JP4528042B2 - Construction method of box girder bridge - Google Patents

Construction method of box girder bridge Download PDF

Info

Publication number
JP4528042B2
JP4528042B2 JP2004203148A JP2004203148A JP4528042B2 JP 4528042 B2 JP4528042 B2 JP 4528042B2 JP 2004203148 A JP2004203148 A JP 2004203148A JP 2004203148 A JP2004203148 A JP 2004203148A JP 4528042 B2 JP4528042 B2 JP 4528042B2
Authority
JP
Japan
Prior art keywords
girder
bridge
web
construction
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004203148A
Other languages
Japanese (ja)
Other versions
JP2006022595A (en
Inventor
堀口政一
塚本敦之
東田典雅
猪熊康夫
白谷宏司
稲原英彦
Original Assignee
中日本高速道路株式会社
大成建設株式会社
東日本高速道路株式会社
西日本高速道路株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中日本高速道路株式会社, 大成建設株式会社, 東日本高速道路株式会社, 西日本高速道路株式会社 filed Critical 中日本高速道路株式会社
Priority to JP2004203148A priority Critical patent/JP4528042B2/en
Publication of JP2006022595A publication Critical patent/JP2006022595A/en
Application granted granted Critical
Publication of JP4528042B2 publication Critical patent/JP4528042B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、箱桁橋の架設工用主桁構造を使用した箱桁橋の架設工法に関する。
The present invention relates to a construction method of the box girder bridge using the main beam structure for the erection of Engineering of the box girder bridge.

コンクリート橋の架設工法の一つとして押出し工法が知られている。
このような工法では、まず、橋脚または橋台を設置した架設区間の橋軸方向一方側に製作ヤードを設ける。
次に、この製作ヤードでPC製の主桁ブロックを製作し、橋軸方向他方側に向かって架設区間の橋脚または橋台上に押し出す。
そして、この主桁ブロックの橋軸方向一端部に、製作ヤードで製作した別の主桁ブロックを接続し、橋軸方向他方側に押し出すといった作業を繰り返すことにより主桁を架設していく。
このような押出し工法では通常、先頭の主桁ブロックの橋軸方向他端部に、鋼材料等によって比較的軽量に構成された仮設の手延桁が設けられる(例えば特許文献1参照)。
手延桁により、主桁ブロックまたは主桁が片持ち状態となることが回避されるため、主桁ブロックまたは主桁の自重による断面力を軽減でき、撓みを効果的に防止あるいは抑制できる。
An extrusion method is known as one of the construction methods for concrete bridges.
In such a construction method, first, a production yard is provided on one side in the bridge axis direction of a construction section where a pier or an abutment is installed.
Next, a main girder block made of PC is produced in this production yard and pushed out on the bridge pier or abutment in the construction section toward the other side in the bridge axis direction.
Then, another main girder block manufactured at the manufacturing yard is connected to one end of the main girder block in the bridge axis direction, and the main girder is constructed by repeating the operation of pushing out to the other side in the bridge axis direction.
In such an extrusion method, a temporary hand girder constructed of a steel material or the like is usually provided at the other end in the bridge axis direction of the leading main girder block (see, for example, Patent Document 1).
Since the main girder block or main girder is prevented from being in a cantilever state, the cross-sectional force due to the weight of the main girder block or main girder can be reduced, and bending can be effectively prevented or suppressed.

特開2001−193016号公報(第2−3頁、図1)JP 2001-193016 A (page 2-3, FIG. 1)

このような押出し工法では、手延桁の長さを長く、例えば、支間長とほぼ等しい長さに設定すれば、主桁ブロックまたは主桁の自重による断面力を大幅に軽減できるため、PC鋼材量を削減して主桁ブロックまたは主桁の材料コストを低く抑えることが可能であるが、この場合には、手延桁自体の材料コストが高くなる。
材料コストの抑制を考慮すると、手延桁は、主桁ブロックまたは主桁のPC鋼材量などとの兼合いから、支間長の70%程度の長さに設定することが好ましい場合が多い。
ところが、建設される橋梁によって主桁の重量や支間長などは様々であるため、このような設定条件に最適な手延桁を逐一製作することは不経済である。
このため、手延桁は、支間長などに応じて、既存のものに多少の改良を加えて転用されているのが実情であり、既存の手延桁を用いても、改良費などを要することから大幅なコストダウンにはつながらない場合も多い。
In such an extrusion method, if the length of the hand girders is long, for example, if the length is substantially equal to the span length, the cross-sectional force due to the main girder block or the main girder's own weight can be greatly reduced. The material cost of the main girder block or main girder can be kept low by reducing the amount, but in this case, the material cost of the manual girder itself is increased.
Considering the suppression of material cost, it is often preferable to set the hand girder to a length of about 70% of the span length in consideration of the main girder block or the PC steel amount of the main girder.
However, since the weight of the main girder and the span length vary depending on the bridge to be constructed, it is uneconomical to produce a hand girder optimally suited to such setting conditions.
For this reason, it is actually the case that the manual girder is diverted with some improvements to the existing one according to the span length, etc. Even if the existing manual girder is used, improvement costs etc. are required. In many cases, this does not lead to a significant cost reduction.

ところで、コンクリート橋の一種として、コンクリート製の上下床版を連結するウェブを鋼製、例えば波形鋼板で構成した鋼・コンクリート複合構造の箱桁橋、例えば波形鋼板ウェブPC橋が知られている。
そこで、押出し工法によって鋼・コンクリート複合構造の箱桁橋、例えば波形鋼板ウェブPC橋を架設する場合には、鋼製のウェブによって主桁全体が比較的軽量に構成されていることを利用し、主桁の前端部をさらに軽量化して本設手延桁として構成するといったことが考えられる。
具体的に波形鋼板ウェブPC橋の場合を説明すると、図7に示すように、本設手延桁Aを、一対の波形鋼板状のウェブB、Bと、ウェブB、Bの上端部同士を連結する上側鋼材Cと、ウェブB、Bの下端部同士を連結する下側鋼材Dと、から構成し、主桁Eの橋脚F上への押し出し完了後に、ウェブB、Bの上側及び下側にそれぞれ、PC鋼材を配置してコンクリートを場所打ちし、上下床版G、Hをそれぞれ形成する(図7(b)の仮想線参照)。
この場合には、下側鋼材Dは、ウェブBの下端部を固定するように幅方向両側にそれぞれ設けた下弦材I、Iと、下弦材I、I同士を連結する横構Jと、から構成する。
あるいは、図8に示すように、本設手延桁Kを、PC製の下床版Hと、この下床版H上に取り付けた一対の波形鋼板状のウェブB、Bと、ウェブB、Bの上端部同士を連結する上側鋼材Cと、から構成し、主桁Eの橋脚F上への押し出し完了後に、上床版Gのみを形成する(図8(b)の仮想線参照)。
なお、図7、8の符号L及びMはそれぞれ、仮設の横構及び対傾構である。
このような方法を用いれば、仮設の手延桁を必要としないため、手延桁の改良や設置及び撤去などに要するコストをカットできる。
さらに、図7に示すような構成では、本設手延桁が鋼材のみで構成されるため、仮設の手延桁を用いた場合と同等にあるいはそれ以上に、押し出し施工性を高めることができる。
また、図8に示すような構成では、下床版があらかじめ形成されている、すなわち、本設手延桁に設けた仮設材が少量であるため、仮設材の撤去などの押し出し完了後の工程が少なくて済む。
By the way, as a kind of concrete bridge, a box-girder bridge of a steel / concrete composite structure in which a web connecting concrete upper and lower slabs is made of steel, for example, a corrugated steel sheet, such as a corrugated steel sheet web PC bridge is known.
Therefore, when building a steel-concrete composite box girder bridge, such as a corrugated steel sheet web PC bridge, by using the extrusion method, utilizing the fact that the main girder is relatively lightweight by the steel web, It can be considered that the front end portion of the main girder is further reduced in weight and configured as a permanent extension girder.
Specifically, in the case of the corrugated steel web PC bridge, as shown in FIG. 7, the main extension girder A is composed of a pair of corrugated steel webs B and B and the upper ends of the webs B and B. The upper steel material C to be connected and the lower steel material D to connect the lower ends of the webs B and B, and after the extrusion of the main girder E onto the pier F is completed, the upper and lower sides of the webs B and B PC steel materials are placed in place and concrete is cast in place to form upper and lower floor slabs G and H, respectively (see phantom lines in FIG. 7B).
In this case, the lower steel material D is composed of lower chord materials I and I provided on both sides in the width direction so as to fix the lower end portion of the web B, and a horizontal structure J connecting the lower chord materials I and I to each other. Constitute.
Alternatively, as shown in FIG. 8, the main extension girder K is made of a PC lower floor slab H and a pair of corrugated steel webs B and B attached on the lower floor slab H, and a web B, The upper steel plate C is connected to the upper ends of B. After the extrusion of the main girder E onto the pier F is completed, only the upper floor slab G is formed (see the phantom line in FIG. 8B).
In addition, the codes | symbols L and M of FIG.
If such a method is used, a temporary hand girders are not required, and therefore the cost required for improvement, installation and removal of the hand girders can be cut.
Further, in the configuration as shown in FIG. 7, since the main construction girder is composed of only steel materials, the extrusion workability can be improved to be equal to or higher than that when a temporary girder is used. .
Further, in the configuration as shown in FIG. 8, since the lower floor slab is formed in advance, that is, since there is a small amount of temporary material provided on the main extension girder, the process after completion of extrusion such as removal of temporary material is completed. Is less.

しかしながら、上記のような箱桁橋を架設方法では、次のような問題点がある。
<1>図7に示すような本設手延桁Aの構成では、下側鋼材Dが橋脚または橋台上に設けた支承を通過する際に、下弦材Iには、大きな鉛直反力が作用するとともに、上側に配置した波形鋼板状のウェブBによって複雑な応力が作用するため、例えば、下弦材IをリブNで補強するなど、下弦材Iあるいは下側鋼材Dを強固な構造にする必要がある。
また、下床版Hを形成する際には通常、下側鋼材Dは撤去されることから、下弦材Iは、ウェブBに対してボルトなどにより取り外し可能に接合しなけばならず、ボルト接合とした場合には、膨大な数のボルトO及びボルト接合のための添接板Pも必要となる。
したがって、下側鋼材Dの構造が複雑化するため、結果的にコストダウンにはつながらない。
それどころか、下側鋼材Dの撤去などの煩雑な作業を、ウェブBの下側の狭い空間で行わなければならないため、施工期間の長期化につながってしまうおそれがある。
<2>図8に示すような本設手延桁Kの構成では、あらかじめ形成したPC製の下床版Hによって重量が過大となるため、本設手延桁Kの後方部分の主桁EのPC鋼材量が増加し、場合によっては本設手延桁Kを支持するために仮斜材QやピロンRなども必要となることから、同様にコストダウンにはつながらない。
However, there are the following problems in the construction method of the box girder bridge as described above.
<1> In the construction of the manually installed girder A as shown in FIG. 7, a large vertical reaction force acts on the lower chord material I when the lower steel material D passes through the support provided on the pier or the abutment. In addition, since complex stress is applied by the corrugated steel web B disposed on the upper side, the lower chord material I or the lower steel material D needs to have a strong structure, for example, the lower chord material I is reinforced with ribs N. There is.
Further, when the lower floor slab H is formed, since the lower steel material D is usually removed, the lower chord material I must be detachably joined to the web B with a bolt or the like. In this case, an enormous number of bolts O and connecting plates P for bolt joining are also required.
Therefore, the structure of the lower steel material D is complicated, and as a result, the cost is not reduced.
On the contrary, since complicated work such as removal of the lower steel material D must be performed in a narrow space below the web B, the construction period may be prolonged.
<2> In the configuration of the main extension girder K as shown in FIG. 8, the weight is excessive due to the pre-formed lower floor slab H made of PC. The amount of PC steel increases, and in some cases, provisional diagonal members Q, pyrolons R, etc. are required to support the main extension girder K, so that it does not lead to cost reduction.

発明は上記したような従来の問題を解決するためになされたもので、工費の削減及び工期の短縮を図ることが可能な箱桁橋の架設工用主桁構造を使用した箱桁橋の架設工法の提供を目的とする。
Invention has been made to solve the conventional problems as described above, erection of the box girder bridge using main beam structural erection Engineering box girder bridge capable be reduced and shortening of the construction period of the construction cost The purpose is to provide construction methods.

上記のような目的を達成するための本発明の箱桁橋の架設工法は、幅方向に間隔をあけて橋軸方向に延びるように配置した一対の鋼製のウェブ材と、それぞれのウェブ材の下端部に設けた、一対の下弦材と、一対のウェブ材同士を連結する鋼製のウェブ連結材と、を備え、下弦材をそれぞれPC梁で構成した本設手延桁の橋軸方向一端部に、橋軸方向に延びるコンクリート製の上下床版及びこれらの上下床版を連結する一対の鋼製のウェブを有するプレキャスト桁を、それぞれのウェブがウェブ材と連続するように設けて構成した箱桁橋の架設工用主桁構造を、橋脚または橋台を設置した架設区間の橋軸方向一方側から他方側に向かって、橋脚または橋台上を摺動あるいは実質的に摺動させて行う箱桁橋の架設工法であって、前記本設手延桁が架設区間の橋軸方向他端部に達した後に、前記本設手延桁の一対のウェブ材の上端部に跨るようにコンクリートを打設して、プレキャスト桁の上床版と連続する上床部を形成するものである。
ここで、プレキャスト桁とは、工場等であらかじめ製作したもののほか、現場の架設区間の近傍場所、例えば製作ヤードで製作したものも含む。
In order to achieve the above object, the box girder bridge construction method of the present invention includes a pair of steel web materials arranged so as to extend in the bridge axis direction at intervals in the width direction, and the respective web materials of it provided at the lower end, and a pair of lower chord member, comprising a steel web connecting member for connecting to each other a pair of web material, a bridge axis direction of the設手Nobeketa the lower chord member is constituted by respective PC beam At one end, a concrete upper and lower floor slab extending in the direction of the bridge axis and a precast girder having a pair of steel webs connecting these upper and lower floor slabs are provided so that each web is continuous with the web material. The main girder structure for the box girder bridge construction is performed by sliding or substantially sliding on the pier or abutment from one side to the other side in the bridge axis direction of the construction section where the pier or abutment is installed. A construction method for a box girder bridge, wherein After reaching the other end in the bridge axis direction of the erection section, the concrete is cast so as to straddle the upper ends of the pair of web members of the main extension girder, and the upper floor part continuous with the upper floor slab of the precast girder is formed. To form.
Here, the precast girder includes not only those manufactured in advance at a factory or the like, but also those manufactured near a construction section on the site, for example, a manufacturing yard.

さらに本発明の箱桁橋の架設工法は、前記の本設手延桁、一対のPC梁同士を連結する鋼製の梁連結材をさらに備えているものとすることができる。
Furthermore, in the construction method for a box girder bridge according to the present invention , the main extension girder may further include a steel beam connecting material for connecting a pair of PC beams.

さらに本発明の箱桁橋の架設工法は、前記の本設手延桁、PC梁はそれぞれ高強度コンクリート製であるものとすることができる。
PC梁はそれぞれ、場合によっては高強度繊維補強コンクリート製としてもよい。
Further erection method of box girder bridge of the present invention, the of the present設手Nobeketa is, PC beam can be made respectively made of high strength concrete.
Each of the PC beams may be made of high strength fiber reinforced concrete in some cases.

さらに本発明は、前記の箱桁橋の架設工法であって、前記本設手延桁が架設区間の橋軸方向他端部に達した後にさらに、前記本設手延桁の一対のPC梁間にコンクリートを打設して、プレキャスト桁の下床版と連続する下床部を形成するものとすることができる。   Furthermore, the present invention is a method for erection of the box girder bridge, wherein the main extension girder reaches the other end in the bridge axis direction of the installation section, and further between the pair of PC beams of the main extension girder. The concrete can be casted to form a lower floor portion continuous with the lower floor plate of the precast girder.

以上説明したように、本発明の本設手延桁、箱桁橋の架設工用主桁構造及び箱桁橋の架設工法は、次のような効果を得ることができる。
<1>下弦材をPC梁で構成したため、下弦材が複雑化せずに強固な構造となる。
これにより、主桁の押し出し完了後にコンクリート製の下床部を形成する場合にも、PC梁を下床部の一部としてそのまま利用することができるため、形成作業が容易となる。
<2>しかも、コンクリート材料の使用を、幅方向に間隔をあけて設けた一対の下弦材、すなわちPC梁のみに抑えたため、本設手延桁自体の重量も抑えることができる。
特に、PC梁を高強度コンクリート製とすれば、PC梁の断面をより小さく設定できる、すなわちPC梁をより軽量に構成できるため、本設手延桁の重量をさらに抑えることが可能となる。
したがって、本設手延桁の後方に設けたプレキャスト桁のPC鋼材量を削減できるとともに、本設手延桁を支持するための仮斜材やピロンなども不要となる。
As described above, the main extension girder, the main girder structure for erection of the box girder bridge, and the erection method of the box girder bridge according to the present invention can obtain the following effects.
<1> Since the lower chord material is composed of PC beams, the lower chord material is not complicated and has a strong structure.
As a result, even when the concrete lower floor portion is formed after the extrusion of the main girder is completed, the PC beam can be used as part of the lower floor portion, so that the forming operation is facilitated.
<2> In addition, since the use of the concrete material is suppressed to only the pair of lower chord members provided at intervals in the width direction, that is, the PC beams, the weight of the main extension girder itself can be suppressed.
In particular, if the PC beam is made of high-strength concrete, the cross-section of the PC beam can be set smaller, that is, the PC beam can be configured to be lighter, so that the weight of the main extension girder can be further suppressed.
Accordingly, it is possible to reduce the amount of PC steel material of the precast girder provided behind the main extension girder, and it is not necessary to use a provisional diagonal material or a pyrone for supporting the main extension girder.

以下、本発明を実施するための形態を図面を参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

<1>準備工
本発明の架設工法によって鋼・コンクリート複合構造の箱桁橋、例えば波形鋼板ウェブPC橋を架設するには、図1に示すように、まず架設区間に所定の数の橋脚1(または橋台)を設置する。
一方、架設区間の橋軸方向一方側の例えば橋台に、橋脚1または橋脚1の支承2とほぼ等しい高さとなるように製作ヤード3を設置する。
<1> Preparatory work To construct a steel-concrete composite box girder bridge, for example, a corrugated steel web PC bridge, according to the erection method of the present invention, first, as shown in FIG. (Or an abutment).
On the other hand, the production yard 3 is installed on, for example, the abutment on one side of the bridge section in the bridge section so that the height is almost equal to the pier 1 or the support 2 of the pier 1.

<2>本設手延桁
製作ヤード3を設置が完了したら、この製作ヤード3内で本設手延桁、例えば波形鋼板ウェブ本設手延桁4を製作する。
波形鋼板ウェブ本設手延桁4は、図2、3及び4に示すように、幅方向に間隔をあけて橋軸方向に延びるように配置した一対のウェブ材、例えば波形鋼板ウェブ材5、5と、一対の波形鋼板ウェブ材5、5同士を連結するウェブ連結材6と、それぞれの波形鋼板ウェブ材5の下端部に設けた、下弦材であるPC梁7、7と、これらのPC梁7、7同士を連結する梁連結材8と、から構成する。
波形鋼板ウェブ本設手延桁4は、手延桁の役割を果たすとともに、架設区間の所定位置への設置後に主桁の一部を構成するものである。
このため、波形鋼板ウェブ本設手延桁4の桁長は、支間長等の条件に応じて任意に設定することができる。
また、一対の波形鋼板ウェブ材5、5の間隔は、後述するプレキャスト桁ブロック9の一対の波形鋼板ウェブ10、10の間隔とほぼ等しくなるように設定する。
波形鋼板ウェブ材5の上端には、溶接等によりフランジプレート11を介して孔あき鋼板ジベル12を一体的に設ける。
ウェブ連結材6は、軽量化を図るために、鋼材料で板状に形成し、幅方向両端部をそれぞれ、フランジプレート11に溶接等で固定することにより、一対の波形鋼板ウェブ材5、5の上端部同士を連結するように設ける。
なお、ウェブ連結材6は、押出し時の波形鋼板ウェブPC本設手延桁4の自重による断面力に対する抵抗材でもあり、一対の波形鋼板ウェブ材5、5の橋軸方向にわたって設けることが好ましいが、断面力が小さくなる先端側部では省略してもよい。
この場合には、フランジプレート11を抵抗材とすることができる。
PC梁7はそれぞれ、波形鋼板ウェブ材5の橋軸方向にわたって、波形鋼板ウェブ材5の下端部に固定的に設ける。
PC梁7の波形鋼板ウェブ材5に対する付着力は、例えば、波形鋼板ウェブ材5の下端に、フランジプレートを介して孔あき鋼板ジベルを一体的に設けるとともに、この孔あき鋼板ジベルの孔内に鉄筋を配置することにより確保する。
PC梁7内のPC鋼材は、橋軸方向断面にほぼ均等に配置することが好ましい。
なお、PC梁7の形成は、例えばポストテンション方式によって行うことができる。
梁連結材8は、鋼製の例えば横構で構成し、PC梁7、7間に設ける。
梁連結材8は、PC梁7の橋軸方向に間隔をあけて複数本設けるが、後述するように、押出し後に、一対のPC梁7、7間にコンクリートを打設して、下床部13を形成する場合には、ボルト接合などによってPC梁7に対してそれぞれ取り外し可能に構成しておく。
下床部13を形成しない場合には、梁連結材8は本設構造となる。
なお、波形鋼板ウェブ材5、5間には、変形防止用の仮設の対傾構14及び横材15を配置しておく。
<2> Permanent Hand Girder After installation of the production yard 3 is completed, a permanent hand girder, for example, a corrugated steel web permanent girder 4 is produced in the production yard 3.
As shown in FIGS. 2, 3, and 4, the corrugated steel web main extension girder 4 is a pair of web materials arranged to extend in the bridge axis direction with an interval in the width direction, for example, corrugated steel web material 5, 5, a pair of corrugated steel web members 5, a web connecting member 6 that connects the corrugated steel web members 5, PC beams 7 and 7 that are lower chord members provided at the lower ends of the corrugated steel web members 5, and these PCs It is comprised from the beam connection material 8 which connects the beams 7 and 7 mutually.
The corrugated steel web permanent girder 4 functions as a manual girder and constitutes a part of the main girder after installation at a predetermined position in the erection section.
For this reason, the girder length of the corrugated steel web main extension girder 4 can be arbitrarily set according to conditions such as the span length.
Further, the interval between the pair of corrugated steel web members 5, 5 is set to be substantially equal to the interval between a pair of corrugated steel webs 10, 10 of the precast girder block 9 described later.
At the upper end of the corrugated steel web material 5, a perforated steel plate dowel 12 is integrally provided via a flange plate 11 by welding or the like.
In order to reduce the weight, the web connecting member 6 is formed in a plate shape with a steel material, and both end portions in the width direction are fixed to the flange plate 11 by welding or the like, so that a pair of corrugated steel web members 5, 5 Are provided so as to connect the upper end portions of each other.
The web connecting material 6 is also a resistance material against the cross-sectional force due to the weight of the corrugated steel web PC main extension girder 4 at the time of extrusion, and is preferably provided over the bridge axis direction of the pair of corrugated steel web members 5 and 5. However, you may abbreviate | omit in the front end side part with which cross-sectional force becomes small.
In this case, the flange plate 11 can be used as a resistance material.
Each of the PC beams 7 is fixedly provided at the lower end portion of the corrugated steel web material 5 over the bridge axis direction of the corrugated steel web material 5.
The adhesion of the PC beam 7 to the corrugated steel web member 5 is, for example, integrally provided with a perforated steel plate divel at the lower end of the corrugated steel web member 5 via a flange plate, and in the hole of the perforated steel plate gibel. Secure by placing reinforcing bars.
It is preferable that the PC steel material in the PC beam 7 is arranged substantially evenly in the cross section in the bridge axis direction.
The PC beam 7 can be formed by, for example, a post tension method.
The beam connecting member 8 is made of, for example, a horizontal structure made of steel, and is provided between the PC beams 7 and 7.
A plurality of beam connecting members 8 are provided at intervals in the bridge axis direction of the PC beam 7, but, as will be described later, after extrusion, concrete is placed between the pair of PC beams 7 and 7, and the lower floor portion When forming 13, it is configured to be removable from the PC beam 7 by bolting or the like.
When the lower floor portion 13 is not formed, the beam connecting member 8 has a permanent structure.
A temporary anti-tilt structure 14 and a cross member 15 for preventing deformation are disposed between the corrugated steel web members 5 and 5.

<3>PC梁
PC梁7は、押出し時に発生する大きな応力に耐えうる構成としなければならないが、波形鋼板ウェブ本設手延桁4自体の重量を抑えるためには、極力小さい断面積を有するように構成する必要がある。
そこで、PC梁7を、強度を高めるために高強度コンクリート、場合によっては高強度繊維補強コンクリートを用いて形成することが好ましい。
高強度コンクリートは、例えば、セメントと珪石の粉末、シリカフューム、珪砂、高性能減水剤に水を単位水量(出来上がりコンクリート容積1m3当たり)として180kg程度(水/セメントの比率が22%程度)を加えて得られる。
高強度繊維補強コンクリートは、高強度コンクリート・マトリックスに、高強度鋼繊維を容積で2%程度混入して得られる。
高強度コンクリートあるいは高強度繊維補強コンクリートを用いた場合には、製作ヤード3内で蒸気養生を行うことがなお好ましい。
上述の高強度コンクリートあるいは高強度繊維補強コンクリートは、蒸気養生を行うと短い期間で所定の強度に達する。
<3> PC beam The PC beam 7 must be configured to withstand a large stress generated during extrusion, but has a small cross-sectional area as much as possible in order to suppress the weight of the corrugated steel web main extension girder 4 itself. It is necessary to configure as follows.
Therefore, it is preferable to form the PC beam 7 using high-strength concrete, in some cases, high-strength fiber reinforced concrete in order to increase the strength.
For high-strength concrete, for example, about 180 kg (water / cement ratio is about 22%) is added to cement and silica stone powder, silica fume, silica sand, and high-performance water reducing agent as unit water volume (per 1 m 3 concrete volume). Obtained.
High-strength fiber reinforced concrete is obtained by mixing about 2% of high-strength steel fibers by volume in a high-strength concrete matrix.
When high-strength concrete or high-strength fiber reinforced concrete is used, it is more preferable to perform steam curing in the production yard 3.
The above-mentioned high-strength concrete or high-strength fiber reinforced concrete reaches a predetermined strength in a short period of time when steam curing is performed.

<4>本設手延桁の押出し
製作ヤード3内で波形鋼板ウェブ本設手延桁4を製作したら、この波形鋼板ウェブ本設手延桁4を、架設区間の橋軸方向他方側に向かって押し出す。
波形鋼板ウェブ本設手延桁4の押出しは、引張棒方式や鉛直水平ジャッキ方式などによって行うことができる。
すなわち、引張鋼材を固定したアンカーバーを波形鋼板ウェブ本設手延桁4に取り付けるとともに、製作ヤード3の前方または橋軸方向他方側に設けたジャッキ16(図1参照)で引張鋼材を引っ張ることにより波形鋼板ウェブ本設手延桁4を押し出す。
あるいは、ジャッキ16を鉛直ジャッキ及び水平ジャッキで構成し、鉛直ジャッキ及び水平ジャッキを交互に作動させることにより波形鋼板ウェブ本設手延桁4を運搬して押し出す。
<4> Extrusion of the permanent steel girder Once the corrugated steel web main handed girder 4 is produced in the production yard 3, the corrugated steel web permanent girder 4 is directed toward the other side of the bridge section in the bridge section. Push out.
Extrusion of the corrugated steel web permanent girder 4 can be performed by a tension bar method, a vertical horizontal jack method, or the like.
That is, the anchor bar to which the tensile steel material is fixed is attached to the corrugated steel sheet web manual extension girder 4, and the tensile steel material is pulled by the jack 16 (see FIG. 1) provided in front of the production yard 3 or on the other side in the bridge axis direction. Extrude the corrugated steel web permanent girder 4 by.
Alternatively, the jack 16 is constituted by a vertical jack and a horizontal jack, and the corrugated steel sheet web manually installed girder 4 is conveyed and pushed out by alternately operating the vertical jack and the horizontal jack.

<5>プレキャスト桁ブロック
波形鋼板ウェブ本設手延桁4を製作ヤード3外に押し出したら、製作ヤード3内でプレキャスト桁ブロック9を製作する。
プレキャスト桁ブロック9は、図5に示すように、橋軸方向に延びるPC製の上下床版17、18及びこの上下床版17、18を連結する一対のウェブ、例えば波形鋼板ウェブ10、10から構成する。
波形鋼板ウェブ10は、波形鋼板ウェブ材5とほぼ等しく構成する。
上下床版17、18の形成はそれぞれ、例えばポストテンション方式によって行うことができ、橋軸方向に圧縮力を導入する。
上下床版17、18の波形鋼板ウェブ10に対する付着力はそれぞれ、例えば、波形鋼板ウェブ10の上端及び下端に、フランジプレートを介して孔あき鋼板ジベルを一体的に設けるとともに、この孔あき鋼板ジベルの孔内に鉄筋を配置することにより確保する。
下床版18の波形鋼板ウェブ10下側部または幅方向両端部の高さは、PC梁7の高さとほぼ等しく設定する。
プレキャスト桁ブロック9の橋軸方向他端部は、波形鋼板ウェブ本設手延桁4の橋軸方向一端部に接続される。
これにより、プレキャスト桁ブロック9の波形鋼板ウェブ10は、波形鋼板ウェブ本設手延桁4の波形鋼板ウェブ材5と連続あるいは実質的に連続するように配置される。
<5> Precast Girder Block When the corrugated steel web permanent girder 4 is pushed out of the production yard 3, the precast girder block 9 is produced in the production yard 3.
As shown in FIG. 5, the precast girder block 9 includes PC upper and lower floor slabs 17 and 18 extending in the bridge axis direction and a pair of webs connecting the upper and lower floor slabs 17 and 18, for example, corrugated steel sheet webs 10 and 10. Constitute.
The corrugated steel web 10 is configured substantially the same as the corrugated steel web 5.
Each of the upper and lower floor slabs 17 and 18 can be formed, for example, by a post-tension method, and a compressive force is introduced in the bridge axis direction.
The adhesion of the upper and lower floor slabs 17 and 18 to the corrugated steel web 10 is, for example, integrally provided with a perforated steel plate jbell on the upper and lower ends of the corrugated steel web 10 via a flange plate. This is ensured by placing reinforcing bars in the holes.
The height of the corrugated steel sheet web 10 lower side or both ends in the width direction of the lower floor slab 18 is set substantially equal to the height of the PC beam 7.
The other end portion in the bridge axis direction of the precast girder block 9 is connected to one end portion in the bridge axis direction of the corrugated steel sheet web manually installed girder 4.
Accordingly, the corrugated steel web 10 of the precast girder block 9 is arranged so as to be continuous or substantially continuous with the corrugated steel web 5 of the corrugated steel web permanent girder 4.

<6>架設工用主桁構造
製作ヤード3内でプレキャスト桁ブロック9を製作したら、このプレキャスト桁ブロック9を、架設区間の橋軸方向他方側に向かって押し出す。
プレキャスト桁ブロック9の押出しは、波形鋼板ウェブ本設手延桁4の押出しと同様の方法で行うことができる。
そして、プレキャスト桁ブロック9を例えば製作ヤード3外に押し出したら、同様にして、別のプレキャスト桁ブロック9の製作接続及び押出しを繰り返し、波形鋼板ウェブ本設手延桁4及びプレキャスト桁ブロック9を、橋脚1上または支承2上を摺動あるいは実質的に摺動させて、主桁を架設していくこととなる。
この際に、波形鋼板ウェブ本設手延桁4と、この波形鋼板ウェブ本設手延桁4の橋軸方向一端部または後端部に接続した1つあるいは複数のプレキャスト桁ブロック9とは、箱桁橋、例えば波形鋼板ウェブPC橋の架設工用主桁構造を構成する。
プレキャスト桁ブロック9の押出しによって、波形鋼板ウェブ本設手延桁4は、支承2上を通過する際には、自重による圧縮応力及び引っ張り応力を交互に受けるが、PC梁7によりこのような応力に耐えることが可能となる。
特に、自重による負曲げの圧縮応力を受ける際には、PC鋼材の圧縮力と重なってPC梁7のコンクリートに大きな圧縮応力が作用することとなるが、PC梁7を高強度コンクリートまたは高強度繊維補強コンクリート製とすることにより、このような応力に十分に耐えることができる。
なお、支承2の上面は、例えばテフロン(登録商標)版を設置するなどして、波形鋼板ウェブ本設手延桁4またはプレキャスト桁ブロック9の摺動時の摩擦を低減できるように滑らかに仕上げておく。
<6> Main Girder Structure for Construction Work When the precast girder block 9 is produced in the production yard 3, the precast girder block 9 is pushed out toward the other side in the bridge axis direction of the construction section.
The extrusion of the precast girder block 9 can be performed by the same method as the extrusion of the corrugated steel sheet web manually extending girder 4.
Then, when the precast girder block 9 is pushed out of the production yard 3, for example, the production connection and extrusion of another precast girder block 9 are repeated in the same manner, and the corrugated steel sheet web manually installed girder 4 and the precast girder block 9 are The main girder is constructed by sliding or substantially sliding on the pier 1 or the support 2.
At this time, the corrugated steel web permanent girder 4 and the one or more precast girder blocks 9 connected to one end or the rear end of the corrugated steel web permanent girder 4 in the bridge axis direction are: A main girder structure for construction of a box girder bridge, for example, a corrugated steel web PC bridge is constructed.
When the pre-cast girder block 9 is extruded, the corrugated steel web main hand girder 4 is alternately subjected to compressive stress and tensile stress due to its own weight when passing over the support 2. It becomes possible to endure.
In particular, when receiving a compressive stress of negative bending due to its own weight, a large compressive stress acts on the concrete of the PC beam 7 overlapping with the compressive force of the PC steel material. By using fiber reinforced concrete, it is possible to sufficiently withstand such stress.
In addition, the upper surface of the support 2 is finished smoothly so that friction during sliding of the corrugated steel web main extension girder 4 or the precast girder block 9 can be reduced, for example, by installing a Teflon (registered trademark) plate. Keep it.

<7>上床部の形成
所定の数のプレキャスト桁ブロック9の製作接続及び押出しを行い、波形鋼板ウェブ本設手延桁4が架設区間の橋軸方向他端部、例えば対岸の橋台に達したら、プレキャスト桁ブロック9の製作接続及び押出しを完了する。
そして、図6に示すように、波形鋼板ウェブ本設手延桁4の上部に型枠(図示せず)を組み付け、一対の波形鋼板ウェブ材5、5の上端部に跨るように、コンクリートを打設して、プレキャスト桁ブロック9の上床版17と連続あるいは実質的に連続する上床部19を形成する。
ここでは、ウェブ連結材6は、プレキャスト桁ブロック9の上床版17の下面とほぼ等しい形状に形成してあるため、このウェブ連結材6をコンクリート打設用の型枠底面の一部として利用できる。
すなわち、ウェブ連結材6にコンクリートを打設して上床部19を形成することができる。
上床部19も、上床版17と同様に、例えばポストテンション方式によって行うことができ、橋軸方向に圧縮力が導入される。
上面に上床部19が形成されたウェブ連結材6はそのまま本設構造となり、ウェブ連結材6以外の型枠部材は取り外される。
下床部13を形成しない場合には、これにより、波形鋼板ウェブPC主桁が架設されることとなる。
なお、仮設の対傾構14及び横材15は通常取り外される。
<7> Formation of upper floor portion When a predetermined number of precast girder blocks 9 are connected and extruded, and the corrugated steel web main handed girder 4 reaches the other end in the bridge axis direction of the construction section, for example, the abutment on the opposite bank Then, the production connection and extrusion of the precast girder block 9 are completed.
Then, as shown in FIG. 6, a formwork (not shown) is assembled on the upper part of the corrugated steel sheet web manually installed girder 4, and the concrete is straddled across the upper ends of the pair of corrugated steel sheet web members 5 and 5. An upper floor portion 19 that is continuous or substantially continuous with the upper floor slab 17 of the precast girder block 9 is formed.
Here, since the web connecting material 6 is formed in a shape substantially equal to the lower surface of the upper floor slab 17 of the precast girder block 9, the web connecting material 6 can be used as a part of the bottom of the formwork for placing concrete. .
That is, the upper floor portion 19 can be formed by placing concrete on the web connecting member 6.
Similarly to the upper floor slab 17, the upper floor portion 19 can also be performed by, for example, a post tension method, and a compressive force is introduced in the bridge axis direction.
The web connecting member 6 having the upper floor portion 19 formed on the upper surface has a permanent structure as it is, and the formwork members other than the web connecting member 6 are removed.
In the case where the lower floor portion 13 is not formed, the corrugated steel web PC main beam is thus constructed.
The temporary anti-tilt structure 14 and the cross member 15 are normally removed.

<8>下床部の形成
下床部13を形成する場合には、PC梁7、7から梁連結材8を取り外し、一対のPC梁7、7間に型枠(図示せず)を組み付け、この型枠にコンクリートを打設する。
これにより、一対のPC梁7、7が一体化され、プレキャスト桁ブロック9の下床版18と連続あるいは実質的に連続する下床部13が形成される。
下床部13も、下床版18と同様に、例えばポストテンション方式によって行うことができ、橋軸方向に圧縮力が導入される。
以上の工程により、箱桁橋の主桁、例えば波形鋼板ウェブPC主桁が架設されることとなる。
なお、波形鋼板ウェブPC主桁には、外側に露出してPC鋼材が配置される場合もある。
<8> Formation of lower floor part When forming the lower floor part 13, the beam connecting material 8 is removed from the PC beams 7 and 7, and a formwork (not shown) is assembled between the pair of PC beams 7 and 7. Concrete is placed in this formwork.
Thereby, a pair of PC beams 7 and 7 are integrated, and the lower floor part 13 which continues or substantially continues with the lower floor plate 18 of the precast girder block 9 is formed.
Similarly to the lower floor slab 18, the lower floor portion 13 can be performed by, for example, a post tension method, and a compressive force is introduced in the bridge axis direction.
By the above process, the main girder of the box girder bridge, for example, the corrugated steel web PC main girder is installed.
In addition, PC steel material may be arrange | positioned and exposed to a corrugated steel sheet web PC main girder outside.

本発明の波形鋼板ウェブPC橋の架設工法を説明するための図The figure for demonstrating the construction method of the corrugated steel web PC bridge of this invention 本発明の波形鋼板ウェブ本設手延桁部分を示す図The figure which shows the corrugated-steel-web main installation hand girder part of this invention 波形鋼板ウェブ本設手延桁の斜視図Perspective view of corrugated steel web main hand girders 波形鋼板ウェブ本設手延桁の断面図Cross section of corrugated steel web main hand girders プレキャスト桁ブロックの斜視図Perspective view of precast girder block 波形鋼板ウェブ本設手延桁に上下床部を形成した状態を示す断面図Sectional drawing which shows the state which formed the up-and-down floor part in the corrugated steel sheet web manual extension girder 従来の波形鋼板ウェブPC橋の架設工法の一例を説明するための図The figure for demonstrating an example of the construction method of the conventional corrugated steel web PC bridge 従来の波形鋼板ウェブPC橋の架設工法の一例を説明するための図The figure for demonstrating an example of the construction method of the conventional corrugated steel web PC bridge

符号の説明Explanation of symbols

1・・・・・・・橋脚
4・・・・・・・波形鋼板ウェブPC本設手延桁(本設手延桁)
5・・・・・・・波形鋼板ウェブ材(ウェブ材)
6・・・・・・・ウェブ連結材
7・・・・・・・PC梁(下弦材)
8・・・・・・・梁連結材
9・・・・・・・プレキャスト桁ブロック(プレキャスト桁)
10・・・・・・波形鋼板ウェブ(ウェブ)
13・・・・・・下床部
17・・・・・・上床版
18・・・・・・下床版
19・・・・・・上床部
1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Bridge piers 4 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Corrugated steel web PC main hand girder (main hand girder)
5 ..... Corrugated steel web material (web material)
6 .... Web connecting material 7 .... PC beam (lower chord material)
8. Beam connecting material 9 .... Precast girder block (Precast girder)
10. ・ ・ ・ ・ ・ ・ Corrugated steel web (web)
13 .... Lower floor part 17 .... Upper floor slab 18 .... Lower floor slab 19 .... Upper floor part

Claims (4)

  1. 幅方向に間隔をあけて橋軸方向に延びるように配置した一対の鋼製のウェブ材と、それぞれのウェブ材の下端部に設けた、一対の下弦材と、一対のウェブ材同士を連結する鋼製のウェブ連結材と、を備え、下弦材をそれぞれPC梁で構成した本設手延桁の橋軸方向一端部に、橋軸方向に延びるコンクリート製の上下床版及びこれらの上下床版を連結する一対の鋼製のウェブを有するプレキャスト桁を、それぞれのウェブがウェブ材と連続するように設けて構成した箱桁橋の架設工用主桁構造を、橋脚または橋台を設置した架設区間の橋軸方向一方側から他方側に向かって、橋脚または橋台上を摺動あるいは実質的に摺動させて行う箱桁橋の架設工法であって、
    前記本設手延桁が架設区間の橋軸方向他端部に達した後に、前記本設手延桁の一対のウェブ材の上端部に跨るようにコンクリートを打設して、プレキャスト桁の上床版と連続する上床部を形成することを特徴とする、
    箱桁橋の架設工法。
    A pair of steel web members arranged so as to extend in the bridge axis direction with an interval in the width direction, a pair of lower chord members provided at the lower ends of the respective web members, and a pair of web members are connected to each other. Steel upper and lower floor slabs, and concrete upper and lower floor slabs extending in the direction of the bridge axis at one end in the direction of the bridge axis of the main extension girder comprising lower web members made of PC beams. The main girder structure for the construction of box girder bridges constructed by providing precast girders with a pair of steel webs to connect the webs so that each web is continuous with the web material. A construction method of a box girder bridge that is slid or substantially slid on the pier or abutment from one side to the other side of the bridge axis direction,
    After the main extension girder reaches the other end in the bridge axis direction of the installation section, concrete is cast so as to straddle the upper ends of the pair of web members of the main extension girder, and the upper floor of the precast girder Forming an upper floor part continuous with the plate,
    Construction method of box girder bridge.
  2. 請求項1に記載の橋桁橋の架設工法であって、前記本設手延桁が、一対のPC梁同士を連結する鋼製の梁連結材をさらに備えていることを特徴とする、箱桁橋の架設工法。 A construction method of a girder bridge according to claim 1, wherein the設手Nobeketa, characterized in that it further comprises a steel beam connection member for connecting the pair of PC beams together, box girder Bridge construction method.
  3. 請求項1または2に記載の橋桁橋の架設工法であって、前記本設手延桁のPC梁はそれぞれ高強度コンクリート製であることを特徴とする、箱桁橋の架設工法。 The bridge girder bridge construction method according to claim 1 or 2, wherein the PC beams of the main extension girder are each made of high-strength concrete .
  4. 前記本設手延桁が架設区間の橋軸方向他端部に達した後にさらに、前記本設手延桁の一対のPC梁間にコンクリートを打設して、プレキャスト桁の下床版と連続する下床部を形成することを特徴とする、請求項1乃至3のいずれか一項に記載の箱桁橋の架設工法。 After the main extension girder reaches the other end of the bridge section in the bridge axis direction, concrete is placed between a pair of PC beams of the main extension girder to be continuous with the lower floor slab of the precast girder. The construction method for a box girder bridge according to any one of claims 1 to 3 , wherein a lower floor portion is formed.
JP2004203148A 2004-07-09 2004-07-09 Construction method of box girder bridge Expired - Fee Related JP4528042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203148A JP4528042B2 (en) 2004-07-09 2004-07-09 Construction method of box girder bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203148A JP4528042B2 (en) 2004-07-09 2004-07-09 Construction method of box girder bridge

Publications (2)

Publication Number Publication Date
JP2006022595A JP2006022595A (en) 2006-01-26
JP4528042B2 true JP4528042B2 (en) 2010-08-18

Family

ID=35796067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203148A Expired - Fee Related JP4528042B2 (en) 2004-07-09 2004-07-09 Construction method of box girder bridge

Country Status (1)

Country Link
JP (1) JP4528042B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104074128A (en) * 2014-06-05 2014-10-01 邢台路桥建设总公司 Torsion-resistant assembly type steel box composite beam and manufacturing method thereof
CN106012808A (en) * 2016-08-01 2016-10-12 中国矿业大学(北京) Corrugated steel web and profiled steel sheet combined beam and construction method thereof
CN106702876A (en) * 2016-12-14 2017-05-24 重庆交通大学 Steel-concrete composite beam bridge with sections continuously fabricated, pushed to places and then connected and rapid construction method of steel-concrete composite beam bridge

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044498A1 (en) * 2011-09-30 2013-04-04 Li Yong Double corrugated steel web steel-hybrid assembly bridge and construction method therefor
CN103952979B (en) * 2014-05-05 2015-09-09 宁波市政工程建设集团股份有限公司 A kind of steel concrete superposed beam top board erection without scaffolding device and construction method
CN104631305B (en) * 2014-12-22 2016-06-15 郑州市交通规划勘察设计研究院 A kind of truss-like steel diaphragm plate of Wavelike steel webplate cable-stayed bridge
CN105350460B (en) * 2015-11-20 2017-04-19 苏交科集团股份有限公司 Corrugated steel web temporary fixation structure independent of template
CN105951608A (en) * 2016-05-20 2016-09-21 中国水利水电第十工程局有限公司 Pushing construction method for corrugated steel web prestressed concrete combination beam
CN106049256B (en) * 2016-08-01 2018-12-25 中国矿业大学(北京) A kind of profiled sheet-Wavelike steel webplate-truss combination beamss and its construction method
CN106087693B (en) * 2016-08-01 2018-07-13 中国矿业大学(北京) A kind of double-T shaped Wavelike steel webplate-profiled sheet combination beam and its construction method
CN107245934A (en) * 2017-07-31 2017-10-13 哈尔滨工业大学 A kind of assembled steel profiled sheet concrete combined board small box girder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056724A (en) * 1973-09-19 1975-05-17
JP2001193016A (en) * 2000-01-17 2001-07-17 Sumitomo Heavy Ind Ltd Launching machine for erecting bridge
JP2002030614A (en) * 2000-07-18 2002-01-31 Nippon Kokan Light Steel Kk Corrugated steel plate for bridge
JP2003268719A (en) * 2002-03-13 2003-09-25 Ps Mitsubishi Construction Co Ltd Steel-concrete composite beam and its installation method
JP2004520511A (en) * 2001-05-04 2004-07-08 ヨン ワォン,ダエ Prestressed synthetic truss girder and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056724A (en) * 1973-09-19 1975-05-17
JP2001193016A (en) * 2000-01-17 2001-07-17 Sumitomo Heavy Ind Ltd Launching machine for erecting bridge
JP2002030614A (en) * 2000-07-18 2002-01-31 Nippon Kokan Light Steel Kk Corrugated steel plate for bridge
JP2004520511A (en) * 2001-05-04 2004-07-08 ヨン ワォン,ダエ Prestressed synthetic truss girder and method of manufacturing the same
JP2003268719A (en) * 2002-03-13 2003-09-25 Ps Mitsubishi Construction Co Ltd Steel-concrete composite beam and its installation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104074128A (en) * 2014-06-05 2014-10-01 邢台路桥建设总公司 Torsion-resistant assembly type steel box composite beam and manufacturing method thereof
CN104074128B (en) * 2014-06-05 2016-01-27 邢台路桥建设总公司 A kind of antitorque assembling composite beam of steel box and manufacture method thereof
CN106012808A (en) * 2016-08-01 2016-10-12 中国矿业大学(北京) Corrugated steel web and profiled steel sheet combined beam and construction method thereof
CN106012808B (en) * 2016-08-01 2018-04-20 中国矿业大学(北京) A kind of Wavelike steel webplate profiled sheet combination beam and its construction method
CN106702876A (en) * 2016-12-14 2017-05-24 重庆交通大学 Steel-concrete composite beam bridge with sections continuously fabricated, pushed to places and then connected and rapid construction method of steel-concrete composite beam bridge

Also Published As

Publication number Publication date
JP2006022595A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
EP1383962B1 (en) Prestressed composite truss girder and construction method of the same
KR100941066B1 (en) Prestressed-precast-segmental open spendral concrete arch bridge and its constructing method
JP3881598B2 (en) Composite truss segment and truss bridge with suspension cable using the same and its construction method
US9388561B2 (en) Modular construction mold apparatus and method for constructing concrete buildings and structures
AU2015246120B2 (en) Open web composite shear connector construction
JP2009526928A (en) Unitized post-tension block system for masonry structures
KR100626542B1 (en) Hybrid Beam Structure Using Thin Steel Plate and Concrete
KR100536489B1 (en) Manufacturing method for prestressed steel composite girder and prestressed steel composite girder thereby
KR20090089033A (en) Precast concrete deck structure
JP4390494B2 (en) Girder and floor slab joining structure and girder and floor slab joining method
KR100609304B1 (en) Precast Composition I-Beam with Concrete Panel and Corrugated Steel Web Girder
KR100427405B1 (en) Pssc complex girder
KR101178876B1 (en) Prestressed composit rahmen bridge construdtion method
KR100543969B1 (en) Composite rigid-frame bridge installing prestressed compound beam to the contral point of the slab of rigid-frame bridge and connecting the beam to the steel member installed in the upper of pole, and construction method thereof
US20040128939A1 (en) Composite bearing deck comprising deck panel and concrete
KR100978882B1 (en) Cantilever precast deckplate for composite slab and bridge construction method using the same
US5305572A (en) Long span post-tensioned steel/concrete truss and method of making same
US20100024332A1 (en) Structural element and methods of use thereof
KR100869568B1 (en) Opening steel-concrete composite steel girder and method for manufacturing the same
KR100889273B1 (en) Construction method for rhamen bridge
KR101652664B1 (en) Precast deckplate and composite slab and concrete slab manufacturing method using the same
JP2003268719A (en) Steel-concrete composite beam and its installation method
EP1347121A3 (en) Construction method and system
JP5738933B2 (en) Light weight load bearing structure
US3577504A (en) Method of manufacturing a girder with a web of reinforced and/or prestressed concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

R150 Certificate of patent or registration of utility model

Ref document number: 4528042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees