfide removing device after the hydrogen chloride removing device and before the wet electrostatic precipitator. Thus, after removing hydrogen chloride with a hydrogen chloride removing device, hydrogen sulfide contained in the gas is removed with a hydrogen sulfide removing device, and then the flow is made to pass through a wet electrostatic precipitator. Long-term operation is possible even when processing gas containing hydrogen.
また、硫化水素の脱硫剤の適正仕様温度は0〜80℃であり、これを1200℃の高温ガスと接触させると脱硫剤が劣化する。脱硫剤は高価であるので劣化することは経済上好ましくない。また脱硫剤は粘度が大きく、高温ガス中に含まれるダストを脱硫剤と沈殿分離することは困難であるため、脱硫剤の循環利用は困難である。
塩化水素除去装置として水洗浄方式のものを硫化水素除去装置の前に設けると、安価な水によってガスが洗浄されてHClが水に溶解して除去されると共にガスが冷却され、この冷却されたガスが硫化水素除去装置に供給されるので、脱硫剤が劣化することもない。また、ガス中に含まれるダストは冷却水と接触することにより液相側へ移行するが、ダストは沈殿することにより容易に水と分離でき、水の循環利用が可能である。またHClが溶解した冷却液はガス中の重金属類を溶解するため、ガス中の重金属類も除去できクリーンなガスが得られる。
更に、塩化水素は触媒を被毒するので、これを予め除去しておくことにより、触媒活性の低下を防ぐことができる。
Moreover, the proper specification temperature of the desulfurization agent of hydrogen sulfide is 0 to 80 ° C., and when this is brought into contact with a high-temperature gas of 1200 ° C., the desulfurization agent deteriorates. Since the desulfurizing agent is expensive, it is economically undesirable to deteriorate. Further, since the desulfurizing agent has a large viscosity and it is difficult to precipitate and separate the dust contained in the high-temperature gas from the desulfurizing agent, it is difficult to circulate the desulfurizing agent.
If a water-cleaning type hydrogen chloride removing device is provided in front of the hydrogen sulfide removing device, the gas is washed with inexpensive water, and HCl is dissolved and removed in water and the gas is cooled. Since the gas is supplied to the hydrogen sulfide removing device, the desulfurization agent does not deteriorate. In addition, the dust contained in the gas moves to the liquid phase side when coming into contact with the cooling water, but the dust can be easily separated from the water by sedimentation, and the water can be recycled. In addition, since the cooling liquid in which HCl is dissolved dissolves heavy metals in the gas, the heavy metals in the gas can be removed and a clean gas can be obtained.
Furthermore, since hydrogen chloride poisons the catalyst, the catalyst activity can be prevented from decreasing by removing it in advance.
ガス中に含まれる水蒸気は触媒被毒物質であるので、硫化カルボニルを硫化水素に変換する触媒は相対湿度20%以下で使用しないと十分な転化率を得ることができない。相対湿度を下げるためには、ガスを除湿機に通して水分を除去してから固定触媒充填層に供給することも可能であるが、コスト的に問題がある。
触媒の適正使用温度域が80℃〜120℃であり、また、湿式電気集塵機は通常常温(10〜40℃)で運転することから、湿式電気集塵機の後で、固体触媒充填塔の前にガスを加熱する加熱装置を設け、この加熱装置を用いてガスを80℃以上に昇温して相対湿度を20%以下に抑えることによって、低コストで効率のよいCOSの除去が可能となる。
また、加熱装置に代えて除湿装置を用いることによって相対湿度を20%以下に抑えることもでき、両者を併用することもできる。
Since water vapor contained in the gas is a catalyst poisoning substance, a catalyst for converting carbonyl sulfide to hydrogen sulfide cannot obtain a sufficient conversion rate unless it is used at a relative humidity of 20% or less. In order to lower the relative humidity, it is possible to supply the gas to the fixed catalyst packed bed after passing the gas through a dehumidifier, but there is a problem in terms of cost.
The proper operating temperature range of the catalyst is 80 ° C. to 120 ° C., and the wet electrostatic precipitator is usually operated at room temperature (10 to 40 ° C.), so the gas is placed after the wet electrostatic precipitator and before the solid catalyst packed tower. By providing a heating device that heats the gas and using this heating device to raise the gas to 80 ° C. or higher and keeping the relative humidity at 20% or lower, COS can be efficiently removed at low cost.
Further, by using a dehumidifying device instead of the heating device, the relative humidity can be suppressed to 20% or less, and both can be used in combination.
本発明の硫化カルボニル除去方法を実施するための装置の構成例を図2のフローシートに基づいて説明する。
図2における(a)〜(e)は本発明の方法を実施するためのフローシートの例を示すものであり、図2の(f)はガス中のダストを除去しない場合のフローシートを示すものである。
A configuration example of an apparatus for carrying out the carbonyl sulfide removal method of the present invention will be described based on the flow sheet of FIG.
2A to 2E show examples of a flow sheet for carrying out the method of the present invention, and FIG. 2F shows a flow sheet when dust in the gas is not removed. Is.
(a)は、COS含有ガスをダスト捕集装置に通してダスト濃度を10mg/m3N以下に低減させた後、固体触媒充填塔でCOSを加水分解によりH2Sに転化し、次いで、H2Sを脱硫剤を用いて処理して脱硫し、得られたガスを製品ガスとして取り出すものである。 (A) passes the COS-containing gas through a dust collector and reduces the dust concentration to 10 mg / m 3 N or less, then converts COS to H 2 S by hydrolysis in a solid catalyst packed tower, H 2 S is treated with a desulfurizing agent to desulfurize, and the resulting gas is taken out as a product gas.
(b)は、前記の(a)において、ダスト捕集装置の前にHCl除去装置を設けて、ガスからHClを除去し、後のダスト捕集装置(湿式電気集塵機)における腐食を防ぐようにしたものである。 (B) In the above (a), an HCl removing device is provided in front of the dust collecting device to remove HCl from the gas so as to prevent corrosion in the subsequent dust collecting device (wet electric dust collector). It is a thing.
(c)は、前記の(b)において、HCl除去装置の後にH2S除去装置を設けて、ガスを水洗浄することによってHClを除去し、冷却されたガスをH2S除去装置で処理してガスからH2Sを除去するようにしたものである。 (C) In (b), an H 2 S removal device is provided after the HCl removal device, the HCl is removed by washing the gas with water, and the cooled gas is treated with the H 2 S removal device. Thus, H 2 S is removed from the gas.
(d)は、前記の(c)において、ダスト捕集装置と固体触媒充填塔との間に除湿装置を設けて、ガスの相対湿度を低めることにより、固体触媒充填塔における触媒の水分による被毒を防ぐようにしたものである。
(e)は、前記の(b)において、ダスト捕集装置と固体触媒充填塔との間に加熱装置を設けて、ガスの相対湿度を低めることにより、固体触媒充填塔における触媒の水分による被毒を防ぐようにしたものである。
(D) is a method of providing a dehumidifying device between the dust collecting device and the solid catalyst packed tower in (c), and reducing the relative humidity of the gas, so that the moisture content of the catalyst in the solid catalyst packed tower is reduced. It is designed to prevent poison.
(E) is a method in which a heating device is provided between the dust collecting device and the solid catalyst packed tower in (b), and the relative humidity of the gas is lowered, so that the moisture content of the catalyst in the solid catalyst packed tower is reduced. It is designed to prevent poison.
[実施例1]
廃棄物ガス化改質処理炉および廃棄物灰溶融炉から得られる燃料ガスについて、ダスト捕集装置と固体触媒充填塔とを連結した装置を用いて試験を行った。ダスト捕集装置としては湿式電気集塵機(サンテクノ(株)製熱分解ガス用湿式電気集塵機(SEW−1−4VL−2型):加湿式2室タテ型湿式電気集塵機 )を用いた。また、ダスト捕集装置を用いなかったものを比較例とした。通ガス時間100時間後における結果を表1に示す。
また、触媒としては、JFEケミカル製KDS−600(COS転化触媒)、平均粒径:2.3−3.3mmφ×3−12mmLを用い、SV:1000/h、ガス量:1000m3N/h、ガス温度:100℃の条件で処理した。
表1の試験番号A01〜A04とA05〜A07との対比、及び試験番号A08〜A11とA12〜A14との対比から明らかなように、固体触媒充填層前での粗ガス中ダスト濃度を10mg/m3N以下にすることにより、固体触媒充填層での圧力損失を0.2kPa以下に抑えることができた。
比較例では、100時間程度の通ガスで固体触媒充填塔の圧力損失が上昇し、1kPa以上となり使用できなくなった。
[Example 1]
The fuel gas obtained from the waste gasification reforming treatment furnace and the waste ash melting furnace was tested using an apparatus in which a dust collector and a solid catalyst packed tower were connected. As the dust collecting device, a wet electrostatic precipitator (wet electric precipitator for pyrolysis gas (SEW-1-4VL-2 type) manufactured by Sun Techno Co., Ltd .: humidified two-chamber vertical wet precipitator) was used. Moreover, what did not use a dust collection apparatus was made into the comparative example. The results after 100 hours of gas passing time are shown in Table 1.
Further, as the catalyst, KDS-600 (COS conversion catalyst) manufactured by JFE Chemical, average particle size: 2.3-3.3 mmφ × 3-12 mmL, SV: 1000 / h, gas amount: 1000 m 3 N / h The gas temperature was 100 ° C.
As apparent from the comparison between the test numbers A01 to A04 and A05 to A07 and the comparison between the test numbers A08 to A11 and A12 to A14 in Table 1, the dust concentration in the crude gas before the solid catalyst packed bed was 10 mg / By setting it to m 3 N or less, the pressure loss in the solid catalyst packed bed could be suppressed to 0.2 kPa or less.
In the comparative example, the pressure loss of the solid catalyst packed tower was increased by passing the gas for about 100 hours, and became unusable at 1 kPa or more.
[実施例2]
実施例1において、ダスト捕集装置の前に水洗浄式のHCl除去装置を設け、その洗浄能力を調節して、固体触媒充填層の前での粗ガス中の塩化水素濃度が種々の値となるような条件で試験し、その結果を表2に示す。
表2の試験番号B01〜B05とB06〜B08との対比から明らかなように、固体触媒充填層前での粗ガス中塩化水素濃度を50ppm以下とすることにより、通ガス1000時間後の固体触媒充填層の転化率を80%以上に維持することができる。
[Example 2]
In Example 1, a water-washing type HCl removing device is provided in front of the dust collecting device, and the cleaning ability is adjusted so that the concentration of hydrogen chloride in the crude gas before the solid catalyst packed bed has various values. The test was performed under such conditions, and the results are shown in Table 2.
As is clear from the comparison between test numbers B01 to B05 and B06 to B08 in Table 2, the solid catalyst after 1000 hours of passing gas was obtained by setting the hydrogen chloride concentration in the crude gas before the solid catalyst packed bed to 50 ppm or less. The conversion rate of the packed bed can be maintained at 80% or more.
[実施例3]
実施例1において、ダスト捕集装置として、湿式電気集塵機、乾式電気集塵機、バグフィルターを用いて試験をし、その結果を表3に示した。
湿式電気集塵機を用いた場合には、ダスト捕集装置および固体触媒充填層での圧力損失は小さかった。また、塩化水素も湿式電気集塵機によって除去された。
バグフィルター(C03)を用いた場合には、10時間程度で目詰まりを起しダスト捕集装置での圧力損失が1.0kPa以上になった。
乾式電気集塵機は10時間程度では圧力損失上昇の問題はなかったが、300時間通ガス時、圧力損失が上昇し1.0kPa以上になった。
またバグフィルター、乾式電気集塵機は粗ガス中の塩素除去効果がないため入側ガス中塩素がそのままダスト捕集装置を通過するため固体触媒充填層前での粗ガス中の塩化水素の除去ができなかった。
[Example 3]
In Example 1, tests were performed using a wet electrostatic precipitator, a dry electrostatic precipitator, and a bag filter as the dust collector, and the results are shown in Table 3.
When a wet electric dust collector was used, the pressure loss in the dust collector and the solid catalyst packed bed was small. Hydrogen chloride was also removed by a wet electrostatic precipitator.
When the bag filter (C03) was used, clogging occurred in about 10 hours, and the pressure loss in the dust collector became 1.0 kPa or more.
The dry electrostatic precipitator had no problem of an increase in pressure loss after about 10 hours, but the pressure loss increased to 1.0 kPa or more when gas passed for 300 hours.
Bag filters and dry electrostatic precipitators do not have the effect of removing chlorine in the crude gas, so the chlorine in the inlet gas passes through the dust collector as it is, so it is possible to remove hydrogen chloride in the crude gas before the solid catalyst packed bed. There wasn't.
以下に示す実施例においては固体触媒充填層入口での粗ガス中のダスト濃度が10mg/m3N以下となるようにして試験を行った。
[実施例4]
脱COS触媒として表4に示される触媒を用いて、表4に示される条件で試験を行い、それぞれの触媒による転化率を評価した。
評価は転化率を下記の基準に基づいて◎、○、△、×で評価した。
◎:SV=3000/hで100時間通ガスした場合の転化率が95%以上
○:SV=3000/hで100時間通ガスした場合の転化率が80%以上
△:SV=3000/hで100時間通ガスした場合の転化率が50%以上
×:SV=3000/hで100時間通ガスした場合の転化率が50%未満
表4には、水分1%以下の40℃、100℃、170℃、200℃、250℃の合成ガスを通ガスして転化率を評価した結果を示した。
In the examples shown below, the test was performed such that the dust concentration in the crude gas at the inlet of the solid catalyst packed bed was 10 mg / m 3 N or less.
[Example 4]
Using the catalyst shown in Table 4 as the de-COS catalyst, a test was conducted under the conditions shown in Table 4, and the conversion rate of each catalyst was evaluated.
In the evaluation, the conversion rate was evaluated with ◎, ○, Δ, and × based on the following criteria.
A: Conversion rate when gas is passed for 100 hours at SV = 3000 / h is 95% or more ○: Conversion rate when gas is passed for 100 hours at SV = 3000 / h is 80% or more Δ: SV = 3000 / h Conversion rate when gas is passed for 100 hours is 50% or more. X: Conversion rate when gas is passed for 100 hours at SV = 3000 / h is less than 50%. The results of evaluating the conversion rate by passing a synthesis gas of 170 ° C., 200 ° C., and 250 ° C. are shown.
アルミナ−炭酸カリウム触媒は、40℃から250℃の温度域において80%以上の転化率を示し、アルミナ−酸化クロム触媒は100℃から250℃の温度域において80%以上の転化率を示した。また、チタン系触媒は200℃から250℃の温度域において80%以上の転化率であった。
上記のように、アルミナ−炭酸カリウム触媒のみが40℃からの低温域で転化率80%以上を示した。
The alumina-potassium carbonate catalyst showed a conversion rate of 80% or more in the temperature range of 40 ° C. to 250 ° C., and the alumina-chromium oxide catalyst showed a conversion rate of 80% or more in the temperature range of 100 ° C. to 250 ° C. The titanium-based catalyst had a conversion rate of 80% or more in the temperature range from 200 ° C to 250 ° C.
As described above, only the alumina-potassium carbonate catalyst showed a conversion rate of 80% or more in a low temperature range from 40 ° C.
水分含有量を1%及び30%とした100℃の合成ガスを通ガスした場合の転化率を評価した結果を表5に示した。
表5に示すように、アルミナ−炭酸カリウム触媒及びアルミナ−酸化クロム触媒ではともに転化率80%以上を示したが、チタン系触媒は50%未満の転化率であった。
Table 5 shows the results of evaluating the conversion rate when synthesizing gas at 100 ° C. with moisture content of 1% and 30%.
As shown in Table 5, both the alumina-potassium carbonate catalyst and the alumina-chromium oxide catalyst showed a conversion rate of 80% or more, while the titanium catalyst had a conversion rate of less than 50%.
水分10%、塩化水素濃度10ppmの合成ガスを用いて試験をした結果を表6に示した。表6に示されるように、アルミナ−炭酸カリウム触媒のみが90%以上の転化率を保持し、アルミナ−酸化クロム触媒、チタン系触媒による転化率は50%以下であった。 Table 6 shows the results of the test using a synthesis gas having a water content of 10% and a hydrogen chloride concentration of 10 ppm. As shown in Table 6, only the alumina-potassium carbonate catalyst maintained a conversion rate of 90% or more, and the conversion rates by the alumina-chromium oxide catalyst and the titanium-based catalyst were 50% or less.
また、アルミナに担持する活性物質として表7に示すものを選択し、それぞれについて選択率をCOSの除去率を評価し、その結果を表7に示した。
表7に示されているように、炭酸カリウムを活性物質としたものが最も除去率が高かった。
Further, the active substances supported on alumina were selected from those shown in Table 7, and the selectivity was evaluated for the COS removal rate for each, and the results are shown in Table 7.
As shown in Table 7, the removal rate was highest when potassium carbonate was used as the active substance.
[実施例5]
SV=3000/h、100℃の合成ガスで相対湿度を5%、10%、15%、20%、25%と変えた場合の転化率を評価し、その結果を表8に示した。表から、相対湿度が20%以下の場合80%以上の転化率を得ることができることがわかる。
[Example 5]
The conversion rate when the relative humidity was changed to 5%, 10%, 15%, 20% and 25% with a synthesis gas of SV = 3000 / h and 100 ° C. was evaluated, and the results are shown in Table 8. From the table, it can be seen that when the relative humidity is 20% or less, a conversion rate of 80% or more can be obtained.
[実施例6]
触媒を用いたCOSの加水分解反応は経時的に転化率が低下する。
そこで、転化率が低下した時点で通ガス温度を10℃上げる操作を行った。その様子を図4に示す。図4に示すように、転化率が低下した時点で通ガス温度を10℃上げることによって転化率が回復した。
[Example 6]
In the hydrolysis reaction of COS using a catalyst, the conversion rate decreases with time.
Therefore, when the conversion rate decreased, an operation of raising the gas passing temperature by 10 ° C. was performed. This is shown in FIG. As shown in FIG. 4, the conversion rate was recovered by raising the gas passing temperature by 10 ° C. when the conversion rate was lowered.
[実施例7]
合成ガス温度および空間速度(SV)を変化させた場合の転化率を経過時間、1時間後、100時間後、1000時間後、4320時間後について試験し、その結果を表9〜12に示した。
表9〜12に示された結果から次のことがわかる。
[Example 7]
The conversion rate when the synthesis gas temperature and the space velocity (SV) were changed was tested for the elapsed time, 1 hour, 100 hours, 1000 hours, and 4320 hours, and the results are shown in Tables 9-12. .
The following is understood from the results shown in Tables 9-12.
(1)30℃以下の温度域ではいずれも転化率が50%以下である。
(2)260℃以上の温度域でもいずれも転化率が50%以下である。
(3)通ガス1000時間後の転化率は空間速度が5000/h以下であれば80%の転化率を保持できる(表11参照)。
(4)通ガス4320時間後の転化率は空間速度が2000/h以下であれば80%の転化率を保持できる(表12参照)。
(5)通ガス4320時間後の転化率は空間速度が2000/h以下で、特に80〜120℃の温度域において80%以上の転化率を保持できる(表12参照)。
(1) In any temperature range of 30 ° C. or less, the conversion is 50% or less.
(2) The conversion is 50% or less in any temperature range of 260 ° C or higher.
(3) The conversion rate after 1000 hours of passing gas can maintain a conversion rate of 80% when the space velocity is 5000 / h or less (see Table 11).
(4) The conversion rate after 4320 hours of passing gas can maintain a conversion rate of 80% when the space velocity is 2000 / h or less (see Table 12).
(5) The conversion rate after 4320 hours of passing gas is a space velocity of 2000 / h or less, and can maintain a conversion rate of 80% or more particularly in a temperature range of 80 to 120 ° C. (see Table 12).
本発明の方法は、燃料ガスに含まれる硫化カルボニルを効率的な除去を可能にするので、エンジン、発電機等の原動機、燃料電池等に硫黄分の少ない燃料ガスを供給することができる。 Since the method of the present invention enables efficient removal of carbonyl sulfide contained in the fuel gas, it is possible to supply a fuel gas with a low sulfur content to a prime mover such as an engine or a generator, a fuel cell, or the like.
Claims (14)
乾式又は湿式電気集塵機によりガス中のダスト濃度を10mg/m 3 N以下に除塵し、除塵されたガスを固体触媒充填層に供給し、硫化カルボニルを硫化水素に変換した後に該硫化水素を脱硫することを特徴とするガス中の硫化カルボニルの除去方法。 A method for removing carbonyl sulfide in a gas, comprising:
The dust concentration in the gas is removed to 10 mg / m 3 N or less by a dry or wet electrostatic precipitator , the removed gas is supplied to the solid catalyst packed bed, and the carbonyl sulfide is converted into hydrogen sulfide, and then the hydrogen sulfide is desulfurized. A method for removing carbonyl sulfide in a gas.
ガス中のダスト濃度を10mg/m 3 N以下に除塵する乾式又は湿式電気集塵機と、
除塵されたガスを受けてガス中の硫化カルボニルを硫化水素に変換する固体触媒充填塔と、
該固体触媒充填塔からガスを受けてガス中の該硫化水素を脱硫する硫化水素除去装置と
を設けたことを特徴とするガス中の硫化カルボニルの除去装置。 A carbonyl sulfide removing device for removing carbonyl sulfide in a gas,
A dry or wet electrostatic precipitator that removes the dust concentration in the gas to 10 mg / m 3 N or less;
A solid catalyst packed tower that receives the dust-removed gas and converts carbonyl sulfide in the gas into hydrogen sulfide;
A hydrogen sulfide removing device for receiving a gas from the packed column and desulfurizing the hydrogen sulfide in the gas;
An apparatus for removing carbonyl sulfide in a gas , characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004037879A JP4529171B2 (en) | 2004-02-16 | 2004-02-16 | Method for removing carbonyl sulfide in gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004037879A JP4529171B2 (en) | 2004-02-16 | 2004-02-16 | Method for removing carbonyl sulfide in gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005226028A JP2005226028A (en) | 2005-08-25 |
JP4529171B2 true JP4529171B2 (en) | 2010-08-25 |
Family
ID=35000991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004037879A Expired - Lifetime JP4529171B2 (en) | 2004-02-16 | 2004-02-16 | Method for removing carbonyl sulfide in gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4529171B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007132254A (en) * | 2005-11-10 | 2007-05-31 | Mitsubishi Materials Techno Corp | Waste gasification power generation system |
JP5270903B2 (en) * | 2007-10-31 | 2013-08-21 | Jfeスチール株式会社 | Blast furnace gas calorie increase method |
JP6122664B2 (en) * | 2013-03-05 | 2017-04-26 | 三菱重工業株式会社 | Gas purification apparatus and gas purification method |
JP6343056B2 (en) * | 2017-03-31 | 2018-06-13 | 三菱重工業株式会社 | Gas purification apparatus and gas purification method |
CN113388423A (en) * | 2021-05-28 | 2021-09-14 | 中冶华天工程技术有限公司 | Blast furnace gas dust interception, dry dechlorination and hydrolysis conversion integrated tower |
CN113372965B (en) * | 2021-06-28 | 2024-05-28 | 中晶环境科技股份有限公司 | Desulfurization process for blast furnace gas |
CN113426289B (en) * | 2021-06-29 | 2023-04-11 | 松山湖材料实验室 | Hydrolysis adsorbent, blast furnace gas desulfurization method and desulfurization equipment |
CN113750952A (en) * | 2021-10-13 | 2021-12-07 | 昆明理工大学 | Adsorbing material for removing carbonyl sulfide and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002285173A (en) * | 2001-03-28 | 2002-10-03 | Hitachi Ltd | Gasification system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57147592A (en) * | 1981-03-10 | 1982-09-11 | Mitsubishi Heavy Ind Ltd | Cleaning of coal gasified gas |
JPH07102298B2 (en) * | 1987-04-20 | 1995-11-08 | 三菱重工業株式会社 | Refining method for high temperature reducing gas |
JPH0768528B2 (en) * | 1988-12-29 | 1995-07-26 | 川崎製鉄株式会社 | Method for removing carbonyl sulfide in gas |
JPH1163444A (en) * | 1997-08-28 | 1999-03-05 | Nkk Corp | Method for operating waste gasifying furnace |
JPH11241076A (en) * | 1998-02-26 | 1999-09-07 | Hitachi Ltd | Gas purification process |
-
2004
- 2004-02-16 JP JP2004037879A patent/JP4529171B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002285173A (en) * | 2001-03-28 | 2002-10-03 | Hitachi Ltd | Gasification system |
Also Published As
Publication number | Publication date |
---|---|
JP2005226028A (en) | 2005-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101668549B1 (en) | Wastewater treatment system and combined power generation equipment | |
TWI382873B (en) | Systems and processes for reducing the sulfur content of hydrocarbon streams | |
JP2007045857A (en) | Method and apparatus for purifying gasified gas | |
JP4529171B2 (en) | Method for removing carbonyl sulfide in gas | |
KR20100118570A (en) | Contaminant removal from a gas stream | |
JP5217292B2 (en) | Coal gasification gas purification method and apparatus | |
JP4573650B2 (en) | Fuel gas purification equipment | |
JP2005028216A (en) | Gas cleaning apparatus and flue gas desulfurization system | |
CN115141660A (en) | Blast furnace gas dry-type fine desulfurization system and fine desulfurization method | |
JPH10109016A (en) | Treatment of heavy metal-containing waste gas and device therefor | |
JP2007182468A (en) | Gas purification system and gas purification method | |
JP2007002061A (en) | Gas cleaning apparatus, gasification system, gasification power generation system | |
JP2010163621A (en) | Gas treatment method in gasification facility and gasification facility | |
JP4146042B2 (en) | Flue gas treatment method | |
JP6681316B2 (en) | Method and apparatus for removing acid component at high temperature in gasification power generation system | |
JPH06228573A (en) | Treatment of tail gas in coal gasification plant | |
Kiani et al. | Syngas conditioning (catalyst, process: sulfur and tar Cl, F) | |
JP4574884B2 (en) | Method and apparatus for recovering sulfuric acid in exhaust gas treatment system | |
JP4508307B2 (en) | Gas treatment method and gasification equipment in gasification equipment | |
CN208287803U (en) | Flue gas carrier gas device after a kind of desulphurization denitration for regenerating active carbon | |
JP2010215802A (en) | Dry gas purification facility and coal gasification combined power generation facility | |
JP2009173717A (en) | Fuel gas purification facility and operation method of it | |
JP2009220030A (en) | Method and device for treating exhaust gas | |
JP5301113B2 (en) | Reusing copper-based absorbent | |
JP2011026479A (en) | Fuel gas purifier and method for operating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060202 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070613 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090413 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100517 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100530 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4529171 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140618 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |