JP4525630B2 - Insulation resistance measuring method and apparatus - Google Patents

Insulation resistance measuring method and apparatus Download PDF

Info

Publication number
JP4525630B2
JP4525630B2 JP2006125180A JP2006125180A JP4525630B2 JP 4525630 B2 JP4525630 B2 JP 4525630B2 JP 2006125180 A JP2006125180 A JP 2006125180A JP 2006125180 A JP2006125180 A JP 2006125180A JP 4525630 B2 JP4525630 B2 JP 4525630B2
Authority
JP
Japan
Prior art keywords
resistor
voltage
negative
positive
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006125180A
Other languages
Japanese (ja)
Other versions
JP2007298330A (en
Inventor
泰弘 高林
謙二 馬場
昌英 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2006125180A priority Critical patent/JP4525630B2/en
Publication of JP2007298330A publication Critical patent/JP2007298330A/en
Application granted granted Critical
Publication of JP4525630B2 publication Critical patent/JP4525630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

この発明は、システムの運転状態、つまり活線状態で回路の絶縁抵抗を測定する測定方法および装置に関する。例えば、直流電源を用いた電気推進船舶などにおいては、運転中の安全確認の見地から、電源回路はいつでも活線状態で、しかも連続的に絶縁抵抗を監視できることが要求されるが、この発明はこのような用途に使用して好適なものである。   The present invention relates to a measuring method and apparatus for measuring an insulation resistance of a circuit in an operating state of a system, that is, in a live line state. For example, in an electric propulsion ship using a DC power supply, from the viewpoint of safety confirmation during operation, the power supply circuit is required to be always in a live state and continuously monitor the insulation resistance. It is suitable for use in such applications.

絶縁抵抗の測定方法としては、通称メガーと称する図4のような絶縁抵抗計を用いる方法が一般的である。また、システムの運転状態で絶縁抵抗を測定する方法は通称活線メグと言い、図5に示すブリッジ原理を用いるものが知られている。
前者の絶縁抵抗計によるものは、絶縁抵抗計内の一定電源S(500Vまたは1000Vが一般的)によって、絶縁抵抗RPXを流れる電流iの電流計指示値から間接的に絶縁抵抗を計測する方法であるため、電源停止状態で絶縁抵抗を測定する必要がある。このため、システムの運転中には絶縁抵抗の測定ができないという問題がある。
As a method for measuring the insulation resistance, a method using an insulation resistance meter as shown in FIG. Further, a method for measuring the insulation resistance in the operating state of the system is called a so-called live line Meg, and a method using the bridge principle shown in FIG. 5 is known.
The former insulation resistance meter is a method in which the insulation resistance is indirectly measured from the ammeter indicated value of the current i flowing through the insulation resistance RPX by a constant power source S (500 V or 1000 V is generally used) in the insulation resistance meter. Therefore, it is necessary to measure the insulation resistance when the power is stopped. For this reason, there is a problem that the insulation resistance cannot be measured during the operation of the system.

一方、後者の活線メグは、ブリッジ回路内の電流計Mの指示が0となるよう可変抵抗器VRを調節して、電流計指示が0となったときのVR抵抗値から間接的に絶縁抵抗RPXを測定する方法であるため、煩雑な測定操作(調節操作)を必要とする一方、連続的な測定ができないという問題がある。
そこで、上記のような煩雑な測定操作を必要としないものも、例えば特許文献1に開示されている。
On the other hand, the latter live wire Meg is indirectly insulated from the VR resistance value when the ammeter instruction becomes zero by adjusting the variable resistor VR so that the instruction of the ammeter M in the bridge circuit becomes zero. Since this method measures the resistance RPX, a complicated measurement operation (adjustment operation) is required, but there is a problem that continuous measurement cannot be performed.
Therefore, a device that does not require such a complicated measurement operation is disclosed in Patent Document 1, for example.

特開平01−165973号公報Japanese Patent Laid-Open No. 01-165773

しかしながら、上記特許文献1に記載のものは、電源変動に対して何らの考慮もしていないので、電源変動の影響を受け易いという問題がある。
したがって、この発明の課題は、絶縁抵抗を煩雑な測定操作をすることなく連続的に、しかも電源変動を受けず安定に測定可能とすることにある。
However, the device described in Patent Document 1 has a problem that it is easily affected by power supply fluctuations because no consideration is given to power supply fluctuations.
Therefore, an object of the present invention is to make it possible to measure insulation resistance continuously without complicated measurement operations and stably without being subject to power supply fluctuations.

このような課題を解決するため、請求項1の発明では、正極と負極との間に高い抵抗値を持つ第1抵抗器と低い抵抗値を持つ第2抵抗器とが直列に接続されてなる組を2組直列に接続し、これら2組の検出抵抗器の中性点に低い抵抗値を持つ第3抵抗器を接続し、その1端を接地してなるT型検出回路を備え、
前記正極側,負極側の第2抵抗器および第3抵抗器の抵抗値を同じ値にしたときに正極側,負極側第2抵抗器の各両端と第3抵抗器の両端にそれぞれ発生する電圧を検出し、正極側第2抵抗器の電圧対第3抵抗器の電圧比、または、負極側第2抵抗器の電圧対第3抵抗器の電圧比を演算し、これらの電圧比のいずれかに第1抵抗器と同じ値の定数K値を乗算し、絶縁抵抗値を得ることを特徴とする。
In order to solve such a problem, in the invention of claim 1, a first resistor having a high resistance value and a second resistor having a low resistance value are connected in series between the positive electrode and the negative electrode. A set of T-type detection circuits, in which two sets are connected in series, a third resistor having a low resistance value is connected to the neutral point of the two sets of detection resistors, and one end thereof is grounded;
Voltages generated at both ends of the positive and negative second resistors and at both ends of the third resistor when the resistance values of the positive and negative second and third resistors are the same. And the voltage ratio of the second resistor on the positive electrode side to the voltage ratio of the third resistor or the voltage ratio of the second resistor on the negative electrode side to the voltage on the third resistor is calculated. Is multiplied by a constant K value equal to that of the first resistor to obtain an insulation resistance value.

請求項2の発明では、正極と負極との間に高い抵抗値を持つ第1抵抗器と低い抵抗値を持つ第2抵抗器とが直列に接続されてなる組が2組直列に接続され、これら2組の検出抵抗器の中性点に低い抵抗値を持つ第3抵抗器が接続され、その1端が接地されたT型検出回路と、前記正極側,負極側の第2抵抗器および第3抵抗器の抵抗値を同じ値にしたときに正極側,負極側第2抵抗器の各両端と第3抵抗器の両端にそれぞれ発生する電圧を検出する電圧検出手段と、正極側第2抵抗器の電圧対第3抵抗器の電圧比を演算する第1演算手段と、負極側第2抵抗器の電圧対第3抵抗器の電圧比を演算する第2演算手段と、前記第1演算手段からの電圧比に正極側第1抵抗器と同じ値の定数K値を乗算する第3演算手段と、前記第2演算手段からの電圧比に負極側第1抵抗器と同じ値の定数K値を乗算する第4演算手段と、第3または第4演算手段のいずれか一方の出力を絶縁抵抗値として表示する表示手段とを有することを特徴とする。
In the invention of claim 2, between the positive electrode and the negative electrode, is connected a high set of the second resistor is connected in series with a first resistor and a low resistance having a resistance value in the two sets in series A T-type detection circuit in which a third resistor having a low resistance value is connected to the neutral point of these two sets of detection resistors and one end thereof is grounded, and the second resistor on the positive side and the negative side Voltage detecting means for detecting voltages generated at both ends of the positive and negative second resistors and both ends of the third resistor when the resistance values of the third resistor and the third resistor are set to the same value; A first computing means for computing a voltage ratio of the voltage of the two resistors to the third resistor; a second computing means for computing a voltage ratio of the voltage of the negative second resistor to the third resistor; From the third computing means, the third computing means for multiplying the voltage ratio from the computing means by the constant K value which is the same value as the positive first resistor. Fourth calculation means for multiplying the voltage ratio by a constant K value that is the same value as that of the negative first resistor, and display means for displaying an output of either the third or fourth calculation means as an insulation resistance value It is characterized by that.

上記請求項2の発明においては、前記第3抵抗器に発生する電圧の極性を判別する極性判別手段を設け、正極性のときは正極側の演算および表示を可能として負極側の演算および表示をロックし、負極性のときは負極側の演算および表示を可能として正極側の演算および表示をロックすることができ(請求項3の発明)、請求項2または3の発明においては、前記絶縁抵抗値が予め設定された設定値より低下したことを判別して警報を発する警報手段を設けることができる(請求項4の発明)。   In the second aspect of the present invention, there is provided a polarity discriminating means for discriminating the polarity of the voltage generated in the third resistor. When it is negative, the calculation and display on the negative electrode side can be performed and the calculation and display on the positive electrode side can be locked (invention of claim 3). In the invention of claim 2 or 3, the insulation resistance Alarm means for issuing an alarm upon determining that the value has fallen below a preset value can be provided (invention of claim 4).

この発明によれば、システムの運転中に絶縁抵抗を連続的に測定できるので、システムの安全確認を常時行なうことが可能となる。また、煩雑な測定操作が不要であるだけでなく、電源変動の影響も受けないように工夫したので、安定な測定が可能になるという利点もある。   According to the present invention, since the insulation resistance can be continuously measured during the operation of the system, it is possible to always confirm the safety of the system. Further, not only a complicated measurement operation is unnecessary, but also devised so as not to be affected by fluctuations in the power supply, there is an advantage that stable measurement is possible.

図1はこの発明の実施の形態を示す構成図である。
検出抵抗1(R11)〜5(R3)によってT型検出回路を構成し、抵抗2(R12),4(R22)および5(R3)の各々から信号6(電圧VR12),8(電圧VR22)および7(電圧VR3)をそれぞれ得る。これら信号6〜8は絶縁変換器9(IAP),10(IAM),11(IAN)の一次側に入力され、それぞれ絶縁変換されて二次信号12〜14となる。
FIG. 1 is a block diagram showing an embodiment of the present invention.
The detection resistors 1 (R11) to 5 (R3) constitute a T-type detection circuit, and signals 6 (voltage VR12) and 8 (voltage VR22) from the resistors 2 (R12), 4 (R22) and 5 (R3), respectively. And 7 (voltage VR3) are obtained, respectively. These signals 6 to 8 are input to the primary side of the isolation converters 9 (IAP), 10 (IAM), and 11 (IAN), and are isolated and converted to secondary signals 12 to 14, respectively.

二次信号12〜14は、ローパスフィルタ15(LPP)〜18(LPN)により高調波成分が除去されて信号19〜21となり、そのうち信号19と20が正極側割算器25(DP)に、また信号20と21が負極側割算器26(DN)に入力され、割算が実行される。また、極性判別器22(PC)は信号20の極性を判別し、信号20が(+)方向のとき、すなわち電圧VR3が(+)方向のときは信号23(ON)を出力し、(−)方向のときは信号24(ON)を出力する。   The secondary signals 12 to 14 have their harmonic components removed by the low-pass filters 15 (LPP) to 18 (LPN) to become signals 19 to 21, of which the signals 19 and 20 are sent to the positive divider 25 (DP). The signals 20 and 21 are input to the negative divider 26 (DN), and division is performed. The polarity discriminator 22 (PC) discriminates the polarity of the signal 20 and outputs a signal 23 (ON) when the signal 20 is in the (+) direction, that is, when the voltage VR3 is in the (+) direction, (− ) Direction 24, the signal 24 (ON) is output.

極性判別器22(PC)が(+)方向の信号23を出力したときは、正極側の演算器25,31や表示装置(IND)35,警報装置(AL)36を動作させ、負極側をロックする。同様に、極性判別器22(PC)が(−)方向の信号24を出力したときは、負極側の演算器26,32や表示装置35,警報装置36を動作させ、正極側をロックする。
以下、極性判別器22(PC)が(+)方向の信号23を出力し、正極側絶縁抵抗を測定する場合について説明する。
When the polarity discriminator 22 (PC) outputs a signal 23 in the (+) direction, the calculators 25 and 31 on the positive electrode side, the display device (IND) 35 and the alarm device (AL) 36 are operated, and the negative electrode side is connected. Lock it. Similarly, when the polarity discriminator 22 (PC) outputs the signal 24 in the (−) direction, the negative side calculators 26 and 32, the display device 35, and the alarm device 36 are operated to lock the positive side.
Hereinafter, the case where the polarity discriminator 22 (PC) outputs the signal 23 in the (+) direction and measures the positive-side insulation resistance will be described.

図2(a)は正極側絶縁抵抗を測定する場合の説明図である。
ここで、正極側の抵抗R11対R12、または、負極側の抵抗R21対R22の比をそれぞれ1:1/100〜1:1/25程度とするが、これは測定しようとする回路電圧値、または測定しようとする絶縁抵抗値の範囲などによって最適な値を選定する。詳細は、後述する。
Fig.2 (a) is explanatory drawing in the case of measuring a positive electrode side insulation resistance.
Here, the ratio of the resistance R11 to R12 on the positive electrode side or the resistance R21 to R22 on the negative electrode side is about 1: 1/100 to 1: 1/25, which is the circuit voltage value to be measured, Or, select the optimum value according to the range of the insulation resistance value to be measured. Details will be described later.

例えば、直流電圧500V回路の絶縁抵抗を測定する場合、検出抵抗値をR11,R21=1MΩ、R12,R22=10KΩに選定したとき、絶縁抵抗が無限大の場合にはRPX=∞であるから、図2(a)に示す電流IRXは流れない。その結果、検出抵抗R12,R22の両端電圧VR12,VR22はVR12=VR22で、検出抵抗値R11,R12,R21,R22に流れる電流IPは、IP≒V÷(R11+R12+R21+R22)であり、M電位はVP=VN=250Vで、抵抗R11とR12の抵抗比1:1/100から、抵抗R12,R22には、250V/100≒2.5Vの電圧が発生することになる。   For example, when measuring the insulation resistance of a DC voltage 500 V circuit, when the detection resistance value is selected as R11, R21 = 1 MΩ, R12, R22 = 10 KΩ, RPX = ∞ when the insulation resistance is infinite. The current IRX shown in FIG. As a result, the voltages VR12, VR22 across the detection resistors R12, R22 are VR12 = VR22, the current IP flowing through the detection resistance values R11, R12, R21, R22 is IP≈V ÷ (R11 + R12 + R21 + R22), and the M potential is VP. = VN = 250V, and a resistance ratio of 1: 1/100 between the resistors R11 and R12, a voltage of 250V / 100≈2.5V is generated in the resistors R12 and R22.

いま、電源回路の正極側絶縁抵抗RPXが低下したとすると、接地回路には接地電流IRX=V÷(RPX+R3+R21+R22)が流れ、検出抵抗R3の両端にはVR3=IRX×R3の電圧が発生する。このとき、検出抵抗R12の両端電圧VR12は電流IPで決定され、検出抵抗R3の両端電圧VR3は電流IRXで決定される。すなわち、R11,RPXがそれぞれR12,R3よりも充分に大きい場合、R12=R3とすれば、VR12とVR3の電圧値の割合はR11とRPXの抵抗値の割合の逆数と考えられるから、VR12とVR3の電圧比n(VR12/VR3)を求め、この比nに検出抵抗R11を乗じること、すなわちn×R11=RPXなる計算から絶縁抵抗値を求めることができる。   Assuming that the positive-side insulation resistance RPX of the power supply circuit is reduced, a ground current IRX = V ÷ (RPX + R3 + R21 + R22) flows in the ground circuit, and a voltage of VR3 = IRX × R3 is generated at both ends of the detection resistor R3. At this time, the voltage VR12 across the detection resistor R12 is determined by the current IP, and the voltage VR3 across the detection resistor R3 is determined by the current IRX. That is, when R11 and RPX are sufficiently larger than R12 and R3, respectively, if R12 = R3, the ratio of the voltage values of VR12 and VR3 is considered to be the reciprocal of the ratio of the resistance values of R11 and RPX. The voltage ratio n (VR12 / VR3) of VR3 is obtained, and the insulation resistance value can be obtained by multiplying the ratio n by the detection resistance R11, that is, n × R11 = RPX.

以上のことは、図1の回路では、以下のように実行される。
すなわち、検出抵抗R12の両端電圧VR12の信号6が、絶縁変換器9→信号12→ローパスフィルタ15を介して信号19となり、割算器25の一方に入力される。また、電流IRXによって発生する検出抵抗R3の両端電圧VR3の信号7が絶縁変換器10→信号13→ローパスフィルタ16を介して信号20となり、割算器25の他方に入力されるとともに、極性判別器22へ入力される。
The above is performed as follows in the circuit of FIG.
That is, the signal 6 of the voltage VR12 across the detection resistor R12 becomes the signal 19 via the isolation converter 9 → the signal 12 → the low pass filter 15 and is input to one of the dividers 25. Further, the signal 7 of the voltage VR3 across the detection resistor R3 generated by the current IRX becomes the signal 20 via the insulation converter 10 → the signal 13 → the low pass filter 16, and is input to the other of the divider 25, and the polarity is discriminated. Is input to the device 22.

このとき、信号20が正極(+)方向であるから、極性判別器22が(+)方向を判別して信号23(ON)を出力し、割算器25および掛算器31を演算状態とし、表示装置35および警報装置36を正極側に切替える。また、信号24(OFF)により、割算器26および掛算器32を非演算状態とし、表示装置35および警報装置36の負極側の動作をロックする。   At this time, since the signal 20 is in the positive (+) direction, the polarity discriminator 22 discriminates the (+) direction and outputs a signal 23 (ON), and the divider 25 and the multiplier 31 are put in the calculation state. The display device 35 and the alarm device 36 are switched to the positive electrode side. Further, the signal 24 (OFF) causes the divider 26 and the multiplier 32 to be in a non-computation state, and the operations on the negative side of the display device 35 and the alarm device 36 are locked.

上記切替えによって、割算器25では信号19と信号20との比であるVR12/VR3を示す信号27を出力し、掛算器31の一方に入力する。定数設定器29(F)は、設定値Kを検出抵抗R11およびR21と同値とする信号30を出力し、掛算器31の他方に入力する。従って、掛算器31は割算器25からの出力信号27と、定数設定器29からの定数Kを示す信号30とを掛け合わせ、信号33を出力する。   By the above switching, the divider 25 outputs a signal 27 indicating VR12 / VR3 which is the ratio of the signal 19 and the signal 20, and inputs the signal 27 to one of the multipliers 31. The constant setter 29 (F) outputs a signal 30 that makes the set value K the same as that of the detection resistors R11 and R21 and inputs the signal 30 to the other of the multiplier 31. Therefore, the multiplier 31 multiplies the output signal 27 from the divider 25 and the signal 30 indicating the constant K from the constant setter 29 and outputs a signal 33.

信号33は、求めるべき絶縁抵抗値RPX=(VR12/VR3)×K(R11の抵抗値)を示しており、これは表示装置35に与えられて表示される一方、警報装置36では予め設定した絶縁抵抗値よりも低下したら警報を発するとともに、出力信号37で時系列に変化する絶縁抵抗値を記録するなど、安全管理のための処理をする。なお、図1のように、測定用電源38(S)および電源スイッチ39(SW)を設けておき、これらを使用することで無通電状態、つまり活線状態でない状態での電路,機器または装置の絶縁抵抗の測定が可能となる。   The signal 33 indicates an insulation resistance value RPX = (VR12 / VR3) × K (resistance value of R11) to be obtained. This is given to the display device 35 and displayed on the alarm device 36 in advance. When it falls below the insulation resistance value, an alarm is issued and a process for safety management is performed such as recording the insulation resistance value that changes in time series with the output signal 37. As shown in FIG. 1, a measurement power source 38 (S) and a power switch 39 (SW) are provided, and by using these, a circuit, device or apparatus in a non-energized state, that is, not in a live line state Insulation resistance can be measured.

図2(b)は負極側絶縁抵抗を測定する場合の説明図である。
この場合、測定しようとする絶縁抵抗はRNxであり、これに電流IRXが流れることにより、抵抗R12を抵抗R22に置き換えることで上記と同様の関係から、求めるべき絶縁抵抗値RNXは、
RNX=(VR22/VR3)×K(R21の抵抗値)
として求めることができる。
FIG. 2B is an explanatory diagram for measuring the negative electrode side insulation resistance.
In this case, the insulation resistance to be measured is RNx, and the current IRX flows through this, so that the resistance R12 is replaced with the resistor R22, and the insulation resistance value RNX to be obtained from the same relationship as described above is
RNX = (VR22 / VR3) × K (resistance value of R21)
Can be obtained as

図1の回路も、信号6,12,19,27および33を信号8,14,21,28および34に、演算回路25,31を演算回路26,32に、また信号23をOFF,信号24をONにそれぞれ置き換えることにより、正極側絶縁抵抗を測定する場合と全く同様にして負極側絶縁抵抗を測定することができる。   In the circuit of FIG. 1, the signals 6, 12, 19, 27 and 33 are converted to signals 8, 14, 21, 28 and 34, the arithmetic circuits 25 and 31 are switched to the arithmetic circuits 26 and 32, the signal 23 is turned OFF and the signal 24 is switched off. By replacing each with ON, the negative electrode side insulation resistance can be measured in exactly the same manner as when the positive electrode side insulation resistance is measured.

図3に電圧検出特性と電圧倍率nの計算例を示す。
絶縁抵抗の抵抗値RPX=1MΩであるとし、R11=RPX=1MΩ、R12=R3=10KΩとすると、図3(a)からVR12=VR3≒1.65と求められ、電圧比n=VR12/VR3=1.65/1.65=1となるので、RPX=K(R11=1MΩ)×1=1MΩとして求められる。
FIG. 3 shows a calculation example of the voltage detection characteristic and the voltage magnification n.
Assuming that the resistance value RPX = 1MΩ of the insulation resistance is R11 = RPX = 1MΩ and R12 = R3 = 1OKΩ, it can be determined that VR12 = VR3≈1.65 from FIG. 3A, and the voltage ratio n = VR12 / VR3 Since 1.65 / 1.65 = 1, RPX = K (R11 = 1MΩ) × 1 = 1MΩ is obtained.

同様に、電圧比n=VR12/VR3=10では、RPX=K(1MΩ)×10=10MΩ、電圧比n=VR12/VR3=100では、RPX=K(1MΩ)×100=100MΩ、電圧比n=0.1では0.1MΩのように求めることができる(図3(b)参照)。
なお、電源回路の電圧が変動した場合、これに比例して電流IP,IRXが変動してVR12,VR3も変動するが、電圧比n=VR12/VR3は変わらない。従って、この発明によれば、測定しようとする回路電圧が変動しても測定値はその影響を受けないので、安定した絶縁抵抗の測定が可能となる利点が得られる。
Similarly, when the voltage ratio n = VR12 / VR3 = 10, RPX = K (1MΩ) × 10 = 10MΩ, and when the voltage ratio n = VR12 / VR3 = 100, RPX = K (1MΩ) × 100 = 100MΩ, the voltage ratio n = 0.1 can be obtained as 0.1 MΩ (see FIG. 3B).
When the voltage of the power supply circuit fluctuates, the currents IP and IRX fluctuate in proportion to this and the VR12 and VR3 also fluctuate, but the voltage ratio n = VR12 / VR3 does not change. Therefore, according to the present invention, even if the circuit voltage to be measured fluctuates, the measurement value is not affected by this, so that an advantage that a stable insulation resistance can be measured can be obtained.

次に、各抵抗R11〜R22の選定について説明する。
以上では、電圧500Vの回路を抵抗R11,R21=1MΩ、抵抗R12,R22=10KΩとして測定する場合について説明した。このとき、絶縁抵抗RPX,RNXが無限大のときは、中性点Mの電位は250V、検出電圧VR12=VR22≒2.5Vである。
Next, selection of the resistors R11 to R22 will be described.
In the above, the case where a circuit with a voltage of 500 V is measured as the resistors R11, R21 = 1 MΩ and the resistors R12, R22 = 10 KΩ has been described. At this time, when the insulation resistances RPX and RNX are infinite, the potential at the neutral point M is 250V, and the detection voltage VR12 = VR22≈2.5V.

ここで、電圧500Vの電圧が600V(+20%)〜400(−20%)の範囲で変動した場合、絶縁抵抗RPX,RNXが無限大では、検出電圧VR12=VR22≒3V〜2.5V〜2Vの範囲で変動する。しかし、検出電圧比nは変わらないので、測定値への影響はない。また、電圧1000Vの回路の絶縁抵抗を測定するときは、Mの電位は500V、検出電圧VR12=VR22=500/100≒5Vとなるが、この場合も検出電圧比nは変わらないので、測定値への影響はない。   Here, when the voltage of 500 V fluctuates in the range of 600 V (+ 20%) to 400 (−20%), the detection voltage VR12 = VR22≈3 V to 2.5 V to 2 V when the insulation resistances RPX and RNX are infinite. It fluctuates in the range. However, since the detection voltage ratio n does not change, there is no influence on the measured value. Also, when measuring the insulation resistance of a circuit with a voltage of 1000 V, the potential of M is 500 V and the detection voltage VR12 = VR22 = 500 / 100≈5 V, but in this case also the detection voltage ratio n does not change, so the measured value There is no impact on

さらに、各抵抗値をR11,R21=1MΩとし、抵抗R12,R22=10KΩの抵抗比1:1/100を1:1/50、すなわち抵抗R12,R22=20KΩにすれば、VR12,VR22は2.5Vから5V、また抵抗比を1:1/25、抵抗R12,R22=40KΩにすれば、VR12,VR22は2.5Vから10Vのように検出電圧は変わるが、電圧比は不変なので、測定への影響はない。   Further, if each resistance value is R11, R21 = 1 MΩ and the resistance ratio 1: 1/100 of the resistors R12, R22 = 10 KΩ is 1: 1/50, that is, the resistors R12, R22 = 20 KΩ, VR12, VR22 is 2 .5V to 5V, resistance ratio is 1: 1/25, resistance R12, R22 = 40KΩ, VR12 and VR22 change detection voltage from 2.5V to 10V, but the voltage ratio is unchanged. There is no impact on

以上では、抵抗R11,R21の抵抗値を固定し、抵抗R12,R22の抵抗値を変更したが、抵抗R12,R22の抵抗値を固定し、抵抗R11,R21の抵抗値を変更しても良いのは言うまでもない。すなわち、R11,R21およびR12,R22の抵抗値は、測定回路の電圧と最適な検出電圧を得るため最適値に選択することができる。   In the above, the resistance values of the resistors R11 and R21 are fixed and the resistance values of the resistors R12 and R22 are changed. However, the resistance values of the resistors R12 and R22 may be fixed and the resistance values of the resistors R11 and R21 may be changed. Needless to say. That is, the resistance values of R11, R21 and R12, R22 can be selected as optimum values in order to obtain the voltage of the measurement circuit and the optimum detection voltage.

なお、この発明は非接地回路を対象とするもので、一線接地回路では測定すべき絶縁抵抗が短絡されることから適用できず、また、正極側絶縁抵抗および負極側絶縁抵抗の両方が同程度に低下する場合は、接地回路(抵抗R3)に電流が流れないことにより、適用できないものである。   The present invention is intended for a non-grounded circuit, and is not applicable because the insulation resistance to be measured is short-circuited in a one-wire grounded circuit, and both the positive-side insulation resistance and the negative-side insulation resistance are comparable. Is not applicable because the current does not flow through the ground circuit (resistor R3).

この発明の実施の形態を示す構成図Configuration diagram showing an embodiment of the present invention 図1の正極側,負極側絶縁抵抗の測定動作説明図Explanatory diagram of measuring operation of positive side and negative side insulation resistance in Fig. 1 図1の電圧検出特性および電圧検出倍率の説明図Explanatory drawing of the voltage detection characteristic and voltage detection magnification of FIG. メガーの説明図Illustration of megger 活線メグの説明図Illustration of hot wire Meg

符号の説明Explanation of symbols

1〜5…抵抗器、6〜8,12〜14,19〜21,23,24,27,28,30,33,34,37…信号、9〜11…絶縁変換器、15〜18…ローパスフィルタ、22…極性判別器、25,26…割算器、29…定数設定器、31,32…掛算器、35…表示装置、36…警報装置、38…測定用電源、39…電源スイッチ。   DESCRIPTION OF SYMBOLS 1-5 ... Resistor, 6-8, 12-14, 19-21, 23, 24, 27, 28, 30, 33, 34, 37 ... Signal, 9-11 ... Insulation converter, 15-18 ... Low pass Filter, 22 ... Polarity discriminator, 25, 26 ... Divider, 29 ... Constant setter, 31, 32 ... Multiplier, 35 ... Display device, 36 ... Alarm device, 38 ... Power supply for measurement, 39 ... Power switch

Claims (4)

正極と負極との間に高い抵抗値を持つ第1抵抗器と低い抵抗値を持つ第2抵抗器とが直列に接続されてなる組を2組直列に接続し、これら2組の検出抵抗器の中性点に低い抵抗値を持つ第3抵抗器を接続し、その1端を接地してなるT型検出回路を備え、
前記正極側,負極側の第2抵抗器および第3抵抗器の抵抗値を同じ値にしたときに正極側,負極側第2抵抗器の各両端と第3抵抗器の両端にそれぞれ発生する電圧を検出し、
正極側第2抵抗器の電圧対第3抵抗器の電圧比、または、負極側第2抵抗器の電圧対第3抵抗器の電圧比を演算し、これらの電圧比のいずれかに第1抵抗器と同じ値の定数K値を乗算し、
絶縁抵抗値を得ることを特徴とする絶縁抵抗測定方法。
Between the positive electrode and the negative electrode, two sets in which a first resistor having a high resistance value and a second resistor having a low resistance value are connected in series are connected in series, and these two sets of detection resistors A T-type detection circuit comprising a third resistor having a low resistance value connected to the neutral point of the vessel and having one end grounded;
Voltages generated at both ends of the positive and negative second resistors and at both ends of the third resistor when the resistance values of the positive and negative second and third resistors are the same. Detect
The voltage ratio of the positive-side second resistor to the third resistor or the negative-side second resistor voltage to the third resistor is calculated, and the first resistance is set to one of these voltage ratios. Multiply by the constant K value of the same value as the
An insulation resistance measurement method characterized by obtaining an insulation resistance value.
正極と負極との間に高い抵抗値を持つ第1抵抗器と低い抵抗値を持つ第2抵抗器とが直列に接続されてなる組が2組直列に接続され、これら2組の検出抵抗器の中性点に低い抵抗値を持つ第3抵抗器が接続され、その1端が接地されたT型検出回路と、
前記正極側,負極側の第2抵抗器および第3抵抗器の抵抗値を同じ値にしたときに正極側,負極側第2抵抗器の各両端と第3抵抗器の両端にそれぞれ発生する電圧を検出する電圧検出手段と、
正極側第2抵抗器の電圧対第3抵抗器の電圧比を演算する第1演算手段と、
負極側第2抵抗器の電圧対第3抵抗器の電圧比を演算する第2演算手段と、
前記第1演算手段からの電圧比に正極側第1抵抗器と同じ値の定数K値を乗算する第3演算手段と、
前記第2演算手段からの電圧比に負極側第1抵抗器と同じ値の定数K値を乗算する第4演算手段と、
第3または第4演算手段のいずれか一方の出力を絶縁抵抗値として表示する表示手段とを有することを特徴とする絶縁抵抗測定装置。
Two sets of a first resistor having a high resistance value and a second resistor having a low resistance value connected in series are connected in series between the positive electrode and the negative electrode, and these two sets of detection resistors A T-type detection circuit in which a third resistor having a low resistance value is connected to the neutral point of the vessel, and one end of which is grounded;
Voltages generated at both ends of the positive and negative second resistors and at both ends of the third resistor when the resistance values of the positive and negative second and third resistors are the same. Voltage detecting means for detecting
First computing means for computing a voltage ratio of the voltage of the second resistor on the positive electrode side to the voltage on the third resistor;
Second computing means for computing a voltage ratio of the voltage of the negative second resistor to the third resistor;
Third computing means for multiplying the voltage ratio from the first computing means by a constant K value which is the same value as the positive first resistor;
A fourth computing means for multiplying the voltage ratio from the second computing means by a constant K value which is the same value as that of the negative first resistor;
An insulation resistance measuring apparatus comprising: display means for displaying an output of either one of the third or fourth arithmetic means as an insulation resistance value.
前記第3抵抗器に発生する電圧の極性を判別する極性判別手段を設け、正極性のときは正極側の演算および表示を可能として負極側の演算および表示をロックし、負極性のときは負極側の演算および表示を可能として正極側の演算および表示をロックすることを特徴とする請求項2に記載の絶縁抵抗測定装置。   Polarity discrimination means for discriminating the polarity of the voltage generated in the third resistor is provided. When the polarity is positive, the calculation and display on the positive side can be performed and the calculation and display on the negative side are locked. When the polarity is negative, the polarity is negative 3. The insulation resistance measuring device according to claim 2, wherein the calculation and display on the positive side are enabled and the calculation and display on the positive electrode side are locked. 前記絶縁抵抗値が予め設定された設定値より低下したことを判別して警報を発する警報手段を設けたことを特徴とする請求項2または3に記載の絶縁抵抗測定装置。   4. The insulation resistance measuring apparatus according to claim 2, further comprising alarm means for issuing an alarm upon determining that the insulation resistance value has fallen below a preset value.
JP2006125180A 2006-04-28 2006-04-28 Insulation resistance measuring method and apparatus Active JP4525630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125180A JP4525630B2 (en) 2006-04-28 2006-04-28 Insulation resistance measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125180A JP4525630B2 (en) 2006-04-28 2006-04-28 Insulation resistance measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2007298330A JP2007298330A (en) 2007-11-15
JP4525630B2 true JP4525630B2 (en) 2010-08-18

Family

ID=38767946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125180A Active JP4525630B2 (en) 2006-04-28 2006-04-28 Insulation resistance measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4525630B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2514096C2 (en) * 2012-06-05 2014-04-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Method to measure electric resistance of insulation between group of combined contacts and separate contact and device for its realisation
KR101521091B1 (en) * 2014-06-10 2015-05-20 국립대학법인 울산과학기술대학교 산학협력단 Apparatus for acquiring signal by using adaptative dual-mode
JP6609984B2 (en) * 2015-05-11 2019-11-27 富士電機株式会社 Insulation resistance measuring method and apparatus
JP6540564B2 (en) * 2015-10-13 2019-07-10 富士電機株式会社 Method and apparatus for measuring insulation resistance of direct current feed circuit
RU2670722C9 (en) * 2017-12-28 2018-11-29 Общество с ограниченной ответственностью "Силовая электроника" Method for controlling resistance of direct current electrical circuit insulation and device for realization thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161665A (en) * 1981-03-31 1982-10-05 Sumitomo Metal Ind Ltd Measuring circuit for insulation resistance value
JPS57173765A (en) * 1981-04-18 1982-10-26 Hitachi Ltd Insulation resistance measuring device for field winding of rotating electric machine
JPS57199871U (en) * 1981-06-16 1982-12-18
JPS5821867U (en) * 1981-07-31 1983-02-10 富士電機株式会社 Insulation resistance measuring device
JPH03179272A (en) * 1989-12-07 1991-08-05 Tenpaale Kogyo Kk Displaying apparatus for earth resistance of dc circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161665A (en) * 1981-03-31 1982-10-05 Sumitomo Metal Ind Ltd Measuring circuit for insulation resistance value
JPS57173765A (en) * 1981-04-18 1982-10-26 Hitachi Ltd Insulation resistance measuring device for field winding of rotating electric machine
JPS57199871U (en) * 1981-06-16 1982-12-18
JPS5821867U (en) * 1981-07-31 1983-02-10 富士電機株式会社 Insulation resistance measuring device
JPH03179272A (en) * 1989-12-07 1991-08-05 Tenpaale Kogyo Kk Displaying apparatus for earth resistance of dc circuit

Also Published As

Publication number Publication date
JP2007298330A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP5003333B2 (en) Insulation resistance measuring method and apparatus
JP6609984B2 (en) Insulation resistance measuring method and apparatus
TW424142B (en) Smart auto-ranging RMS measurement method and apparatus
JP4525630B2 (en) Insulation resistance measuring method and apparatus
KR100899632B1 (en) Electricity meter with a function for detecting failure of current transformer
JPH087241B2 (en) Signal processing circuit and converter circuit
JP5085514B2 (en) measuring device
EP3070446B1 (en) Thermo wire testing circuit and method
JPWO2007004698A1 (en) Leakage current detection device and leakage current detection method
JP6540564B2 (en) Method and apparatus for measuring insulation resistance of direct current feed circuit
JP2008020364A (en) Electromagnetic flowmeter
RU2377581C1 (en) Method of measurement and monitoring of insulation resistance of unearthed power electrical ac networks under operation voltage and device for its implementation
CN104515902A (en) Universal meter with high-voltage warning function
JP6491852B2 (en) Circuit element measuring device
RU2313799C1 (en) Mode of controlling reduction of resistance of insulation in a line of feeding voltage to a load and an arrangement for its execution
JP4735250B2 (en) Measuring device
JP3964538B2 (en) Impedance measuring device
JP2017020954A (en) Insulation resistance monitoring device in direct current non-grounded electric circuit and monitoring method
JP2002139528A (en) Impedance measuring device
JP5323401B2 (en) Insulation resistance tester
RU178894U1 (en) SMALL RESISTANCE METER
JP5546986B2 (en) Insulation inspection equipment
CN114236226B (en) Voltage measuring circuit
KR102297426B1 (en) Controller internal resistance measuring apparatus and controller internal resistance measuring method
JP6695214B2 (en) Semiconductor device, battery monitoring system, and diagnostic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4525630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250