JP2020063598A - Hinge part reinforcement method and reinforcement structure in hinged girder bridge with pc - Google Patents

Hinge part reinforcement method and reinforcement structure in hinged girder bridge with pc Download PDF

Info

Publication number
JP2020063598A
JP2020063598A JP2018195825A JP2018195825A JP2020063598A JP 2020063598 A JP2020063598 A JP 2020063598A JP 2018195825 A JP2018195825 A JP 2018195825A JP 2018195825 A JP2018195825 A JP 2018195825A JP 2020063598 A JP2020063598 A JP 2020063598A
Authority
JP
Japan
Prior art keywords
concrete
bridge
range
girder
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018195825A
Other languages
Japanese (ja)
Other versions
JP6564921B1 (en
Inventor
亮平 黒沢
Ryohei Kurosawa
亮平 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosawa Construction Co Ltd
Original Assignee
Kurosawa Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosawa Construction Co Ltd filed Critical Kurosawa Construction Co Ltd
Priority to JP2018195825A priority Critical patent/JP6564921B1/en
Application granted granted Critical
Publication of JP6564921B1 publication Critical patent/JP6564921B1/en
Priority to KR1020190128267A priority patent/KR20200043293A/en
Publication of JP2020063598A publication Critical patent/JP2020063598A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/04Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/28Concrete reinforced prestressed

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

To provide a drastic hinge part reinforcement method to reinforce a hinge part almost perfectly, and a reinforced structure that makes an entire bridge continuous to prevent sagging that exceeds design value, damage, and deterioration during construction and service; and to ensure safe and comfortable traveling performance.SOLUTION: After placing and tensile-anchoring fixing tension PC steel materials 6 into a required length onto both sides of and over a specified range of bridge girders 2 where concrete is placed into, so as to generate elastic tension, jacks are installed at specified locations within the specified range. The jacks are extruded to apply compressive force to bridge girder cross sections on both sides of the range, as well as, to further increase the elastic tension of the PC steel materials 6. With the jacks extruded, a concrete 10 is poured into and cured in the above range. After the concrete 10 is hardened, the jacks are loosened and removed to release the compressive force applied to the bridge girder cross sections on both sides of the range and release the elastic tension generated in the PC steel materials 6 so as to apply resultant stress as prestress to the concrete 10 in the above range.SELECTED DRAWING: Figure 7

Description

本発明は、新設および既設を問わず、PC有ヒンジ桁橋におけるヒンジ部の補強方法および補強構造に関するものである。   The present invention relates to a method and structure for reinforcing a hinge portion of a hinged girder bridge with a PC, which may be new or existing.

この種の支間中央部にヒンジを有する連続PC桁橋は、ヒンジにより任意の橋脚から進められ、分割施工ができることと、断面力が施工時と供用時でほぼ一致するという利点がある。また、連続桁橋の支間の中間部に適当なヒンジを挿入した形式で、ゲルバー桁橋と呼ばれるものがあり、ヒンジがあるため静定構造となり、上部構造内に無理な応力や変形が生じないため有利となり、全体の桁高が小さくて済む等という長所がある。   This type of continuous PC girder bridge having a hinge at the center of the span has the advantages that it can be advanced from an arbitrary pier by the hinge and can be divided into separate constructions, and the cross-sectional forces are almost the same during construction and in service. In addition, there is a type called a Gerber girder bridge in which a suitable hinge is inserted in the middle part between the supports of a continuous girder bridge, and since it has a hinge, it becomes a statically determinate structure, and there is no unreasonable stress or deformation in the superstructure. Therefore, there is an advantage that the height of the whole girder is small.

上記のようなヒンジ部を有する連続PC桁橋は古くから数多く建設されてきたが、近年、通過車両の重量制限が緩和され上昇することによってヒンジ部の破損、または、橋面からの雨水で水分供給が多いなどにより、ヒンジ部の劣化現象が急増してきたため、補強を施すことが必要となった。また、高速道路では車両が高速走行時に、ヒンジ部で発生する騒音や振動が走行性を阻害することにより、ヒンジ部を連続化して走行性を高めるように、いわゆるノージョイント化することが要求されている。   A large number of continuous PC girder bridges having the above-mentioned hinges have been constructed for a long time, but in recent years, the hinges have been damaged due to the relaxation of the weight limit of passing vehicles and rising, or moisture from rainwater from the bridge surface. The deterioration phenomenon of the hinge part has rapidly increased due to a large amount of supply, and it is necessary to reinforce it. On highways, when a vehicle is traveling at high speed, noise and vibration generated at the hinge block the running performance, so that the hinge is made continuous so as to improve the running performance, so-called no-joint is required. ing.

また、新設の場合に、橋下の立地に制約されて支保工が施工できない時には、橋脚上から左右に片持ち状態で橋桁を1ブロックずつ順次構築する、いわゆる片持ち張出架設工法が採用されている。この工法は、移設可能なレールを既設橋体ブロック上に仮固定し、そのレール上に移動作業車(ワーゲン)を前後進可能に設置し、この移動式作業車から次の新設橋体ブロックの型枠支持部材や足場を前方に張出して吊設支持し、この支持部材上に型枠、鉄筋、PC鋼材などを組み立てて、コンクリートを打設して、当該ブロックにプレストレスを導入して構築する現場打ち張出架設桁橋を構築するものが公知になっている。   Also, in the case of new construction, when the support work cannot be constructed due to the location under the bridge, the so-called cantilever overhanging construction method is adopted in which bridge girders are sequentially constructed one block at a time from the top of the bridge to the left and right in a cantilever state. There is. In this construction method, a relocatable rail is temporarily fixed on an existing bridge block, a mobile work vehicle (wagen) is installed on the rail so that it can move forward and backward, and from this mobile work vehicle to the next new bridge block. Formwork support members and scaffolds are bulged forward and supported by suspension, formwork, reinforcing bars, PC steel materials, etc. are assembled on this support member, concrete is placed, and prestress is introduced into the block to build. It is well known to construct a field girder bridge for field construction.

従って、片持ち状態に張り出して施工された径間の中央閉合部は、ヒンジの状態となり、片持ち梁形式のままであるから、常時受ける車両や風等による振動が左右不均一のため、破損し易いばかりでなく、頻繁にメンテナンスが必要となりランニングコストが高く付くことになるのであり、両側から張出架設されて中央部で突合せをする閉合部を強固な一区画とすることに解決課題を有する。   Therefore, the center closed part of the span, which was extended in a cantilever state, is in a hinge state and is still in a cantilever form, so the vibration due to the vehicle or wind that is constantly received is uneven on the left and right, so it is damaged. Not only is it easy to perform, but frequent maintenance is required, which results in high running costs.Therefore, the problem to be solved is to make the closing part that is erected from both sides and abuts at the central part into a strong partition. Have.

ヒンジ部の補強構造および補強方法については、種々の提案がなされている。
新設桁橋についての提案としては、張出架設工法により構築される橋桁において、径間の閉合部となる中央区画の主桁断面に、中央区画の断面下部に該区画を貫通して隣接区画の張出橋体ブロックの上面に亘って湾曲状にPC鋼材が配置されて緊張定着されることによって主桁にプレストレスが付与されることを特徴とするSPC桁橋構造である(特許文献1参照)。
Various proposals have been made regarding the reinforcing structure and the reinforcing method of the hinge portion.
As a proposal for the new girder bridge, in the bridge girder constructed by the overhanging construction method, the main girder cross section of the central section that becomes the closing part of the span, The SPC girder bridge structure is characterized in that a prestress is applied to the main girder by arranging a PC steel material in a curved shape over the upper surface of the overhanging bridge block and tension-fixing the same (see Patent Document 1). ).

この構造によれば、主桁断面上部に配置されたPC鋼材が径間の中央区画をラップ状態に貫通したことによって、中央閉合部の全断面にプレストレスが付与されているから、主要幹線道路として使用される場合において、大型車両や風等の振動荷重によって断面上下端に引張応力が発生しても打ち消され、橋梁全体の安全性及び耐久性を確保することができる、というものである。   According to this structure, since the PC steel material arranged on the upper part of the main girder section penetrates the center section of the span in a lap state, prestress is applied to the entire cross section of the central closed section, so that the main trunk road In this case, even if tensile stress is generated at the upper and lower ends of the cross section due to a vibration load such as a large vehicle or wind, it is canceled and the safety and durability of the entire bridge can be secured.

また、既設桁橋についての提案としては、所定の打ち替え範囲で既設ヒンジ部を切断して撤去し、該打ち替え範囲内の所要箇所にジャッキと共に該ジャッキを囲う枠を設置し、該ジャッキの押出により打ち替え範囲の両側の橋桁断面に圧縮力を与え、前記ジャッキを押し出した状態で上記打ち替え範囲にコンクリートを打設して硬化させ、該コンクリート硬化後にジャッキを緩めて枠と共に取り外すことによって打ち替え範囲内のコンクリートにプレストレスを付与することを特徴とする既設桁橋のヒンジ部補強方法である(特許文献2参照)。   In addition, as a proposal for the existing girder bridge, the existing hinge part is cut and removed in a predetermined replacement range, a frame surrounding the jack is installed together with the jack at a required position within the replacement range, and the By applying a compressive force to the cross section of the bridge girders on both sides of the replacement range by extrusion, concrete is placed and hardened in the replacement range with the jack pushed out, and after the concrete has hardened, the jack is loosened and removed with the frame. This is a method of reinforcing a hinge portion of an existing girder bridge, which is characterized by applying prestress to concrete within a replacement range (see Patent Document 2).

この補強方法によれば、打ち替え範囲(打ち替え部)にジャッキを設置して押し出した状態で、即ち、ジャッキを作動させてストロークを延ばしてジャッキの押出により打ち替え範囲の両側の橋桁断面に圧縮力を与えている状態でコンクリートを打設し、コンクリート硬化後にジャッキを緩めて(延ばしてあったストロークを元に戻す)取り外すことによって打ち替え範囲内のコンクリートにプレストレスを付与することにより、打ち替え部の施工時の初期ひび割れ発生および供用時のひび割れ発生を抑制し、橋面からの雨水などの水分供給によるコンクリートの劣化を防ぐことができると共に、ヒンジ部を連続化した打ち替え部に引張力が生じにくい状態になり応力改善に寄与する効果が顕著である、というものである。   According to this reinforcing method, the jack is installed and pushed out in the replacement range (replacement part), that is, the jack is operated to extend the stroke and the jack is pushed to the cross section of the bridge girder on both sides of the replacement range. By placing concrete with compressive force applied and loosening the jack after hardening the concrete (returning the stretched stroke) to remove it, prestressing the concrete within the replacement range It is possible to suppress the initial cracking during construction of the replacement section and the cracking during operation, to prevent deterioration of concrete due to water supply such as rainwater from the bridge surface, and to replace the hinge section with a continuous replacement section. That is, the tensile force is less likely to be generated and the effect of improving the stress is remarkable.

特許第5282161号の特許公報Patent Publication No. 5228161 特許第5716117号の特許公報Patent Publication of Japanese Patent No. 5716117

前記特許文献1の技術において、中央区画の断面下部に該区画を貫通して隣接区画の張出橋体ブロックの上面に亘って湾曲状にPC鋼材が配置されて緊張定着されることによって連続PC桁橋のヒンジ部を含む中央閉合部の応力が改善されているが、中央閉合部が完成した後に湾曲状なPC鋼材を配置して緊張定着するため、施工時における橋軸方向に発生するコンクリートの乾燥収縮やクリープ変形に対しては抑制することはできないばかりではなく、施工時にヒンジ部を含む中央閉合部に発生した設計値を上回る垂れ下がりに対しては持ち上げることはできないという問題点を有している。   According to the technique of Patent Document 1, a PC steel material is arranged in a curved shape across the upper surface of an overhanging bridge block of an adjacent partition penetrating the partition in the lower part of the cross section of the central partition and tension-fixed to form a continuous PC. Although the stress of the central closing part including the hinge part of the girder bridge has been improved, since the curved PC steel material is placed and the tension is fixed after the completion of the central closing part, the concrete generated in the bridge axial direction at the time of construction Not only cannot it be suppressed against the dry shrinkage and creep deformation of the above, but it also has the problem that it cannot be lifted against the sag that exceeds the design value that occurred in the central closing part including the hinge part during construction. ing.

特許文献2の技術においても、施工時に打ち替え範囲内に連結鋼材がなくジャッキのみであり、ジャッキがものの間に挟んで両者が対向方向に発生する伸び変形に対して抑制するものなので、対向方向に両者が離れて行く縮みに効かないため、打設後のコンクリートの乾燥収縮やクリープ変形に対して抑えきれず、ジャッキの押出力を維持することが難しいから、コンクリート硬化後ジャッキを緩めて取り外した後に、ジャッキの押出力によるコンンクリートに付与するプレストレスが所定の値にならず、ヒンジ部が設計値を上回る垂れ下がりが発生する恐れがある。   In the technique of Patent Document 2 as well, there is no connecting steel material within the replacement range at the time of construction, and there is only the jack, and the jack is sandwiched between the objects to suppress extensional deformation that occurs in the opposite direction. Since it does not work against the shrinkage that separates from each other, it cannot control the dry shrinkage and creep deformation of concrete after placing it, and it is difficult to maintain the pushing force of the jack, so loosen the jack after hardening the concrete and remove it. After that, the prestress applied to the concrete by the pushing force of the jack does not reach a predetermined value, and the hinge portion may hang down more than the designed value.

そこで、本発明は、ヒンジ部の抜本的な補強方法を提供してヒンジ部をほぼ完璧に補強し、橋梁全体を連続化する補強構造にして、施工時及び供用時に設計値を上回る垂れ下がりや破損と劣化を防ぐと共に、安全で快適な走行性を確保することを目的とするものである。   Therefore, the present invention provides a drastic reinforcement method for the hinge part to almost completely reinforce the hinge part to form a reinforcing structure that makes the entire bridge continuous, and droops and damages exceeding the design value during construction and service. The purpose is to prevent deterioration and to ensure safe and comfortable driving performance.

前述の従来例の課題を解決する具体的手段として、本発明は、PC有ヒンジ桁橋におけるヒンジ部の補強方法であって、コンクリートを打設する所定範囲にわたって両側の橋軸方向に所要長さまでPC鋼材を配置し緊張定着して該PC鋼材に弾性張力を生じさせた後に、上記の所定範囲内に所要箇所にジャッキを設置し、該ジャッキの押出により該範囲の両側の橋桁断面に圧縮力を与えると共に、前記PC鋼材に弾性張力をさらに増やし、前記ジャッキを押し出した状態で上記の範囲にコンクリートを打設して硬化させ、該コンクリート硬化後にジャッキを緩めて取り外すことによって該範囲の両側の橋桁断面に与えられた圧縮力および上記PC鋼材に生じさせた弾性張力を解放してプレストレスとして上記範囲内のコンクリートに付与することを特徴とするPC桁橋のヒンジ部補強方法を提供するものである。   As a concrete means for solving the above-mentioned problems of the conventional example, the present invention is a method of reinforcing a hinge portion in a hinged girder bridge with a PC, up to a required length in the bridge axis direction on both sides over a predetermined range for placing concrete. After arranging the PC steel material and tension-fixing it to generate elastic tension in the PC steel material, a jack is installed at a required location within the above-mentioned predetermined range, and a compression force is applied to the bridge girder cross-sections on both sides of the range by pushing the jack. In addition to increasing the elastic tension of the PC steel material, the concrete is placed and hardened in the above range in a state where the jack is pushed out, and after the concrete is hardened, the jack is loosened and removed to remove both sides of the range. The compressive force applied to the cross section of the bridge girder and the elastic tension generated in the PC steel material are released and applied to the concrete within the above range as prestress. There is provided a hinge portion reinforcing method of PC girder bridge, characterized and.

上記ヒンジ部補強方法の発明において、前記所定範囲にわたって両側の橋軸方向に所要長さまで鉄骨鋼材を配置し、増し打ちコンクリートで橋桁と一体化すること、を付加的な要件として含むものである。   In the invention of the above-mentioned method for reinforcing a hinge portion, it is an additional requirement that steel frame steel materials are arranged in the bridge axial direction on both sides to the required length over the predetermined range and integrated with the bridge girder by additional concrete.

また、本発明では、PC有ヒンジ桁橋におけるヒンジ部の補強構造であって、コンクリートを打設する所定範囲にわたって両側の橋軸方向に所要長さまでPC鋼材を配置し緊張定着されて該PC鋼材に弾性張力が生じた後に、上記の所定範囲内の所要箇所にジャッキが設置され、該ジャッキの押出により該範囲の両側の橋桁断面に圧縮力が与えられると共に、前記PC鋼材に弾性張力がさらに生じさせられ、前記ジャッキを押し出した状態で上記範囲にコンクリートが打設されて硬化し、該コンクリート硬化後にジャッキを緩めて取り外すことによって該範囲の両側の橋桁断面に与えられた圧縮力および上記PC鋼材に生じさせられた弾性張力が解放されてプレストレスとして上記範囲内のコンクリートに付与されることを特徴とするPC桁橋のヒンジ部補強構造を提供するものである。   Further, according to the present invention, there is provided a reinforcing structure of a hinge portion in a hinged girder bridge with a PC, in which a PC steel material is arranged to a required length in a bridge axial direction on both sides over a predetermined range where concrete is placed, and the PC steel material is tensioned and fixed. After the elastic tension is generated in the area, a jack is installed at a required position within the above-mentioned predetermined range, and a compression force is applied to the cross section of the bridge girder on both sides of the area by the pushing of the jack, and the elastic tension is further applied to the PC steel material. When the concrete is generated, concrete is placed in the above-mentioned range in a state where the jack is pushed out and hardened, and after the concrete is hardened, the jack is loosened and removed, and the compression force applied to the cross section of the bridge on both sides of the range and the PC. A PC girder characterized in that the elastic tension generated in the steel material is released and given to the concrete within the above range as prestress. There is provided a hinge reinforcement structure.

前記ヒンジ部補強構造の発明において、前記所定範囲にわたって両側の橋軸方向に所要長さまで鉄骨鋼材が配置され、増し打ちコンクリートで橋桁と一体化されること、を付加的な要件として含むものである。   In the invention of the above-mentioned hinge portion reinforcing structure, it is included as an additional requirement that steel frame steel materials are arranged in the bridge axial direction on both sides to the required length over the predetermined range and are integrated with the bridge girder by additional concrete.

本発明に係るヒンジ部補強方法および補強構造によれば、以下に示す通りの効果を奏する。
1、ヒンジ部を含むコンクリートを打設する所定範囲を補強範囲として当該範囲にわたって両側の橋軸方向に所要長さまで先にPC鋼材を配置し緊張定着して該PC鋼材に弾性張力を生じさせた後に、ジャッキを設置して押し出した状態で、即ち、ジャッキを作動させてストロークを延ばしてジャッキの押出により当該(補強)範囲の両側の橋桁断面に圧縮力を与えると共に、PC鋼材に弾性張力をさらに増やした状態でコンクリートを打設して硬化させ、コンクリート硬化後にジャッキを緩めて取り外すことによって当該(補強)範囲の両側の橋桁断面に与えられた圧縮力および上記PC鋼材に生じさせられた弾性張力を解放してプレストレスとして当該(補強)範囲内のコンクリートに付与することによって、ヒンジ部を含む当該範囲内において、コンクリート打設開始前から硬化まで、ジャッキの押出力のみでなく、PC鋼材の弾性張力が発生しており、その弾性張力が常に戻そうとする力になり、当該(補強)範囲内のコンクリートに圧縮力として作用しているため、打設後のコンクリートの乾燥収縮やクリープ変形によるジャッキの押出力のロスを補い、コンクリートの変形を有効に抑え、コンクリート硬化後にジャッキを緩めて、解放されたジャッキの圧縮力とPC鋼材の弾性張力が所定のプレストレスに変わって当該(補強)範囲内のコンクリートに与えることができ、施工時のみならず供用時の垂れ下がりを確実に防ぐことができる。
2、PC鋼材を配置したことによって、上記(補強)範囲内のコンクリートに与えるプレストレスの一部をPC鋼材に生じさせることになり、ジャッキの容量や数を減らすことができ、施工性向上と共にコスト軽減を図ることができる。
3、ヒンジ部を含むコンクリートを打設する所定範囲の両側の橋桁断面に与えられた圧縮力および上記PC鋼材に生じさせられた弾性張力を解放してプレストレスとして当該(補強)範囲内のコンクリートに付与することによって、当該(補強)範囲部の施工時の初期ひび割れ発生および供用時のひび割れ発生を抑制し、橋面からの雨水などの水分供給によるコンクリートの劣化を防ぐことができると共に、ヒンジ部を連続化した補強範囲部に引張力が生じにくい状態になり応力改善に寄与する効果が顕著である。
4、ヒンジ部を含む所定範囲に鉄骨鋼材を配置することにより、所定範囲の橋桁断面耐力が大幅に向上し、ヒンジ部が連続した状態になるので、供用中の破損を防ぐことができるという優れた効果を奏する。
5、ヒンジ部を連続化したことにより、車両の高速走行で発生する騒音や振動を減らすことができるので、安全で快適な走行性を確保できるという優れた効果を奏する。
The hinge part reinforcing method and the reinforcing structure according to the present invention have the following effects.
1. A predetermined range in which concrete including a hinge part is cast is set as a reinforcement range, and a PC steel material is first arranged in the bridge axial direction on both sides to a required length over the range and tension fixation is performed to generate elastic tension in the PC steel material. After that, with the jack installed and pushed out, that is, by operating the jack to extend the stroke and pushing the jack, a compressive force is applied to the cross section of the bridge girder on both sides of the (reinforcement) range, and elastic tension is applied to the PC steel material. When the concrete is further increased, the concrete is poured and hardened, and after the concrete hardens, the jack is loosened and removed, and the compressive force applied to the cross section of the bridge girder on both sides of the (reinforced) range and the elasticity generated in the PC steel material. By releasing the tension and applying it as prestress to the concrete within the (reinforcement) range, the range including the hinge part In addition, not only the pushing force of the jack but also the elastic tension of the PC steel material is generated from before the start of concrete pouring until it is hardened, and the elastic tension is a force that always tries to return. Since it acts on the concrete as a compressive force, it compensates for the loss of the pushing force of the jack due to drying shrinkage and creep deformation of the concrete after placing it, effectively suppressing the deformation of the concrete, loosening the jack after hardening the concrete, and releasing it. The compressive force of the jack and the elastic tension of the PC steel material can be applied to the concrete within the relevant (reinforcement) range by changing into a predetermined pre-stress, and it is possible to reliably prevent the sagging not only during construction but also during service. .
2. By arranging the PC steel material, a part of the prestress given to the concrete within the above (reinforcement) range will be generated in the PC steel material, and the capacity and number of jacks can be reduced, and the workability can be improved. The cost can be reduced.
3. The concrete within the range (reinforcement) is released as prestress by releasing the compressive force applied to the cross section of the bridge girders on both sides of the concrete range including the hinge part and the elastic tension generated in the PC steel material. By adding to the hinge, it is possible to suppress the initial cracking during construction of the relevant (reinforcement) area and the cracking during operation, prevent the deterioration of concrete due to the supply of water such as rainwater from the bridge surface, and to prevent the hinge. A tensile force is less likely to be generated in the reinforced area where the parts are continuous, and the effect of contributing to stress improvement is remarkable.
4. By arranging steel-framed steel material in the predetermined range including the hinge part, the cross-section proof stress of the predetermined range is greatly improved and the hinge part is in a continuous state, so it is possible to prevent damage during service. Produce the effect.
5. By making the hinge part continuous, noise and vibration generated during high-speed running of the vehicle can be reduced, so that an excellent effect of ensuring safe and comfortable running performance can be obtained.

本発明が適用される一般的な箱桁構成された既設のPC桁橋であって、図(a)は支間の中央部にヒンジ部を有する既設桁橋を示し、図(b)は中間部に2箇所のヒンジ部を有する既設桁橋をそれぞれ略示的に示した説明図である。A general box girder existing PC girder bridge to which the present invention is applied, wherein Fig. (A) shows an existing girder bridge having a hinge part at the center of the span, and Fig. (B) shows an intermediate part. It is the explanatory view which showed roughly the existing girder bridge which has two hinge parts in each. 本発明に係る補強方法の第1の実施形態を示すもので、図(c)は図1の図(a)に係るヒンジ部の補強しようとする要領を拡大して示した説明図であり、図(d)は図(c)のA―A線に沿う断面図である。The 1st Embodiment of the reinforcing method which concerns on this invention is shown, Comprising: FIG.1 (c) is explanatory drawing which expanded and showed the point which is going to reinforce the hinge part which concerns on FIG.1 (a). FIG. 6D is a sectional view taken along the line AA of FIG. 同実施の形態を示すもので、図(e)は図1の図(a)に係るヒンジ部の補強しようとする部分を除去して拡大して示した説明図であり、図(f)は図(e)のB―B線に沿う断面図である。1 shows the same embodiment, FIG. (E) is an explanatory view enlarged and showing a portion of the hinge portion according to FIG. 1 (a) to be reinforced and removed, and FIG. It is sectional drawing which follows the BB line of FIG. 同実施の形態を示すもので、図(g)は図3の図(e)に係るヒンジ部の補強手順Iの状況を示した説明図であり、図(h)は図(g)のC―C線に沿う断面図である。FIG. 12 shows the same embodiment, and FIG. 9 (g) is an explanatory view showing a situation of a reinforcement procedure I of the hinge portion related to FIG. 3 (e), and FIG. -It is sectional drawing which follows the C line. 同実施の形態を示すもので、図(i)は図4の図(g)に続きヒンジ部の補強手順IIの状況を示した説明図であり、図(j)は図(i)のD―D線に沿う断面図である。FIG. 7 shows the same embodiment, and FIG. (I) is an explanatory view showing the situation of hinge step reinforcement procedure II following FIG. 4 (g), and FIG. -It is sectional drawing which follows the D line. 同実施の形態を示すもので、図(k)は図5の図(i)に引き続きヒンジ部の補強手順IIIの状況を示した説明図であり、図(l)は図(k)のE―E線に沿う断面図である。FIG. 5 shows the same embodiment, and FIG. 5 (k) is an explanatory view showing the situation of the hinge part reinforcement procedure III following FIG. 5 (i), and FIG. -It is sectional drawing which follows the E line. 同実施の形態を示すもので、図(m)は図6の図(k)に引き続きヒンジ部の補強手順IVの状況を示した説明図であり、図(n)は図(m)のF―F線に沿う断面図である。FIG. 7 shows the same embodiment, and FIG. 6 (m) is an explanatory view showing the situation of hinge step reinforcement procedure IV following FIG. 6 (k), and FIG. -It is sectional drawing which follows the F line. 同実施の形態を示すもので、図3(e)と同じヒンジ部の補強しようとする部分を除去して拡大して示し、該ヒンジ部に鉄筋を配設する前の説明図である。FIG. 4 is an explanatory view showing the same embodiment and showing the same hinge portion as that shown in FIG. 3 (e) in an enlarged manner by removing a portion to be reinforced, and before disposing a reinforcing bar on the hinge portion. 同実施の形態を示すもので、図(o)は補強しようとするヒンジ部に鉄筋を配設した状態を示す説明図であり、図(p)は図(o)のG―G線に沿う断面図である。In the same embodiment, FIG. 8 (a) is an explanatory view showing a state in which a reinforcing bar is arranged in a hinge portion to be reinforced, and FIG. 10 (p) is taken along line GG in FIG. FIG. 本発明に係る補強方法の第2の実施形態を示すもので、図(q)は補強しようとするヒンジ部に鉄骨鋼材を配設した状態を拡大して示した説明図であり、図(r)は図(q)のH―H線に沿う断面図である。The 2nd Embodiment of the reinforcing method which concerns on this invention is shown, (q) is explanatory drawing which expanded and showed the state which arrange | positioned the steel frame steel material in the hinge part which is going to reinforce, FIG. ) Is a sectional view taken along the line HH of FIG.

本発明を図示の実施の形態に係る複数の実施例について説明する。まず、ヒンジ部の形態について、図1の図(a)と図(b)を用いて説明する。例えば、図(a)は、橋脚1に架設してあるPC橋桁2を示すものであって、該橋桁2が最も一般的な箱桁で構成され、支間の中央部にヒンジ部3を有するものであり、図(b)は、橋桁2の中間部にヒンジ部3、3を有するものである。   The present invention will be described with reference to a plurality of examples according to the illustrated embodiments. First, the form of the hinge portion will be described with reference to FIGS. 1 (a) and 1 (b). For example, FIG. 1 (a) shows a PC bridge girder 2 erected on a bridge pier 1, wherein the bridge girder 2 is composed of the most common box girder and has a hinge part 3 in the center of the span. FIG. 2B shows that the bridge girder 2 has the hinge portions 3 in the middle thereof.

上記のようなPC橋桁2のヒンジ部3を補強するに当たって、既設橋桁の場合、図2(c)に示したように、ヒンジ部3を含む両側の橋桁2の打ち替え範囲として所定範囲4に渡って分割切断して除去する。この場合の分割切断は、例えば、仮設支柱等で分割切断する部分を支持した状態で、例えば、ワイヤーソー等の切断手段を用いて分割切断し、その分割切断した部分は、そのままクレーンでつり上げて搬出する。   When reinforcing the hinge part 3 of the PC bridge girder 2 as described above, in the case of the existing bridge girder, as shown in FIG. 2C, the replacement range of the bridge girders 2 on both sides including the hinge part 3 is set to a predetermined range 4. Cut and cut across. In this case, the divided cutting is performed, for example, in a state in which the portion to be divided and cut is supported by a temporary support column or the like, for example, by using a cutting means such as a wire saw, and the divided and cut portion is lifted as it is by a crane. Carry out.

橋桁2の両側の切断面には、図(d)に示したように、PC橋桁2内に配設されていた鉄筋5および既設PC鋼材(図示省略)が切断されてその端面が露出している。この橋桁2の切断面において、ウォータージェットによりコンクリートを所要厚さ削り取って、鉄筋5およびPC鋼材を所要長さ突出させ、PC鋼材については、その先端部に楔式定着具を取り付けて再定着する。なお、既設PC鋼材については、既設の定着具を撤去して再定着するまでは、グラウトによる付着のみで定着状態となるため、既設のグラウト状態を確認し、必要に応じてグラウト再充填作業を行う場合もある。   As shown in FIG. (D), the reinforcing bars 5 and the existing PC steel material (not shown) disposed in the PC bridge girder 2 are cut and the end faces are exposed at the cut surfaces on both sides of the bridge girder 2. There is. On the cut surface of the bridge girder 2, the concrete is scraped off by the water jet to the required thickness, and the reinforcing bar 5 and the PC steel material are projected to the required length, and the PC steel material is re-fixed by attaching a wedge type fixing tool to the tip thereof. . As for existing PC steel materials, until the existing fixing device is removed and re-fixed, the fixing state is achieved only by the attachment by the grout. Therefore, the existing grout state is confirmed, and the grout refilling work is performed as necessary. It may be done.

新設の橋桁2の場合、図3(e)に示したように、一例として中央閉合部を示す。
この場合も、支持された両側の橋桁2の端部間はヒンジ部3を含む所定範囲4を補強範囲として所要の間隔を設ける。つまり、両側に張り出し工法によって構築された橋桁2の端面には、最初から所要長さの接続用鉄筋5を露出(突出)させておく。その橋桁2の端面における鉄筋5の配筋状況はB―B線視図として図(f)に示す。また、図示は省略するが、構築された橋桁2内には複数のPC鋼材が配置され橋桁2の端面に定着具を用いて緊張定着されている。
以上は、既設も新設も橋桁2の端部は略同様な状態(構造)に形成しておく。
In the case of the new bridge girder 2, as shown in FIG. 3 (e), the central closing portion is shown as an example.
Also in this case, a predetermined space is provided between the ends of the supported bridge girders 2 with the predetermined range 4 including the hinge part 3 as a reinforcing range. That is, the connecting rebars 5 having a required length are exposed (projected) from the beginning on the end faces of the bridge girder 2 constructed by the projecting method on both sides. The reinforcing bar 5 arrangement at the end face of the bridge girder 2 is shown in FIG. Although not shown, a plurality of PC steel materials are arranged in the constructed bridge girder 2 and tension-fixed to the end surface of the bridge girder 2 using a fixing tool.
As above, the end of the bridge girder 2 is formed in substantially the same state (structure) in both existing and new construction.

次に、本発明のヒンジ部3に係る補強の実施手順(工程)について図4〜図7を用いて説明する。
[手順I]
図4(g)、(h)に示したように、ヒンジ部3となる部分にコンクリートを打設するために、所定範囲4を残して両側から張り出し工法によって構築された橋桁2に、橋軸方向に所要長さまで複数本のPC鋼材6を配置し、橋桁2の端部に定着部7を設けて該PC鋼材6の端部を緊張定着する。この場合の定着部7は鋼製ブロックまたはコンクリートブロックのいずれかとしてよいし、また増し打ちコンクリートとしてもよい。
Next, a procedure (process) of reinforcing the hinge portion 3 of the present invention will be described with reference to FIGS. 4 to 7.
[Procedure I]
As shown in FIGS. 4 (g) and 4 (h), in order to place concrete in the portion to be the hinge part 3, the bridge girder 2 constructed by the overhanging method from both sides leaving a predetermined range 4 A plurality of PC steel materials 6 are arranged in a direction up to a required length, and a fixing portion 7 is provided at an end portion of the bridge girder 2 to tension and fix the end portion of the PC steel material 6. In this case, the fixing portion 7 may be either a steel block or a concrete block, or may be an additional concrete.

定着部7においては、例えば、ナット等の所要の定着具8を配置して該PC鋼材6を緊張定着する。なお、図示ではPC鋼材6はPC鋼棒としているが、PC鋼より線からなるPCケーブルとしてもよい。PC鋼棒を用いる場合に、PC鋼棒の外に鋼管シースを付けて外ケーブル方式とすることが好ましい。また、PC鋼より線を用いる場合に、PC鋼より線の心線と側線にそれぞれ合成樹脂防錆塗膜が形成されたPC鋼より線に、さらにポリエチレン被覆を施したPE被覆全素線防錆塗装型PC鋼より線、いわゆる、アンボンド二重防錆PC鋼より線を用いる。この場合は、PC鋼より線からなるPCケーブルの外に鋼管シースは不要とすることが可能である。図示のように、該PC鋼材6を緊張定着することによって、PC鋼材6に弾性張力(矢印a)を生じさせることができる。なお、この段階で、当然の事として対抗する橋桁2の端面に突出する各鉄筋5間に新たな鉄筋(図示せず)をそれぞれ熔接して配筋しておくのである。   In the fixing section 7, for example, a required fixing tool 8 such as a nut is arranged to tension and fix the PC steel material 6. Although the PC steel material 6 is a PC steel rod in the drawing, it may be a PC cable made of a PC steel stranded wire. When using a PC steel rod, it is preferable to attach a steel pipe sheath to the outside of the PC steel rod to form an outer cable system. Further, when using a PC steel twisted wire, a PE steel twisted wire having a synthetic resin anticorrosive coating formed on the core wire and side wires of the PC steel twisted wire Rust-coated PC stranded wire, so-called unbonded double rust-proof PC stranded wire is used. In this case, it is possible to eliminate the need for a steel tube sheath outside the PC cable made of PC stranded wire. By elastically fixing the PC steel material 6 as shown in the figure, elastic tension (arrow a) can be generated in the PC steel material 6. At this stage, as a matter of course, new reinforcing bars (not shown) are welded and arranged between the reinforcing bars 5 projecting from the opposing end face of the bridge girder 2.

[手順II]
図5(i)、(j)に示したように、両橋桁2の端部における対向する面の所定範囲4内において、複数箇所(好ましくは4辺)にジャッキ9を設置し、該ジャッキ9の押出作用により該範囲の両側の橋桁2の断面に圧縮力(矢印b)を与えると共に、前記PC鋼材6に弾性張力をさらに増やすことができる。
[Procedure II]
As shown in FIGS. 5 (i) and 5 (j), jacks 9 are installed at a plurality of locations (preferably four sides) within a predetermined range 4 of the facing surfaces at the ends of both bridge girders 2, and the jacks 9 are provided. It is possible to apply a compressive force (arrow b) to the cross-sections of the bridge girders 2 on both sides of the range and to further increase the elastic tension of the PC steel material 6 by the pushing action.

[手順III]
図6(k)、(l)に示したように、前記手順IIでジャッキ9により両橋桁2の端部を押し拡げる作用を付与した状態で、ヒンジ部3となる部分に、両橋桁2の端部の形状に対応させて所要の枠組をし、ジャッキ9を取り囲むように囲い(カバー)をしてから所定範囲4内にコンクリート10を打設して硬化させる。
[Procedure III]
As shown in FIGS. 6 (k) and 6 (l), the jack 9 is used to push and spread the ends of both bridge girders 2 in the procedure II, and the hinge part 3 is attached to the portion of the two bridge girders 2. A required frame is formed corresponding to the shape of the end, and the jack 9 is surrounded (covered) so as to surround it, and concrete 10 is poured into the predetermined range 4 and hardened.

[手順IV]
図7(m)、(n)に示したように、打設したコンクリート10が硬化した後にジャッキ9を緩めて取り外すことによって、両側の橋桁2の断面に与えられた圧縮力(矢印b)およびPC鋼材6に生じさせた弾性張力を解放して、解放された圧縮力及び弾性張力はプレストレスとして所定範囲4内のコンクリート10に付与されるので該範囲は補強される。その後に、ジャッキ9の囲い(カバー)を外して生じた穴に、穴埋めコンクリート11をそれぞれ充填することにより、前記打設したコンクリート10がヒンジ部3となるのである。
[Procedure IV]
As shown in FIGS. 7 (m) and (n), by loosening and removing the jack 9 after the cast concrete 10 hardens, the compressive force (arrow b) applied to the cross section of the bridge girders 2 on both sides and The elastic tension generated in the PC steel material 6 is released, and the released compressive force and elastic tension are applied as prestress to the concrete 10 within the predetermined range 4, so that range is reinforced. After that, the holes 10 formed by removing the enclosure (cover) of the jack 9 are filled with the hole-filling concrete 11, so that the cast concrete 10 becomes the hinge part 3.

前記実施例において、PC鋼材6としてPC鋼棒を用いて外側に鋼管シースを付ける場合には、鋼管シース内にグラウトを充填してPC鋼棒を防錆処理する。PC鋼材を緊張定着することが望ましいが、その緊張力については、ジャッキ9の押出によってPC鋼材6に増やした弾性張力を含めて鋼材の弾性範囲内に抑え、その合計は、0.7Py以下とする(Py:PC鋼材の降伏力)。要するに、ジャッキ9の押出によってPC鋼材に増やした弾性張力が0.2Pyになるとすると、先にPC鋼材6の緊張定着力は、0.5Py以下とする。
また、PC鋼材6をPC鋼棒として、外ケーブル方式で配置される場合には、PC鋼棒には緩みがほとんど生じないため、緊張せずに定着のみにすることも可能である。PC鋼より線を使用する場合には、緩みを無くす程度で僅かに緊張力を与えて、例えば0.1〜0.2Pyの緊張力として緊張定着することによって、PC鋼材6が余裕をもって弾性範囲内に変形させることが好ましい。
In the above-mentioned embodiment, when a PC steel rod is used as the PC steel material 6 and a steel pipe sheath is attached to the outside, grout is filled in the steel pipe sheath to prevent the PC steel rod from rusting. It is desirable to fix the PC steel material by tension, but the tension force is suppressed within the elastic range of the steel material including the elastic tension increased to the PC steel material 6 by the extrusion of the jack 9, and the total is 0.7 Py or less. Yes (Py: PC steel yield strength). In short, if the elastic tension increased to PC steel by the extrusion of the jack 9 becomes 0.2 Py, the tension fixing force of the PC steel 6 is set to 0.5 Py or less first.
Further, when the PC steel rod 6 is arranged as the PC steel rod by the outer cable system, the PC steel rod hardly loosens, so that it is possible to perform only fixing without tension. When using a PC steel stranded wire, a slight tension force is applied to the extent that looseness is eliminated, and the tension is fixed as a tension force of, for example, 0.1 to 0.2 Py, so that the PC steel material 6 has an elastic range with a margin. It is preferable to deform the inside.

このようにヒンジ部3を含む所定範囲4内に打設した新設コンクリート10にプレストレスが付与されて形成されることによって、劣化または破損されたヒンジ部が既設橋桁と連続化した状態で補強され、施工時の初期ひび割れ発生を抑制できるばかりでなく、施工時の閉合部(ヒンジ部)に垂れ下がりの発生を防ぐことができるし、また使用時のひび割れ発生を抑制することができるのである。なお、使用されるジャッキ9としては、油圧ジャッキ、ネジジャッキまたはボルトジャッキのいずれでも良く、特に、限定されるものではない。また、所定範囲4内に打設されるコンクリート10は、膨張コンクリートを用いることが好ましい。つまり、ジャッキ9で導入されたプレストレスと併せて、初期ひび割れ防止に対してより一層効果的に作用するのである。   Thus, by prestressing and forming the new concrete 10 that has been cast within the predetermined range 4 including the hinge portion 3, the deteriorated or damaged hinge portion is reinforced in a state of being continuous with the existing bridge girder. Not only is it possible to suppress the occurrence of initial cracks during construction, but it is also possible to prevent the occurrence of sagging in the closing portion (hinge portion) during construction, and to suppress the occurrence of cracks during use. The jack 9 used may be a hydraulic jack, a screw jack, or a bolt jack, and is not particularly limited. In addition, it is preferable to use expansive concrete as the concrete 10 that is placed within the predetermined range 4. That is, the pre-stress introduced by the jack 9 and the pre-stress are more effective in preventing the initial crack.

なお、前記実施の形態において、コンクリートを打設する前に、鉄筋を接続する具体的な実施例を図8〜9に示す。図示のように予め既設の接続用鉄筋5を両側の桁端面から出しておいて、所定範囲4内に新たな接続鉄筋12を、例えば、エンクローズ溶接により軸方向に接続すると共に、必要な補強筋(図示せず)、例えば、スターラップ筋を配筋する。その後コンクリート10を打設して、コンクリートが硬化した後に、配筋されたコンクリートにプレストレスが付与されることによって従来のRC造とする中央閉合部より強固な補強部となる。   In addition, in the said embodiment, the concrete Example which connects a reinforcing bar before pouring concrete is shown in FIGS. As shown in the figure, the existing connecting reinforcing bars 5 are preliminarily taken out from the girder end faces on both sides, and a new connecting reinforcing bar 12 is connected within the predetermined range 4 in the axial direction by, for example, enclosed welding, and necessary reinforcement is performed. A muscle (not shown), for example, a stirrup muscle is arranged. After that, concrete 10 is cast, and after the concrete is hardened, pre-stress is applied to the reinforced concrete, so that it becomes a stronger reinforcing portion than the conventional central closed portion made of RC.

次に、図10に示した第2の実施の形態について説明する。
この第2の実施の形態は、前記第1の実施の形態に係る構成要件に、さらにヒンジ部3の補強の強度アップを図る構成を付加したものである。
即ち、前記第1の実施の形態で説明した所定範囲4内に新設コンクリート10を打設し、プレストレスを導入して橋桁2を連続化した後に、橋桁2の長手方向において箱桁の内側略中央部にヒンジ部3を超えて両側の橋桁2の内部に至る所要長さの、例えば、H形鋼からなる鉄骨鋼材13を設置し、該鉄骨鋼材13の両端部には端部アンカープレート14が溶接等で一体的に取り付け(貼り付け)てあり、設置した鉄骨鋼材13の周りに増し打ちコンクリート15を打設して橋桁2と一体的に形成させることにより、両側の橋桁2に鉄骨アンカー部16が形成されて連結強度が著しく向上する。この場合に、鉄骨鋼材13を構成するH形鋼のフランジにスタッドボルト17を取り付けて増し打ちコンクリートとの付着を高めることが望ましい。
Next, the second embodiment shown in FIG. 10 will be described.
In the second embodiment, in addition to the constituents according to the first embodiment, a structure for further increasing the strength of reinforcement of the hinge portion 3 is added.
That is, after placing the new concrete 10 within the predetermined range 4 described in the first embodiment and introducing the prestress to make the bridge girder 2 continuous, the inside of the box girder in the longitudinal direction of the bridge girder 2 A steel frame steel material 13 made of, for example, H-shaped steel having a required length extending beyond the hinge portion 3 to the inside of the bridge girders 2 on both sides is installed in the center portion, and end anchor plates 14 are provided at both ends of the steel frame steel material 13. Are integrally attached (attached) by welding or the like, and by additionally staking concrete 15 around the installed steel-frame steel material 13 to form the bridge girders 2 integrally, steel anchors are attached to the bridge girders 2 on both sides. The portion 16 is formed, and the connection strength is significantly improved. In this case, it is desirable to attach the stud bolts 17 to the flanges of the H-shaped steel forming the steel-steel material 13 to increase the adhesion to the additional concrete.

この場合に使用される鉄骨鋼材13として、工事現場の状況や搬送及び作業性(取扱い)等を考慮して、長尺(10m以上)のものと短尺(5m以下)のものとを使い分けることができるのである。図示の実施例は、短尺の鉄骨鋼材13が使用され、両側の各橋桁2の端面から所定の長さで鉄骨鋼材13の端部を出しておき、該端部を突合せ状態で中間部を接続するための接続鉄骨13aを当合って配置し、ガセットプレート18を通してボルトを用いて接続して一体化する。このように長尺でも短尺でも鉄骨鋼材13を両側の橋桁2内に連通させて配設し、鉄骨鋼材13の周りに増し打ちコンクリート15を打設して橋桁2と一体的に形成させることにより、鉄骨アンカー部16が形成される。   As the steel frame material 13 used in this case, in consideration of the situation at the construction site, transportation and workability (handling), it is possible to use a long one (10 m or more) and a short one (5 m or less). You can do it. In the illustrated embodiment, a short steel frame steel material 13 is used, an end portion of the steel frame steel material 13 is provided with a predetermined length from the end surface of each bridge girder 2 on both sides, and the intermediate portions are connected in a butt state. The connecting steel frames 13a are placed in abutment with each other, and are connected through the gusset plate 18 using bolts to be integrated. In this way, by arranging the steel frames 13 both long and short so as to communicate with each other in the bridge girders 2 on both sides, by additionally staking concrete 15 around the steel frames 13 and forming it integrally with the bridge girders 2. The steel anchor portion 16 is formed.

いずれにしても、鉄骨鋼材13の端部に設けた端部アンカープレート14によって増し打ちコンクリート15に強固に定着され、鉄骨鋼材13のみの場合に比べて鉄骨鋼材13のアンカー部16の長さを短くできるので、施工が簡単になる。なお、図示は省略するが、図8〜9に示すように対向する橋桁2の端面に配筋して鉄筋を接続することも併用とする。   In any case, it is firmly fixed to the overfilled concrete 15 by the end anchor plate 14 provided at the end of the steel frame material 13, and the length of the anchor part 16 of the steel frame material 13 is increased as compared with the case of only the steel frame material 13. Since it can be shortened, construction becomes easy. Although illustration is omitted, as shown in FIGS. 8 to 9, reinforcing bars may be connected to the end faces of the bridge girders 2 facing each other to connect the reinforcing bars together.

また、鉄骨鋼材13を接続した後に、前述した図4〜7で示した手順と同じようにコンクリート10を打設して硬化させる。コンクリート硬化後にジャッキを緩めて取り外すことによって該範囲の両側の橋桁2断面に与えられた圧縮力およびPC鋼材6に生じさせた弾性張力を解放して、解放された圧縮力及び弾性張力はプレストレスとして範囲内のコンクリート10に付与して所定範囲4は補強された。このようにして所定範囲4は、プレストレスを導入すると鉄骨鋼材13を配置することによって、さらに強固な構造となり、特にヒンジ部3を含む中央閉合部の垂れ下がりを確実に防ぐことができる。   Further, after the steel-frame steel material 13 is connected, the concrete 10 is poured and hardened in the same manner as the procedure shown in FIGS. By loosening and removing the jack after hardening of the concrete, the compressive force applied to the cross section of the bridge girder 2 on both sides of the range and the elastic tension generated in the PC steel material 6 are released, and the released compressive force and elastic tension are prestressed. As a result, the concrete 10 within the range was reinforced and the predetermined range 4 was reinforced. In this way, when the prestress is introduced, the predetermined range 4 has a stronger structure by disposing the steel-framed steel material 13, and in particular, it is possible to reliably prevent the central closing portion including the hinge portion 3 from hanging down.

本発明は前記した実施の形態に係る構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更が自在に行えるのである。
例えば、ヒンジ部3の補強の強度アップを図るために、第2の実施の形態に示した鉄骨を他の補強材、例えば、PCケーブルに変更して外ケーブル方式にて補強することも同様の効果が得られるから、本発明が適用したヒンジ部3の補強手段として、種々の構成が本発明の趣旨に含まれるものとする。
The present invention is not limited to the configurations according to the above-described embodiments, and various changes can be freely made without departing from the spirit of the present invention.
For example, in order to increase the strength of the reinforcement of the hinge portion 3, it is also possible to change the steel frame shown in the second embodiment to another reinforcing material, for example, a PC cable and to reinforce it by the outer cable method. Since the effect can be obtained, various configurations are included in the gist of the present invention as the reinforcing means of the hinge portion 3 to which the present invention is applied.

本発明に係るPC桁橋のヒンジ部補強方法および補強構造は、PC有ヒンジ桁橋におけるヒンジ部3の補強方法および補強構造であって、コンクリート10を打設する所定範囲4にわたって両側の橋軸方向に所要長さまでPC鋼材6を配置し緊張定着して該PC鋼材に弾性張力を生じさせた後に、上記の所定範囲4内に所要箇所にジャッキ9を設置し、該ジャッキ9の押出により該範囲の両側の橋桁断面に圧縮力を与えると共に、前記PC鋼材に弾性張力をさらに増やし、前記ジャッキ9を押し出した状態で上記の範囲にコンクリートを打設して硬化させ、該コンクリート硬化後にジャッキ9を緩めて取り外すことによって該範囲の両側の橋桁断面に与えられた圧縮力および上記PC鋼材に生じさせた弾性張力を解放してプレストレスとして上記所定範囲4内のコンクリート10に付与するものであり、ジャッキによる圧縮力とPC鋼材6の弾性張力が所定のプレストレスに変わって当該補強されるべき所定範囲4内のコンクリート10に与えることができ、施工時のみならず使用時の垂れ下がりを確実に防ぐことができるし、また、ヒンジ部を含む所定範囲に鉄骨鋼材を配置することにより、所定範囲の橋桁断面耐力を大幅に向上させることができるので、この種橋桁の補修工事において広い範囲で使用可能である。   A hinge part reinforcing method and a reinforcing structure of a PC girder bridge according to the present invention is a reinforcing method and a reinforcing structure of a hinge part 3 in a hinge girder bridge with a PC, which is a bridge shaft on both sides over a predetermined range 4 where concrete 10 is placed. After the PC steel material 6 is arranged to a required length in the direction and tension-fixed to generate elastic tension in the PC steel material, the jack 9 is installed at a required position within the above-mentioned predetermined range 4 and the jack 9 is extruded to remove the elastic force. A compressive force is applied to the bridge girder cross sections on both sides of the range, the elastic tension is further increased to the PC steel material, and concrete is placed and hardened in the above range while the jack 9 is pushed out, and after the concrete is hardened, the jack 9 By loosening and removing, the compressive force applied to the cross section of the bridge girders on both sides of the range and the elastic tension generated in the PC steel material are released and used as prestress. It is applied to the concrete 10 within the predetermined range 4, and the compressive force by the jack and the elastic tension of the PC steel material 6 are changed to a predetermined prestress and can be applied to the concrete 10 within the predetermined range 4 to be reinforced. It is possible to prevent drooping not only at the time of construction but also at the time of use, and by arranging the steel-framed steel material in the predetermined range including the hinge part, it is possible to significantly improve the cross-section proof strength of the predetermined range. Since it is possible, it can be used in a wide range in the repair work of this type bridge girder.

1 橋脚
2 橋桁
3 ヒンジ部
4 所定範囲
5 接続用鉄筋
6 PC鋼材
7 定着部
8 定着具
9 ジャッキ
10 コンクリート
11 穴埋めコンクリート
12 新たな接続鉄筋
13 鉄骨鋼材
14 端部アンカープレート
15 増し打ちコンクリート
16 アンカー部
17 スタッドボルト
18 ガセットプレート
1 Bridge pier 2 Bridge girder 3 Hinge part 4 Predetermined range
5 Reinforcing bar for connection 6 PC steel 7 Fixing part 8 Fixing tool 9 Jack 10 Concrete 11 Filling concrete 12 New connection reinforcing bar 13 Steel frame steel 14 End anchor plate 15 Overcast concrete 16 Anchor part 17 Stud bolt 18 Gusset plate

前述の従来例の課題を解決する具体的手段として、本発明は、PC有ヒンジ桁橋におけるヒンジ部の補強方法であって、コンクリート打設前にヒンジ部となる所定範囲にわたって両側の橋軸方向に所要長さまでPC鋼材を配置し緊張定着して該PC鋼材に弾性張力を生じさせた後に、上記の所定範囲内に所要箇所にジャッキを設置し、該ジャッキの押出により該範囲の両側の橋桁断面に圧縮力を与えると共に、前記PC鋼材に弾性張力をさらに増やし、前記ジャッキを押し出した状態で上記の範囲にコンクリートを打設して硬化させ、該コンクリート硬化後にジャッキを緩めて取り外すことによって該範囲の両側の橋桁断面に与えられた圧縮力および上記PC鋼材に生じさせた弾性張力を解放してプレストレスとして上記範囲内のコンクリートに付与することを特徴とするPC桁橋のヒンジ部補強方法を提供するものである。 As a concrete means for solving the above-mentioned problems of the conventional example, the present invention is a method for reinforcing a hinge portion in a hinged girder bridge with a PC, in which the bridge axial direction on both sides is extended over a predetermined range to be the hinge portion before concrete placing. After arranging the PC steel material to the required length and fixing the tension to generate elastic tension in the PC steel material, a jack is installed at a required position within the above predetermined range, and the bridge girders on both sides of the range are extruded by the jack. While applying a compressive force to the cross section and further increasing the elastic tension to the PC steel material, concrete is placed and hardened in the above range in a state where the jack is pushed out, and after the concrete is hardened, the jack is loosened and removed. The compressive force applied to the cross section of the bridge girders on both sides of the range and the elastic tension generated in the PC steel material are released to prestress the concrete within the above range. There is provided a hinge portion reinforcing method of PC girder bridge, characterized in that applied to.

また、本発明では、PC有ヒンジ桁橋におけるヒンジ部の補強構造であって、コンクリート打設前にヒンジ部となる所定範囲にわたって両側の橋軸方向に所要長さまでPC鋼材を配置し緊張定着されて該PC鋼材に弾性張力が生じた後に、上記の所定範囲内の所要箇所にジャッキが設置され、該ジャッキの押出により該範囲の両側の橋桁断面に圧縮力が与えられると共に、前記PC鋼材に弾性張力がさらに生じさせられ、前記ジャッキを押し出した状態で上記範囲にコンクリートが打設されて硬化し、該コンクリート硬化後にジャッキを緩めて取り外すことによって該範囲の両側の橋桁断面に与えられた圧縮力および上記PC鋼材に生じさせられた弾性張力が解放されてプレストレスとして上記範囲内のコンクリートに付与させたことを特徴とするPC桁橋のヒンジ部補強構造を提供するものである。
Further, according to the present invention, in the reinforcing structure of the hinge part in the hinged girder bridge with PC, PC steel materials are arranged to a required length in the bridge axial direction on both sides over a predetermined range to become the hinge part before concrete placement, and the tension is fixed. After the elastic tension is generated in the PC steel material, a jack is installed at a required position within the above predetermined range, and a compression force is applied to the cross section of the bridge girder on both sides of the range by the pushing of the jack, and the PC steel material is Elastic tension is further generated, concrete is placed and hardened in the above range in a state where the jack is pushed out, and after the concrete is hardened, compression is given to the cross section of the bridge girder on both sides of the range by loosening and removing the jack. The force and the elastic tension generated in the PC steel material are released and applied as a prestress to the concrete within the above range. It is to provide a hinge reinforcement structure of the PC girder bridge to be.

Claims (4)

PC有ヒンジ桁橋におけるヒンジ部の補強方法であって、
コンクリートを打設する所定範囲にわたって両側の橋軸方向に所要長さまでPC鋼材を配置し緊張定着して該PC鋼材に弾性張力を生じさせた後に、上記の所定範囲内に所要箇所にジャッキを設置し、該ジャッキの押出により該範囲の両側の橋桁断面に圧縮力を与えると共に、前記PC鋼材に弾性張力をさらに増やし、
前記ジャッキを押し出した状態で上記の範囲にコンクリートを打設して硬化させ、
該コンクリート硬化後にジャッキを緩めて取り外すことによって該範囲の両側の橋桁断面に与えられた圧縮力および上記PC鋼材に生じさせた弾性張力を解放してプレストレスとして上記範囲内のコンクリートに付与すること
を特徴とするPC桁橋のヒンジ部補強方法。
A method for reinforcing a hinge part in a hinged girder bridge with a PC,
PC steel materials are arranged in the axial direction on both sides to the required length over the specified range where concrete is placed, and after tension fixing to generate elastic tension in the PC steel materials, jacks are installed at the required locations within the specified range. Then, by pushing the jack, a compressive force is applied to the bridge girder cross sections on both sides of the range, and elastic tension is further increased to the PC steel material,
With the jack pushed out, concrete is poured into the above range and cured,
After loosening and removing the jack after the concrete has hardened, the compressive force applied to the cross section of the bridge girder on both sides of the range and the elastic tension generated in the PC steel material are released and given as prestress to the concrete within the range. A method of reinforcing the hinge part of a PC girder bridge characterized by:
前記範囲にわたって両側の橋軸方向に所要長さまで鉄骨鋼材を配置し、増し打ちコンクリートで橋桁と一体化すること
を特徴とする請求項1に記載のPC桁橋のヒンジ部補強方法。
The method for reinforcing a hinge portion of a PC girder bridge according to claim 1, wherein steel frame steel materials are arranged on both sides in the axial direction of the bridge over the range up to a required length and are integrated with the bridge girder by additional concrete.
PC有ヒンジ桁橋におけるヒンジ部の補強構造であって、
コンクリートを打設する所定範囲にわたって両側の橋軸方向に所要長さまでPC鋼材を配置し緊張定着されて該PC鋼材に弾性張力が生じた後に、上記の所定範囲内の所要箇所にジャッキが設置され、該ジャッキの押出により該範囲の両側の橋桁断面に圧縮力が与えられると共に、前記PC鋼材に弾性張力がさらに生じさせられ、
前記ジャッキを押し出した状態で上記範囲にコンクリートが打設されて硬化し、
該コンクリート硬化後にジャッキを緩めて取り外すことによって該範囲の両側の橋桁断面に与えられた圧縮力および上記PC鋼材に生じさせられた弾性張力が解放されてプレストレスとして上記範囲内のコンクリートに付与されること
を特徴とするPC桁橋のヒンジ部補強構造。
Reinforcement structure of hinge part in hinge girder bridge with PC,
After the PC steel material is arranged in the bridge axial direction on both sides to the required length over the predetermined range where concrete is placed, and the PC steel material is tension-fixed and elastic tension is generated in the PC steel material, jacks are installed at the required locations within the above-mentioned predetermined range. By pushing the jack, a compressive force is applied to the bridge girder cross sections on both sides of the range, and elastic tension is further generated in the PC steel material,
Concrete is placed and cured in the above range with the jack pushed out,
By loosening and removing the jack after hardening of the concrete, the compressive force applied to the cross section of the bridge girder on both sides of the range and the elastic tension generated in the PC steel material are released and applied to the concrete within the range as prestress. Hinge reinforcement structure for PC girder bridge.
前記範囲にわたって両側の橋軸方向に所要長さまで鉄骨鋼材が配置され、増し打ちコンクリートで橋桁と一体化されること
を特徴とする請求項3に記載のPC桁橋のヒンジ部補強構造。
The hinge part reinforcing structure for a PC girder bridge according to claim 3, wherein steel frame steel materials are arranged on both sides in the axial direction of the bridge over the range up to a required length and are integrated with the bridge girder by additional concrete.
JP2018195825A 2018-10-17 2018-10-17 Reinforcement method and reinforcement structure of hinge part in hinge girder bridge with PC Active JP6564921B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018195825A JP6564921B1 (en) 2018-10-17 2018-10-17 Reinforcement method and reinforcement structure of hinge part in hinge girder bridge with PC
KR1020190128267A KR20200043293A (en) 2018-10-17 2019-10-16 Reinforcing method and reinforced structure of hinge portion in prestressed concrete girder bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195825A JP6564921B1 (en) 2018-10-17 2018-10-17 Reinforcement method and reinforcement structure of hinge part in hinge girder bridge with PC

Publications (2)

Publication Number Publication Date
JP6564921B1 JP6564921B1 (en) 2019-08-21
JP2020063598A true JP2020063598A (en) 2020-04-23

Family

ID=67695614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195825A Active JP6564921B1 (en) 2018-10-17 2018-10-17 Reinforcement method and reinforcement structure of hinge part in hinge girder bridge with PC

Country Status (2)

Country Link
JP (1) JP6564921B1 (en)
KR (1) KR20200043293A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111622132A (en) * 2020-05-08 2020-09-04 中铁大桥局集团有限公司 Reinforcing method of hollow slab beam bridge
CN112832111A (en) * 2021-01-14 2021-05-25 中铁七局集团第二工程有限公司 Prestressed concrete combined continuous box girder bridge structure system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716117B2 (en) 1973-10-12 1982-04-02
JP5282161B1 (en) 2012-10-18 2013-09-04 黒沢建設株式会社 SPC girder bridge structure

Also Published As

Publication number Publication date
JP6564921B1 (en) 2019-08-21
KR20200043293A (en) 2020-04-27

Similar Documents

Publication Publication Date Title
KR100536489B1 (en) Manufacturing method for prestressed steel composite girder and prestressed steel composite girder thereby
KR100770574B1 (en) Rhamen bridge having prestressed steel-reinforced concrete composite girder and construction method there of
JP4528042B2 (en) Construction method of box girder bridge
KR100988074B1 (en) Girder bridge connected to abutment and the construction method thereof
JP2014009461A (en) Spc bridge erection method
KR100720996B1 (en) Continuous bridge construction method using precast slab
JP2020063598A (en) Hinge part reinforcement method and reinforcement structure in hinged girder bridge with pc
JP5716117B1 (en) Hinge reinforcement method and reinforcement structure for existing girder bridge
KR101251118B1 (en) A manufacturing method of a composite steel box girder using prestressed concrete for a positive moment area of a bridge
JP2528432B2 (en) Reinforcement method for concrete structure using hollow PC steel rod
KR100592196B1 (en) large number bracket in which supporter was installed is used and it is a bridge, multiplex point installed so that support might be carried out support bracket and its installation method
JP5174688B2 (en) Reinforcement structure and reinforcement method for existing simple girder bridges
KR100767145B1 (en) Construction method of prestressed concrete temporary bridge that can be assembled and dismantled using lateral steel wire
JP3877995B2 (en) How to build a string string bridge
KR20040091350A (en) Prestressed steel girder
KR101698807B1 (en) Manufacturing method of the psc girder using the corrugated steel plate and the psc girder manufactured thereby
WO2006065085A1 (en) Manufacturing method for prestressed steel composite girder and prestressed steel composite girder thereby
KR20060017949A (en) Field-fabricated prestressing steel-composed girder and construction method of continuous bridge using the girder
JP2004137723A (en) Structure of bridge girder and construction method of bridge girder
JP2002275833A (en) Continuing method of simple beam of existing bridge and continuous beam structure
KR101381974B1 (en) Concrete deck slab assembly, Method for making the same and Temporary bridge using the same
KR100500382B1 (en) Construction method and connection structure for construction continuous of precast girder
CN111395167B (en) Construction method of continuous rigid frame bridge
KR20020059960A (en) Precasted Concrete using a Fiber Reinforced Concrete and method for construction
KR100588350B1 (en) Bridge slab construction method for the median strip side end of the slab and upper part bracket applied therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181219

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R150 Certificate of patent or registration of utility model

Ref document number: 6564921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250