JP4527070B2 - Semiconductor device, manufacturing method thereof, and electronic apparatus - Google Patents

Semiconductor device, manufacturing method thereof, and electronic apparatus Download PDF

Info

Publication number
JP4527070B2
JP4527070B2 JP2006050504A JP2006050504A JP4527070B2 JP 4527070 B2 JP4527070 B2 JP 4527070B2 JP 2006050504 A JP2006050504 A JP 2006050504A JP 2006050504 A JP2006050504 A JP 2006050504A JP 4527070 B2 JP4527070 B2 JP 4527070B2
Authority
JP
Japan
Prior art keywords
conductive layer
tft
region
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006050504A
Other languages
Japanese (ja)
Other versions
JP2006157053A (en
Inventor
舜平 山崎
潤 小山
徹 高山
敏次 浜谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2006050504A priority Critical patent/JP4527070B2/en
Publication of JP2006157053A publication Critical patent/JP2006157053A/en
Application granted granted Critical
Publication of JP4527070B2 publication Critical patent/JP4527070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、絶縁表面を有する基板上に薄膜トランジスタ(以下、TFTと記す)による能動回路を設けた半導体装置およびその作製方法に関する。特に本発明は、画像表示領域とその駆動回路とを同一基板上に設けた液晶表示装置に代表される電気光学装置、および電気光学装置を搭載した電子機器に好適に利用できる。尚、本明細書における半導体装置とは、半導体特性を利用することで機能する装置全般を指し、上記電気光学装置およびその電気光学装置を搭載した電子機器をその範疇に含んでいる。   The present invention relates to a semiconductor device in which an active circuit using a thin film transistor (hereinafter referred to as TFT) is provided over a substrate having an insulating surface, and a manufacturing method thereof. In particular, the present invention can be suitably used for an electro-optical device typified by a liquid crystal display device in which an image display region and a drive circuit thereof are provided on the same substrate, and an electronic apparatus equipped with the electro-optical device. Note that the semiconductor device in this specification refers to all devices that function by utilizing semiconductor characteristics, and includes the above-described electro-optical device and an electronic apparatus in which the electro-optical device is mounted.

結晶質シリコン膜で半導体層を形成したTFT(以下、結晶質シリコンTFTと記す)は電界効果移動度が高く、いろいろな機能回路を形成することが可能である。結晶質シリコンTFTを用いたアクティブマトリクス型液晶表示装置は、画像表示領域と画像表示を行うための駆動回路が同一の基板上に形成されている。画像表示領域にはnチャネル型TFTで形成した画素TFTと保持容量が設けられおり、駆動回路にはCMOS回路を基本として形成されるシフトレジスタ回路、レベルシフタ回路、バッファ回路、サンプリング回路などから構成されている。   A TFT in which a semiconductor layer is formed of a crystalline silicon film (hereinafter referred to as a crystalline silicon TFT) has high field effect mobility, and various functional circuits can be formed. In an active matrix liquid crystal display device using crystalline silicon TFTs, an image display region and a drive circuit for performing image display are formed on the same substrate. The image display area is provided with a pixel TFT formed of an n-channel TFT and a storage capacitor, and the drive circuit is composed of a shift register circuit, a level shifter circuit, a buffer circuit, a sampling circuit, etc. that are formed based on a CMOS circuit. ing.

しかし、画素TFTと駆動回路のTFTとでは動作条件が同一でなく、従ってTFTに要求される特性は少なからず異なっている。例えば、画素TFTはスイッチ素子として機能するものであり、液晶に電圧を印加して駆動させるものである。液晶は交流で駆動させるので、フレーム反転駆動と呼ばれる方式が多く採用されている。この方式では消費電力を低く抑えるために、画素TFTに要求される特性はオフ電流値(TFTがオフ動作時に流れるドレイン電流)を十分低くすることである。一方、制御回路のバッファ回路は高い駆動電圧が印加されるため、高電圧が印加されても壊れないように耐圧を高めておく必要がある。また電流駆動能力を高めるために、オン電流値(TFTがオン動作時に流れるドレイン電流)を十分確保する必要がある。   However, the operating conditions of the pixel TFT and the TFT of the driving circuit are not the same, and therefore, the characteristics required for the TFT are not a little different. For example, the pixel TFT functions as a switch element, and is driven by applying a voltage to the liquid crystal. Since the liquid crystal is driven by alternating current, a method called frame inversion driving is often employed. In this method, in order to keep power consumption low, a characteristic required for the pixel TFT is to sufficiently reduce an off-current value (a drain current that flows when the TFT is turned off). On the other hand, since a high drive voltage is applied to the buffer circuit of the control circuit, it is necessary to increase the withstand voltage so as not to break even when a high voltage is applied. In order to increase the current driving capability, it is necessary to secure a sufficient on-current value (drain current that flows when the TFT is on).

オフ電流値を低減するためのTFTの構造として、低濃度ドレイン(LDD:Lightly Doped Drain)構造が知られている。この構造はチャネル形成領域と、高濃度に不純物元素を添加して形成するソース領域またはドレイン領域との間に低濃度に不純物元素を添加した領域を設けたものであり、この領域をLDD領域と呼んでいる。また、ホットキャリアによるオン電流値の劣化を防ぐための手段として、LDD領域をゲート絶縁膜を介してゲート電極と重ねて配置させた、いわゆるGOLD(Gate-drain Overlapped LDD)構造が知られている。このような構造とすることで、ドレイン近傍の高電界が緩和されてホットキャリア注入を防ぎ、劣化現象の防止に有効であることが知られている。   As a TFT structure for reducing the off-current value, a lightly doped drain (LDD) structure is known. In this structure, a region to which an impurity element is added at a low concentration is provided between a channel formation region and a source region or a drain region formed by adding an impurity element at a high concentration, and this region is referred to as an LDD region. I'm calling. A so-called GOLD (Gate-drain Overlapped LDD) structure in which an LDD region is disposed so as to overlap a gate electrode through a gate insulating film is known as a means for preventing deterioration of an on-current value due to hot carriers. . With such a structure, it is known that a high electric field in the vicinity of the drain is relaxed, hot carrier injection is prevented, and the deterioration phenomenon is effective.

一方、アクティブマトリクス型液晶表示装置の商品としての価値を高めるために、画面の大型化および高精細化が要求がなされている。しかし、画面の大型化および高精細化により走査線(ゲート配線)の数が増えその長さも増大するので、ゲート配線の低抵抗化がより必要となる。すなわち走査線が増えるに従って液晶への充電時間が短くなり、ゲート配線の時定数(抵抗×容量)を小さくして高速で応答させる必要がある。例えば、ゲート配線を形成する材料の比抵抗が100μΩcmの場合には画面サイズが6インチクラスがほぼ限界となるが、3μΩcmの場合には27インチクラス相当まで表示が可能とされている。   On the other hand, in order to increase the value as a product of an active matrix type liquid crystal display device, there has been a demand for a larger screen and higher definition. However, since the number of scanning lines (gate wirings) is increased and the length thereof is increased due to the increase in size and definition of the screen, it is necessary to lower the resistance of the gate wiring. That is, as the number of scanning lines increases, the charging time for the liquid crystal becomes shorter, and it is necessary to reduce the time constant (resistance × capacitance) of the gate wiring and to respond at high speed. For example, when the specific resistance of the material forming the gate wiring is 100 μΩcm, the screen size is almost limited to the 6-inch class, but when it is 3 μΩcm, it is possible to display up to the 27-inch class.

しかしながら、画素マトリクス回路の画素TFTと、シフトレジスタ回路やバッファ回路などの制御回路のTFTとでは、その要求される特性は必ずしも同じではない。例えば、画素TFTにおいてはゲートに大きな逆バイアス(nチャネル型TFTでは負の電圧)が印加されるが、制御回路のTFTは基本的に逆バイアス状態で動作することはない。また、動作速度に関しても、画素TFTは制御回路のTFTの1/100以下で良い。   However, the required characteristics are not necessarily the same between the pixel TFT of the pixel matrix circuit and the TFT of the control circuit such as a shift register circuit or a buffer circuit. For example, in the pixel TFT, a large reverse bias (a negative voltage in an n-channel TFT) is applied to the gate, but the TFT of the control circuit basically does not operate in a reverse bias state. Further, regarding the operation speed, the pixel TFT may be 1/100 or less of the TFT of the control circuit.

また、GOLD構造はオン電流値の劣化を防ぐ効果は高いが、その反面、通常のLDD構造と比べてオフ電流値が大きくなってしまう問題があった。従って、画素TFTに適用するには好ましい構造ではなかった。逆に通常のLDD構造はオフ電流値を抑える効果は高いが、ドレイン近傍の電界を緩和してホットキャリア注入による劣化を防ぐ効果は低かった。このように、アクティブマトリクス型液晶表示装置のような動作条件の異なる複数の集積回路を有する半導体装置において、全てのTFTを同じ構造で形成することは必ずしも好ましくなかった。このような問題点は、特に結晶質シリコンTFTにおいて、その特性が高まり、またアクティブマトリクス型液晶表示装置に要求される性能が高まるほど顕在化してきた。   In addition, the GOLD structure has a high effect of preventing deterioration of the on-current value, but on the other hand, there is a problem that the off-current value becomes larger than that of a normal LDD structure. Therefore, it is not a preferable structure for application to the pixel TFT. Conversely, the normal LDD structure has a high effect of suppressing the off-current value, but has a low effect of relaxing the electric field in the vicinity of the drain and preventing deterioration due to hot carrier injection. Thus, in a semiconductor device having a plurality of integrated circuits with different operating conditions, such as an active matrix liquid crystal display device, it is not always preferable to form all TFTs with the same structure. Such problems have become apparent as the characteristics of crystalline silicon TFTs increase and the performance required for active matrix liquid crystal display devices increases.

大画面のアクティブマトリクス型の液晶表示装置を実現するために、配線材料としてアルミニウム(Al)や銅(Cu)を使用することも考えられるが、耐食性や耐熱性が悪いといった欠点があった。従って、TFTのゲート電極をこのような材料で形成することは必ずしも好ましくなく、そのような材料をTFTの製造工程に導入することは容易ではなかった。勿論、配線を他の導電性材料で形成することも可能であるが、アルミニウム(Al)や銅(Cu)ほど低抵抗な材料はなく、大画面の表示装置を作製することはできなかった。   In order to realize an active matrix type liquid crystal display device with a large screen, it is conceivable to use aluminum (Al) or copper (Cu) as a wiring material, but it has a drawback of poor corrosion resistance and heat resistance. Therefore, it is not always preferable to form the gate electrode of the TFT with such a material, and it is not easy to introduce such a material into the TFT manufacturing process. Of course, it is possible to form the wiring with another conductive material, but there is no material as low as aluminum (Al) or copper (Cu), and a display device with a large screen could not be manufactured.

上記問題点を解決するために、本発明の構成は、表示領域に設けた画素TFTと、該表示領域の周辺に設けた駆動回路のTFTとを同一の基板上に有する半導体装置において、前記画素TFTと前記駆動回路のTFTとは、第1の導電層で形成されるゲート電極を有し、前記ゲート電極は、第2の導電層で形成されるゲート配線と接続部で電気的に接触し、前記接続部は、前記画素TFTと前記駆動回路のTFTとが有するチャネル形成領域の外側に設けられていることを特徴としている。   In order to solve the above problems, the structure of the present invention is a semiconductor device having a pixel TFT provided in a display region and a TFT of a drive circuit provided in the periphery of the display region on the same substrate. The TFT and the TFT of the driving circuit have a gate electrode formed of a first conductive layer, and the gate electrode is in electrical contact with a gate wiring formed of the second conductive layer at a connection portion. The connection portion is provided outside a channel formation region of the pixel TFT and the TFT of the driving circuit.

また、他の発明の構成は、表示領域に設けた画素TFTと、該表示領域の周辺に設けた駆動回路のTFTとを同一の基板上に有する半導体装置において、前記画素TFTと前記駆動回路のTFTとは、第1の導電層で形成されるゲート電極を有し、前記ゲート電極は、第2の導電層で形成されるゲート配線と、前記画素TFTと前記駆動回路のTFTとが有するチャネル形成領域の外側に設けられた接続部で電気的に接触し、前記画素TFTのLDD領域は、該画素TFTのゲート電極と重ならないように配置され、前記駆動回路の第1のnチャネル型TFTのLDD領域は、該第1のnチャネル型TFTのゲート電極と重なるように配置され、前記駆動回路の第2のnチャネル型TFTのLDD領域は、該第1のnチャネル型TFTのゲート電極と少なくとも一部が重なるように配置されていることを特徴としている。   According to another aspect of the invention, in a semiconductor device having a pixel TFT provided in a display region and a TFT of a drive circuit provided around the display region on the same substrate, the pixel TFT and the drive circuit The TFT has a gate electrode formed of a first conductive layer, and the gate electrode includes a gate wiring formed of a second conductive layer, a channel included in the pixel TFT and the TFT of the driver circuit. A contact portion provided outside the formation region is in electrical contact, and the LDD region of the pixel TFT is disposed so as not to overlap the gate electrode of the pixel TFT, and the first n-channel TFT of the drive circuit The LDD region of the first n-channel TFT is disposed so as to overlap the gate electrode of the first n-channel TFT, and the LDD region of the second n-channel TFT of the driving circuit is the gate of the first n-channel TFT. It is characterized in that at least part of which is arranged so as to overlap with the electrode.

上記本発明の構成において、前記第1の導電層は、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも1種と窒素とを含む導電層(A)と、該導電層(A)上に形成され、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも1種を主成分とする導電層(B)と、該導電層(B)が該導電層(A)に接しない領域に形成され、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも1種と窒素とを含む導電層(C)とを有し、前記第2の導電層は、少なくとも、アルミニウムまたは銅を主成分とする導電層(D)と、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも1種を主成分とする導電層(E)とを有し、前記接続部で導電層(C)と導電層(D)が接触していることを特徴としている。前記導電層(B)は、添加元素としてアルゴンを含み、かつ、該導電層(B)中の酸素濃度が30ppm以下であることをが望ましい。   In the structure of the present invention, the first conductive layer is formed on the conductive layer (A) including a conductive layer (A) containing at least one selected from tantalum, tungsten, titanium, and molybdenum and nitrogen. A conductive layer (B) containing at least one selected from tantalum, tungsten, titanium, and molybdenum as a main component, and a region where the conductive layer (B) is not in contact with the conductive layer (A). A conductive layer (C) containing nitrogen and at least one selected from tungsten, titanium, and molybdenum, and the second conductive layer is a conductive layer (D) containing at least aluminum or copper as a main component. ) And a conductive layer (E) whose main component is at least one selected from tantalum, tungsten, titanium, and molybdenum, and the conductive layer (C) and the conductive layer (D) are in contact with each other at the connection portion. Have It is characterized in that. The conductive layer (B) preferably contains argon as an additive element, and the oxygen concentration in the conductive layer (B) is preferably 30 ppm or less.

上記問題点を解決するために、本発明の半導体装置の作製方法は、表示領域に設けた画素TFTと、該表示領域の周辺に設けた駆動回路のTFTとを同一の基板上に有する半導体装置の作製方法において、前記画素TFTと前記駆動回路のTFTとのゲート電極を、第1の導電層で形成する工程と、前記ゲート電極に接続するゲート配線を、第2の導電層で形成する工程とを有し、前記ゲート電極と前記ゲート配線とは、前記画素TFTと前記駆動回路のTFTとのチャネル形成領域の外側に設けられた接続部で接続することを特徴としている。   In order to solve the above problems, a method for manufacturing a semiconductor device according to the present invention includes a semiconductor device having a pixel TFT provided in a display region and a TFT of a drive circuit provided in the periphery of the display region on the same substrate. In the manufacturing method, a step of forming a gate electrode of the pixel TFT and a TFT of the driver circuit with a first conductive layer, and a step of forming a gate wiring connected to the gate electrode with a second conductive layer The gate electrode and the gate wiring are connected by a connection portion provided outside a channel formation region of the pixel TFT and the TFT of the driving circuit.

また、本発明の半導体装置の作製方法は、表示領域に設けた画素TFTと、該表示領域の周辺に設けた駆動回路のTFTとを同一の基板上に有する半導体装置において、前記駆動回路を形成する第1および第2のnチャネル型TFTの半導体層に、2×1016〜5×1019atoms/cm3の濃度範囲でn型を付与する不純物元素を選択的に添加する第1の工程と、前記画素TFTと前記駆動回路のTFTとのゲート電極を第1の導電層で形成する第2の工程と、前記駆動回路を形成するpチャネル型TFTの半導体層に、3×1020〜3×1021atoms/cm3の濃度範囲でp型を付与する不純物元素を選択的に添加する第3の工程と、前記駆動回路を形成する第1および第2のnチャネル型TFTの半導体層と、前記画素TFTの半導体層とに、1×1020〜1×1021atoms/cm3の濃度範囲でn型を付与する不純物元素を選択的に添加する第4の工程と、前記画素TFTの半導体層に、ゲート電極をマスクとして、1×1016〜5×1018atoms/cm3の濃度範囲でn型を付与する不純物元素を選択的に添加する第5の工程と、前記画素TFTと前記駆動回路のTFTとのゲート配線を第2の導電層で形成する第6の工程とを有し、前記ゲート電極と前記ゲート配線とは、前記画素TFTと前記駆動回路のTFTとのチャネル形成領域の外側に設けられた接続部で接続することを特徴としている。 In addition, according to the method for manufacturing a semiconductor device of the present invention, in the semiconductor device having the pixel TFT provided in the display region and the TFT of the drive circuit provided in the periphery of the display region on the same substrate, the drive circuit is formed. First step of selectively adding an impurity element imparting n-type to a semiconductor layer of the first and second n-channel TFTs to be applied in a concentration range of 2 × 10 16 to 5 × 10 19 atoms / cm 3 And a second step of forming a gate electrode of the pixel TFT and the TFT of the driving circuit with a first conductive layer, and a semiconductor layer of a p-channel TFT forming the driving circuit with 3 × 10 20 to A third step of selectively adding an impurity element imparting p-type in a concentration range of 3 × 10 21 atoms / cm 3 ; and semiconductor layers of first and second n-channel TFTs forming the drive circuit And 1 × 1 to the semiconductor layer of the pixel TFT A fourth step of selectively adding an impurity element imparting n-type conductivity in a concentration range of 20 ~1 × 10 21 atoms / cm 3, the semiconductor layer of the pixel TFT, the gate electrode as a mask, 1 × 10 A fifth step of selectively adding an impurity element imparting n-type in a concentration range of 16 to 5 × 10 18 atoms / cm 3 ; and a gate wiring between the pixel TFT and the TFT of the driver circuit is formed in the second step. A sixth step of forming with a conductive layer, wherein the gate electrode and the gate wiring are connected by a connection portion provided outside a channel formation region of the pixel TFT and the TFT of the driving circuit. It is characterized by.

上記本発明の半導体装置の作製方法において、前記第1の導電層は、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも1種と窒素とを含む導電層(A)を形成する工程と、該導電層(A)上に形成されタンタル、タングステン、チタン、モリブデンから選ばれた少なくとも1種を主成分とする導電層(B)を形成する工程と、該導電層(B)が該導電層(A)に接しない領域に形成されタンタル、タングステン、チタン、モリブデンから選ばれた少なくとも1種と窒素とを含む導電層(C)を形成する工程とから形成され、前記第2の導電層は、少なくとも、アルミニウムまたは銅を主成分とする導電層(D)を形成する工程と、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも1種を主成分とする導電層(E)を形成する工程とから形成され、前記接続部で導電層(C)と導電層(D)が接続していることを特徴としている。導電層(A)は、アルゴンと窒素またはアンモニアとの混合雰囲気中で、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも1種を主成分とするターゲットを用いたスパッタ法で形成することが可能であり、導電層(C)は、酸素濃度が1ppm以下の窒素雰囲気中で導電層(B)を熱処理して形成することが望ましい。また、導電層(C)は、酸素濃度が1ppm以下の窒素プラズマ雰囲気中で導電層(B)を熱処理して形成しても良い。   In the method for manufacturing a semiconductor device of the present invention, the first conductive layer includes a step of forming a conductive layer (A) containing at least one selected from tantalum, tungsten, titanium, and molybdenum and nitrogen, Forming a conductive layer (B) formed on the conductive layer (A) and containing as a main component at least one selected from tantalum, tungsten, titanium, and molybdenum; and the conductive layer (B) is formed of the conductive layer (B). A) formed in a region not in contact with A) and forming a conductive layer (C) containing at least one selected from tantalum, tungsten, titanium, and molybdenum and nitrogen, and the second conductive layer includes: A step of forming a conductive layer (D) containing at least aluminum or copper as a main component and at least one selected from tantalum, tungsten, titanium, and molybdenum as a main component; It is formed and a step of forming a conductive layer (E), a conductive layer (C) and the conductive layer by the connecting portion (D) is characterized in that it connects. The conductive layer (A) can be formed by sputtering using a target mainly composed of at least one selected from tantalum, tungsten, titanium, and molybdenum in a mixed atmosphere of argon and nitrogen or ammonia. The conductive layer (C) is preferably formed by heat-treating the conductive layer (B) in a nitrogen atmosphere having an oxygen concentration of 1 ppm or less. The conductive layer (C) may be formed by heat-treating the conductive layer (B) in a nitrogen plasma atmosphere having an oxygen concentration of 1 ppm or less.

本発明を用いることで、同一の基板上に複数の機能回路が形成された半導体装置(ここでは具体的には電気光学装置)において、その機能回路が要求する仕様に応じて適切な性能のTFTを配置することが可能となり、その動作特性や信頼性を大幅に向上させることができる。特に、画素マトリクス回路のnチャネル型TFTのLDD領域をn--の濃度でかつLoffのみとして形成することにより、大幅にオフ電流値を低減でき、画素マトリクス回路の低消費電力化に寄与することができる。また、制御回路のnチャネル型TFTのLDD領域をn-の濃度でかつLovのみとして形成することにより、電流駆動能力を高め、かつ、ホットキャリアによる劣化を防ぎ、オン電流値の劣化を低減することができる。また、そのような電気光学装置を表示媒体として有する半導体装置(ここでは具体的に電子機器)の動作性能と信頼性も向上させることができる。 By using the present invention, in a semiconductor device (specifically, an electro-optical device here) in which a plurality of functional circuits are formed on the same substrate, a TFT having appropriate performance according to the specifications required by the functional circuits Can be arranged, and its operating characteristics and reliability can be greatly improved. In particular, by forming the LDD region of the n-channel TFT of the pixel matrix circuit with n concentration and only Loff, the off-current value can be greatly reduced, contributing to lower power consumption of the pixel matrix circuit. Can do. In addition, by forming the LDD region of the n-channel TFT of the control circuit with an n concentration and only Lov, the current driving capability is increased, deterioration due to hot carriers is prevented, and deterioration of the on-current value is reduced. be able to. In addition, the operation performance and reliability of a semiconductor device (specifically, an electronic device here) having such an electro-optical device as a display medium can be improved.

さらに画素TFTおよび駆動回路のTFTのゲート電極を耐熱性の高い導電性材料で形成し、ゲート電極に接続するゲート配線をアルミニウム(Al)などの低抵抗材料で形成することで、上記のような良好なTFT特性を実現し、そのようなTFTを用いて4インチクラス以上の大画面の表示装置を実現することができる。   Further, the gate electrode of the pixel TFT and the TFT of the driving circuit is formed of a conductive material having high heat resistance, and the gate wiring connected to the gate electrode is formed of a low resistance material such as aluminum (Al). Good TFT characteristics can be realized, and a large-screen display device of 4 inches class or more can be realized using such TFT.

[実施形態1] 本発明の実施形態を図1〜図5を用いて説明する。ここでは表示領域の画素TFTと、表示領域の周辺に設けられる駆動回路のTFTを同一基板上に作製する方法について工程に従って詳細に説明する。但し、説明を簡単にするために、制御回路ではシフトレジスタ回路、バッファ回路などの基本回路であるCMOS回路と、サンプリング回路を形成するnチャネル型TFTとを図示することにする。 Embodiment 1 An embodiment of the present invention will be described with reference to FIGS. Here, a method for manufacturing a pixel TFT in the display area and a TFT in a driver circuit provided around the display area on the same substrate will be described in detail according to the process. However, in order to simplify the description, a CMOS circuit that is a basic circuit such as a shift register circuit and a buffer circuit is shown in the control circuit, and an n-channel TFT that forms a sampling circuit.

図1(A)において、基板101には低アルカリガラス基板や石英基板を用いることができる。本実施例では低アルカリガラス基板を用いた。この場合、ガラス歪み点よりも10〜20℃程度低い温度であらかじめ熱処理しておいても良い。この基板101のTFTを形成する表面には、基板101からの不純物拡散を防ぐために、酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜などの下地膜102を形成する。例えば、プラズマCVD法でSiH4、NH3、N2Oから作製される酸化窒化シリコン膜を100nm、同様にSiH4、N2Oから作製される酸化窒化シリコン膜を200nmの厚さに積層形成する。 In FIG. 1A, a low alkali glass substrate or a quartz substrate can be used for the substrate 101. In this example, a low alkali glass substrate was used. In this case, heat treatment may be performed in advance at a temperature lower by about 10 to 20 ° C. than the glass strain point. A base film 102 such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is formed on the surface of the substrate 101 on which the TFT is formed in order to prevent impurity diffusion from the substrate 101. For example, a silicon oxynitride film made of SiH 4 , NH 3 , and N 2 O by plasma CVD is formed to a thickness of 100 nm, and a silicon oxynitride film made of SiH 4 and N 2 O is laminated to a thickness of 200 nm. To do.

次に、20〜150nm(好ましくは30〜80nm)の厚さで非晶質構造を有する半導体膜103aを、プラズマCVD法やスパッタ法などの公知の方法で形成する。本実施例では、プラズマCVD法で非晶質シリコン膜を55nmの厚さに形成した。非晶質構造を有する半導体膜としては、非晶質半導体膜や微結晶半導体膜があり、非晶質シリコンゲルマニウム膜などの非晶質構造を有する化合物半導体膜を適用しても良い。また、下地膜102と非晶質シリコン膜103aとは同じ成膜法で形成することが可能であるので、両者を連続形成しても良い。下地膜を形成した後、一旦大気雰囲気に晒さないことでその表面の汚染を防ぐことが可能となり、作製するTFTの特性バラツキやしきい値電圧の変動を低減させることができる。(図1(A))   Next, a semiconductor film 103a having an amorphous structure with a thickness of 20 to 150 nm (preferably 30 to 80 nm) is formed by a known method such as a plasma CVD method or a sputtering method. In this embodiment, an amorphous silicon film having a thickness of 55 nm is formed by plasma CVD. As the semiconductor film having an amorphous structure, there are an amorphous semiconductor film and a microcrystalline semiconductor film, and a compound semiconductor film having an amorphous structure such as an amorphous silicon germanium film may be applied. Further, since the base film 102 and the amorphous silicon film 103a can be formed by the same film formation method, they may be formed continuously. After the formation of the base film, it is possible to prevent contamination of the surface by not exposing it to the air atmosphere, and it is possible to reduce variations in characteristics of TFTs to be manufactured and variations in threshold voltage. (Fig. 1 (A))

そして、公知の結晶化技術を使用して非晶質シリコン膜103aから結晶質シリコン膜103bを形成する。例えば、レーザー結晶化法や熱結晶化法(固相成長法)を適用すれば良いが、ここでは、特開平7−130652号公報で開示された技術に従って、触媒元素を用いる結晶化法で結晶質シリコン膜103bを形成した。結晶化の工程に先立って、非晶質シリコン膜の含有水素量にもよるが、400〜500℃で1時間程度の熱処理を行い、含有水素量を5atom%以下にしてから結晶化させることが望ましい。非晶質シリコン膜を結晶化させると原子の再配列が起こり緻密化するので、作製される結晶質シリコン膜の厚さは当初の非晶質シリコン膜の厚さ(本実施例では55nm)よりも1〜15%程度減少した。(図1(B))   Then, a crystalline silicon film 103b is formed from the amorphous silicon film 103a using a known crystallization technique. For example, a laser crystallization method or a thermal crystallization method (solid phase growth method) may be applied. Here, in accordance with the technique disclosed in Japanese Patent Laid-Open No. 7-130552, the crystallization method using a catalytic element is used for crystallization. A quality silicon film 103b was formed. Prior to the crystallization step, depending on the amount of hydrogen contained in the amorphous silicon film, heat treatment is performed at 400 to 500 ° C. for about 1 hour, and the amount of hydrogen contained is reduced to 5 atom% or less for crystallization. desirable. When the amorphous silicon film is crystallized, the rearrangement of atoms occurs and the film is densified. Therefore, the thickness of the produced crystalline silicon film is larger than the thickness of the initial amorphous silicon film (55 nm in this embodiment). Also decreased by about 1 to 15%. (Fig. 1 (B))

そして、結晶質シリコン膜103bを島状に分割して、島状半導体層104〜107を形成する。その後、プラズマCVD法またはスパッタ法により50〜100nmの厚さの酸化シリコン膜によるマスク層108を形成する。(図1(C))   Then, the crystalline silicon film 103b is divided into island shapes, so that island-like semiconductor layers 104 to 107 are formed. Thereafter, a mask layer 108 made of a silicon oxide film having a thickness of 50 to 100 nm is formed by plasma CVD or sputtering. (Figure 1 (C))

そしてレジストマスク109を設け、nチャネル型TFTを形成する島状半導体層105〜107の全面にしきい値電圧を制御する目的で1×1016〜5×1017atoms/cm3程度の濃度でp型を付与する不純物元素としてボロン(B)を添加した。ボロン(B)の添加はイオンドープ法で実施しても良いし、非晶質シリコン膜を成膜するときに同時に添加しておくこともできる。ここでのボロン(B)添加は必ずしも必要でないが、ボロン(B)を添加した半導体層110〜112はnチャネル型TFTのしきい値電圧を所定の範囲内に収めるために形成することが好ましかった。(図1(D)) Then, a resist mask 109 is provided, and p has a concentration of about 1 × 10 16 to 5 × 10 17 atoms / cm 3 for the purpose of controlling the threshold voltage over the entire surface of the island-like semiconductor layers 105 to 107 forming the n-channel TFT. Boron (B) was added as an impurity element imparting a mold. Boron (B) may be added by an ion doping method, or may be added simultaneously with the formation of an amorphous silicon film. Although boron (B) is not necessarily added here, the semiconductor layers 110 to 112 to which boron (B) is added are preferably formed in order to keep the threshold voltage of the n-channel TFT within a predetermined range. It was good. (Figure 1 (D))

駆動回路のnチャネル型TFTのLDD領域を形成するために、n型を付与する不純物元素を島状半導体層110、111に選択的に添加する。そのため、あらかじめレジストマスク113〜116を形成した。n型を付与する不純物元素としては、リン(P)や砒素(As)を用いれば良く、ここではリン(P)を添加すべく、フォスフィン(PH3)を用いたイオンドープ法を適用した。形成された不純物領域117、118のリン(P)濃度は2×1016〜5×1019atoms/cm3の範囲とすれば良い。本明細書中では、ここで形成された不純物領域117〜119に含まれるn型を付与する不純物元素の濃度を(n-)と表す。また、不純物領域119は、画素マトリクス回路の保持容量を形成するための半導体層であり、この領域にも同じ濃度でリン(P)を添加した。(図2(A)) In order to form the LDD region of the n-channel TFT of the driver circuit, an impurity element imparting n-type conductivity is selectively added to the island-like semiconductor layers 110 and 111. Therefore, resist masks 113 to 116 are formed in advance. As an impurity element imparting n-type conductivity, phosphorus (P) or arsenic (As) may be used. Here, an ion doping method using phosphine (PH 3 ) is applied to add phosphorus (P). The phosphorus (P) concentration of the formed impurity regions 117 and 118 may be in the range of 2 × 10 16 to 5 × 10 19 atoms / cm 3 . In this specification, the concentration of an impurity element imparting n-type contained in the impurity regions 117 to 119 formed here is represented as (n ). The impurity region 119 is a semiconductor layer for forming a storage capacitor of the pixel matrix circuit, and phosphorus (P) is added to this region at the same concentration. (Fig. 2 (A))

次に、マスク層108をフッ酸などにより除去して、図1(D)と図2(A)で添加した不純物元素を活性化させる工程を行う。活性化は、窒素雰囲気中で500〜600℃で1〜4時間の熱処理や、レーザー活性化の方法により行うことができる。また、両者を併用して行っても良い。本実施例では、レーザー活性化の方法を用い、KrFエキシマレーザー光(波長248nm)を用い、線状ビームを形成して、発振周波数5〜50Hz、エネルギー密度100〜500mJ/cm2として線状ビームのオーバーラップ割合を80〜98%として走査して、島状半導体層が形成された基板全面を処理した。尚、レーザー光の照射条件には何ら限定される事項はなく、実施者が適宣決定すれば良い。 Next, the mask layer 108 is removed with hydrofluoric acid or the like, and a step of activating the impurity element added in FIGS. 1D and 2A is performed. The activation can be performed by a heat treatment at 500 to 600 ° C. for 1 to 4 hours or a laser activation method in a nitrogen atmosphere. Moreover, you may carry out using both together. In this embodiment, a laser activation method is used, a KrF excimer laser beam (wavelength 248 nm) is used to form a linear beam, and an oscillation frequency of 5 to 50 Hz and an energy density of 100 to 500 mJ / cm 2 are used. The entire surface of the substrate on which the island-shaped semiconductor layer was formed was processed by scanning with an overlap ratio of 80 to 98%. Note that there are no particular limitations on the irradiation conditions of the laser beam, and the practitioner may make an appropriate decision.

そして、ゲート絶縁膜120をプラズマCVD法またはスパッタ法を用いて10〜150nmの厚さでシリコンを含む絶縁膜で形成する。例えば、120nmの厚さで酸化窒化シリコン膜を形成する。ゲート絶縁膜には、他のシリコンを含む絶縁膜を単層または積層構造として用いても良い。(図2(B))   Then, the gate insulating film 120 is formed of an insulating film containing silicon with a thickness of 10 to 150 nm by using a plasma CVD method or a sputtering method. For example, a silicon oxynitride film is formed with a thickness of 120 nm. As the gate insulating film, another insulating film containing silicon may be used as a single layer or a stacked structure. (Fig. 2 (B))

次に、ゲート電極を形成するために第1の導電層を成膜する。この第1の導電層は単層で形成しても良いが、必要に応じて二層あるいは三層といった積層構造としても良い。本実施例では、導電性の窒化物金属膜から成る導電層(A)121と金属膜から成る導電層(B)122とを積層させた。導電層(B)122はタンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(W)から選ばれた元素、または前記元素を主成分とする合金か、前記元素を組み合わせた合金膜(代表的にはMo−W合金膜、Mo−Ta合金膜)で形成すれば良く、導電層(A)121は窒化タンタル(TaN)、窒化タングステン(WN)、窒化チタン(TiN)膜、窒化モリブデン(MoN)で形成する。また、導電層(A)121は代替材料として、タングステンシリサイド、チタンシリサイド、モリブデンシリサイドを適用しても良い。導電層(B)は低抵抗化を図るために含有する不純物濃度を低減させると良く、特に酸素濃度に関しては30ppm以下とすると良かった。例えば、タングステン(W)は酸素濃度を30ppm以下とすることで20μΩcm以下の比抵抗値を実現することができた。   Next, a first conductive layer is formed to form a gate electrode. The first conductive layer may be formed as a single layer, but may have a laminated structure such as two layers or three layers as necessary. In this example, a conductive layer (A) 121 made of a conductive nitride metal film and a conductive layer (B) 122 made of a metal film were laminated. The conductive layer (B) 122 is an element selected from tantalum (Ta), titanium (Ti), molybdenum (Mo), and tungsten (W), an alloy containing the element as a main component, or an alloy film combining the elements. (Typically, a Mo—W alloy film or a Mo—Ta alloy film) may be used, and the conductive layer (A) 121 may be a tantalum nitride (TaN), tungsten nitride (WN), titanium nitride (TiN) film, or nitride. It is made of molybdenum (MoN). Alternatively, tungsten silicide, titanium silicide, or molybdenum silicide may be applied to the conductive layer (A) 121 as an alternative material. In the conductive layer (B), the concentration of impurities contained in the conductive layer (B) should be reduced in order to reduce the resistance. In particular, the oxygen concentration should be 30 ppm or less. For example, tungsten (W) was able to realize a specific resistance value of 20 μΩcm or less by setting the oxygen concentration to 30 ppm or less.

導電層(A)121は10〜50nm(好ましくは20〜30nm)とし、導電層(B)122は200〜400nm(好ましくは250〜350nm)とすれば良い。本実施例では、導電層(A)121に30nmの厚さの窒化タンタル膜を、導電層(B)122には350nmのTa膜を用い、いずれもスパッタ法で形成した。このスパッタ法による成膜では、スパッタ用のガスのArに適量のXeやKrを加えておくと、形成する膜の内部応力を緩和して膜の剥離を防止することができる。尚、図示しないが、導電層(A)121の下に2〜20nm程度の厚さでリン(P)をドープしたシリコン膜を形成しておくことは有効である。これにより、その上に形成される導電膜の密着性向上と酸化防止を図ると同時に、導電層(A)または導電層(B)が微量に含有するアルカリ金属元素がゲート絶縁膜120に拡散するのを防ぐことができる。(図2(C))   The conductive layer (A) 121 may be 10 to 50 nm (preferably 20 to 30 nm), and the conductive layer (B) 122 may be 200 to 400 nm (preferably 250 to 350 nm). In this embodiment, a 30 nm thick tantalum nitride film is used for the conductive layer (A) 121 and a 350 nm Ta film is used for the conductive layer (B) 122, both of which are formed by sputtering. In film formation by this sputtering method, if an appropriate amount of Xe or Kr is added to the sputtering gas Ar, the internal stress of the film to be formed can be relaxed and the film can be prevented from peeling. Although not shown, it is effective to form a silicon film doped with phosphorus (P) with a thickness of about 2 to 20 nm under the conductive layer (A) 121. This improves adhesion and prevents oxidation of the conductive film formed thereon, and at the same time, an alkali metal element contained in a trace amount in the conductive layer (A) or the conductive layer (B) diffuses into the gate insulating film 120. Can be prevented. (Fig. 2 (C))

次に、レジストマスク123〜127を形成し、導電層(A)121と導電層(B)122とを一括でエッチングしてゲート電極128〜131と容量配線132を形成する。ゲート電極128〜131と容量配線132は、導電層(A)から成る128a〜132aと、導電層(B)から成る128b〜132bとが一体として形成されている。この時、駆動回路に形成するゲート電極129、130は不純物領域117、118の一部と、ゲート絶縁膜120を介して重なるように形成する。(図2(D))   Next, resist masks 123 to 127 are formed, and the conductive layer (A) 121 and the conductive layer (B) 122 are etched together to form the gate electrodes 128 to 131 and the capacitor wiring 132. The gate electrodes 128 to 131 and the capacitor wiring 132 are integrally formed of 128a to 132a made of a conductive layer (A) and 128b to 132b made of a conductive layer (B). At this time, the gate electrodes 129 and 130 formed in the driver circuit are formed so as to overlap part of the impurity regions 117 and 118 with the gate insulating film 120 interposed therebetween. (Fig. 2 (D))

次いで、駆動回路のpチャネル型TFTのソース領域およびドレイン領域を形成するために、p型を付与する不純物元素を添加する工程を行う。ここでは、ゲート電極128をマスクとして、自己整合的に不純物領域を形成する。このとき、nチャネル型TFTが形成される領域はレジストマスク133で被覆しておく。そして、ジボラン(B26)を用いたイオンドープ法で不純物領域134を形成した。この領域のボロン(B)濃度は3×1020〜3×1021atoms/cm3となるようにする。本明細書中では、ここで形成された不純物領域134に含まれるp型を付与する不純物元素の濃度を(p+)と表す。(図3(A)) Next, in order to form a source region and a drain region of the p-channel TFT of the driver circuit, a step of adding an impurity element imparting p-type is performed. Here, the impurity region is formed in a self-aligning manner using the gate electrode 128 as a mask. At this time, a region where the n-channel TFT is formed is covered with a resist mask 133. Then, an impurity region 134 was formed by an ion doping method using diborane (B 2 H 6 ). The boron (B) concentration in this region is set to 3 × 10 20 to 3 × 10 21 atoms / cm 3 . In this specification, the concentration of the impurity element imparting p-type contained in the impurity region 134 formed here is expressed as (p + ). (Fig. 3 (A))

次に、nチャネル型TFTにおいて、ソース領域またはドレイン領域として機能する不純物領域の形成を行った。レジストのマスク135〜137を形成し、n型を付与する不純物元素が添加して不純物領域138〜142を形成した。これは、フォスフィン(PH3)を用いたイオンドープ法で行い、この領域のリン(P)濃度を1×1020〜1×1021atoms/cm3とした。本明細書中では、ここで形成された不純物領域138〜142に含まれるn型を付与する不純物元素の濃度を(n+)と表す。(図3(B)) Next, in the n-channel TFT, an impurity region functioning as a source region or a drain region was formed. Resist masks 135 to 137 were formed, and an impurity element imparting n-type conductivity was added to form impurity regions 138 to 142. This was performed by ion doping using phosphine (PH 3 ), and the phosphorus (P) concentration in this region was set to 1 × 10 20 to 1 × 10 21 atoms / cm 3 . In this specification, the concentration of the impurity element imparting n-type contained in the impurity regions 138 to 142 formed here is expressed as (n + ). (Fig. 3 (B))

不純物領域138〜142には、既に前工程で添加されたリン(P)またはボロン(B)が含まれているが、それに比して十分に高い濃度でリン(P)が添加されるので、前工程で添加されたリン(P)またはボロン(B)の影響は考えなくても良い。また、不純物領域138に添加されたリン(P)濃度は図3(A)で添加されたボロン(B)濃度の1/2〜1/3なのでp型の導電性が確保され、TFTの特性に何ら影響を与えることはなかった。   The impurity regions 138 to 142 already contain phosphorus (P) or boron (B) added in the previous step, but phosphorus (P) is added at a sufficiently high concentration, so that The influence of phosphorus (P) or boron (B) added in the previous step may not be considered. Further, since the phosphorus (P) concentration added to the impurity region 138 is 1/2 to 1/3 of the boron (B) concentration added in FIG. 3A, p-type conductivity is ensured, and TFT characteristics are obtained. It had no effect on.

そして、画素マトリクス回路のnチャネル型TFTのLDD領域を形成するためのn型を付与する不純物添加の工程を行った。ここではゲート電極131をマスクとして自己整合的にn型を付与する不純物元素をイオンドープ法で添加した。添加するリン(P)の濃度は1×1016〜5×1018atoms/cm3であり、図2(A)および図3(A)と図3(B)で添加する不純物元素の濃度よりも低濃度で添加することで、実質的には不純物領域143、144のみが形成される。本明細書中では、この不純物領域143、144に含まれるn型を付与する不純物元素の濃度を(n--)と表す。(図3(C)) Then, an impurity adding step for imparting n-type for forming the LDD region of the n-channel TFT of the pixel matrix circuit was performed. Here, an impurity element imparting n-type in a self-aligning manner is added by ion doping using the gate electrode 131 as a mask. The concentration of phosphorus (P) to be added is 1 × 10 16 to 5 × 10 18 atoms / cm 3, which is based on the concentration of the impurity element added in FIGS. 2 (A), 3 (A), and 3 (B). In addition, by adding at a low concentration, substantially only the impurity regions 143 and 144 are formed. In this specification, the concentration of the impurity element imparting n-type contained in the impurity regions 143 and 144 is represented by (n ). (Figure 3 (C))

その後、それぞれの濃度で添加されたn型またはp型を付与する不純物元素を活性化するために熱処理工程を行う。この工程はファーネスアニール法、レーザーアニール法、またはラピッドサーマルアニール法(RTA法)で行うことができる。ここではファーネスアニール法で活性化工程を行った。熱処理は酸素濃度が1ppm以下、好ましくは0.1ppm以下の窒素雰囲気中で400〜800℃、代表的には500〜600℃で行うものであり、本実施例では550℃で4時間の熱処理を行った。また、基板101に石英基板のような耐熱性を有するものを使用した場合には、800℃で1時間の熱処理としても良く、不純物元素の活性化と、該不純物元素が添加された不純物領域とチャネル形成領域との接合を良好に形成することができた。   Thereafter, a heat treatment process is performed to activate the impurity element imparting n-type or p-type added at each concentration. This step can be performed by a furnace annealing method, a laser annealing method, or a rapid thermal annealing method (RTA method). Here, the activation process was performed by furnace annealing. The heat treatment is performed at 400 to 800 ° C., typically 500 to 600 ° C. in a nitrogen atmosphere having an oxygen concentration of 1 ppm or less, preferably 0.1 ppm or less. In this embodiment, heat treatment is performed at 550 ° C. for 4 hours. went. Further, in the case where a substrate 101 having heat resistance such as a quartz substrate is used, heat treatment may be performed at 800 ° C. for 1 hour, and activation of the impurity element, impurity region to which the impurity element is added, and A good junction with the channel formation region could be formed.

この熱処理において、ゲート電極128〜131と容量配線132形成する金属膜128b〜132bは、表面から5〜80nmの厚さで導電層(C)128c〜132cが形成される。例えば、導電層(B)128b〜132bがタングステン(W)の場合には窒化タングステン(WN)が形成され、タンタル(Ta)の場合には窒化タンタル(TaN)を形成することができる。また、導電層(C)128c〜132cは、窒素またはアンモニアなどを用いた窒素を含むプラズマ雰囲気にゲート電極128〜131を晒しても同様に形成すりことができる。さらに、3〜100%の水素を含む雰囲気中で、300〜450℃で1〜12時間の熱処理を行い、島状半導体層を水素化する工程を行った。この工程は熱的に励起された水素により半導体層のダングリングボンドを終端する工程である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い。   In this heat treatment, the conductive layers (C) 128c to 132c are formed with a thickness of 5 to 80 nm from the surface of the metal films 128b to 132b forming the gate electrodes 128 to 131 and the capacitor wiring 132. For example, when the conductive layers (B) 128b to 132b are tungsten (W), tungsten nitride (WN) can be formed, and when tantalum (Ta) is used, tantalum nitride (TaN) can be formed. The conductive layers (C) 128c to 132c can be formed in the same manner even when the gate electrodes 128 to 131 are exposed to a plasma atmosphere containing nitrogen using nitrogen or ammonia. Further, a heat treatment was performed at 300 to 450 ° C. for 1 to 12 hours in an atmosphere containing 3 to 100% hydrogen to perform a step of hydrogenating the island-shaped semiconductor layer. This step is a step of terminating dangling bonds in the semiconductor layer with thermally excited hydrogen. As another means of hydrogenation, plasma hydrogenation (using hydrogen excited by plasma) may be performed.

島状半導体層が、非晶質シリコン膜から触媒元素を用いる結晶化の方法で作製された場合、島状半導体層中には微量の触媒元素が残留した。勿論、そのような状態でもTFTを完成させることが可能であるが、残留する触媒元素を少なくともチャネル形成領域から除去する方がより好ましかった。この触媒元素を除去する手段の一つにリン(P)によるゲッタリング作用を利用する手段があった。ゲッタリングに必要なリン(P)の濃度は図3(B)で形成した不純物領域(n+)と同程度であり、ここで実施される活性化工程の熱処理により、nチャネル型TFTおよびpチャネル型TFTのチャネル形成領域から触媒元素をゲッタリングをすることができた。(図3(D)) In the case where the island-shaped semiconductor layer was formed from an amorphous silicon film by a crystallization method using a catalytic element, a trace amount of the catalytic element remained in the island-shaped semiconductor layer. Of course, it is possible to complete the TFT even in such a state, but it is more preferable to remove at least the remaining catalyst element from the channel formation region. As one of means for removing the catalyst element, there is a means for utilizing the gettering action by phosphorus (P). The concentration of phosphorus (P) necessary for gettering is approximately the same as that of the impurity region (n + ) formed in FIG. 3B, and the n-channel TFT and the p-type are formed by heat treatment in the activation process performed here. The catalytic element could be gettered from the channel formation region of the channel TFT. (Fig. 3 (D))

図6(A)および図7(A)はここまでの工程におけるTFTの上面図であり、A−A'断面およびC−C'断面は図3(D)のA−A'およびC−C'に対応している。また、B−B'断面およびD−D'断面は図8(A)および図9(A)の断面図に対応している。図6および図7の上面図はゲート絶縁膜を省略しているが、ここまでの工程で少なくとも島状半導体層104〜107上にゲート電極128〜131と容量配線132が図に示すように形成されている。   6A and 7A are top views of the TFT in the steps up to here, and the AA ′ cross section and the CC ′ cross section are AA ′ and CC in FIG. It corresponds to '. Further, the BB ′ cross section and the DD ′ cross section correspond to the cross sectional views of FIGS. 8A and 9A. Although the gate insulating film is omitted in the top views of FIGS. 6 and 7, the gate electrodes 128 to 131 and the capacitor wiring 132 are formed on the island-like semiconductor layers 104 to 107 as shown in the drawings by the steps up to here. Has been.

活性化および水素化の工程が終了したら、ゲート配線とする第2の導電膜を形成する。この第2の導電膜は低抵抗材料であるアルミニウム(Al)や銅(Cu)を主成分とする導電層(D)と、チタン(Ti)やタンタル(Ta)、タングステン(W)、モリブデン(Mo)から成る導電層(E)とで形成すると良い。本実施例では、チタン(Ti)を0.1〜2重量%含むアルミニウム(Al)膜を導電層(D)145とし、チタン(Ti)膜を導電層(E)146として形成した。導電層(D)145は200〜400nm(好ましくは250〜350nm)とすれば良く、導電層(E)146は50〜200(好ましくは100〜150nm)で形成すれば良い。(図4(A))   After the activation and hydrogenation steps are completed, a second conductive film is formed as a gate wiring. The second conductive film includes a conductive layer (D) mainly composed of aluminum (Al) or copper (Cu), which is a low resistance material, titanium (Ti), tantalum (Ta), tungsten (W), molybdenum ( It is good to form with the conductive layer (E) which consists of Mo). In this embodiment, an aluminum (Al) film containing 0.1 to 2% by weight of titanium (Ti) is formed as the conductive layer (D) 145, and a titanium (Ti) film is formed as the conductive layer (E) 146. The conductive layer (D) 145 may be 200 to 400 nm (preferably 250 to 350 nm), and the conductive layer (E) 146 may be 50 to 200 (preferably 100 to 150 nm). (Fig. 4 (A))

そして、ゲート電極に接続するゲート配線を形成するために導電層(E)146と導電層(D)145とをエッチング処理して、ゲート配線147、148と容量配線149を形成た。エッチング処理は最初にSiCl4とCl2とBCl3との混合ガスを用いたドライエッチング法で導電層(E)の表面から導電層(D)の途中まで除去し、その後リン酸系のエッチング溶液によるウエットエッチングで導電層(D)を除去することにより、下地との選択加工性を保ってゲート配線を形成することができた。 Then, the conductive layers (E) 146 and (D) 145 were etched to form gate wirings connected to the gate electrodes, so that gate wirings 147 and 148 and capacitor wirings 149 were formed. The etching process is performed first by removing from the surface of the conductive layer (E) to the middle of the conductive layer (D) by a dry etching method using a mixed gas of SiCl 4 , Cl 2 and BCl 3, and then a phosphoric acid-based etching solution By removing the conductive layer (D) by wet etching, the gate wiring can be formed while maintaining selective processability with the base.

図6(B)および図7(B)はこの状態の上面図を示し、A−A'断面およびC−C'断面は図4(B)のA−A'およびC−C'に対応している。また、B−B'断面およびD−D'断面は図8(B)および図9(B)のB−B'およびD−D'に対応している。図6(B)および図7(B)において、ゲート配線147、148の一部は、ゲート電極128、129、131の一部と重なり電気的に接触している。この様子はB−B'断面およびD−D'断面に対応した図8(B)および図9(B)の断面構造図からも明らかで、第1の導電層を形成する導電層(C)と第2の導電層を形成する導電層(D)とが電気的に接触している。 6B and 7B are top views of this state, and the AA ′ and CC ′ sections correspond to AA ′ and CC ′ in FIG. 4B. ing. Further, the BB ′ section and the DD ′ section correspond to BB ′ and DD ′ in FIGS. 8B and 9B. 6B and 7B, part of the gate wirings 147 and 148 overlaps with part of the gate electrodes 128, 129, and 131 and is in electrical contact. This state is also apparent from the cross-sectional structure diagrams of FIGS. 8B and 9B corresponding to the BB ′ cross section and the DD ′ cross section, and the conductive layer (C) forming the first conductive layer. And the conductive layer (D) forming the second conductive layer are in electrical contact.

第1の層間絶縁膜150は500〜1500nmの厚さで酸化シリコン膜または酸化窒化シリコン膜で形成され、その後、それぞれの島状半導体層に形成されたソース領域またはドレイン領域に達するコンタクトホールを形成し、ソース配線151〜154と、ドレイン配線155〜158を形成する。図示していないが、本実施例ではこの電極を、Ti膜を100nm、Tiを含むアルミニウム膜300nm、Ti膜150nmをスパッタ法で連続して形成した3層構造の積層膜とした。   The first interlayer insulating film 150 is formed of a silicon oxide film or a silicon oxynitride film with a thickness of 500 to 1500 nm, and then a contact hole reaching the source region or the drain region formed in each island-like semiconductor layer is formed. Then, source wirings 151 to 154 and drain wirings 155 to 158 are formed. Although not shown, in this embodiment, this electrode is a laminated film having a three-layer structure in which a Ti film is 100 nm, an aluminum film containing Ti is 300 nm, and a Ti film is 150 nm continuously formed by sputtering.

次に、パッシベーション膜159として、窒化シリコン膜、酸化シリコン膜、または窒化酸化シリコン膜を50〜500nm(代表的には100〜300nm)の厚さで形成する。この状態で水素化処理を行うとTFTの特性向上に対して好ましい結果が得られた。例えば、3〜100%の水素を含む雰囲気中で、300〜450℃で1〜12時間の熱処理を行うと良く、あるいはプラズマ水素化法を用いても同様の効果が得られた。なお、ここで後に画素電極とドレイン配線を接続するためのコンタクトホールを形成する位置において、パッシベーション膜159に開口部を形成しておいても良い。(図4(C))   Next, a silicon nitride film, a silicon oxide film, or a silicon nitride oxide film is formed as the passivation film 159 with a thickness of 50 to 500 nm (typically 100 to 300 nm). When the hydrogenation treatment was performed in this state, favorable results were obtained with respect to the improvement of TFT characteristics. For example, heat treatment may be performed at 300 to 450 ° C. for 1 to 12 hours in an atmosphere containing 3 to 100% hydrogen, or the same effect can be obtained by using a plasma hydrogenation method. Note that an opening may be formed in the passivation film 159 at a position where a contact hole for connecting the pixel electrode and the drain wiring is formed later. (Fig. 4 (C))

図6(C)および図7(C)のはこの状態の上面図を示し、A−A'断面およびC−C'断面は図4(C)のA−A'およびC−C'に対応している。また、B−B'断面およびD−D'断面は図8(C)および図9(C)のB−B'およびD−D'に対応している。図6(C)と図7(C)では第1の層間絶縁膜を省略して示すが、島状半導体層104、105、107の図示されていないソースおよびドレイン領域にソース配線151、152、154とドレイン配線155、156、158が第1の層間絶縁膜に形成されたコンタクトホールを介して接続している。 6C and 7C are top views of this state, and the AA ′ and CC ′ sections correspond to AA ′ and CC ′ in FIG. 4C. is doing. The BB ′ cross section and the DD ′ cross section correspond to BB ′ and DD ′ in FIGS. 8C and 9C. In FIG. 6C and FIG. 7C, the first interlayer insulating film is omitted, but source wirings 151, 152, and the like are not illustrated in the source and drain regions of the island-shaped semiconductor layers 104, 105, and 107. 154 and drain wirings 155, 156, 158 are connected through a contact hole formed in the first interlayer insulating film.

その後、有機樹脂からなる第2の層間絶縁膜160を1.0〜1.5μmの厚さに形成する。有機樹脂としては、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、BCB(ベンゾシクロブテン)等を使用することができる。ここでは、基板に塗布後、熱重合するタイプのポリイミドを用い、300℃で焼成して形成した。そして、第2の層間絶縁膜160にドレイン配線158に達するコンタクトホールを形成し、画素電極161、162を形成する。画素電極は、透過型液晶表示装置とする場合には透明導電膜を用いれば良く、反射型の液晶表示装置とする場合には金属膜を用いれば良い。本実施例では透過型の液晶表示装置とするために、酸化インジウム・スズ(ITO)膜を100nmの厚さにスパッタ法で形成した。(図5)   Thereafter, a second interlayer insulating film 160 made of an organic resin is formed to a thickness of 1.0 to 1.5 μm. As the organic resin, polyimide, acrylic, polyamide, polyimide amide, BCB (benzocyclobutene), or the like can be used. Here, it was formed by baking at 300 ° C. using a type of polyimide that is thermally polymerized after being applied to the substrate. Then, a contact hole reaching the drain wiring 158 is formed in the second interlayer insulating film 160, and pixel electrodes 161 and 162 are formed. The pixel electrode may be a transparent conductive film in the case of a transmissive liquid crystal display device, and may be a metal film in the case of a reflective liquid crystal display device. In this embodiment, an indium tin oxide (ITO) film having a thickness of 100 nm is formed by sputtering to form a transmissive liquid crystal display device. (Fig. 5)

こうして同一基板上に、駆動回路のTFTと表示領域の画素TFTとを有した基板を完成させることができた。駆動回路にはpチャネル型TFT201、第1のnチャネル型TFT202、第2のnチャネル型TFT203、表示領域には画素TFT204、保持容量205が形成した。本明細書では便宜上このような基板をアクティブマトリクス基板と呼ぶ。   In this way, a substrate having the TFTs of the driving circuit and the pixel TFTs of the display area on the same substrate could be completed. A p-channel TFT 201, a first n-channel TFT 202, and a second n-channel TFT 203 are formed in the driver circuit, and a pixel TFT 204 and a storage capacitor 205 are formed in the display region. In this specification, such a substrate is referred to as an active matrix substrate for convenience.

駆動回路のpチャネル型TFT201には、島状半導体層104にチャネル形成領域206、ソース領域207a、207b、ドレイン領域208a,208bを有している。第1のnチャネル型TFT202には、島状半導体層105にチャネル形成領域209、ゲート電極129と重なるLDD領域210(以降、このようなLDD領域をLovと記す)、ソース領域211、ドレイン領域212を有している。このLov領域のチャネル長方向の長さは0.5〜3.0μm、好ましくは1.0〜1.5μmとした。第2のnチャネル型TFT203には、島状半導体層106にチャネル形成領域213、LDD領域214,215、ソース領域216、ドレイン領域217を有している。このLDD領域はLov領域とゲート電極130と重ならないLDD領域(以降、このようなLDD領域をLoffと記す)とが形成され、このLoff領域のチャネル長方向の長さは0.3〜2.0μm、好ましくは0.5〜1.5μmである。画素TFT204には、島状半導体層107にチャネル形成領域218、219、Loff領域220〜223、ソースまたはドレイン領域224〜226を有している。Loff領域のチャネル長方向の長さは0.5〜3.0μm、好ましくは1.5〜2.5μmである。さらに、容量配線132、149と、ゲート絶縁膜と同じ材料から成る絶縁膜と、画素TFT204のドレイン領域226に接続し、n型を付与する不純物元素が添加された半導体層227とから保持容量205が形成されている。図5では画素TFT204をダブルゲート構造としたが、シングルゲート構造でも良いし、複数のゲート電極を設けたマルチゲート構造としても差し支えない。   The p-channel TFT 201 of the driver circuit includes a channel formation region 206, source regions 207a and 207b, and drain regions 208a and 208b in the island-like semiconductor layer 104. The first n-channel TFT 202 includes an LDD region 210 that overlaps the island-shaped semiconductor layer 105 with a channel formation region 209 and a gate electrode 129 (hereinafter, such an LDD region is referred to as Lov), a source region 211, and a drain region 212. have. The length of the Lov region in the channel length direction is 0.5 to 3.0 μm, preferably 1.0 to 1.5 μm. The second n-channel TFT 203 includes a channel formation region 213, LDD regions 214 and 215, a source region 216, and a drain region 217 in the island-shaped semiconductor layer 106. This LDD region is formed with an LDD region that does not overlap the Lov region and the gate electrode 130 (hereinafter, such an LDD region is referred to as Loff), and the length of the Loff region in the channel length direction is 0.3-2. It is 0 μm, preferably 0.5 to 1.5 μm. The pixel TFT 204 includes channel formation regions 218 and 219, Loff regions 220 to 223, and source or drain regions 224 to 226 in the island-shaped semiconductor layer 107. The length of the Loff region in the channel length direction is 0.5 to 3.0 μm, preferably 1.5 to 2.5 μm. Further, the storage capacitor 205 includes capacitor wirings 132 and 149, an insulating film made of the same material as the gate insulating film, and a semiconductor layer 227 connected to the drain region 226 of the pixel TFT 204 and doped with an impurity element imparting n-type conductivity. Is formed. Although the pixel TFT 204 has a double gate structure in FIG. 5, it may have a single gate structure or a multi-gate structure provided with a plurality of gate electrodes.

以上の様に本発明は、画素TFTおよび駆動回路が要求する仕様に応じて各回路を構成するTFTの構造を最適化し、半導体装置の動作性能と信頼性を向上させることを可能とすることができる。さらにゲート電極を耐熱性を有する導電性材料で形成することによりLDD領域やソース領域およびドレイン領域の活性化を容易とし、ゲート配線低抵抗材料で形成することにより、配線抵抗を十分低減できる。従って、表示領域(画面サイズ)が4インチクラス以上の表示装置に適用することができる。   As described above, the present invention can optimize the structure of TFTs constituting each circuit in accordance with specifications required by the pixel TFT and the drive circuit, and can improve the operation performance and reliability of the semiconductor device. it can. Furthermore, the LDD region, the source region, and the drain region can be easily activated by forming the gate electrode from a heat-resistant conductive material, and the wiring resistance can be sufficiently reduced by forming the gate electrode from a low-resistance material. Therefore, the present invention can be applied to a display device having a display area (screen size) of 4 inches class or more.

[実施形態2] 図16はゲート電極とゲート配線の他の実施形態を示す図である。図16のゲート電極とゲート配線は実施形態1で示す工程と同様にして形成されるものであり、島状半導体層901とゲート絶縁膜902の上方に形成さている。 Embodiment 2 FIG. 16 is a diagram showing another embodiment of a gate electrode and a gate wiring. The gate electrode and the gate wiring in FIG. 16 are formed in the same manner as in the process described in Embodiment 1, and are formed above the island-shaped semiconductor layer 901 and the gate insulating film 902.

図16(A)において、ゲート電極とする第1の導電層には、導電層(A)903は窒化タンタル(TaN)、窒化タングステン(WN)、窒化チタン(TiN)膜、窒化モリブデン(MoN)で形成する。導電層(B)904はタンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(W)から選ばれた元素、または前記元素を主成分とする合金か、前記元素を組み合わせた合金膜で形成し、その表面に実施形態1と同様にして導電層(C)905を形成する。導電層(A)903は10〜50nm(好ましくは20〜30nm)とし、導電層(B)904は200〜400nm(好ましくは250〜350nm)とすれば良い。ゲート配線とする第2の導電層は低抵抗材料であるアルミニウム(Al)や銅(Cu)を主成分とする導電層(D)と、その上にチタン(Ti)やタンタル(Ta)などで形成する導電層(E)とを積層形成する。アルミニウム(Al)や銅(Cu)はストレスマイグレーションやエレクトロマイグレーションで容易に拡散するため、第2の導電層を被覆するように窒化シリコン膜908を50〜150nmの厚さで形成することが必要である。   In FIG. 16A, a conductive layer (A) 903 includes a tantalum nitride (TaN), a tungsten nitride (WN), a titanium nitride (TiN) film, and a molybdenum nitride (MoN). Form with. The conductive layer (B) 904 is an element selected from tantalum (Ta), titanium (Ti), molybdenum (Mo), and tungsten (W), an alloy containing the element as a main component, or an alloy film in which the elements are combined. The conductive layer (C) 905 is formed on the surface in the same manner as in the first embodiment. The conductive layer (A) 903 may be 10 to 50 nm (preferably 20 to 30 nm), and the conductive layer (B) 904 may be 200 to 400 nm (preferably 250 to 350 nm). The second conductive layer used as the gate wiring is composed of a conductive layer (D) whose main component is aluminum (Al) or copper (Cu), which is a low resistance material, and titanium (Ti), tantalum (Ta) or the like on the conductive layer (D). A conductive layer (E) to be formed is stacked. Since aluminum (Al) and copper (Cu) are easily diffused by stress migration or electromigration, it is necessary to form the silicon nitride film 908 with a thickness of 50 to 150 nm so as to cover the second conductive layer. is there.

図16(B)は実施形態1と同様に作製されるゲート電極とゲート配線であり、ゲート電極の下にリン(P)をドープしたシリコン膜909を形成してある。リン(P)をドープしたシリコン膜909はゲート電極中に含まれる微量のアルカリ金属元素がゲート絶縁膜へ拡散することを防ぐ効果があり、TFTの信頼性を確保する目的で有用である。   FIG. 16B shows a gate electrode and a gate wiring manufactured in the same manner as in Embodiment Mode 1. A silicon film 909 doped with phosphorus (P) is formed under the gate electrode. The silicon film 909 doped with phosphorus (P) has an effect of preventing a trace amount of alkali metal element contained in the gate electrode from diffusing into the gate insulating film, and is useful for the purpose of ensuring the reliability of the TFT.

図16(C)は、ゲート電極を形成する第1の導電層にリン(P)をドープしたシリコン膜910で形成した例である。リン(P)をドープしたシリコン膜は他の導電性金属材料と比較して高抵抗材料であるが、ゲート配線を形成する第2の導電層をアルミニウム(Al)や銅(Cu)で形成することにより、大面積の液晶表示装置にも適用することができる。ここでは、ゲート配線を、Ti膜911を100nm、Tiを含むアルミニウム(Al)膜912を300nm、Ti膜913を150nmで形成した3層構造とし、アルミニウム(Al)膜とリン(P)をドープしたシリコン膜とを直接接触しないようにすることにより、耐熱性を持たせることができる。   FIG. 16C illustrates an example in which the first conductive layer for forming the gate electrode is formed using a silicon film 910 doped with phosphorus (P). The silicon film doped with phosphorus (P) is a high-resistance material as compared with other conductive metal materials, but the second conductive layer for forming the gate wiring is formed of aluminum (Al) or copper (Cu). Thus, the present invention can be applied to a large-area liquid crystal display device. Here, the gate wiring has a three-layer structure in which a Ti film 911 is formed with a thickness of 100 nm, an aluminum (Al) film 912 containing Ti is formed with a thickness of 300 nm, and a Ti film 913 is formed with a thickness of 150 nm. Heat resistance can be provided by preventing direct contact with the silicon film.

[実施形態3] 図15は本発明のTFTの構造を説明するための図であり、半導体層のチャネル形成領域と、LDD領域と、半導体層上のゲート絶縁膜と、ゲート絶縁膜上のゲート電極とを有するTFTにおいて、ゲート電極とLDD領域の位置関係を説明している。 Embodiment 3 FIG. 15 is a diagram for explaining the structure of a TFT according to the present invention, in which a channel formation region of a semiconductor layer, an LDD region, a gate insulating film on the semiconductor layer, and a gate on the gate insulating film. In the TFT having electrodes, the positional relationship between the gate electrode and the LDD region is described.

図15(A)において、チャネル形成領域209、LDD領域210、ドレイン領域212を有する半導体層と、その上のゲート絶縁膜120とゲート電極129が設けられた構成を示している。LDD領域210はゲート絶縁膜120を介してゲート電極129と重なるように設けられてたLovとなっている。Lovはドレイン近傍で発生する高電界を緩和する作用があり、ホットキャリアによる劣化を防ぐことができ、制御回路のシフトレジスタ回路、レベルシフタ回路、バッファ回路などのnチャネル型TFTに用いるのに適している。   FIG. 15A shows a structure in which a semiconductor layer including a channel formation region 209, an LDD region 210, and a drain region 212, and a gate insulating film 120 and a gate electrode 129 thereover are provided. The LDD region 210 is Lov provided so as to overlap the gate electrode 129 with the gate insulating film 120 interposed therebetween. Lov has a function of relaxing a high electric field generated near the drain, can prevent deterioration due to hot carriers, and is suitable for use in an n-channel TFT such as a shift register circuit, a level shifter circuit, and a buffer circuit of a control circuit. Yes.

図15(B)において、チャネル形成領域213、LDD領域215a、215b、ドレイン領域217を有する半導体層と、半導体層の上にゲート絶縁膜120とゲート電極130が設けられた構成を示している。LDD領域215aはゲート絶縁膜120を介してゲート電極130と重なるように設けられている。また、LDD領域215bはゲート電極130と重ならないように設けられたLoffとなっている。Loffはオフ電流値を低減させる作用があり、LovとLoffとを設けた構成にすることで、ホットキャリアによる劣化を防ぐと同時にオフ電流値を低減させることができ、制御回路のサンプリング回路のnチャネル型TFTに用いるのに適している。   FIG. 15B shows a structure in which a semiconductor layer including a channel formation region 213, LDD regions 215a and 215b, and a drain region 217, and a gate insulating film 120 and a gate electrode 130 are provided over the semiconductor layer. The LDD region 215a is provided so as to overlap the gate electrode 130 with the gate insulating film 120 interposed therebetween. The LDD region 215b is Loff provided so as not to overlap the gate electrode 130. Loff has an effect of reducing the off-current value. By adopting a configuration in which Lov and Loff are provided, the off-current value can be reduced while preventing deterioration due to hot carriers, and the n of the sampling circuit of the control circuit can be reduced. Suitable for channel type TFT.

図15(C)は、半導体層に、チャネル形成領域219、LDD領域223、ドレイン領域226が設けられている。LDD領域223は、ゲート電極131と重ならないように設けられたLoffであり、オフ電流値を効果的に低減させることが可能となり、画素TFTに用いるのに適している。画素TFTのLDD領域223におけるn型を付与する不純物元素の濃度は、駆動回路のLDD領域210、215の濃度よりも1/2から1/10にすることが望ましい。   In FIG. 15C, a channel formation region 219, an LDD region 223, and a drain region 226 are provided in the semiconductor layer. The LDD region 223 is Loff provided so as not to overlap with the gate electrode 131, can effectively reduce the off-current value, and is suitable for use in the pixel TFT. The concentration of the impurity element imparting n-type in the LDD region 223 of the pixel TFT is desirably 1/2 to 1/10 than the concentration of the LDD regions 210 and 215 of the driver circuit.

[実施形態4] 本実施形態では、アクティブマトリクス基板から、アクティブマトリクス型液晶表示装置を作製する工程を説明する。図11に示すように、実施形態1で作製した図5の状態のアクティブマトリクス基板に対し、配向膜601を形成する。通常液晶表示素子の配向膜にはポリイミド樹脂が多く用いられている。対向側の対向基板602には、遮光膜603、透明導電膜604および配向膜605を形成した。配向膜を形成した後、ラビング処理を施して液晶分子がある一定のプレチルト角を持って配向するようにした。そして、画素マトリクス回路と、CMOS回路が形成されたアクティブマトリクス基板と対向基板とを、公知のセル組み工程によってシール材やスペーサ(共に図示せず)などを介して貼りあわせる。その後、両基板の間に液晶材料606を注入し、封止剤(図示せず)によって完全に封止した。液晶材料には公知の液晶材料を用いれば良い。このようにして図11に示すアクティブマトリクス型液晶表示装置が完成した。 [Embodiment 4] In this embodiment, a process for manufacturing an active matrix liquid crystal display device from an active matrix substrate will be described. As shown in FIG. 11, an alignment film 601 is formed on the active matrix substrate in the state shown in FIG. Usually, a polyimide resin is often used for the alignment film of the liquid crystal display element. A light shielding film 603, a transparent conductive film 604, and an alignment film 605 were formed on the counter substrate 602 on the counter side. After the alignment film was formed, rubbing treatment was performed so that the liquid crystal molecules were aligned with a certain pretilt angle. Then, the pixel matrix circuit, the active matrix substrate on which the CMOS circuit is formed, and the counter substrate are bonded to each other through a sealing material, a spacer (both not shown), or the like by a known cell assembling process. Thereafter, a liquid crystal material 606 was injected between both substrates and completely sealed with a sealant (not shown). A known liquid crystal material may be used as the liquid crystal material. Thus, the active matrix liquid crystal display device shown in FIG. 11 was completed.

次にこのアクティブマトリクス型液晶表示装置の構成を、図12の斜視図および図13の上面図を用いて説明する。尚、図12と図13は、図1〜図5と図11の断面構造図と対応付けるため、共通の符号を用いている。また、図13で示すE―E’に沿った断面構造は、図5に示す画素マトリクス回路の断面図に対応している。   Next, the structure of the active matrix liquid crystal display device will be described with reference to the perspective view of FIG. 12 and the top view of FIG. 12 and 13 use the same reference numerals in order to correspond to the cross-sectional structure diagrams of FIGS. 1 to 5 and FIG. Further, the cross-sectional structure along E-E ′ shown in FIG. 13 corresponds to the cross-sectional view of the pixel matrix circuit shown in FIG. 5.

図12においてアクティブマトリクス基板は、ガラス基板101上に形成された、表示領域306と、走査信号駆動回路304と、画像信号駆動回路305で構成される。表示領域には画素TFT204が設けられ、周辺に設けられる駆動回路はCMOS回路を基本として構成されている。走査信号駆動回路304と、画像信号駆動回路305はそれぞれゲート配線148とソース配線154で画素TFT204に接続している。また、FPC731が外部入出力端子734に接続され、入力配線302、303でそれぞれの駆動回路に接続している。   In FIG. 12, the active matrix substrate includes a display region 306, a scanning signal driving circuit 304, and an image signal driving circuit 305 formed on the glass substrate 101. A pixel TFT 204 is provided in the display area, and a driving circuit provided in the periphery is configured based on a CMOS circuit. The scanning signal driving circuit 304 and the image signal driving circuit 305 are connected to the pixel TFT 204 by a gate wiring 148 and a source wiring 154, respectively. Further, the FPC 731 is connected to the external input / output terminal 734 and is connected to the respective drive circuits by the input wirings 302 and 303.

図13は表示領域306のほぼ一画素分を示す上面図である。ゲート配線148は、図示されていないゲート絶縁膜を介してその下の半導体層107と交差している。図示はしていないが、半導体層には、ソース領域、ドレイン領域、n--領域でなるLoff領域が形成されている。また、163はソース配線154とソース領域224とのコンタクト部、164はドレイン配線158とドレイン領域226とのコンタクト部、165はドレイン配線158と画素電極161のコンタクト部である。保持容量205は、画素TFT204のドレイン領域226から延在する半導体層227とゲート絶縁膜を介して容量配線132、149が重なる領域で形成されている。 FIG. 13 is a top view showing almost one pixel in the display area 306. The gate wiring 148 intersects the semiconductor layer 107 thereunder via a gate insulating film (not shown). Although not shown, in the semiconductor layer, a source region, a drain region, and an Loff region composed of an n region are formed. Reference numeral 163 denotes a contact portion between the source wiring 154 and the source region 224, 164 denotes a contact portion between the drain wiring 158 and the drain region 226, and 165 denotes a contact portion between the drain wiring 158 and the pixel electrode 161. The storage capacitor 205 is formed in a region where the capacitor wirings 132 and 149 overlap with the semiconductor layer 227 extending from the drain region 226 of the pixel TFT 204 and the gate insulating film.

なお、本実施例のアクティブマトリクス型液晶表示装置は、実施形態1で説明した構造と照らし合わせて説明したが、実施形態2の構成とも自由に組み合わせてアクティブマトリクス型液晶表示装置を作製することができる。   Note that the active matrix liquid crystal display device of this example has been described with reference to the structure described in Embodiment 1, but an active matrix liquid crystal display device can be manufactured by freely combining with the structure of Embodiment 2. it can.

[実施形態5] 図10は液晶表示装置の入出力端子、表示領域、駆動回路の配置の一例を示す図である。表示領域306にはm本のゲート配線とn本のソース配線がマトリクス状に交差している。例えば、画素密度がVGAの場合、480本のゲート配線と640本のソース配線が形成され、XGAの場合には768本のゲート配線と1024本のソース配線が形成される。表示領域の画面サイズは、13インチクラスの場合対角線の長さは340mmとなり、18インチクラスの場合には460mmとなる。このような液晶表示装置を実現するには、ゲート配線を実施形態1および実施形態2で示したような低抵抗材料で形成する必要がある。 Embodiment 5 FIG. 10 is a diagram showing an example of the arrangement of input / output terminals, a display area, and a drive circuit of a liquid crystal display device. In the display region 306, m gate lines and n source lines intersect in a matrix. For example, when the pixel density is VGA, 480 gate wirings and 640 source wirings are formed, and in the case of XGA, 768 gate wirings and 1024 source wirings are formed. The screen size of the display area is 340 mm for the 13-inch class and 460 mm for the 18-inch class. In order to realize such a liquid crystal display device, the gate wiring needs to be formed of a low resistance material as shown in the first and second embodiments.

表示領域306の周辺には走査信号駆動回路304と画像信号駆動回路305が設けられている。これらの駆動回路のゲート配線の長さも表示領域の画面サイズの大型化と共に必然的に長くなるので、大画面を実現するためには実施形態1および実施形態2で示したような低抵抗材料で形成することが好ましい。   Around the display area 306, a scanning signal driving circuit 304 and an image signal driving circuit 305 are provided. Since the lengths of the gate wirings of these drive circuits are inevitably longer as the screen size of the display area is increased, a low resistance material as shown in the first and second embodiments is used to realize a large screen. It is preferable to form.

また、本発明は入力端子301から各駆動回路までを接続する入力配線302、303をゲート配線と同じ材料で形成することができ、配線抵抗の低抵抗化に寄与することができる。   Further, according to the present invention, the input wirings 302 and 303 that connect the input terminal 301 to each driving circuit can be formed of the same material as the gate wiring, which can contribute to a reduction in wiring resistance.

[実施形態6] 図14は実施形態1または実施形態2で示したアクティブマトリクス基板の回路構成の一例であり、直視型の表示装置の回路構成を示す図である。本実施例のアクティブマトリクス基板は、画像信号駆動回路1001、走査信号駆動回路(A)1007、走査信号駆動回路(B)1011、プリチャージ回路1012、表示領域1006を有している。尚、本明細書中において記した駆動回路とは、画像信号駆動回路1001、走査信号駆動回路(A)1007を含めた総称である。 Embodiment 6 FIG. 14 is an example of a circuit configuration of an active matrix substrate shown in Embodiment 1 or 2, and is a diagram illustrating a circuit configuration of a direct-view display device. The active matrix substrate of this embodiment includes an image signal driving circuit 1001, a scanning signal driving circuit (A) 1007, a scanning signal driving circuit (B) 1011, a precharge circuit 1012, and a display area 1006. Note that the driving circuit described in this specification is a generic name including the image signal driving circuit 1001 and the scanning signal driving circuit (A) 1007.

画像信号駆動回路1001は、シフトレジスタ回路1002、レベルシフタ回路1003、バッファ回路1004、サンプリング回路1005を備えている。また、走査信号駆動回路(A)1007は、シフトレジスタ回路1008、レベルシフタ回路1009、バッファ回路1010を備えている。走査信号駆動回路(B)1011も同様な構成である。   The image signal driving circuit 1001 includes a shift register circuit 1002, a level shifter circuit 1003, a buffer circuit 1004, and a sampling circuit 1005. The scanning signal driver circuit (A) 1007 includes a shift register circuit 1008, a level shifter circuit 1009, and a buffer circuit 1010. The scanning signal driving circuit (B) 1011 has the same configuration.

シフトレジスタ回路1002、1008は駆動電圧が5〜16V(代表的には10V)であり、この回路を形成するCMOS回路のnチャネル型TFTは図5の202で示される構造が適している。また、レベルシフタ回路1003、1009やバッファ回路1004、1010は駆動電圧が14〜16Vと高くなるが、シフトレジスタ回路と同様に、図5のnチャネル型TFT202を含むCMOS回路が適している。これらの回路において、ゲートをマルチゲート構造で形成すると耐圧が高まり、回路の信頼性を向上させる上で有効である。   The shift register circuits 1002 and 1008 have a driving voltage of 5 to 16 V (typically 10 V), and the structure indicated by 202 in FIG. 5 is suitable for the n-channel TFT of the CMOS circuit forming this circuit. Further, the level shifter circuits 1003 and 1009 and the buffer circuits 1004 and 1010 have a drive voltage as high as 14 to 16 V, but a CMOS circuit including the n-channel TFT 202 in FIG. 5 is suitable as in the shift register circuit. In these circuits, when the gate is formed with a multi-gate structure, the breakdown voltage is increased, which is effective in improving the reliability of the circuit.

サンプリング回路1005は駆動電圧が14〜16Vであるが、極性が交互に反転して駆動される上、オフ電流値を低減させる必要があるため、図5のnチャネル型TFT203を含むCMOS回路が適している。図5では、nチャネル型TFTしか表示はされていないが、実際のサンプリング回路においてはpチャネル型TFTも組み合わせて形成される。この時、pチャネル型TFTは同図の201で示される構造で十分である。   Although the sampling circuit 1005 has a driving voltage of 14 to 16 V, it is driven by alternately inverting the polarity, and it is necessary to reduce the off-current value. Therefore, a CMOS circuit including the n-channel TFT 203 in FIG. 5 is suitable. ing. In FIG. 5, only an n-channel TFT is displayed, but in an actual sampling circuit, a p-channel TFT is also formed in combination. At this time, the structure indicated by 201 in FIG.

また、画素TFT204は駆動電圧が14〜16Vであり、低消費電力化の観点からサンプリング回路よりもさらにオフ電流値を低減することが要求され、画素TFT204のようにゲート電極に対して重ならないように設けられたLDD(Loff)領域を有した構造とするのが望ましい。   The pixel TFT 204 has a driving voltage of 14 to 16 V, and it is required to further reduce the off-current value from the viewpoint of reducing power consumption, so that it does not overlap with the gate electrode like the pixel TFT 204. It is desirable to have a structure having an LDD (Loff) region provided in the substrate.

尚、本実施形態の構成は、実施形態1に示した工程に従ってTFTを作製することによって容易に実現することができる。本実施形態では、表示領域と駆動回路の構成のみを示しているが、実施形態1の工程に従えば、その他にも信号分割回路、分周波回路、D/Aコンバータ、γ補正回路、オペアンプ回路、さらにメモリ回路や演算処理回路などの信号処理回路、あるいは論理回路を同一基板上に形成することが可能である。このように、本発明は同一基板上に表示領域とその駆動回路とを含む半導体装置、例えば信号駆動回路および表示領域を具備した半導体装置を実現することができる。   Note that the configuration of this embodiment can be easily realized by manufacturing a TFT according to the steps shown in Embodiment 1. In the present embodiment, only the configuration of the display area and the drive circuit is shown. However, according to the steps of the first embodiment, in addition to the above, a signal dividing circuit, a frequency divider circuit, a D / A converter, a γ correction circuit, an operational amplifier circuit Further, a signal processing circuit such as a memory circuit or an arithmetic processing circuit, or a logic circuit can be formed on the same substrate. As described above, the present invention can realize a semiconductor device including a display region and a driver circuit thereof on the same substrate, for example, a semiconductor device including a signal driver circuit and a display region.

[実施形態7] 本発明を実施して作製されたアクティブマトリクス基板および液晶表示装置は様々な電気光学装置に用いることができる。そして、そのような電気光学装置を表示媒体として組み込んだ電子機器全てに本発明を適用することがでできる。電子機器としては、パーソナルコンピュータ、デジタルカメラ、ビデオカメラ、携帯情報端末(モバイルコンピュータ、携帯電話、電子書籍など)、ナビゲーションシステムなどが上げられる。それらの一例を図17に示す。 [Embodiment 7] An active matrix substrate and a liquid crystal display device manufactured by implementing the present invention can be used for various electro-optical devices. The present invention can be applied to all electronic devices in which such an electro-optical device is incorporated as a display medium. Examples of electronic devices include personal computers, digital cameras, video cameras, portable information terminals (mobile computers, mobile phones, electronic books, etc.), navigation systems, and the like. An example of them is shown in FIG.

図17(A)はパーソナルコンピュータであり、マイクロプロセッサやメモリーなどを備えた本体2001、画像入力部2002、表示装置2003、キーボード2004で構成される。本発明は表示装置2003やその他の信号処理回路を形成することができる。   FIG. 17A illustrates a personal computer which includes a main body 2001 including a microprocessor and a memory, an image input portion 2002, a display device 2003, and a keyboard 2004. The present invention can form the display device 2003 and other signal processing circuits.

図17(B)はビデオカメラであり、本体2101、表示装置2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106で構成される。本発明は表示装置2102やその他の信号制御回路に適用することができる。   FIG. 17B shows a video camera, which includes a main body 2101, a display device 2102, an audio input portion 2103, operation switches 2104, a battery 2105, and an image receiving portion 2106. The present invention can be applied to the display device 2102 and other signal control circuits.

図17(C)は携帯情報端末であり、本体2201、画像入力部2202、受像部2203、操作スイッチ2204、表示装置2205で構成される。本発明は表示装置2205やその他の信号制御回路に適用することができる。   FIG. 17C illustrates a portable information terminal which includes a main body 2201, an image input portion 2202, an image receiving portion 2203, operation switches 2204, and a display device 2205. The present invention can be applied to the display device 2205 and other signal control circuits.

図17(D)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体2401、表示装置2402、スピーカー部2403、記録媒体2404、操作スイッチ2405で構成される。尚、記録媒体にはDVD(Digital Versatile Disc)やコンパクトディスク(CD)などを用い、音楽プログラムの再生や映像表示、ビデオゲーム(またはテレビゲーム)やインターネットを介した情報表示などを行うことができる。本発明は表示装置2402やその他の信号制御回路に好適に利用することができる。   FIG. 17D shows a player that uses a recording medium (hereinafter referred to as a recording medium) in which a program is recorded, and includes a main body 2401, a display device 2402, a speaker unit 2403, a recording medium 2404, and operation switches 2405. A recording medium such as a DVD (Digital Versatile Disc) or a compact disc (CD) can be used to play music programs, display images, display video games (or video games), and display information via the Internet. . The present invention can be suitably used for the display device 2402 and other signal control circuits.

図17(E)はデジタルカメラであり、本体2501、表示装置2502、接眼部2503、操作スイッチ2504、受像部(図示しない)で構成される。本発明は表示装置2502やその他の信号制御回路に適用することができる。   FIG. 17E illustrates a digital camera which includes a main body 2501, a display device 2502, an eyepiece unit 2503, an operation switch 2504, and an image receiving unit (not shown). The present invention can be applied to the display device 2502 and other signal control circuits.

このように、本願発明の適用範囲はきわめて広く、あらゆる分野の電子機器に適用することが可能である。また、本実施例の電子機器は実施例1〜6のどのような組み合わせから成る構成を用いても実現することができる。   Thus, the applicable range of the present invention is extremely wide and can be applied to electronic devices in all fields. Further, the electronic apparatus of the present embodiment can be realized by using any combination of the first to sixth embodiments.

[実施形態8] 本実施形態では、実施形態1と同様なアクティブマトリクス基板で、エレクトロルミネッセンス(EL:Electro Luminescence)材料を用いた自発光型の表示パネル(以下、EL表示装置と記す)を作製する例について説明する。図18(A)はそのEL表示パネルの上面図を示す。図18(A)において、10は基板、11は画素部、12はソース側駆動回路、13はゲート側駆動回路であり、それぞれの駆動回路は配線14〜16を経てFPC17に至り、外部機器へと接続される。 [Embodiment 8] In this embodiment, a self-luminous display panel (hereinafter referred to as an EL display device) using an electroluminescence (EL) material is manufactured using the same active matrix substrate as that in Embodiment 1. An example will be described. FIG. 18A shows a top view of the EL display panel. In FIG. 18A, reference numeral 10 denotes a substrate, 11 denotes a pixel portion, 12 denotes a source side driver circuit, 13 denotes a gate side driver circuit, and each driver circuit reaches the FPC 17 via wirings 14 to 16 to the external device. Connected.

図18(A)のA−A'線に対応する断面図を図18(B)に示す。このとき少なくとも画素部の上方、好ましくは駆動回路及び画素部の上方に対向板80を設ける。対向板80はシール材19でTFTとEL材料を用いた自発光層が形成されているアクティブマトリクス基板と貼り合わされている。シール剤19にはフィラー(図示せず)が混入されていて、このフィラーによりほぼ均一な間隔を持って2枚の基板が貼り合わせられている。さらに、シール材19の外側とFPC17の上面及び周辺は封止剤81で密封する構造とする。封止剤81はシリコーン樹脂、エポキシ樹脂、フェノール樹脂、ブチルゴムなどの材料を用いる。   A cross-sectional view corresponding to the line AA ′ in FIG. 18A is shown in FIG. At this time, the counter plate 80 is provided at least above the pixel portion, preferably above the driver circuit and the pixel portion. The counter plate 80 is bonded to an active matrix substrate on which a self-luminous layer using a TFT and an EL material is formed with a sealing material 19. A filler (not shown) is mixed in the sealing agent 19, and the two substrates are bonded to each other with a substantially uniform interval. Further, the outside of the sealing material 19 and the upper surface and the periphery of the FPC 17 are sealed with a sealant 81. The sealant 81 is made of a material such as silicone resin, epoxy resin, phenol resin, or butyl rubber.

このように、シール剤19によりアクティブマトリクス基板10と対向基板80とが貼り合わされると、その間には空間が形成される。その空間には充填剤83が充填される。この充填剤83は対向板80を接着する効果も合わせ持つ。充填剤83はPVC(ポリビニルクロライド)、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)などを用いることができる。また、自発光層は水分をはじめ湿気に弱く劣化しやすいので、この充填剤83の内部に酸化バリウムなどの乾燥剤を混入させておくと吸湿効果を保持できるので望ましい。また、自発光層上に窒化シリコン膜や酸化窒化シリコン膜などで形成するパッシベーション膜82を形成し、充填剤83に含まれるアルカリ元素などによる腐蝕を防ぐ構造としている。   Thus, when the active matrix substrate 10 and the counter substrate 80 are bonded together by the sealant 19, a space is formed between them. The space is filled with a filler 83. This filler 83 also has the effect of bonding the opposing plate 80. As the filler 83, PVC (polyvinyl chloride), epoxy resin, silicone resin, PVB (polyvinyl butyral), EVA (ethylene vinyl acetate), or the like can be used. In addition, since the self-luminous layer is weak and easily deteriorated due to moisture including moisture, it is desirable to mix a desiccant such as barium oxide in the filler 83 because the moisture absorption effect can be maintained. In addition, a passivation film 82 formed of a silicon nitride film, a silicon oxynitride film, or the like is formed over the self-light-emitting layer so that corrosion due to an alkali element or the like contained in the filler 83 is prevented.

対向板80にはガラス板、アルミニウム板、ステンレス板、FRP(Fiberglass-Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、マイラーフィルム(デュポン社の商品名)、ポリエステルフィルム、アクリルフィルムまたはアクリル板などを用いることができる。また、数十μmのアルミニウム箔をPVFフィルムやマイラーフィルムで挟んだ構造のシートを用い、耐湿性を高めることもできる。このようにして、EL素子は密閉された状態となり外気から遮断されている。   The counter plate 80 includes a glass plate, an aluminum plate, a stainless steel plate, a FRP (Fiberglass-Reinforced Plastics) plate, a PVF (polyvinyl fluoride) film, a Mylar film (trade name of DuPont), a polyester film, an acrylic film, an acrylic plate, etc. Can be used. Moreover, moisture resistance can also be improved using the sheet | seat of the structure which pinched | interposed several tens micrometer aluminum foil with the PVF film or the mylar film. In this way, the EL element is hermetically sealed from the outside air.

また、図18(B)において基板10、下地膜21の上に駆動回路用TFT(但し、ここではnチャネル型TFTとpチャネル型TFTを組み合わせたCMOS回路を図示している。)22及び画素部用TFT23(但し、ここではEL素子への電流を制御するTFTだけ図示している。)が形成されている。これらのTFTの内、特にnチャネル型TFTにははホットキャリア効果によるオン電流の低下や、Vthシフトやバイアスストレスによる特性低下を防ぐため、本実施形態で示す構成のLDD領域が設けられている。   In FIG. 18B, a driving circuit TFT (however, a CMOS circuit in which an n-channel TFT and a p-channel TFT are combined is illustrated) 22 and a pixel on the substrate 10 and the base film 21 are illustrated. The part TFT 23 (however, only the TFT for controlling the current to the EL element is shown here) is formed. Among these TFTs, in particular, n-channel TFTs are provided with an LDD region having the structure shown in this embodiment in order to prevent a decrease in on-current due to the hot carrier effect and a decrease in characteristics due to Vth shift and bias stress. .

例えば、駆動回路用TFT22として、図5に示すpチャネル型TFT201とnチャネル型TFT202を用いれば良い。また、画素部のTFTには、駆動電圧にもよるが、10V以上であれば図5に示す第1のnチャネル型TFT204またはそれと同様な構造を有するpチャネル型TFTを用いれば良い。第1のnチャネル型TFT202はドレイン側にゲート電極とオーバーラップするLDDが設けられた構造であるが、駆動電圧が10V以下であれば、ホットキャリア効果によるTFTの劣化は殆ど無視できるので、あえて設ける必要はない。   For example, the p-channel TFT 201 and the n-channel TFT 202 shown in FIG. Further, depending on the driving voltage, the TFT in the pixel portion may be the first n-channel TFT 204 shown in FIG. 5 or a p-channel TFT having the same structure as shown in FIG. The first n-channel TFT 202 has a structure in which an LDD that overlaps the gate electrode is provided on the drain side. However, if the drive voltage is 10 V or less, the TFT degradation due to the hot carrier effect can be almost ignored. There is no need to provide it.

図1の状態のアクティブマトリクス基板からEL表示装置を作製するには、ソース配線、ドレイン配線上に樹脂材料でなる層間絶縁膜(平坦化膜)26を形成し、その上に画素部用TFT23のドレインと電気的に接続する透明導電膜でなる画素電極27を形成する。透明導電膜には酸化インジウムと酸化スズとの化合物(ITOと呼ばれる)または酸化インジウムと酸化亜鉛との化合物を用いることができる。そして、画素電極27を形成したら、絶縁膜28を形成し、画素電極27上に開口部を形成する。   In order to manufacture an EL display device from the active matrix substrate in the state of FIG. 1, an interlayer insulating film (planarization film) 26 made of a resin material is formed on the source wiring and drain wiring, and the pixel portion TFT 23 is formed thereon. A pixel electrode 27 made of a transparent conductive film electrically connected to the drain is formed. A compound of indium oxide and tin oxide (called ITO) or a compound of indium oxide and zinc oxide can be used for the transparent conductive film. Then, after the pixel electrode 27 is formed, an insulating film 28 is formed, and an opening is formed on the pixel electrode 27.

次に、自発光層29を形成する。自発光層29は公知のEL材料(正孔注入層、正孔輸送層、発光層、電子輸送層または電子注入層)を自由に組み合わせて積層構造または単層構造とすれば良い。どのような構造とするかは公知の技術を用いれば良い。また、EL材料には低分子系材料と高分子系(ポリマー系)材料がある。低分子系材料を用いる場合は蒸着法を用いるが、高分子系材料を用いる場合には、スピンコート法、印刷法またはインクジェット法等の簡易な方法を用いることが可能である。   Next, the self-luminous layer 29 is formed. The self-light emitting layer 29 may have a laminated structure or a single layer structure by freely combining known EL materials (a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, or an electron injection layer). A known technique may be used to determine the structure. EL materials include low-molecular materials and high-molecular (polymer) materials. When a low molecular material is used, a vapor deposition method is used. When a high molecular material is used, a simple method such as a spin coating method, a printing method, or an ink jet method can be used.

自発光層はシャドーマスクを用いて蒸着法、またはインクジェット法、ディスペンサー法などで形成する。いずれにしても、画素毎に波長の異なる発光が可能な発光層(赤色発光層、緑色発光層及び青色発光層)を形成することで、カラー表示が可能となる。その他にも、色変換層(CCM)とカラーフィルターを組み合わせた方式、白色発光層とカラーフィルターを組み合わせた方式があるがいずれの方法を用いても良い。勿論、単色発光のEL表示装置とすることもできる。   The self-luminous layer is formed by a vapor deposition method, an inkjet method, a dispenser method, or the like using a shadow mask. In any case, color display is possible by forming light emitting layers (red light emitting layer, green light emitting layer, and blue light emitting layer) capable of emitting light having different wavelengths for each pixel. In addition, there are a method in which a color conversion layer (CCM) and a color filter are combined, and a method in which a white light emitting layer and a color filter are combined, but either method may be used. Needless to say, an EL display device emitting monochromatic light can also be used.

自発光層29を形成したら、その上に陰極30を形成する。陰極30と自発光層29の界面に存在する水分や酸素は極力排除しておくことが望ましい。従って、真空中で自発光層29と陰極30を連続して形成するか、自発光層29を不活性雰囲気で形成し、大気解放しないで真空中で陰極30を形成するといった工夫が必要である。本実施例ではマルチチャンバー方式(クラスターツール方式)の成膜装置を用いることで上述のような成膜を可能とする。   When the self-luminous layer 29 is formed, the cathode 30 is formed thereon. It is desirable to remove moisture and oxygen present at the interface between the cathode 30 and the self-luminous layer 29 as much as possible. Therefore, it is necessary to devise such that the self-luminous layer 29 and the cathode 30 are continuously formed in a vacuum, or the self-luminous layer 29 is formed in an inert atmosphere and the cathode 30 is formed in a vacuum without being released to the atmosphere. . In this embodiment, the above-described film formation can be performed by using a multi-chamber type (cluster tool type) film formation apparatus.

なお、本実施例では陰極30として、LiF(フッ化リチウム)膜とAl(アルミニウム)膜の積層構造を用いる。具体的には自発光層29上に蒸着法で1nm厚のLiF(フッ化リチウム)膜を形成し、その上に300nm厚のアルミニウム膜を形成する。勿論、公知の陰極材料であるMgAg電極を用いても良い。そして陰極30は31で示される領域において配線16に接続される。配線16は陰極30に所定の電圧を与えるための電源供給線であり、異方性導電性ペースト材料32を介してFPC17に接続される。FPC17上にはさらに樹脂層80が形成され、この部分の接着強度を高めている。   In this embodiment, a laminated structure of a LiF (lithium fluoride) film and an Al (aluminum) film is used as the cathode 30. Specifically, a LiF (lithium fluoride) film having a thickness of 1 nm is formed on the self-light-emitting layer 29 by vapor deposition, and an aluminum film having a thickness of 300 nm is formed thereon. Of course, you may use the MgAg electrode which is a well-known cathode material. The cathode 30 is connected to the wiring 16 in a region indicated by 31. The wiring 16 is a power supply line for applying a predetermined voltage to the cathode 30, and is connected to the FPC 17 through an anisotropic conductive paste material 32. A resin layer 80 is further formed on the FPC 17 to increase the adhesive strength of this portion.

31に示された領域において陰極30と配線16とを電気的に接続するために、層間絶縁膜26及び絶縁膜28にコンタクトホールを形成する必要がある。これらは層間絶縁膜26のエッチング時(画素電極用コンタクトホールの形成時)や絶縁膜28のエッチング時(自発光層形成前の開口部の形成時)に形成しておけば良い。また、絶縁膜28をエッチングする際に、層間絶縁膜26まで一括でエッチングしても良い。この場合、層間絶縁膜26と絶縁膜28が同じ樹脂材料であれば、コンタクトホールの形状を良好なものとすることができる。   In order to electrically connect the cathode 30 and the wiring 16 in the region indicated by 31, it is necessary to form contact holes in the interlayer insulating film 26 and the insulating film 28. These may be formed when the interlayer insulating film 26 is etched (when the pixel electrode contact hole is formed) or when the insulating film 28 is etched (when the opening before the self-light emitting layer is formed). Further, when the insulating film 28 is etched, the interlayer insulating film 26 may be etched all at once. In this case, if the interlayer insulating film 26 and the insulating film 28 are the same resin material, the shape of the contact hole can be improved.

また、配線16はシール材19と基板10との間を隙間(但し封止剤81で塞がれている。)を通ってFPC17に電気的に接続される。なお、ここでは配線16について説明したが、他の配線14、15も同様にしてシーリング材18の下を通ってFPC17に電気的に接続される。   Further, the wiring 16 is electrically connected to the FPC 17 through a gap (but sealed with a sealing agent 81) between the sealing material 19 and the substrate 10. Although the wiring 16 has been described here, the other wirings 14 and 15 are similarly electrically connected to the FPC 17 through the sealing material 18.

ここで画素部のさらに詳細な断面構造を図19に、上面構造を図20(A)に、回路図を図20(B)に示す。図19(A)において、基板2401上に設けられたスイッチング用TFT2402は実施形態1の図5の画素TFT204と同じ構造で形成する。ダブルゲート構造とすることで実質的に二つのTFTが直列された構造となり、ゲート電極と重ならないオフセット領域が設けられたLDDを形成することでオフ電流値を低減することができるという利点がある。尚、本実施例ではダブルゲート構造としているがトリプルゲート構造やそれ以上のゲート本数を持つマルチゲート構造でも良い。   Here, a more detailed cross-sectional structure of the pixel portion is shown in FIG. 19, a top structure is shown in FIG. 20A, and a circuit diagram is shown in FIG. 20B. In FIG. 19A, a switching TFT 2402 provided over a substrate 2401 is formed with the same structure as the pixel TFT 204 of FIG. The double gate structure has a structure in which two TFTs are substantially connected in series, and there is an advantage that an off-current value can be reduced by forming an LDD provided with an offset region that does not overlap with the gate electrode. . In this embodiment, a double gate structure is used, but a triple gate structure or a multi-gate structure having more gates may be used.

また、電流制御用TFT2403は図5で示す第1のnチャネル型TFT202を用いて形成する。このTFT構造は、ドレイン側にのみゲート電極とオーバーラップするLDDが設けられた構造であり、ゲートとドレイン間の寄生容量や直列抵抗を低減させて電流駆動能力を高める構造となっている。別な観点からも、構造であることは非常に重要な意味を持つ。電流制御用TFTはEL素子を流れる電流量を制御するための素子であるため、多くの電流が流れ、熱による劣化やホットキャリアによる劣化の危険性が高い素子でもある。そのため、電流制御用TFTにゲート電極と一部が重なるLDD領域を設けることでTFTの劣化を防ぎ、動作の安定性を高めることができる。このとき、スイッチング用TFT2402のドレイン線35は配線36によって電流制御用TFTのゲート電極37に電気的に接続されている。また、38で示される配線は、スイッチング用TFT2402のゲート電極39a、39bを電気的に接続するゲート線である。   The current control TFT 2403 is formed using the first n-channel TFT 202 shown in FIG. This TFT structure is a structure in which an LDD that overlaps with the gate electrode is provided only on the drain side, and has a structure in which the parasitic capacitance between the gate and the drain and the series resistance are reduced to increase the current driving capability. From another point of view, the structure is very important. Since the current control TFT is an element for controlling the amount of current flowing through the EL element, a large amount of current flows, and it is also an element with a high risk of deterioration due to heat or hot carriers. Therefore, by providing an LDD region that partially overlaps the gate electrode in the current control TFT, it is possible to prevent the TFT from being deteriorated and to improve the operation stability. At this time, the drain line 35 of the switching TFT 2402 is electrically connected to the gate electrode 37 of the current control TFT by the wiring 36. A wiring indicated by 38 is a gate line for electrically connecting the gate electrodes 39a and 39b of the switching TFT 2402.

また、本実施例では電流制御用TFT2403をシングルゲート構造で図示しているが、複数のTFTを直列につなげたマルチゲート構造としても良い。さらに、複数のTFTを並列につなげて実質的にチャネル形成領域を複数に分割し、熱の放射を高い効率で行えるようにした構造としても良い。このような構造は熱による劣化対策として有効である。   In this embodiment, the current control TFT 2403 is illustrated with a single gate structure, but a multi-gate structure in which a plurality of TFTs are connected in series may be used. Further, a structure may be employed in which a plurality of TFTs are connected in parallel to substantially divide the channel formation region into a plurality of portions so that heat can be emitted with high efficiency. Such a structure is effective as a countermeasure against deterioration due to heat.

また、図20(A)に示すように、電流制御用TFT2403のゲート電極37となる配線は2404で示される領域で、電流制御用TFT2403のドレイン線40と絶縁膜を介して重なる。このとき、2404で示される領域ではコンデンサが形成される。このコンデンサ2404は電流制御用TFT2403のゲートにかかる電圧を保持するためのコンデンサとして機能する。なお、ドレイン線40は電流供給線(電源線)2501に接続され、常に一定の電圧が加えられている。   Further, as shown in FIG. 20A, the wiring to be the gate electrode 37 of the current control TFT 2403 overlaps the drain line 40 of the current control TFT 2403 with an insulating film in the region indicated by 2404. At this time, a capacitor is formed in a region indicated by 2404. This capacitor 2404 functions as a capacitor for holding the voltage applied to the gate of the current control TFT 2403. The drain line 40 is connected to a current supply line (power supply line) 2501, and a constant voltage is always applied.

スイッチング用TFT2402及び電流制御用TFT2403の上には第1パッシベーション膜41が設けられ、その上に樹脂絶縁膜でなる平坦化膜42が形成される。平坦化膜42を用いてTFTによる段差を平坦化することは非常に重要である。後に形成される自発光層は非常に薄いため、段差が存在することによって発光不良を起こす場合がある。従って、自発光層をできるだけ平坦面に形成しうるように画素電極を形成する前に平坦化しておくことが望ましい。   A first passivation film 41 is provided on the switching TFT 2402 and the current control TFT 2403, and a planarizing film 42 made of a resin insulating film is formed thereon. It is very important to flatten the step due to the TFT using the flattening film 42. Since the self-light-emitting layer formed later is very thin, a light emission failure may occur due to the presence of a step. Therefore, it is desirable to planarize the pixel electrode before forming the pixel electrode so that the self-luminous layer can be formed as flat as possible.

また、43は反射性の高い導電膜でなる画素電極(EL素子の陰極)であり、電流制御用TFT2403のドレインに電気的に接続される。画素電極43としてはアルミニウム合金膜、銅合金膜または銀合金膜など低抵抗な導電膜またはそれらの積層膜を用いることが好ましい。勿論、他の導電膜との積層構造としても良い。また、絶縁膜(好ましくは樹脂)で形成されたバンク44a、44bにより形成された溝(画素に相当する)の中に発光層44が形成される。なお、ここでは一画素しか図示していないが、R(赤)、G(緑)、B(青)の各色に対応した発光層を作り分けても良い。発光層とする有機EL材料としてはπ共役ポリマー系材料を用いる。代表的なポリマー系材料としては、ポリパラフェニレンビニレン(PPV)系、ポリビニルカルバゾール(PVK)系、ポリフルオレン系などが挙げられる。尚、PPV系有機EL材料としては様々な型のものがあるが、例えば「H. Shenk,H.Becker,O.Gelsen,E.Kluge,W.Kreuder,and H.Spreitzer,“Polymers for Light Emitting Diodes”,Euro Display,Proceedings,1999,p.33-37」や特開平10−92576号公報に記載されたような材料を用いれば良い。   Reference numeral 43 denotes a pixel electrode (EL element cathode) made of a highly reflective conductive film, which is electrically connected to the drain of the current control TFT 2403. As the pixel electrode 43, it is preferable to use a low-resistance conductive film such as an aluminum alloy film, a copper alloy film, or a silver alloy film, or a laminated film thereof. Of course, a laminated structure with another conductive film may be used. Further, the light emitting layer 44 is formed in a groove (corresponding to a pixel) formed by banks 44a and 44b formed of an insulating film (preferably resin). Although only one pixel is shown here, a light emitting layer corresponding to each color of R (red), G (green), and B (blue) may be formed separately. A π-conjugated polymer material is used as the organic EL material for the light emitting layer. Typical polymer materials include polyparaphenylene vinylene (PPV), polyvinyl carbazole (PVK), and polyfluorene. There are various types of PPV organic EL materials such as “H. Shenk, H. Becker, O. Gelsen, E. Kluge, W. Kreuder, and H. Spreitzer,“ Polymers for Light Emitting ”. Materials such as those described in “Diodes”, Euro Display, Proceedings, 1999, p. 33-37 ”and Japanese Patent Laid-Open No. 10-92576 may be used.

具体的な発光層としては、赤色に発光する発光層にはシアノポリフェニレンビニレン、緑色に発光する発光層にはポリフェニレンビニレン、青色に発光する発光層にはポリフェニレンビニレン若しくはポリアルキルフェニレンを用いれば良い。膜厚は30〜150nm(好ましくは40〜100nm)とすれば良い。但し、以上の例は発光層として用いることのできる有機EL材料の一例であって、これに限定する必要はまったくない。発光層、電荷輸送層または電荷注入層を自由に組み合わせて自発光層(発光及びそのためのキャリアの移動を行わせるための層)を形成すれば良い。例えば、本実施例ではポリマー系材料を発光層として用いる例を示したが、低分子系有機EL材料を用いても良い。また、電荷輸送層や電荷注入層として炭化珪素等の無機材料を用いることも可能である。これらの有機EL材料や無機材料は公知の材料を用いることができる。   As a specific light emitting layer, cyanopolyphenylene vinylene may be used for a light emitting layer that emits red light, polyphenylene vinylene may be used for a light emitting layer that emits green light, and polyphenylene vinylene or polyalkylphenylene may be used for a light emitting layer that emits blue light. The film thickness may be 30 to 150 nm (preferably 40 to 100 nm). However, the above example is an example of an organic EL material that can be used as a light emitting layer, and is not necessarily limited to this. A self-luminous layer (a layer for emitting light and moving carriers therefor) may be formed by freely combining a light-emitting layer, a charge transport layer, or a charge injection layer. For example, in this embodiment, an example in which a polymer material is used as the light emitting layer is shown, but a low molecular weight organic EL material may be used. It is also possible to use an inorganic material such as silicon carbide for the charge transport layer or the charge injection layer. As these organic EL materials and inorganic materials, known materials can be used.

本実施例では発光層45の上にPEDOT(ポリチオフェン)またはPAni(ポリアニリン)でなる正孔注入層46を設けた積層構造の自発光層としている。そして、正孔注入層46の上には透明導電膜でなる陽極47が設けられる。本実施例の場合、発光層45で生成された光は上面側に向かって(TFTの上方に向かって)放射されるため、陽極は透光性でなければならない。透明導電膜としては酸化インジウムと酸化スズとの化合物や酸化インジウムと酸化亜鉛との化合物を用いることができるが、耐熱性の低い発光層や正孔注入層を形成した後で形成するため、可能な限り低温で成膜できるものが好ましい。   In this embodiment, a self-luminous layer having a laminated structure in which a hole injection layer 46 made of PEDOT (polythiophene) or PAni (polyaniline) is provided on the light-emitting layer 45 is used. An anode 47 made of a transparent conductive film is provided on the hole injection layer 46. In the case of the present embodiment, since the light generated in the light emitting layer 45 is emitted toward the upper surface side (upward of the TFT), the anode must be translucent. As the transparent conductive film, a compound of indium oxide and tin oxide or a compound of indium oxide and zinc oxide can be used, but it is possible to form after forming a light-emitting layer or hole injection layer with low heat resistance. What can form into a film at low temperature as much as possible is preferable.

陽極47まで形成された時点で自発光素子2405が完成する。なお、ここでいうEL素子2405は、画素電極(陰極)43、発光層45、正孔注入層46及び陽極47で形成されたコンデンサを指す。図20(A)に示すように画素電極43は画素の面積にほぼ一致するため、画素全体がEL素子として機能する。従って、発光の利用効率が非常に高く、明るい画像表示が可能となる。   When the anode 47 is formed, the self-luminous element 2405 is completed. Note that the EL element 2405 here refers to a capacitor formed by the pixel electrode (cathode) 43, the light emitting layer 45, the hole injection layer 46, and the anode 47. As shown in FIG. 20A, since the pixel electrode 43 substantially matches the area of the pixel, the entire pixel functions as an EL element. Therefore, the use efficiency of light emission is very high, and a bright image display is possible.

ところで、本実施例では、陽極47の上にさらに第2パッシベーション膜48を設けている。第2パッシベーション膜48としては窒化珪素膜または窒化酸化珪素膜が好ましい。この目的は、外部とEL素子とを遮断することであり、有機EL材料の酸化による劣化を防ぐ意味と、有機EL材料からの脱ガスを抑える意味との両方を併せ持つ。これによりEL表示装置の信頼性が高められる。   By the way, in the present embodiment, a second passivation film 48 is further provided on the anode 47. The second passivation film 48 is preferably a silicon nitride film or a silicon nitride oxide film. This purpose is to cut off the EL element from the outside, and has both the meaning of preventing deterioration due to oxidation of the organic EL material and the meaning of suppressing degassing from the organic EL material. This increases the reliability of the EL display device.

以上のように本願発明のEL表示パネルは図20のような構造の画素からなる画素部を有し、オフ電流値の十分に低いスイッチング用TFTと、ホットキャリア注入に強い電流制御用TFTとを有する。従って、高い信頼性を有し、且つ、良好な画像表示が可能なEL表示パネルが得られる。   As described above, the EL display panel of the present invention has a pixel portion composed of pixels having a structure as shown in FIG. 20, and includes a switching TFT having a sufficiently low off-current value and a current control TFT resistant to hot carrier injection. Have. Therefore, an EL display panel having high reliability and capable of displaying a good image can be obtained.

図19(B)は自発光層の構造を反転させた例を示す。電流制御用TFT2601は図5のpチャネル型TFT201と同じ構造て形成する。作製プロセスは実施形態1を参照すれば良い。本実施例では、画素電極(陽極)50として透明導電膜を用いる。具体的には酸化インジウムと酸化亜鉛との化合物でなる導電膜を用いる。勿論、酸化インジウムと酸化スズとの化合物でなる導電膜を用いても良い。   FIG. 19B shows an example in which the structure of the self-luminous layer is inverted. The current control TFT 2601 is formed in the same structure as the p-channel TFT 201 in FIG. For the manufacturing process, Embodiment Mode 1 may be referred to. In this embodiment, a transparent conductive film is used as the pixel electrode (anode) 50. Specifically, a conductive film made of a compound of indium oxide and zinc oxide is used. Of course, a conductive film made of a compound of indium oxide and tin oxide may be used.

そして、絶縁膜でなるバンク51a、51bが形成された後、溶液塗布によりポリビニルカルバゾールでなる発光層52が形成される。その上にはカリウムアセチルアセトネート(acacKと表記される)でなる電子注入層53、アルミニウム合金でなる陰極54が形成される。この場合、陰極54がパッシベーション膜としても機能する。こうしてEL素子2602が形成される。本実施例の場合、発光層53で発生した光は、矢印で示されるようにTFTが形成された基板の方に向かって放射される。本実施例のような構造とする場合、電流制御用TFT2601はpチャネル型TFTで形成することが好ましい。   Then, after banks 51a and 51b made of insulating films are formed, a light emitting layer 52 made of polyvinylcarbazole is formed by solution coating. An electron injection layer 53 made of potassium acetylacetonate (denoted as acacK) and a cathode 54 made of an aluminum alloy are formed thereon. In this case, the cathode 54 also functions as a passivation film. Thus, the EL element 2602 is formed. In the case of the present embodiment, the light generated in the light emitting layer 53 is emitted toward the substrate on which the TFT is formed as indicated by an arrow. In the case of the structure as in this embodiment, the current control TFT 2601 is preferably a p-channel TFT.

以上のような、本実施例で示すEL表示装置は、実施形態7の電子機器の表示部として用いることができる。   The EL display device described in this example as described above can be used as a display portion of the electronic device of the seventh embodiment.

[実施形態9] 本実施形態では、図20(B)に示した回路図とは異なる構造の画素とした場合の例について図21に示す。なお、本実施例において、2701はスイッチング用TFT2702のソース配線、2703はスイッチング用TFT2702のゲート配線、2704は電流制御用TFT、2705はコンデンサ、2706、2708は電流供給線、2707はEL素子とする。 [Embodiment Mode 9] In this embodiment mode, an example of a pixel having a structure different from the circuit diagram shown in FIG. 20B is shown in FIG. In this embodiment, 2701 is a source wiring of the switching TFT 2702, 2703 is a gate wiring of the switching TFT 2702, 2704 is a current control TFT, 2705 is a capacitor, 2706 and 2708 are current supply lines, and 2707 is an EL element. .

図21(A)は、二つの画素間で電流供給線2706を共通とした場合の例である。即ち、二つの画素が電流供給線2706を中心に線対称となるように形成されている点に特徴がある。この場合、電源供給線の本数を減らすことができるため、画素部をさらに高精細化することができる。   FIG. 21A shows an example in which the current supply line 2706 is shared between two pixels. In other words, the two pixels are formed so as to be symmetrical about the current supply line 2706. In this case, since the number of power supply lines can be reduced, the pixel portion can be further refined.

また、図21(B)は、電流供給線2708をゲート配線2703と平行に設けた場合の例である。尚、図21(B)では電流供給線2708とゲート配線2703とが重ならないように設けた構造となっているが、両者が異なる層に形成される配線であれば、絶縁膜を介して重なるように設けることもできる。この場合、電源供給線2708とゲート配線2703とで専有面積を共有させることができるため、画素部をさらに高精細化することができる。   FIG. 21B illustrates an example in which the current supply line 2708 is provided in parallel with the gate wiring 2703. In FIG. 21B, the current supply line 2708 and the gate wiring 2703 are provided so as not to overlap. However, if the wirings are formed in different layers, they overlap with each other through an insulating film. It can also be provided. In this case, since the exclusive area can be shared by the power supply line 2708 and the gate wiring 2703, the pixel portion can be further refined.

また、図21(C)は、図21(B)の構造と同様に電流供給線2708をゲート配線2703と平行に設け、さらに、二つの画素を電流供給線2708を中心に線対称となるように形成する点に特徴がある。また、電流供給線2708をゲート配線2703のいずれか一方と重なるように設けることも有効である。この場合、電源供給線の本数を減らすことができるため、画素部をさらに高精細化することができる。図21(A)、図21(B)では電流制御用TFT2704のゲートにかかる電圧を保持するためにコンデンサ2705を設ける構造としているが、コンデンサ2705を省略することも可能である。   In FIG. 21C, a current supply line 2708 is provided in parallel with the gate wiring 2703 as in the structure of FIG. 21B, and two pixels are symmetrical with respect to the current supply line 2708. It is characterized in that it is formed. It is also effective to provide the current supply line 2708 so as to overlap any one of the gate wirings 2703. In this case, since the number of power supply lines can be reduced, the pixel portion can be further refined. In FIGS. 21A and 21B, a capacitor 2705 is provided to hold a voltage applied to the gate of the current control TFT 2704; however, the capacitor 2705 can be omitted.

電流制御用TFT2403として図19(A)に示すような本願発明のnチャネル型TFTを用いているため、ゲート絶縁膜を介してゲート電極(と重なるように設けられたLDD領域を有している。この重なり合った領域には一般的にゲート容量と呼ばれる寄生容量が形成されるが、本実施例ではこの寄生容量をコンデンサ2404の代わりとして積極的に用いる点に特徴がある。この寄生容量のキャパシタンスは上記ゲート電極とLDD領域とが重なり合った面積で変化するため、その重なり合った領域に含まれるLDD領域の長さによって決まる。また、図21(A)、(B)、(C)の構造においても同様にコンデンサ2705を省略することは可能である。   Since the n-channel TFT of the present invention as shown in FIG. 19A is used as the current control TFT 2403, it has an LDD region provided so as to overlap with the gate electrode through the gate insulating film. A parasitic capacitance generally called a gate capacitance is formed in the overlapping region, but this embodiment is characterized in that this parasitic capacitance is actively used in place of the capacitor 2404. The capacitance of this parasitic capacitance 21 varies depending on the area where the gate electrode and the LDD region overlap, and is determined by the length of the LDD region included in the overlapping region. Similarly, the capacitor 2705 can be omitted.

尚、本実施形態で示すEL表示装置の回路構成は、実施形態1で示すTFTの構成から選択して図21に示す回路を形成すれば良い。また、実施形態7の電子機器の表示部として本実施例のEL表示パネルを用いることが可能である。   Note that the circuit configuration of the EL display device shown in this embodiment mode may be selected from the TFT configuration shown in Embodiment Mode 1 to form the circuit shown in FIG. In addition, the EL display panel of this example can be used as the display unit of the electronic device of the seventh embodiment.

実施形態1で示すように、TFTのゲート電極とゲート配線は、島状半導体層の外側でコンタクトホールを介することなく重なり合って接触している。このような構造において、ゲート電極とゲート配線の抵抗を評価した結果を表1と表2に示す。表1はゲート電極およびゲート配線を形成する材料のシート抵抗値を示している。   As shown in the first embodiment, the gate electrode and the gate wiring of the TFT are in contact with each other without being in contact with the contact hole outside the island-like semiconductor layer. Tables 1 and 2 show the results of evaluating the resistance of the gate electrode and the gate wiring in such a structure. Table 1 shows sheet resistance values of materials forming the gate electrode and the gate wiring.

Figure 0004527070
Figure 0004527070

表2は、ゲート電極とゲート配線のコンタクト抵抗を評価するためにコンタクトチェーン(コンタクト数100〜200)を形成し、その測定値からコンタクト部一つ当たりの接触抵抗を求めた結果を示す。一つ当たりのコンタクト部の面積は、4μm×10μmまたは6μm×10μmとした。   Table 2 shows the results obtained by forming contact chains (number of contacts 100 to 200) in order to evaluate the contact resistance between the gate electrode and the gate wiring, and obtaining the contact resistance per contact portion from the measured values. The area of one contact part was 4 μm × 10 μm or 6 μm × 10 μm.

Figure 0004527070
Figure 0004527070

ゲート電極はTaN膜とTa膜を積層した膜とW膜の2種類を作製した。ゲート配線はAlで形成した。但し、このAlにはNdが1重量%添加されている(以下、Al−Nd膜と表記する)。表2で示す値より、ゲート電極とゲート配線の重なり部の面積を40μm2と仮定すると、TaN膜とTa膜を積層した膜では約200Ω、W膜では約0.1Ωとなった。 Two types of gate electrodes were produced: a TaN film and a Ta film laminated film and a W film. The gate wiring was made of Al. However, 1% by weight of Nd is added to this Al (hereinafter referred to as an Al—Nd film). From the values shown in Table 2, assuming that the area of the overlapping portion of the gate electrode and the gate wiring is 40 μm 2 , the film obtained by stacking the TaN film and the Ta film has a thickness of about 200Ω and the W film has a value of about 0.1Ω.

図22はTaN膜とTa膜を積層して形成したゲート電極と、Al−Nd膜の重ね合わせ部を、透過型電子顕微鏡(TEM:Transmission Electron Microscope)で観察した結果を示す。図23はTa膜とAl−Nd膜の界面を拡大して観察したものであり、図に示す*1〜*4の点においてエネルギー分散型X線分光分析(EDX:Energy Dispersion X-ray Spectroscopy)で組成を調べた。その結果、*1ではAlが、*4ではTaであることが確認されたものの、*2ではAlと酸素が、*3ではTaと酸素がそれぞれ検出され、酸化物を含有する層が形成されていることが判明した。この原因は、ゲート電極としてTa膜を形成した後に、不純物元素を活性化するための熱処理工程が行われることにより、Ta膜の表面が酸化されるためであると考えられる。さらに、Al−Nd膜を形成すると、Ta膜の表面の酸素がAl−Nd膜を酸化させるためであると考えられる。このような、コンタクト抵抗の増加はTaを用いた時に特に顕著に現れる結果であった。   FIG. 22 shows a result obtained by observing an overlapping portion of a gate electrode formed by stacking a TaN film and a Ta film and an Al—Nd film with a transmission electron microscope (TEM). FIG. 23 is an enlarged view of the interface between the Ta film and the Al—Nd film, and energy dispersion X-ray spectroscopy (EDX) at points * 1 to * 4 shown in the figure. The composition was examined. As a result, Al was confirmed in * 1 and Ta in * 4, but Al and oxygen were detected in * 2, Ta and oxygen were detected in * 3, and a layer containing oxide was formed. Turned out to be. This is considered to be because the surface of the Ta film is oxidized by performing a heat treatment step for activating the impurity element after forming the Ta film as the gate electrode. Furthermore, it is considered that when an Al—Nd film is formed, oxygen on the surface of the Ta film oxidizes the Al—Nd film. Such an increase in contact resistance was a result that was particularly noticeable when Ta was used.

しかし、シミュレーションによりコンタクト抵抗が信号波形に与える影響を調べると、200Ω程度ではあまり影響ないことを確認することができた。図26(A)、(B)は立ち上がり波形および立ち下がり波形の抵抗値による変化を示す。計算に用いた等価回路を図中に挿入して示す。ここでは、コンタクト抵抗に相当するR2を1Ωから1MΩまで変化させて計算したが、10kΩ程度まではコンタクト抵抗の影響が殆どないことを確認することができた。   However, when the influence of contact resistance on the signal waveform was examined by simulation, it was confirmed that there was not much influence at about 200Ω. 26A and 26B show changes in the rising waveform and the falling waveform depending on the resistance value. The equivalent circuit used for the calculation is shown inserted in the figure. Here, R2 corresponding to the contact resistance was calculated from 1Ω to 1MΩ, but it was confirmed that there was almost no influence of the contact resistance up to about 10 kΩ.

また、コンタクト部の信頼性試験として通電試験を行い、コンタクト抵抗の変化を調べた。コンタクト部の面積を40μm2、コンタクト数200のテストサンプルを作製し、180℃の雰囲気中で1mAの電流を1時間通電した。上記2種類のゲート電極材料について調べたが、コンタクト抵抗の変化は殆ど観測されなかった。   In addition, an energization test was performed as a reliability test of the contact portion, and changes in contact resistance were examined. A test sample with a contact area of 40 μm 2 and 200 contacts was prepared, and a current of 1 mA was applied in an atmosphere at 180 ° C. for 1 hour. The above two types of gate electrode materials were examined, but almost no change in contact resistance was observed.

作製されるTFTの信頼性はバイアス−熱ストレス試験(以下、BT試験と記す)で調べた。TFTのサイズはチャネル長8μm、チャネル幅8μmである。試験条件は、nチャネル型TFTに対してゲート電圧+20V、ドレイン電圧0Vとして150℃で1時間保持した。図24(A)、(B)はそれぞれnチャネル型TFTとpチャネル型TFTの結果を示すが、いずれにしても殆どバイアスストレスによる劣化は観測されていない。   The reliability of the fabricated TFT was examined by a bias-thermal stress test (hereinafter referred to as BT test). The TFT has a channel length of 8 μm and a channel width of 8 μm. Test conditions were maintained at 150 ° C. for 1 hour with a gate voltage of +20 V and a drain voltage of 0 V for an n-channel TFT. 24A and 24B show the results of the n-channel TFT and the p-channel TFT, respectively, but in any case, deterioration due to bias stress is hardly observed.

ゲート配線の材料の違いによる信号遅延の影響を評価した。図25は入力部と末端部における信号波形を示し、図25(A)は立ち上がり波形、図25(B)
は立ち下がり波形を示している。入力部と末端部の間隔は83mmである。図25においてJ2と表記された特性はTaN膜とTa膜を積層してゲート配線を形成し、J4と表記されたサンプルはAl−Nd膜でゲート配線を形成したサンプルである。ゲート配線の幅は10μmである。前者のサンプルでは入力部と末端部の立ち上がりおよび立ち下がり時間に大きな差があるのに対し、後者のサンプルではその差が非常に小さくなっている。表3に遅延時間についてまとめた結果を示す。J2サンプルの遅延時間はJ4サンプルの約十倍であり、表1で示すシート抵抗値から見て明らかなように、配線材料の抵抗が影響していると判断することができる。
The effect of signal delay due to the difference of gate wiring materials was evaluated. FIG. 25 shows signal waveforms at the input part and the terminal part, FIG. 25 (A) shows the rising waveform, and FIG. 25 (B).
Indicates a falling waveform. The distance between the input part and the terminal part is 83 mm. In FIG. 25, a characteristic denoted by J2 is a sample in which a TaN film and a Ta film are stacked to form a gate wiring, and a sample denoted by J4 is a sample in which a gate wiring is formed by an Al—Nd film. The width of the gate wiring is 10 μm. In the former sample, there is a large difference in the rise and fall times of the input part and the terminal part, whereas in the latter sample, the difference is very small. Table 3 shows a summary of the delay time. The delay time of the J2 sample is about ten times that of the J4 sample, and as can be seen from the sheet resistance values shown in Table 1, it can be determined that the resistance of the wiring material has an influence.

Figure 0004527070
Figure 0004527070

この結果より、画面サイズが4インチクラス以上の場合には、本発明のようにゲート電極に接続するゲート配線を低抵抗材料で形成する必要があることが示された。   From this result, it was shown that when the screen size is 4 inch class or more, it is necessary to form the gate wiring connected to the gate electrode with a low resistance material as in the present invention.

画素TFT、保持容量、駆動回路のTFTの作製工程を示す断面図。9 is a cross-sectional view illustrating a manufacturing process of a pixel TFT, a storage capacitor, and a driver circuit TFT. FIG. 画素TFT、保持容量、駆動回路のTFTの作製工程を示す断面図。9 is a cross-sectional view illustrating a manufacturing process of a pixel TFT, a storage capacitor, and a driver circuit TFT. FIG. 画素TFT、保持容量、駆動回路のTFTの作製工程を示す断面図。9 is a cross-sectional view illustrating a manufacturing process of a pixel TFT, a storage capacitor, and a driver circuit TFT. FIG. 画素TFT、保持容量、駆動回路のTFTの作製工程を示す断面図。9 is a cross-sectional view illustrating a manufacturing process of a pixel TFT, a storage capacitor, and a driver circuit TFT. FIG. 画素TFT、保持容量、駆動回路のTFTの断面図。FIG. 5 is a cross-sectional view of a pixel TFT, a storage capacitor, and a driver circuit TFT. 画素TFT、保持容量、駆動回路のTFTの作製工程を示す上面図。FIG. 9 is a top view illustrating a manufacturing process of a pixel TFT, a storage capacitor, and a driver circuit TFT. 画素TFT、保持容量、駆動回路のTFTの作製工程を示す上面図。FIG. 9 is a top view illustrating a manufacturing process of a pixel TFT, a storage capacitor, and a driver circuit TFT. 駆動回路のTFTの作製工程を示す上面図。FIG. 9 is a top view illustrating a manufacturing process of a TFT of a driver circuit. 画素TFTの作製工程を示す上面図。FIG. 6 is a top view illustrating a manufacturing process of a pixel TFT. 液晶表示装置の入出力端子、配線回路配置を示す上面図。The top view which shows the input-output terminal of a liquid crystal display device, and wiring circuit arrangement | positioning. 液晶表示装置の構造を示す断面図。Sectional drawing which shows the structure of a liquid crystal display device. 液晶表示装置の構造を示す斜視図。The perspective view which shows the structure of a liquid crystal display device. 表示領域の画素を示す上面図Top view showing pixels in display area 液晶表示装置の回路ブロック図Circuit block diagram of liquid crystal display device ゲート電極とLDD領域の位置関係を示す図。The figure which shows the positional relationship of a gate electrode and a LDD area | region. ゲート電極とゲート配線の接続を示す図。The figure which shows the connection of a gate electrode and gate wiring. 半導体装置の一例を示す図。FIG. 11 illustrates an example of a semiconductor device. EL表示装置の構造を示す上面図及び断面図。4A and 4B are a top view and a cross-sectional view illustrating a structure of an EL display device. EL表示装置の画素部の断面図。FIG. 6 is a cross-sectional view of a pixel portion of an EL display device. EL表示装置の画素部の上面図と回路図。FIG. 6 is a top view and a circuit diagram of a pixel portion of an EL display device. EL表示装置の画素部の回路図の例。7 is an example of a circuit diagram of a pixel portion of an EL display device. ゲート電極とゲート配線の重ね合わせ部における断面TEM写真。The cross-sectional TEM photograph in the overlapping part of a gate electrode and gate wiring. ゲート電極(Ta)とゲート配線(Al−Nd)の界面付近における断面TEM写真。Sectional TEM photograph in the vicinity of the interface between the gate electrode (Ta) and the gate wiring (Al-Nd). TFTのVG−ID特性であり、バイアス−熱ストレス試験の結果を示すグラフ。The graph which is a VG-ID characteristic of TFT and shows the result of a bias-thermal stress test. ゲート配線の入力部および末端部における信号波形の立ち上がり時間(A)と立ち下がり時間(B)を示すグラフ。The graph which shows the rise time (A) and fall time (B) of the signal waveform in the input part and terminal part of gate wiring. ゲート電極とゲート配線のコンタクト抵抗の影響をシミュレーションで計算した結果を示すグラフ。The graph which shows the result of having calculated the influence of the contact resistance of a gate electrode and gate wiring by simulation.

符号の説明Explanation of symbols

101 基板
102 下地膜
103b 結晶質半導体層
104〜107島状半導体層
128〜131 ゲート電極、132 容量配線
128a〜132a 導電層(A)
128b〜132b 導電層(B)
128c〜132c 導電層(C)
147、148 ゲート配線、149容量配線
147a〜149a 導電層(D)
147b〜149b 導電層(E)
150 第1の層間絶縁膜
151〜154 ソース配線
155〜158 ドレイン電極
159 パッシベーション膜
160 第2の層間絶縁膜
161、162 画素電極
DESCRIPTION OF SYMBOLS 101 Substrate 102 Base film 103b Crystalline semiconductor layer 104-107 Island-like semiconductor layer 128-131 Gate electrode, 132 Capacity wiring 128a-132a Conductive layer (A)
128b to 132b conductive layer (B)
128c to 132c conductive layer (C)
147, 148 Gate wiring, 149 capacitance wiring 147a-149a Conductive layer (D)
147b-149b conductive layer (E)
150 First interlayer insulating films 151 to 154 Source wirings 155 to 158 Drain electrode 159 Passivation film 160 Second interlayer insulating films 161 and 162 Pixel electrode

Claims (9)

表示領域に、半導体層と、ゲート絶縁膜と、前記ゲート絶縁膜に接したゲート電極及びゲート配線と、前記ゲート電極及びゲート配線に接した酸化シリコン膜と、を有し、
第1乃至第3の導電層でなる前記ゲート電極は、第4及び第5の導電層でなる前記ゲート配線と接続部で電気的に接続されており、前記接続部は前記半導体層のチャネル形成領域の外側に設けられており、
前記第1の導電層は、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも一種と窒素を含み、
前記第2の導電層は、前記第1の導電層上に形成され、かつ、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも一種を主成分とし、
前記第3の導電層は、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも1種と窒素を含み、
前記第4の導電層は、前記第3の導電層に接し、かつ、アルミニウムまたは銅を含み、
前記第5の導電層は、前記第4の導電層上に形成され、かつ、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも1種を含むことを特徴とする半導体装置。
The display region includes a semiconductor layer, a gate insulating film, a gate electrode and a gate wiring in contact with the gate insulating film, and a silicon oxide film in contact with the gate electrode and the gate wiring.
The gate electrode made of the first to third conductive layers is electrically connected to the gate wiring made of the fourth and fifth conductive layers at a connection portion, and the connection portion forms a channel of the semiconductor layer. Provided outside the area,
The first conductive layer includes at least one selected from tantalum, tungsten, titanium, and molybdenum and nitrogen,
The second conductive layer is formed on the first conductive layer, and has at least one selected from tantalum, tungsten, titanium, and molybdenum as a main component,
Said third conductive layer comprises tantalum, tungsten, titanium, at least one nitrogen selected from molybdenum,
The fourth conductive layer is in contact with the third conductive layer and includes aluminum or copper;
The fifth conductive layer is formed on the fourth conductive layer and includes at least one selected from tantalum, tungsten, titanium, and molybdenum.
表示領域に、半導体層と、シリコンを含む絶縁膜と、前記シリコンを含む絶縁膜に接したゲート電極及びゲート配線と、前記ゲート電極及びゲート配線に接した酸化シリコン膜と、を有し、
第1乃至第3の導電層でなる前記ゲート電極は、第4及び第5の導電層でなる前記ゲート配線と接続部で電気的に接続されており、前記接続部は前記半導体層のチャネル形成領域の外側に設けられており、
前記第1の導電層は、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも一種と窒素を含み、
前記第2の導電層は、前記第1の導電層上に形成され、かつ、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも一種を主成分とし、
前記第3の導電層は、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも1種と窒素を含み、
前記第4の導電層は、前記第3の導電層に接し、かつ、アルミニウムまたは銅を含み、
前記第5の導電層は、前記第4の導電層上に形成され、かつ、タンタル、タングステン、チタン、モリブデンから選ばれた少なくとも1種を含むことを特徴とする半導体装置。
The display region includes a semiconductor layer, an insulating film containing silicon, a gate electrode and a gate wiring in contact with the insulating film containing silicon, and a silicon oxide film in contact with the gate electrode and the gate wiring.
The gate electrode made of the first to third conductive layers is electrically connected to the gate wiring made of the fourth and fifth conductive layers at a connection portion, and the connection portion forms a channel of the semiconductor layer. Provided outside the area,
The first conductive layer includes at least one selected from tantalum, tungsten, titanium, and molybdenum and nitrogen,
The second conductive layer is formed on the first conductive layer, and has at least one selected from tantalum, tungsten, titanium, and molybdenum as a main component,
Said third conductive layer comprises tantalum, tungsten, titanium, at least one nitrogen selected from molybdenum,
The fourth conductive layer is in contact with the third conductive layer and includes aluminum or copper;
The fifth conductive layer is formed on the fourth conductive layer and includes at least one selected from tantalum, tungsten, titanium, and molybdenum.
請求項1において、
前記ゲート絶縁膜は、単層または積層であることを特徴とする半導体装置。
In claim 1,
The semiconductor device, wherein the gate insulating film is a single layer or a stacked layer.
請求項2において、
前記シリコンを含む絶縁膜は、単層または積層であることを特徴とする半導体装置。
In claim 2,
The semiconductor device is characterized in that the insulating film containing silicon is a single layer or a stacked layer.
請求項1乃至請求項4のいずれか一項において、
前記第3の導電層は、前記半導体層のチャネル形成領域の外側で前記第4の導電層とコンタクトホールを介することなく重なり合って接触することを特徴とする半導体装置。
In any one of Claims 1 thru | or 4,
The semiconductor device, wherein the third conductive layer overlaps and contacts the fourth conductive layer without a contact hole outside the channel formation region of the semiconductor layer.
請求項1乃至請求項のいずれか一項において、
前記酸化シリコン膜上に前記半導体層のソース領域およびドレイン領域にそれぞれ電気的に接続される配線を有し、前記配線は、チタン、チタンを含むアルミニウム、チタンを連続して形成した3層構造の積層膜でなることを特徴とする半導体装置。
In any one of Claims 1 thru | or 5 ,
The silicon oxide film has wirings electrically connected to a source region and a drain region of the semiconductor layer, respectively, and the wiring has a three-layer structure in which titanium, aluminum containing titanium, and titanium are continuously formed. A semiconductor device comprising a laminated film.
請求項1乃至請求項のいずれか一項において、
前記半導体層は、チャネル形成領域と、LDD領域と、ソース領域およびドレイン領域とを有し、
前記LDD領域は、前記ゲート電極と重ならないように設けられることを特徴とする半導体装置。
In any one of Claims 1 thru | or 6 ,
The semiconductor layer has a channel formation region, an LDD region, a source region and a drain region,
The LDD region is provided so as not to overlap with the gate electrode.
請求項1乃至請求項のいずれか一項において、
前記半導体層は、チャネル形成領域と、LDD領域と、ソース領域およびドレイン領域とを有し、
前記LDD領域は、前記ゲート電極と重なる第1の領域と、前記ゲート電極と重ならない第2の領域とを有することを特徴とする半導体装置。
In any one of Claims 1 thru | or 6 ,
The semiconductor layer has a channel formation region, an LDD region, a source region and a drain region,
The LDD region has a first region that overlaps with the gate electrode and a second region that does not overlap with the gate electrode.
請求項1乃至請求項のいずれか一項に記載の半導体装置を用いた電子機器。 Electronic device using a semiconductor device according to any one of claims 1 to 8.
JP2006050504A 1999-04-12 2006-02-27 Semiconductor device, manufacturing method thereof, and electronic apparatus Expired - Fee Related JP4527070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050504A JP4527070B2 (en) 1999-04-12 2006-02-27 Semiconductor device, manufacturing method thereof, and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10464699 1999-04-12
JP2006050504A JP4527070B2 (en) 1999-04-12 2006-02-27 Semiconductor device, manufacturing method thereof, and electronic apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000110445A Division JP4536202B2 (en) 1999-04-12 2000-04-12 Semiconductor device, manufacturing method thereof, and electronic apparatus

Publications (2)

Publication Number Publication Date
JP2006157053A JP2006157053A (en) 2006-06-15
JP4527070B2 true JP4527070B2 (en) 2010-08-18

Family

ID=36634864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050504A Expired - Fee Related JP4527070B2 (en) 1999-04-12 2006-02-27 Semiconductor device, manufacturing method thereof, and electronic apparatus

Country Status (1)

Country Link
JP (1) JP4527070B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796608B1 (en) 2006-08-11 2008-01-22 삼성에스디아이 주식회사 Fabricating method for thin film transistor array substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260499A (en) * 1993-03-02 1994-09-16 Casio Comput Co Ltd Thin-film transistor and manufacture thereof
JPH06267982A (en) * 1993-01-18 1994-09-22 Semiconductor Energy Lab Co Ltd Mis type semiconductor device and manufacture thereof
JPH07169974A (en) * 1993-09-20 1995-07-04 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
JPH07263705A (en) * 1994-03-24 1995-10-13 Sony Corp Thin film transistor
JPH0864838A (en) * 1994-08-26 1996-03-08 Casio Comput Co Ltd Thin film transistor
WO1997008752A1 (en) * 1995-08-25 1997-03-06 Hitachi, Ltd. Mis semiconductor device
JPH11194366A (en) * 1998-01-07 1999-07-21 Seiko Epson Corp Active matrix substrate and its manufacture, liquid crystal device, and electronic equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267982A (en) * 1993-01-18 1994-09-22 Semiconductor Energy Lab Co Ltd Mis type semiconductor device and manufacture thereof
JPH06260499A (en) * 1993-03-02 1994-09-16 Casio Comput Co Ltd Thin-film transistor and manufacture thereof
JPH07169974A (en) * 1993-09-20 1995-07-04 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
JPH07263705A (en) * 1994-03-24 1995-10-13 Sony Corp Thin film transistor
JPH0864838A (en) * 1994-08-26 1996-03-08 Casio Comput Co Ltd Thin film transistor
WO1997008752A1 (en) * 1995-08-25 1997-03-06 Hitachi, Ltd. Mis semiconductor device
JPH11194366A (en) * 1998-01-07 1999-07-21 Seiko Epson Corp Active matrix substrate and its manufacture, liquid crystal device, and electronic equipment

Also Published As

Publication number Publication date
JP2006157053A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP6563051B2 (en) Display device
US6579736B2 (en) Semiconductor device and method of manufacturing thereof
US20040053451A1 (en) Semiconductor device and manufacturing method thereof
JP4801238B2 (en) Method for manufacturing semiconductor device
JP4850326B2 (en) Method for manufacturing semiconductor device
JP4536202B2 (en) Semiconductor device, manufacturing method thereof, and electronic apparatus
JP4527070B2 (en) Semiconductor device, manufacturing method thereof, and electronic apparatus
JP4463377B2 (en) Semiconductor device and manufacturing method thereof
JP4527069B2 (en) Display device
JP2001053286A (en) Semiconductor film and manufacture thereof
KR100775130B1 (en) Semiconductor device
KR100775129B1 (en) Semiconductor device
JP4618842B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees