JP4523479B2 - Continuous heat treatment furnace and heat treatment method - Google Patents

Continuous heat treatment furnace and heat treatment method Download PDF

Info

Publication number
JP4523479B2
JP4523479B2 JP2005137502A JP2005137502A JP4523479B2 JP 4523479 B2 JP4523479 B2 JP 4523479B2 JP 2005137502 A JP2005137502 A JP 2005137502A JP 2005137502 A JP2005137502 A JP 2005137502A JP 4523479 B2 JP4523479 B2 JP 4523479B2
Authority
JP
Japan
Prior art keywords
heat
treated
heat treatment
transport mechanism
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005137502A
Other languages
Japanese (ja)
Other versions
JP2006275499A (en
Inventor
靖博 梶浦
誠 新井
良夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2005137502A priority Critical patent/JP4523479B2/en
Priority to EP05021141A priority patent/EP1647789A1/en
Priority to US11/239,250 priority patent/US7645136B2/en
Publication of JP2006275499A publication Critical patent/JP2006275499A/en
Application granted granted Critical
Publication of JP4523479B2 publication Critical patent/JP4523479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Furnace Charging Or Discharging (AREA)
  • Furnace Details (AREA)
  • Photovoltaic Devices (AREA)
  • Reciprocating Conveyors (AREA)
  • Tunnel Furnaces (AREA)

Description

本発明は、太陽電池基板等の熱処理に使用される連続式熱処理炉とそれを用いた熱処理方法に関する。   The present invention relates to a continuous heat treatment furnace used for heat treatment of solar cell substrates and the like and a heat treatment method using the same.

太陽電池基板の製造においては、基板の表面及び裏面に導電性の電極ペーストを所定のパターンで印刷形成した後、連続式の熱処理炉内を連続的又は間欠的に移動させながら熱処理(脱バインダー・乾燥・焼成)する工程がある。通常、このような熱処理に用いられる熱処理炉には、炉の入口側から出口側に向かって、被熱処理物の乾燥及び/又は脱バインダー処理を行う乾燥・脱バインダー領域と、被熱処理物の焼成を行う焼成領域とが順に設けられており、被熱処理物は乾燥・脱バインダー領域を搬送されながら乾燥及び/又は脱バインダー処理された後、焼成領域を搬送されながら焼成され、その後、炉外に搬出される。   In the production of solar cell substrates, conductive electrode paste is printed and formed in a predetermined pattern on the front and back surfaces of the substrate, and then heat treatment (debinder / There is a process of drying and baking. Usually, in a heat treatment furnace used for such heat treatment, a drying / debinding region for drying and / or debinding the material to be heat-treated from the inlet side to the outlet side of the furnace, and firing the material to be heat-treated And a firing region for performing the heat treatment, the material to be heat-treated is dried and / or debindered while being transported through the drying / debinding region, and then fired while being transported through the firing region. It is carried out.

熱処理炉内で被熱処理物を搬送するための搬送機構としては、被熱処理物が太陽電池基板である場合、メッシュベルトコンベアが広く使用されている(例えば、特許文献1参照。)。また、最近では、メッシュベルトコンベアに比して熱容量が小さく、迅速な昇降温が可能なことから、ウォーキングビームや、ワイヤー等の線材に張力を付与して張り渡し、当該線材にウォーキングビーム的な搬送動作を行わせるようにした搬送機構も使用されるようになってきている(例えば、特許文献2参照。)。   As a transport mechanism for transporting an object to be heat treated in a heat treatment furnace, a mesh belt conveyor is widely used when the object to be heat treated is a solar cell substrate (see, for example, Patent Document 1). Recently, the heat capacity is smaller than that of mesh belt conveyors, and rapid heating and cooling is possible. Therefore, tension is applied to the walking beam and wire such as wire, and the wire is like a walking beam. A transport mechanism that performs a transport operation is also being used (see, for example, Patent Document 2).

ところで、太陽電池基板における乾燥及び/又は脱バインダー処理後の焼成、すなわち、アルミニウムや銀からなる電導ペーストの基板表面への焼き付けは、短時間で急速に800℃程度まで加熱し、その後急冷却することが良好な製品特性を得る上で理想的とされており、この理想的な焼成状態を達成するためには、乾燥・脱バインダー領域での被熱処理物の搬送速度よりも焼成領域での被熱処理物の搬送速度を高め、雰囲気温度が1000℃前後の高温に保たれた焼成領域を短時間の内に素早く通過させることが要求される。   By the way, the baking after drying and / or debinding treatment on the solar cell substrate, that is, baking of the conductive paste made of aluminum or silver onto the substrate surface is rapidly heated to about 800 ° C. in a short time and then rapidly cooled. Therefore, in order to achieve this ideal firing state, it is necessary to cover the material in the firing region rather than the conveyance speed of the material to be heat treated in the drying / debinding region. It is required to increase the conveying speed of the heat-treated product and to quickly pass through the firing region in which the atmospheric temperature is maintained at a high temperature of about 1000 ° C. within a short time.

しかしながら、従来の連続式熱処理炉においては、1種類の搬送機構によって、乾燥・脱バインダー領域も焼成領域も同じ速度で被熱処理物を搬送しながら、乾燥及び/又は脱バインダー処理、焼成という一連の熱処理を行う構造となっていたため、前記のような理想的な焼成状態を達成することは極めて困難であった。   However, in a conventional continuous heat treatment furnace, a series of drying and / or debinding treatments and firing is performed while conveying the object to be heat-treated at the same speed in the drying / debinding region and the firing region by one type of transport mechanism. Due to the heat treatment structure, it was extremely difficult to achieve the ideal firing state as described above.

また、被熱処理物の製品特性を均一にするためには、焼成領域を一定の高温度に安定して保持することが重要であるが、メッシュベルトコンベアのような熱容量の大きい搬送機構を使用した場合には、その搬送機構の移動動作に伴う焼成領域内の温度変化が大きくなり、安定した焼成領域内温度が得られない。更に、前記のように1種類の搬送機構によって、常に一定の搬送速度で一連の熱処理を行う構造の熱処理炉は、炉長についての設計の自由度が低く、炉長を部分的に短縮化するなどして省スペースな炉を作製するといったことが困難であった。更に、焼成領域における被熱処理物の搬送も単に短時間で素早く行うだけでなく、必要な加熱時間は確保し、かつ被熱処理物の全体の加熱時間がほぼ均一になるように搬送を行うことが良好な製品特性を得るために重要である。   In addition, in order to make the product characteristics of the heat-treated product uniform, it is important to stably hold the firing area at a constant high temperature, but a transport mechanism having a large heat capacity such as a mesh belt conveyor was used. In such a case, the temperature change in the firing region accompanying the movement of the transport mechanism becomes large, and a stable firing region temperature cannot be obtained. Furthermore, as described above, a heat treatment furnace having a structure in which a series of heat treatments are always performed at a constant conveyance speed by one type of conveyance mechanism has a low degree of freedom in designing the furnace length and partially shortens the furnace length. Thus, it was difficult to produce a space-saving furnace. Furthermore, not only can the heat-treated material be transported in the firing area quickly in a short time, but also the necessary heating time can be ensured and the heat-treated material can be transported so that the overall heating time is substantially uniform. It is important to obtain good product properties.

特開2002−203888号公報JP 2002-203888 A 実公平7−4470号公報No. 7-4470

本発明は、このような従来の事情に鑑みてなされたものであり、その目的とするところは、焼成領域における被熱処理物の搬送速度を乾燥・脱バインダー領域における被熱処理物の搬送速度よりも速くなるようにすることができるとともに、焼成領域内を一定の高温度に安定して保持することができ、更に炉長についての設計の自由度が高い連続式熱処理炉を提供すること、及びそのような熱処理炉を使用して、焼成領域における被熱処理物の搬送を短時間で素早く行いつつも、必要な加熱時間は確保し、かつ被熱処理物全体の加熱時間がほぼ均一になるようにすることが可能な熱処理方法を提供することにある。   The present invention has been made in view of such conventional circumstances, and the object of the present invention is to make the conveyance speed of the heat-treated material in the firing region higher than the conveyance speed of the heat-treated material in the drying / debinding region. It is possible to provide a continuous heat treatment furnace that can be made fast, can stably hold the firing region at a constant high temperature, and has a high degree of freedom in designing the furnace length, and its By using such a heat treatment furnace, the necessary heat time is ensured and the heat time of the entire heat treatment object is made almost uniform while the heat treatment object is transported quickly and quickly in the firing region. It is in providing the heat processing method which can be performed.

本発明によれば、炉の入口側から出口側に向かって、被熱処理物の乾燥及び/又は脱バインダー処理を行う少なくとも1つの乾燥・脱バインダー領域と、被熱処理物の焼成を行う焼成領域とが順に設けられ、前記被熱処理物が前記乾燥・脱バインダー領域を搬送されながら乾燥及び/又は脱バインダー処理された後、前記焼成領域を搬送されながら焼成される連続式熱処理炉であって、一定のストロークで上昇、前進、下降、後退という動作を周期的に繰り返すビーム又は線材を備えた第一の搬送機構と、同じく一定のストロークで上昇、前進、下降、後退という動作を周期的に繰り返すビーム又は線材を備えた第二の搬送機構と、一定のストロークで上昇、前進、下降、後退という動作を周期的に繰り返すビームを備えた第三の搬送機構とを有し、前記乾燥・脱バインダー領域では前記被熱処理物の搬送を前記第一の搬送機構により行い、前記焼成領域では前記被熱処理物の搬送を前記第二の搬送機構により行い、前記焼成領域を搬送された後の前記被熱処理物を、前記第三の搬送機構により炉外の所定位置まで搬送する連続式熱処理炉、が提供される。   According to the present invention, from the inlet side to the outlet side of the furnace, at least one drying / debinding region that performs drying and / or debinding treatment of the object to be heat treated, and a firing region that performs firing of the object to be heat treated Is a continuous heat treatment furnace in which the object to be heat treated is dried and / or debindered while being transported through the drying / debinding region, and then fired while being transported through the firing region. The first transport mechanism with a beam or wire that periodically repeats ascending, advancing, descending, and retreating movements with a stroke, and a beam that periodically repeats the ascending, advancing, descending, and retreating actions with a constant stroke. Or a second transport mechanism having a wire, and a third transport mechanism having a beam that periodically repeats ascending, advancing, descending, and retreating with a certain stroke. The drying / debinding region transports the heat-treated material by the first transport mechanism, and the firing region transports the heat-treated material by the second transport mechanism. There is provided a continuous heat treatment furnace for conveying the object to be heat-treated after being conveyed to a predetermined position outside the furnace by the third conveying mechanism.

また、本発明によれば、前記連続式熱処理炉を使用した熱処理方法であって、前記第一の搬送機構から前記第二の搬送機構への前記被熱処理物の受け渡し後、前記第二の搬送機構から前記第三の搬送機構への前記被熱処理物の受け渡しまでの間の前記第二の搬送機構による前記被熱処理物の搬送が、加速、減速、再加速、停止という挙動を示すようにするとともに、前記被熱処理物の部位の内で焼成領域内における加熱時間が最も長い部位と最も短い部位との加熱時間の差が0〜1秒の範囲内に収まるようにする熱処理方法、が提供される。   Further, according to the present invention, there is provided a heat treatment method using the continuous heat treatment furnace, wherein the second conveyance is performed after the workpiece is transferred from the first conveyance mechanism to the second conveyance mechanism. The conveyance of the heat-treated object by the second conveyance mechanism during the period from the mechanism to the delivery of the heat-treated object to the third conveyance mechanism exhibits acceleration, deceleration, reacceleration, and stop behavior. In addition, a heat treatment method is provided in which the difference in the heating time between the longest part and the shortest part in the firing region within the portion of the object to be heat treated falls within the range of 0 to 1 second. The

本発明の連続式熱処理炉は、乾燥・脱バインダー領域と焼成領域とで、被熱処理物を別個の搬送機構により搬送するように構成されており、これら搬送機構の搬送速度が異なるように設定することで、乾燥・脱バインダー領域における被熱処理物の搬送速度と焼成領域における被熱処理物の搬送速度とを異ならせることが可能となる。そして、焼成領域における被熱処理物の搬送速度を乾燥・脱バインダー領域における被熱処理物の搬送速度よりも速くなるように設定すれば、被熱処理物の焼成領域の通過を短時間で素早く実施し、被熱処理物の急加熱・急冷却を行うことができるので、太陽電池基板等の熱処理において理想的な焼成曲線が得られ、良好な特性を持った製品が製造できる。   The continuous heat treatment furnace of the present invention is configured so that the object to be heat-treated is conveyed by a separate conveying mechanism in the drying / debinding region and the firing region, and the conveying speeds of these conveying mechanisms are set to be different. Thus, it becomes possible to make the conveyance speed of the object to be heat-treated in the drying / debinding region different from the conveyance speed of the object to be heat-treated in the baking region. And, if the conveyance speed of the heat treatment object in the firing region is set to be faster than the conveyance speed of the heat treatment object in the drying / debinding region, the heat treatment object passes through the firing region quickly in a short time, Since the object to be heat-treated can be rapidly heated and cooled, an ideal firing curve can be obtained in the heat treatment of the solar cell substrate and the like, and a product having good characteristics can be manufactured.

また、搬送機構として、メッシュベルトコンベアに比して熱容量の小さいビーム又は線材を使用することにより、搬送機構の移動動作に伴う焼成領域内の温度変化が小さくなり、安定した焼成領域内温度が得られる。更に、前記のとおり領域毎に別個の搬送機構を使用しているため、各領域において、タクトピッチ(搬送機構の1サイクルの動作で被熱処理物が移動する距離)や搬送速度を独立して自由に設定することが可能で、その結果、炉の設計段階において、炉長についての設計の自由度が増し、炉長を部分的に短縮化するなどして省スペースな炉を作製することが容易となる。   In addition, by using a beam or wire having a smaller heat capacity than the mesh belt conveyor as the transport mechanism, the temperature change in the firing region associated with the moving operation of the transport mechanism is reduced, and a stable firing region temperature is obtained. It is done. Furthermore, since a separate transport mechanism is used for each region as described above, the tact pitch (distance that the workpiece is moved by one cycle of the transport mechanism) and the transport speed can be freely set in each region. As a result, at the furnace design stage, the degree of freedom in designing the furnace length is increased, and it is easy to produce a space-saving furnace by partially shortening the furnace length. It becomes.

また、本発明の熱処理方法によれば、焼成領域における被熱処理物の搬送を短時間で素早く行いつつも、必要な加熱時間は確保し、かつ被熱処理物全体の加熱時間がほぼ均一になるようにすることができる。   Further, according to the heat treatment method of the present invention, the necessary heat time is ensured and the heat time of the whole heat treatment object is made substantially uniform while the heat treatment object is transported quickly and quickly in the firing region. Can be.

以下、本発明の実施形態を図面を参照しながら具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. However, the present invention is not limited to the following embodiments, and is within the scope of the gist of the present invention. Based on this knowledge, it should be understood that design changes, improvements, etc. can be made as appropriate.

図1は、本発明に係る連続式熱処理炉の実施形態の一例を示す概略説明図である。前記のとおり、本発明の連続式熱処理炉は、炉の入口51側から出口52側に向かって、被熱処理物1の乾燥及び/又は脱バインダー処理を行う乾燥・脱バインダー領域41と、被熱処理物1の焼成を行う焼成領域42とが順に設けられ、被熱処理物1が乾燥・脱バインダー領域41を搬送されながら乾燥及び/又は脱バインダー処理された後、焼成領域42を搬送されながら焼成されるようになっており、被熱処理物1を搬送するための搬送機構として、第一の搬送機構、第二の搬送機構及び第三の搬送機構という3つの搬送機構を有する。なお、本発明において、「脱バインダー処理」とは、被熱処理物に含まれるバインダー成分を加熱除去する処理を言う。   FIG. 1 is a schematic explanatory view showing an example of an embodiment of a continuous heat treatment furnace according to the present invention. As described above, the continuous heat treatment furnace of the present invention includes a drying / debinding region 41 for drying and / or debinding the heat-treated object 1 from the inlet 51 side to the outlet 52 side of the furnace, and the heat treatment. A firing region 42 for firing the product 1 is provided in order, and the heat-treated object 1 is dried and / or debindered while being transported through the drying / debinding region 41 and then fired while being transported through the firing region 42. As a transport mechanism for transporting the workpiece 1, the transport mechanism has three transport mechanisms, a first transport mechanism, a second transport mechanism, and a third transport mechanism. In the present invention, the “debinding process” refers to a process for removing the binder component contained in the object to be heat-treated by heating.

第一の搬送機構は、一定のストロークで上昇、前進、下降、後退という動作を周期的に繰り返すビーム2を備えたものであり、乾燥・脱バインダー領域41では被熱処理物1の搬送をこの第一の搬送機構により行う。第二の搬送機構は、一定のストロークで上昇、前進、下降、後退という動作を周期的に繰り返すビーム11を備えたものであり、焼成領域42では被熱処理物1の搬送をこの第二の搬送機構により行う。第三の搬送機構は、一定のストロークで上昇、前進、下降、後退という動作を周期的に繰り返すビーム21を備えたものであり、焼成領域42を搬送された後の被熱処理物1を、炉外の所定位置まで搬送するために使用される。なお、第一の搬送機構及び第二の搬送機構においては、それぞれビーム2、ビーム11の代わりに、炉長方向に所定の張力をもって張り渡し、前記ビームと同様の動作を行うようにした線材を使用してもよいが、本実施形態においては、第一の搬送機構及び第二の搬送機構にそれぞれビームを使用した例について説明する。   The first transport mechanism includes a beam 2 that periodically repeats the operations of ascending, advancing, descending, and retreating with a constant stroke. In the drying / debinding region 41, the first heat-treating object 1 is transported. One transport mechanism is used. The second transport mechanism includes the beam 11 that periodically repeats the operations of ascending, advancing, descending, and retreating with a constant stroke. In the firing region 42, the second transporting mechanism transports the workpiece 1 to be processed. Perform by mechanism. The third transport mechanism includes a beam 21 that periodically repeats the operations of ascending, advancing, descending, and retreating with a certain stroke. Used to transport to a predetermined position outside. In the first transport mechanism and the second transport mechanism, instead of the beam 2 and the beam 11, respectively, a wire rod that is stretched with a predetermined tension in the furnace length direction and performs the same operation as the beam is used. In this embodiment, an example in which beams are used for the first transport mechanism and the second transport mechanism will be described.

被熱処理物1が、例えば一辺15cm程度の矩形の太陽電池基板である場合には、乾燥・脱バインダー領域41の長さを2m程度とし、焼成領域42の長さを0.3m程度とするのが好ましい。乾燥・脱バインダー領域41は、炉天井部に設けられたインフラスタイン(IR)ヒーター61等の加熱手段により、雰囲気温度が300〜500℃程度に調整され、焼成領域42は、炉天井部及び/又は炉床部に設けられた近赤外線ランプヒーターをはじめとする電気ヒーター62等の加熱手段により、雰囲気温度が1000℃程度に調整されるのが望ましい。乾燥・脱バインダー領域41は、1つの領域として構成されていてもよいし、複数の乾燥・脱バインダー領域に区分された構成となっていてもよい。   When the object to be heat-treated 1 is a rectangular solar cell substrate having a side of about 15 cm, for example, the length of the drying / debinding region 41 is about 2 m and the length of the firing region 42 is about 0.3 m. Is preferred. In the drying / debinding area 41, the atmospheric temperature is adjusted to about 300 to 500 ° C. by a heating means such as an Infrastein (IR) heater 61 provided in the furnace ceiling, and the firing area 42 includes the furnace ceiling and / or Alternatively, it is desirable that the ambient temperature is adjusted to about 1000 ° C. by a heating means such as an electric heater 62 including a near infrared lamp heater provided in the hearth. The drying / debinding area 41 may be configured as one area, or may be divided into a plurality of drying / debinding areas.

前記のとおり、本発明に使用される第一の搬送機構は、一定のストロークで上昇、前進、下降、後退という動作を周期的に繰り返すビームを備えたものである。図2は、この第一の搬送機構の実施形態の一例を模式的に示した概略説明図であり、本例においては、前記のような動作を行うビーム2に加え、当該ビーム2が下降状態(後退動作時を含む)にあるときに、被熱処理物1を支持しておくための支持体3を備えている。この支持体3には、例えば図2に示すようなT字型の柱体を用いることができ、炉長方向と平行に配置された2本のビーム2の間において、上部の水平バー3aが炉長方向と直交する向きとなるようにして、所定の間隔で複数本が立設配置されている。   As described above, the first transport mechanism used in the present invention includes a beam that periodically repeats the operations of ascending, advancing, descending, and retreating with a constant stroke. FIG. 2 is a schematic explanatory view schematically showing an example of the embodiment of the first transport mechanism. In this example, in addition to the beam 2 performing the above operation, the beam 2 is in a lowered state. A support body 3 is provided for supporting the object to be heat-treated 1 when it is in (including the retreat operation). For example, a T-shaped column as shown in FIG. 2 can be used as the support 3, and an upper horizontal bar 3 a is provided between the two beams 2 arranged in parallel to the furnace length direction. Plural pieces are arranged upright at predetermined intervals so as to be in a direction orthogonal to the furnace length direction.

ビーム2は、図1に示すように、ビーム支持体4に固定されている。ビーム支持体4は、駆動機構(図示せず)により一定のストロークで上昇、前進、下降、後退の動作を周期的に繰り返すように構成されており、これによってビーム2も同様の周期的動作を行う。   The beam 2 is fixed to a beam support 4 as shown in FIG. The beam support 4 is configured to periodically repeat the ascending, advancing, descending, and retreating operations with a fixed stroke by a driving mechanism (not shown), whereby the beam 2 performs the same periodic operation. Do.

図3(a)〜図3(e)は、この第一の搬送機構の動作を示す概略説明図である。まず最初は、図3(a)に示すように、ビーム2は下降した状態にあり、このとき被熱処理物は乾燥・脱バインダー領域の入口付近において、支持体3上に置かれている。次に、図3(b)に示すように、ビーム2が所定のストローク分上昇し、この上昇の過程で、被熱処理物1は支持体3上からビーム2上に移載される。次いで、図3(c)に示すように、ビームは上昇したまま所定のストローク分前進する。続いて、図3(d)に示すように、ビーム2は所定のストローク分下降し、この下降の過程で被熱処理物は、ビーム2上から支持体3上に移載される。最後に、図3(e)に示すように、ビーム2が下降したまま後退し、最初の位置に戻る。これらの動作を周期的に繰り返すことで、第一の搬送機構は乾燥・脱バインダー領域において被熱処理物の搬送を行う。   FIG. 3A to FIG. 3E are schematic explanatory views showing the operation of the first transport mechanism. First, as shown in FIG. 3A, the beam 2 is in a lowered state. At this time, the object to be heat-treated is placed on the support 3 in the vicinity of the entrance of the drying / debinding area. Next, as shown in FIG. 3B, the beam 2 rises by a predetermined stroke, and in the course of this rise, the object to be heat-treated 1 is transferred from the support 3 onto the beam 2. Next, as shown in FIG. 3C, the beam moves forward by a predetermined stroke while being lifted. Subsequently, as shown in FIG. 3D, the beam 2 is lowered by a predetermined stroke, and the object to be heat-treated is transferred from the beam 2 onto the support 3 in the process of the descent. Finally, as shown in FIG. 3E, the beam 2 moves backward while descending and returns to the initial position. By periodically repeating these operations, the first transport mechanism transports the object to be heat treated in the drying / debinding area.

なお、この第一の搬送機構においては、図2及び図3(a)〜図3(e)に示すように、被熱処理物1がビーム2に直接接触した状態でビーム2上に保持されて搬送されるようになっていてもよいが、被熱処理物1が太陽電池基板であるような場合には、ビーム2に被熱処理物1を保持するための保持部材が装着され、当該保持部材が被熱処理物の縁部又は縁部近傍部のみに接触した状態で被熱処理物を保持することが好ましい。太陽電池基板は、表面のみならず裏面にも電極ペーストのパターン印刷がなされており、搬送機構がそれに接触した状態で高温下に置かれると、印刷面に傷や焼け跡が付いて、被熱処理物の性能や概観に悪影響を及ぼすため、前記のような保持部材を使用し、搬送機構の被熱処理物に対する接触を、パターン印刷のなされていない被熱処理物の縁部又は縁部近傍部にのみ限定するのが望ましい。また、図2に示すような支持体3を使用する場合には、同様の理由から、支持体3にも同様の保持部材が装着されることが好ましい。また、第一の搬送機構において、ビーム2の代わりに線材を使用する場合にも、当該線材に同様の役割をする保持部材が装着されることが好ましい。   In this first transport mechanism, the object to be heat-treated 1 is held on the beam 2 in direct contact with the beam 2 as shown in FIGS. 2 and 3A to 3E. However, in the case where the object to be heat-treated 1 is a solar cell substrate, a holding member for holding the object to be heat-treated 1 is attached to the beam 2 and the holding member is It is preferable to hold the object to be heat-treated in a state where only the edge of the object to be heat-treated or the vicinity of the edge is in contact. The solar cell substrate is printed with the electrode paste pattern on the back surface as well as on the back surface, and if the transport mechanism is in contact with it, the printed surface will be scratched or burned, and the material to be heat treated In order to adversely affect the performance and appearance of the product, the holding member as described above is used, and the contact of the transport mechanism with the object to be heat-treated is limited to the edge of the object to be heat-treated without pattern printing or the vicinity of the edge. It is desirable to do. Moreover, when using the support body 3 as shown in FIG. 2, it is preferable to attach the same holding member also to the support body 3 for the same reason. Also, when a wire is used instead of the beam 2 in the first transport mechanism, it is preferable that a holding member that plays the same role is attached to the wire.

図4は、第一の搬送機構において、ビーム及び支持体に各々保持部材が装着された状態を例示したものである。本例において、ビーム2の保持部材5は、ビーム2の軸方向と直角をなす方向に延出するツメ状の部位を有する部材であり、ビーム2上に所定のピッチで複数個配されている。この保持部材5は、その先端付近が下方にやや傾斜した状態となっており、当該傾斜部において被熱処理物1の縁部とのみ接触し、被熱処理物1を保持する。支持体3の保持部材6は、T字型である支持体の上部の水平バー3aと直交する方向に延出するツメ状の部位を有する部材である。この保持部材6も、その先端付近が下方にやや傾斜した状態となっており、当該傾斜部において被熱処理物1の縁部とのみ接触し、被熱処理物1を保持する。   FIG. 4 illustrates a state in which holding members are respectively attached to the beam and the support in the first transport mechanism. In this example, the holding member 5 of the beam 2 is a member having a claw-like portion extending in a direction perpendicular to the axial direction of the beam 2, and a plurality of holding members 5 are arranged on the beam 2 at a predetermined pitch. . This holding member 5 is in a state where the vicinity of the tip thereof is slightly inclined downward, and contacts only the edge of the object to be heat treated 1 at the inclined part to hold the object to be heat treated 1. The holding member 6 of the support 3 is a member having a claw-like portion extending in a direction orthogonal to the horizontal bar 3a on the upper portion of the T-shaped support. The holding member 6 is also in a state where the vicinity of the tip thereof is slightly inclined downward, and contacts only the edge of the object to be heat treated 1 at the inclined part to hold the object to be heat treated 1.

本発明に使用される第二の搬送機構も、前記第一の搬送機構と同様に、一定のストロークで上昇、前進、下降、後退という動作を周期的に繰り返すビームを備えたものである。図5は、この第二の搬送機構の実施形態の一例を示した概略説明図であり、本例においては、前記のような動作を行うビーム11に加え、当該ビーム11が下降状態(後退動作時を含む)にあるときに、被熱処理物1を支持しておくための支持体13を備えている。この支持体13には、例えば図5に示すような逆L字型の柱体を用いることができ、炉長方向と平行に配置された2本のビーム11の間において、上部のやや傾斜した支持バー13aが炉長方向と平行な向きとなるようにして、複数本が立設配置されている。   Similarly to the first transport mechanism, the second transport mechanism used in the present invention includes a beam that periodically repeats ascending, advancing, descending, and retreating operations with a constant stroke. FIG. 5 is a schematic explanatory view showing an example of an embodiment of the second transport mechanism. In this example, in addition to the beam 11 performing the above operation, the beam 11 is in a lowered state (retracting operation). A support 13 for supporting the object to be heat-treated 1 is provided. For example, an inverted L-shaped column as shown in FIG. 5 can be used as the support 13, and the upper part is slightly inclined between the two beams 11 arranged in parallel to the furnace length direction. A plurality of the support bars 13a are arranged upright so that the support bars 13a are parallel to the furnace length direction.

ビーム11は、図1に示すように、ビーム支持体14に固定されている。ビーム支持体14は、駆動機構(図示せず)により一定のストロークで上昇、前進、下降、後退の動作を周期的に繰り返すように構成されており、これによってビーム11も同様の周期的動作を行う。   As shown in FIG. 1, the beam 11 is fixed to a beam support 14. The beam support 14 is configured to periodically repeat the ascending, advancing, descending, and retreating operations with a fixed stroke by a driving mechanism (not shown), whereby the beam 11 also performs similar periodic operations. Do.

前記第一の搬送機構と同様に、この第二の搬送機構においても、被熱処理物1が太陽電池基板であるような場合には、ビーム11に被熱処理物1を保持するための保持部材15が装着され、当該保持部材15が被熱処理物1の縁部又は縁部近傍部のみに接触した状態で被熱処理物1を保持することが好ましい。図5の例において、ビーム11の保持部材15は、ビーム11の軸方向と直角をなす方向に延出するツメ状の部位を有する部材であり、ビーム11上に所定のピッチで複数個配されている。この保持部材15は、そのツメ状の部位の先端付近が下方にやや傾斜した状態となっており、当該傾斜部において被熱処理物1の縁部とのみ接触し、被熱処理物1を保持する。なお、第二の搬送機構において、ビーム11の代わりに線材を使用する場合にも、当該線材に同様の役割をする保持部材が装着されることが好ましい。   Similar to the first transport mechanism, also in the second transport mechanism, when the workpiece 1 is a solar cell substrate, a holding member 15 for holding the workpiece 1 on the beam 11. It is preferable to hold | maintain the to-be-processed object 1 in the state which the said holding member 15 contacted only the edge of the to-be-processed object 1 or the edge vicinity part. In the example of FIG. 5, the holding member 15 for the beam 11 is a member having a claw-like portion extending in a direction perpendicular to the axial direction of the beam 11, and a plurality of holding members 15 are arranged on the beam 11 at a predetermined pitch. ing. The holding member 15 is in a state where the vicinity of the tip of the claw-shaped portion is slightly inclined downward, and contacts only the edge of the object to be heat-treated 1 at the inclined part to hold the object to be heat-treated 1. In the second transport mechanism, when a wire is used instead of the beam 11, it is preferable that a holding member that performs the same role is attached to the wire.

図6は、ビーム11に対する保持部材15の装着状態の例を示す説明図である。図5に例示した第二の搬送機構は、後述するように断熱材33に凹状の溝34を設け、ビーム11が溝34内を通るように構成しているので、図6の装着例では、所定の高さを有する脚部15aを介して保持部材15をビーム11に固定し、保持部材15が溝34の周囲の断熱材と干渉しないようにしている。なお、図5に例示した第二の搬送機構においては、支持体13に、図4における第一の搬送機構の支持体3のように保持部材は装着されていないが、前記のとおり支持体13上部の支持バー13aがやや傾斜しており、当該傾斜部において被熱処理物1の縁部とのみ接触して、被熱処理物1を保持することができる。   FIG. 6 is an explanatory diagram illustrating an example of a mounting state of the holding member 15 with respect to the beam 11. The second transport mechanism illustrated in FIG. 5 is configured such that a concave groove 34 is provided in the heat insulating material 33 and the beam 11 passes through the groove 34 as will be described later. The holding member 15 is fixed to the beam 11 via the leg portion 15a having a predetermined height so that the holding member 15 does not interfere with the heat insulating material around the groove 34. In the second transport mechanism illustrated in FIG. 5, the holding member is not attached to the support body 13 like the support body 3 of the first transport mechanism in FIG. 4, but as described above, the support body 13. The upper support bar 13a is slightly inclined, and the object to be heat-treated 1 can be held by contacting only the edge of the object to be heat-treated 1 at the inclined part.

図7(a)〜図7(e)は、第一の搬送機構から第二の搬送機構へ被熱処理物が受け渡される際の動作を示す概略説明図である。まず、図7(a)に示すように焼成領域42の手前において、第一の搬送機構のビーム2が所定のストローク分下降し、この下降の過程で乾燥・脱バインダー領域の最後部の支持体3に被熱処理物1が受け渡される。次に、図7(b)に示すように、ビーム2が所定のストローク分後退するとともに、第二の搬送機構のビーム11も下降した状態で所定のストローク分後退し、その後端部が、前記支持体3の下方位置まで到達する。次いで、図7(c)に示すように、ビーム11が所定のストローク分上昇し、この上昇の過程で、被熱処理物1が前記最後部の支持体3上からビーム11上に移載される。続いて、図7(d)に示すように、ビーム11は上昇したまま所定のストローク分前進し、この前進動作により、ビーム11上の被熱処理物1は、焼成領域42内に設けられたに支持体13上まで搬送される。その後に、図7(e)に示すように、ビーム11が所定のストローク分下降し、この下降の過程で被熱処理物1がビーム11上から支持体13上に移載される。このような動作を周期的に繰り返すことで、第一の搬送機構から第二の搬送機構へと、順次、被熱処理物の受け渡しが行われる。また、このような動作を周期的に繰り返すことで、第二の搬送機構へ受け渡された被熱処理物1は更に出口方向に向かって搬送されて焼成領域42を通過し、後述する第三の搬送機構へと受け渡される。   Fig.7 (a)-FIG.7 (e) are schematic explanatory drawings which show the operation | movement at the time of delivering a to-be-heated material from a 1st conveyance mechanism to a 2nd conveyance mechanism. First, as shown in FIG. 7 (a), the beam 2 of the first transport mechanism is lowered by a predetermined stroke before the firing area 42, and in the course of this lowering, the support at the end of the drying / debinding area is performed. 3, the object to be heat-treated 1 is delivered. Next, as shown in FIG. 7B, the beam 2 is retracted by a predetermined stroke, and the beam 11 of the second transport mechanism is also retracted by a predetermined stroke. It reaches a position below the support 3. Next, as shown in FIG. 7C, the beam 11 rises by a predetermined stroke, and in the course of this rise, the object to be heat treated 1 is transferred onto the beam 11 from the last support 3. . Subsequently, as shown in FIG. 7 (d), the beam 11 moves forward by a predetermined stroke while being lifted, and by this forward movement, the object to be heat-treated 1 on the beam 11 is provided in the firing region 42. It is conveyed onto the support 13. Thereafter, as shown in FIG. 7E, the beam 11 is lowered by a predetermined stroke, and the object to be heat-treated 1 is transferred from the beam 11 onto the support body 13 in the course of the descent. By periodically repeating such an operation, the workpieces are sequentially delivered from the first transport mechanism to the second transport mechanism. Further, by periodically repeating such an operation, the object to be heat-treated 1 transferred to the second transfer mechanism is further transferred toward the outlet direction, passes through the firing region 42, and a third to be described later. Delivered to the transport mechanism.

前述のとおり、第二の搬送機構は焼成領域における被熱処理物の搬送に使用されるものであるが、本発明においては、その焼成領域において、第二の搬送機構のビームの周囲の少なくとも一部を断熱材で囲むようにすることが好ましい。具体的には、例えば図5に示すように、断熱材33に凹状の溝34を設けて、ビーム11が溝34内を通るように構成する。焼成領域の雰囲気温度を1000℃前後の高温に設定する場合においては、ビーム11として高耐熱性の金属材料からなるものを使用した場合においても劣化が激しく、寿命が短いが、このように断熱材で囲むことによりビーム11の長寿命化を図ることができる。なお、第二の搬送機構において、ビーム11の代わりに線材を使用する場合にも、当該線材の周囲の少なくとも一部を同様に断熱材で囲むようにすることが好ましい。   As described above, the second transport mechanism is used for transporting the object to be heat-treated in the firing region. In the present invention, at least a part of the periphery of the beam of the second transport mechanism is used in the firing region. Is preferably surrounded by a heat insulating material. Specifically, for example, as shown in FIG. 5, a concave groove 34 is provided in the heat insulating material 33 so that the beam 11 passes through the groove 34. In the case where the atmosphere temperature in the firing region is set to a high temperature of about 1000 ° C., even when a beam 11 made of a highly heat-resistant metal material is used, the deterioration is severe and the life is short. The life of the beam 11 can be extended by enclosing it with Even when a wire rod is used instead of the beam 11 in the second transport mechanism, it is preferable that at least a part of the periphery of the wire rod is similarly surrounded by a heat insulating material.

また、この種の連続式熱処理炉で、太陽電池基板等を熱処理する場合、乾燥・脱バインダー領域の雰囲気調整のため、当該領域に外部から空気を導入することがある。本発明においては、図5に示すように、第二搬送機構のビーム11を、両端に開口部を有する中空体(管状体)で構成し、炉の出口側に位置する一方の開口部を空気供給口11a、炉の入口側に位置する他方の開口部を空気排出口11bとして、雰囲気調整用の空気をビーム11の内部を流通させて炉内に送り込むようにすることが好ましい。このようにビーム11を雰囲気調整用の空気の導入管として利用すると、当該空気によってビーム11が冷却され、ビーム11の寿命が向上する。また、雰囲気調整用の空気は、ビーム11内を通過する過程で適度に加熱されるため、導入前に予熱する必要がなくなる。   Further, when a solar cell substrate or the like is heat-treated in this type of continuous heat treatment furnace, air may be introduced from the outside into the region for adjusting the atmosphere in the drying / debinding region. In the present invention, as shown in FIG. 5, the beam 11 of the second transport mechanism is constituted by a hollow body (tubular body) having openings at both ends, and one opening located on the outlet side of the furnace is air. The supply opening 11a and the other opening located on the inlet side of the furnace are preferably used as the air discharge opening 11b so that air for adjusting the atmosphere flows through the inside of the beam 11 and is sent into the furnace. When the beam 11 is used as an air introduction tube for adjusting the atmosphere in this way, the beam 11 is cooled by the air, and the life of the beam 11 is improved. Further, the air for adjusting the atmosphere is appropriately heated in the process of passing through the beam 11, so that it is not necessary to preheat before introduction.

また、本発明では、少なくとも焼成領域において、を上下に分割された構造とし、上側の及び/又は下側のを上下方向に駆動させることにより、焼成領域の入口側及び出口側の開口部の高さを変更可能とすることが好ましい。図8は、このようにを上下分割構造とした焼成領域の概略断面図である。本例では、上下に分割された43、44の内の上側の43を上下方向に駆動できるようにし、これにより焼成領域42の入口側の開口部45及び出口側の開口部46の高さを変更できるようになっている。 Further, in the present invention, at least in the firing region, and divided the furnace vertically structure, by driving the upper furnace and / or below the furnace in the vertical direction, the inlet and outlet sides of the baking area opening It is preferable that the height of the part can be changed. FIG. 8 is a schematic cross-sectional view of a firing region in which the furnace is divided into upper and lower parts in this way. In this example, the upper furnace 43 among the vertically divided furnaces 43, 44 can be driven in the vertical direction, thereby increasing the height of the opening 45 on the inlet side and the opening 46 on the outlet side of the firing region 42. Can be changed.

焼成領域42内の熱は、焼成領域42の入口側の開口部45及び出口側の開口部46から逃げやすいので、これら開口部45、46の高さは第二の搬送機構におけるビーム11の上下方向の動作を妨げない範囲で極力低く(狭く)することが、焼成領域内の温度保持に要するエネルギー消費を抑え、焼成領域内温度の安定化を図る観点から望ましい。前記のように焼成領域42の入口側及び出口側の開口部45、46の高さを変更可能としておけば、理想的な高さに調整することが容易となる。   Since the heat in the firing region 42 easily escapes from the opening 45 on the entrance side and the opening 46 on the exit side of the firing region 42, the height of these openings 45, 46 is the top and bottom of the beam 11 in the second transport mechanism. It is desirable to make it as low (narrow) as possible within a range not hindering the operation in the direction from the viewpoint of suppressing energy consumption required for maintaining the temperature in the firing region and stabilizing the temperature in the firing region. If the heights of the openings 45 and 46 on the inlet side and outlet side of the firing region 42 can be changed as described above, it becomes easy to adjust the height to an ideal height.

本発明に使用される第三の搬送機構は、一定のストロークで上昇、前進、下降、後退という動作を周期的に繰り返すビームを備えたものである。図9は、この第三の搬送機構の実施形態の一例を模式的に示した概略説明図であり、本例においては、第三の搬送機構は、リフター22を上昇及び下降させる昇降駆動装置23と、リフター22に取り付けられたビーム21を前後方向に移動させるビーム駆動装置25と、昇降駆動装置自体を前後方向に水平移動させる水平移動装置24とを有し、これらの装置によって、ビーム21が一定のストロークで上昇、前進、下降、後退という動作を周期的に繰り返すことができるようになっている。   The third transport mechanism used in the present invention includes a beam that periodically repeats the operations of ascending, advancing, descending, and retreating with a constant stroke. FIG. 9 is a schematic explanatory view schematically showing an example of an embodiment of the third transport mechanism. In this example, the third transport mechanism is a lifting drive device 23 that lifts and lowers the lifter 22. A beam driving device 25 that moves the beam 21 attached to the lifter 22 in the front-rear direction, and a horizontal movement device 24 that horizontally moves the elevating drive device itself in the front-rear direction. The operations of ascending, advancing, descending, and retreating can be periodically repeated with a certain stroke.

図10(a)〜図10(e)は、この第三の搬送機構が、前述の第二の搬送機構から被熱処理物を受け取って、炉外の所定位置まで搬送する動作を示す概略説明図である。まず最初は、図10(a)に示すように、ビーム21は下降した状態にあり、図10(b)に示すように、第二の搬送機構により焼成領域の出口付近まで被熱処理物1が搬送されてきた時点で上昇を始める。この上昇の過程で、被熱処理物1は第二の搬送機構のビーム11上からビーム21上に移載される。次いで、図10(c)に示すように、ビーム21は上昇したまま所定のストローク分前進し、この前進動作により、ビーム21上の被熱処理物1は炉外の所定位置まで搬送される。続いて、図10(d)に示すように、ビーム21は所定のストローク分下降し、この下降の過程で被熱処理物1は、ビーム21上から、前記所定位置に設けられた後続する工程のための他の搬送ライン71等に移載される。その後、図10(e)に示すように、ビーム21は下降したまま後退し、最初の位置に戻る。これらの動作を周期的に繰り返すことで、第三の搬送機構は第二の搬送機構から被熱処理物を受け取り、炉外の所定の位置まで搬送することができる。   FIG. 10A to FIG. 10E are schematic explanatory views showing an operation in which the third transport mechanism receives the heat-treated material from the second transport mechanism and transports it to a predetermined position outside the furnace. It is. First, as shown in FIG. 10 (a), the beam 21 is in a lowered state, and as shown in FIG. 10 (b), the workpiece 1 is moved to the vicinity of the exit of the firing region by the second transport mechanism. It starts to rise when it is transported. In the ascending process, the object to be heat-treated 1 is transferred from the beam 11 to the beam 21 of the second transport mechanism. Next, as shown in FIG. 10 (c), the beam 21 moves forward by a predetermined stroke while being lifted, and the workpiece 1 on the beam 21 is transported to a predetermined position outside the furnace by this forward movement. Subsequently, as shown in FIG. 10D, the beam 21 is lowered by a predetermined stroke, and in the course of this lowering, the object to be heat-treated 1 is subjected to the subsequent process provided at the predetermined position from the beam 21. Therefore, it is transferred to another transfer line 71 and the like. Thereafter, as shown in FIG. 10E, the beam 21 moves backward while descending and returns to the initial position. By periodically repeating these operations, the third transport mechanism can receive the object to be heat-treated from the second transport mechanism and transport it to a predetermined position outside the furnace.

なお、図5に示すように、第三の搬送機構のビーム21は、第二の搬送機構のビーム11と互いに干渉し合わないよう、例えば2本のビーム11の間の位置にビーム11と平行に配置されるようにする。また、この図の例では、第三の搬送機構のビーム21を1本のビームで構成しているが、複数本のビームで構成してもよい。なお、図5のように、第三の搬送機構のビーム21を1本のビームで構成する場合には、ビーム11からに熱処理物1を受け取るビーム21の先端部に、被熱処理物1よりも幾分寸法が小さい平板からなる受け取り板26を取り付け、安定した受け取りを行えるようにすることが好ましい。   As shown in FIG. 5, the beam 21 of the third transport mechanism is parallel to the beam 11 at, for example, a position between the two beams 11 so as not to interfere with the beam 11 of the second transport mechanism. To be placed in. Moreover, in the example of this figure, although the beam 21 of the 3rd conveyance mechanism is comprised with one beam, you may comprise with a several beam. As shown in FIG. 5, when the beam 21 of the third transport mechanism is composed of one beam, the tip of the beam 21 that receives the heat-treated material 1 from the beam 11 is more than the object to be heat-treated 1. It is preferable to attach a receiving plate 26 made of a flat plate having a somewhat small size so that stable receiving can be performed.

本発明の連続式熱処理炉は、以上説明したような3つの搬送機構を有し、特に乾燥・脱バインダー領域と焼成領域とで、被熱処理物を別個の搬送機構により搬送するように構成されているので、これら搬送機構の搬送速度が異なるように設定することで、乾燥・脱バインダー領域における被熱処理物の搬送速度と焼成領域における被熱処理物の搬送速度とを異ならせることができる。前述のとおり、太陽電池基板の熱処理において理想的な乾燥・焼成曲線を得るためには、乾燥・脱バインダー領域での被熱処理物の搬送速度よりも焼成領域での被熱処理物の搬送速度を高め、雰囲気温度が1000℃前後の高温に保たれた焼成領域を短時間の内に素早く通過させることが求められるが、本発明では、各搬送機構の搬送速度を別個に設定することで、このような理想的な焼成曲線を実現することが可能となる。   The continuous heat treatment furnace of the present invention has the three conveyance mechanisms as described above, and is configured to convey the heat-treated material by separate conveyance mechanisms, particularly in the drying / debinding area and the baking area. Therefore, by setting the transport speeds of these transport mechanisms to be different, the transport speed of the object to be heat treated in the drying / debinding area and the transport speed of the object to be heat treated in the firing area can be made different. As described above, in order to obtain an ideal drying / firing curve in the heat treatment of the solar cell substrate, the conveyance speed of the heat treatment object in the baking area is higher than the conveyance speed of the heat treatment object in the drying / debinding area. In the present invention, it is required to quickly pass through the firing region maintained at a high temperature of about 1000 ° C. within a short time. In the present invention, by separately setting the transport speed of each transport mechanism, It is possible to realize an ideal firing curve.

また、被熱処理物の製品特性(品質)を均一にするためには、焼成領域を一定の高温度に安定して保持することが重要な課題となっているが、本発明では、焼成領域における被熱処理物の搬送に前述のような第二の搬送機構を使用することで、これを達成することを可能としている。すなわち、第二の搬送機構は、メッシュベルトコンベアのような搬送機構に比して熱容量の小さいビーム又は線材を使用したものであるため、搬送機構の移動動作に伴う焼成領域内の温度変化を小さく抑えることができる。   Moreover, in order to make the product characteristics (quality) of the material to be heat treated uniform, it is an important issue to stably hold the firing region at a constant high temperature. This can be achieved by using the second transport mechanism as described above for transport of the object to be heat treated. That is, since the second transport mechanism uses a beam or wire having a small heat capacity compared to a transport mechanism such as a mesh belt conveyor, the temperature change in the firing region due to the moving operation of the transport mechanism is reduced. Can be suppressed.

更に、前記のとおり領域毎に別個の搬送機構を使用しているため、各領域において、タクトピッチ(搬送機構の1サイクルの動作で被熱処理物が移動する距離)や搬送速度を独立して自由に設定することが可能で、その結果、炉の設計段階において、炉長についての設計の自由度が増し、炉長を部分的に短縮化するなどして省スペースな炉を作製することが容易となるといった利点もある。   Furthermore, since a separate transport mechanism is used for each region as described above, the tact pitch (distance that the workpiece is moved by one cycle of the transport mechanism) and the transport speed can be freely set in each region. As a result, at the furnace design stage, the degree of freedom in designing the furnace length is increased, and it is easy to produce a space-saving furnace by partially shortening the furnace length. There is also an advantage that it becomes.

本発明の連続式熱処理炉で熱処理しようとする被熱処理物が、例えば一辺15cm程度の矩形の太陽電池基板であり、雰囲気温度を300〜500℃に調整した乾燥・脱バインダー領域の長さを約2m、雰囲気温度を1000℃程度に調整した焼成領域の長さを約0.3mとした場合においては、被熱処理物が70〜90秒間程度で乾燥・脱バインダー領域を通過し、その後5秒間程度で焼成領域を通過して炉外まで搬送されるようにするのが好ましい。   An object to be heat-treated in the continuous heat treatment furnace of the present invention is, for example, a rectangular solar cell substrate having a side of about 15 cm, and the length of the drying / debinding region with the atmospheric temperature adjusted to 300 to 500 ° C. is about In the case where the length of the firing area adjusted to 2 m and the atmospheric temperature is adjusted to about 1000 ° C. is about 0.3 m, the material to be heat-treated passes through the drying / debinding area in about 70 to 90 seconds, and then for about 5 seconds. It is preferable to pass through the firing region and to be conveyed to the outside of the furnace.

本発明においては、第二の搬送機構のタクトピッチを、第一の搬送機構から第二の搬送機構への被熱処理物の受け渡し位置と、第二の搬送機構から第三の搬送機構への被熱処理物の受け渡し位置との間の距離の1/2に設定することが好ましい。第二の搬送機構のタクトピッチをこのような距離に設定すると、第二の搬送機構が第一の搬送機構から被熱処理物を受け取った後、第二の搬送機構の1サイクルの動作で被熱処理物が焼成領域の中央部まで搬送されて一旦停止し、更にもう1サイクルの動作で被熱処理物が焼成領域を抜けて第三の搬送機構への受け渡し位置まで搬送される。すなわち、第二の搬送機構の僅か2サイクルの動作で、焼成領域における被熱処理物の搬送を迅速に完了できるので、高い生産効率が得られ、また、被熱処理物の一旦停止する位置が、被熱処理物が最も均一に加熱されやすい焼成領域の中央部なので、熱処理状態にムラが生じにくく、品質の良い製品が得られる。   In the present invention, the tact pitch of the second transport mechanism is set such that the heat treatment object is transferred from the first transport mechanism to the second transport mechanism, and the tapped pitch from the second transport mechanism to the third transport mechanism. It is preferable to set to 1/2 of the distance from the delivery position of the heat-treated product. When the tact pitch of the second transport mechanism is set to such a distance, after the second transport mechanism receives the heat-treated material from the first transport mechanism, the second transport mechanism performs heat treatment in one cycle of operation. The product is transported to the center of the firing region, temporarily stops, and the heat-treated material passes through the firing region and is transported to the delivery position to the third transport mechanism by another cycle of operation. That is, since the transfer of the material to be heat-treated in the firing region can be completed quickly by the operation of only two cycles of the second transfer mechanism, high production efficiency is obtained, and the position where the material to be heat-treated is temporarily stopped is Since the heat-treated product is the central part of the firing region that is most easily heated, unevenness in the heat-treated state is unlikely to occur, and a high-quality product can be obtained.

これに対し、例えば、第二の搬送機構のタクトピッチをより短く設定し、被熱処理物が焼成領域を搬送される過程で、焼成領域内で何度も停止するようにした場合は、迅速な搬送が難しくなることに加え、被熱処理物の停止位置の何れかが、焼成領域の入口側開口部や出口側開口部近傍の温度分布が大きい位置になりやすく、このため熱処理状態にムラが生じやすい。また、例えば、第二の搬送機構の1サイクルの動作で被熱処理物の焼成領域の搬送を完了できるように、第二の搬送機構のタクトピッチを長く設定することも可能であるが、その場合には、ビーム又は線材の前進及び後退の動作に要する時間が長くなり、結果的に1サイクルの動作に要する時間も長くなるので、あまり高い生産効率は得られない。   On the other hand, for example, when the tact pitch of the second transport mechanism is set to be shorter and the heat treatment object is transported through the firing region and stopped many times in the firing region, it is quick. In addition to difficult conveyance, any of the stop positions of the object to be heat treated tends to have a large temperature distribution in the vicinity of the inlet side opening and the outlet side opening of the firing region, which causes unevenness in the heat treatment state. Cheap. In addition, for example, it is possible to set the tact pitch of the second transport mechanism long so that the transport of the firing region of the object to be heat-treated can be completed by one cycle operation of the second transport mechanism. In this case, the time required for the forward or backward operation of the beam or wire becomes longer, and as a result, the time required for one cycle of operation becomes longer, so that a very high production efficiency cannot be obtained.

本発明の連続式熱処理炉は、被熱処理物が搬送されて行く搬送路が炉内に一列のみ設けられたものであってもよいが、生産性を向上させるためには、前記のような第一の搬送機構、第二の搬送機構及び第三の搬送機構を備えた被熱処理物の搬送路が、炉内に平行して複数列設けられていることが好ましい。そして、この場合には、少なくとも焼成領域において、各搬送路間に隔壁が設置され、当該隔壁によって、炉内が各搬送路毎に区画された状態となっていることが好ましい。   In the continuous heat treatment furnace of the present invention, the conveyance path through which the object to be heat-treated is conveyed may be provided in only one row in the furnace, but in order to improve productivity, It is preferable that a plurality of rows of conveyance paths for the heat-treated material provided with the one conveyance mechanism, the second conveyance mechanism, and the third conveyance mechanism are provided in parallel in the furnace. In this case, it is preferable that partition walls are provided between the respective transport paths at least in the firing region, and the inside of the furnace is partitioned for each transport path by the partition walls.

搬送機構としてメッシュベルトコンベアを備えた従来の太陽電池基板用連続式熱処理炉においては、被熱処理物の搬送路を複数列設けた場合でも、幅広の単一のメッシュベルトにて全列の搬送を行っているため、その焼成領域内部を上方及び側面方向からそれぞれ見た概略説明図である図12(a)及び図12(b)に示すように、焼成領域42の入口側開口部45及び出口側開口部46の開口幅Wを、前記メッシュベルトが通過できるように広くする必要があり、各搬送路間に隔壁を設置して炉内を各搬送路毎に区画するような構造とすることは困難である。このように入口側開口部45及び出口側開口部46の開口幅Wが広いと、焼成領域42内の熱が当該開口部から逃げやすくなり、熱損失が大きくなる。また、炉内が区画されない単一の広い空間となるため、各搬送路毎に温度を個別に制御することが困難となり、温度分布の均一性を確保し難い。   In a conventional solar cell substrate continuous heat treatment furnace equipped with a mesh belt conveyor as the transport mechanism, even when multiple rows of transport paths for the object to be heat-treated are provided, the entire row can be transported with a wide single mesh belt. As shown in FIGS. 12 (a) and 12 (b), which are schematic explanatory views of the inside of the firing region as viewed from above and from the side, respectively, the inlet side opening 45 and the outlet of the firing region 42 It is necessary to widen the opening width W of the side opening 46 so that the mesh belt can pass through, and a structure in which a partition is provided between the conveyance paths and the inside of the furnace is partitioned for each conveyance path. It is difficult. Thus, when the opening width W of the inlet side opening 45 and the outlet side opening 46 is wide, the heat in the firing region 42 easily escapes from the opening, and the heat loss increases. In addition, since the inside of the furnace is a single wide space, it is difficult to individually control the temperature for each transport path, and it is difficult to ensure the uniformity of the temperature distribution.

これに対し、本発明の連続式熱処理炉は、その搬送機構の構造上、各搬送路間に隔壁を設置することが容易であり、その焼成領域内部を上方及び側面方向からそれぞれ見た概略説明図である図11(a)及び図11(b)に示すように、各搬送路間に設けた隔壁81で炉内を搬送路毎に区画することができ、各搬送路毎に入口側開口部45及び出口側開口部46を設けて、その開口幅Wを狭くすることができる。このように入口側開口部45及び出口側開口部46の開口幅Wが狭いと、焼成領域42内の熱が当該開口部から逃げにくくなり、熱損失を低減できる。また、炉内が搬送路毎に区画されているため、各搬送路毎に温度を個別に制御することが容易で、温度分布の均一性を確保しやすい。   On the other hand, the continuous heat treatment furnace of the present invention is easy to install partition walls between the respective transport paths due to the structure of the transport mechanism, and the schematic explanation of the inside of the firing region viewed from above and from the side surface direction, respectively. As shown in FIGS. 11 (a) and 11 (b), the inside of the furnace can be divided for each conveyance path by a partition wall 81 provided between the respective conveyance paths, and an inlet side opening is provided for each conveyance path. The opening width W can be narrowed by providing the part 45 and the outlet side opening 46. Thus, if the opening width W of the entrance side opening part 45 and the exit side opening part 46 is narrow, it will become difficult for the heat | fever in the baking area | region 42 to escape from the said opening part, and heat loss can be reduced. Further, since the inside of the furnace is divided for each conveyance path, it is easy to individually control the temperature for each conveyance path, and it is easy to ensure the uniformity of the temperature distribution.

図13は、搬送路を複数列設けた本発明に係る連続式熱処理炉の焼成領域を搬送方向側から見た概略説明図であるが、各搬送路間に隔壁を設置する場合には、本図に示すように、隔壁81を炉天井部から下方に伸びる上部隔壁81aと炉床部から上方に伸びる下部隔壁81bとから構成し、下側隔壁81bの上端面にビーム11が通るような凹溝を形成するとともに、上部隔壁81aと下側隔壁81bとの間に、ビーム11に装着された支持体15と干渉しない程度の間隙を設けることが好ましい。なお、下部隔壁81bは、図5に示したような断熱材33で構成してもよい。このように各搬送路間に隔壁81を設けた場合には、前述のとおり、各搬送路毎に温度を個別に制御することが容易になることに加え、隔壁を設けない場合に比して、被熱処理物をより高速かつ均一に加熱することが可能になる。   FIG. 13 is a schematic explanatory view of the firing region of the continuous heat treatment furnace according to the present invention in which a plurality of conveyance paths are provided as viewed from the conveyance direction side. As shown in the figure, the partition wall 81 is composed of an upper partition wall 81a extending downward from the furnace ceiling portion and a lower partition wall 81b extending upward from the hearth portion, and is recessed so that the beam 11 passes through the upper end surface of the lower partition wall 81b. It is preferable to form a groove and provide a gap between the upper partition 81 a and the lower partition 81 b so as not to interfere with the support 15 attached to the beam 11. Note that the lower partition 81b may be made of the heat insulating material 33 as shown in FIG. Thus, when the partition 81 is provided between the transport paths, as described above, it becomes easier to individually control the temperature for each transport path, as compared with the case where the partition is not provided. It becomes possible to heat the object to be heat-treated more quickly and uniformly.

すなわち、前記のように隔壁81が設けられていると、焼成領域に設けられた近赤外線ランプヒーター等の電気ヒーター62をはじめとするの加熱手段から放射された熱の一部は隔壁81に吸収されるが、それにより隔壁81の温度が上昇すると、隔壁81からも熱が放射されるようになり、被熱処理物1の周囲の壁面全体がヒーター化して、被熱処理物1を集中的に均一加熱するようになるため、隔壁を設けない場合に比して被熱処理物1の昇温速度が向上するとともに、より均一な熱処理状態が得られる。また、従来は被熱処理物の上方だけでなく下方にもヒーターを設置しなければならなかったような熱処理炉においても、前記のように隔壁を設置して、被熱処理物の周囲の壁面全体をヒーター化することにより、下方のヒーターを不要とすることが可能となり得る。   That is, when the partition 81 is provided as described above, a part of the heat radiated from the heating means such as the near-infrared lamp heater provided in the firing region such as the near-infrared lamp heater is absorbed by the partition 81. However, when the temperature of the partition 81 rises as a result, heat is also radiated from the partition 81, and the entire wall surface around the workpiece 1 becomes a heater, so that the workpiece 1 is concentrated uniformly. Since heating is performed, the heating rate of the object to be heat-treated 1 is improved as compared with the case where no partition is provided, and a more uniform heat treatment state is obtained. Further, even in a heat treatment furnace in which a heater had to be installed not only above but also below the object to be heat treated, the partition wall is installed as described above, and the entire wall surface around the object to be heat treated is provided. By using a heater, it may be possible to eliminate the need for a lower heater.

なお、このように隔壁を設ける場合には、各搬送路毎の温度制御を容易にするため、隔壁により区画された各搬送路に、それぞれ独立して温度制御可能な加熱手段を別個に設けるようにすることが好ましい。また、この場合においては、図11(a)及び図11(b)に示すように、加熱手段として、U字状の近赤外線ランプヒーターをはじめとする電気ヒーター62’を搬送方向と平行に配置することが好ましい。   In the case of providing the partition walls in this way, in order to facilitate temperature control for each transport path, heating means capable of independently controlling the temperature are separately provided in each transport path partitioned by the partition walls. It is preferable to make it. In this case, as shown in FIGS. 11 (a) and 11 (b), an electric heater 62 ′ such as a U-shaped near infrared lamp heater is arranged in parallel with the conveying direction as a heating means. It is preferable to do.

図12(a)及び図12(b)に示したような、搬送機構としてメッシュベルトコンベアを用い、複数の搬送路間に隔壁を設けていない従来構造の連続式熱処理炉では、加熱手段として、直管状の長い近赤外線ランプヒーター62”を炉幅方向に架け渡すように設置するのが一般的であるが、太陽電池基板の熱処理に用いるような近赤外線ランプヒーターは、その構造上1本当たりに与えられる電力に上限があり、このような直管状の長い近赤外線ランプヒーター62”を使用すると、単位面積当たりの電力密度が低減するという問題がある。   As shown in FIG. 12 (a) and FIG. 12 (b), in a continuous heat treatment furnace having a conventional structure in which a mesh belt conveyor is used as a transport mechanism and no partition is provided between a plurality of transport paths, It is common to install a straight tubular long near-infrared lamp heater 62 ″ so as to be bridged in the furnace width direction. However, the near-infrared lamp heater used for the heat treatment of the solar cell substrate has one structure per one. There is an upper limit to the power applied to the light source, and there is a problem that the power density per unit area is reduced when such a straight tubular long near infrared lamp heater 62 ″ is used.

これに対し、前記のようにU字状の比較的短い近赤外線ランプヒーターをはじめとする電気ヒーター62’を、各搬送路毎に、搬送方向と平行に配置すると、各搬送路毎に個別に温度制御できるだけでなく、単位面積当たりの電力密度を高く保つことができ、従来のように直管状の長い近赤外線ランプヒーターを使用した場合と比較すると、炉全体の消費電力が同じであっても、被熱処理物をより迅速に昇温させることができる。   On the other hand, when the electric heater 62 'including the U-shaped relatively short near-infrared lamp heater as described above is arranged in parallel to the transport direction for each transport path, it is individually provided for each transport path. Not only temperature control but also power density per unit area can be kept high, even if the power consumption of the whole furnace is the same compared to the case of using a long straight infrared lamp heater with a straight tube as in the past. The temperature of the object to be heat-treated can be increased more quickly.

本発明の搬送機構において使用するビームの材質としては、耐熱性と耐熱衝撃性に優れた材質であることが好ましく、例えば炭化珪素系のセラミック材料からなるものが好適に使用できる。また、本発明の搬送機構において使用する線材の材質としては、炉内温度に耐えられる耐熱性を有するとともに、必要な張力を与えることができるものであれば、その材質や形状に特に制限はないが、例えば、インコネル、チタン等の金属のより線や、径が1〜2mm程度の細棒からなるワイヤー、あるいは、同様に耐熱性に優れた金属やセラミックスからなるチェーンを挙げることができる。   The material of the beam used in the transport mechanism of the present invention is preferably a material excellent in heat resistance and thermal shock resistance. For example, a material made of a silicon carbide ceramic material can be suitably used. Further, the material of the wire used in the transport mechanism of the present invention is not particularly limited as long as it has heat resistance that can withstand the furnace temperature and can give necessary tension. However, for example, a stranded wire of a metal such as Inconel or titanium, a wire made of a thin rod having a diameter of about 1 to 2 mm, or a chain made of a metal or ceramic that is also excellent in heat resistance can be cited.

本発明に係る連続式熱処理炉の熱処理対象となる被熱処理物は、特に限定されるものではないが、太陽電池基板のように、比較的小型で平板状の製品の熱処理に特に好適に用いることができる。   The material to be heat-treated in the continuous heat treatment furnace according to the present invention is not particularly limited, but it is particularly preferably used for heat treatment of a relatively small and flat product such as a solar cell substrate. Can do.

本発明に係る熱処理方法は、前記本発明に係る熱処理炉を使用して被熱処理物の熱処理を行う方法であって、第一の搬送機構から第二の搬送機構への被熱処理物の受け渡し後、第二の搬送機構から第三の搬送機構への被熱処理物の受け渡しまでの間の第二の搬送機構による被熱処理物の搬送が、加速、減速、再加速、停止という挙動を示すようにするとともに、被熱処理物の部位の内で焼成領域内における加熱時間が最も長い部位と最も短い部位との加熱時間の差が0〜1秒の範囲内に収まるようにするものである。   The heat treatment method according to the present invention is a method for performing heat treatment of an object to be heat treated using the heat treatment furnace according to the present invention, wherein the object to be heat treated is transferred from the first transport mechanism to the second transport mechanism. The transfer of the object to be heat-treated by the second transfer mechanism during the period from the second transfer mechanism to the delivery of the object to be transferred to the third transfer mechanism shows the behavior of acceleration, deceleration, reacceleration, and stop. At the same time, the difference in the heating time between the longest part and the shortest part in the firing region within the part to be heat-treated is set within the range of 0 to 1 second.

前述のとおり、本発明に係る熱処理炉は、乾燥・脱バインダー領域と焼成領域とで、被熱処理物を別個の独立した搬送機構により搬送するように構成することで、焼成領域における被熱処理物の搬送を短時間で素早く実施できるようにしているが、良好な製品特性を得るためには、単に搬送を素早く行うだけでなく、必要な加熱時間を確保し、かつ、焼成領域内における被熱処理物全体の加熱時間がほぼ均一になるようにすることが重要である。   As described above, the heat treatment furnace according to the present invention is configured such that the heat treatment object is conveyed by the separate and independent conveyance mechanism in the drying / debinding region and the baking region, so that the heat treatment object in the baking region is obtained. Although the transfer can be performed quickly in a short time, in order to obtain good product characteristics, not only the transfer is performed quickly, but also the necessary heating time is ensured and the material to be heat-treated in the firing area It is important to ensure that the overall heating time is approximately uniform.

そこで、本方法では、第一の搬送機構から第二の搬送機構への被熱処理物の受け渡し(移載)後、第二の搬送機構から第三の搬送機構への被熱処理物の受け渡し(移載)までの間の第二の搬送機構による被熱処理物の搬送が、加速、減速、再加速、停止という挙動を示すようにするとともに、被熱処理物の部位の内で焼成領域内における加熱時間が最も長い部位と最も短い部位との加熱時間の差が0〜1秒の範囲内に収まるようにした。   Therefore, in this method, after the material to be heat treated is transferred (transferred) from the first transport mechanism to the second transport mechanism, the material to be heat treated is transferred (transferred) from the second transport mechanism to the third transport mechanism. In addition to the behavior of acceleration, deceleration, re-acceleration, and stop of the transfer of the heat-treated object by the second transfer mechanism until the loading), the heating time in the firing region within the part of the heat-treated object The difference in the heating time between the longest part and the shortest part was kept within the range of 0 to 1 second.

加速、減速、再加速、停止の各動作が開始される位置は、前記加熱時間の差を0〜1秒の範囲内に収めることができる限りにおいて任意に選択できるが、好ましい例の一つとしては、図14のように、第一の搬送機構から第二の搬送機構への被熱処理物1の受け渡しが行われる位置を加速位置A、被熱処理物1の後端が焼成領域42の入口側開口部45の内部側開口端に達する位置を減速位置B、被熱処理物1の前端が焼成領域42の出口側開口部46の内部側開口端に達する位置を再加速位置C、第二の搬送機構から第三の搬送機構への被熱処理物1の受け渡しが行われる位置を停止位置Dとするような配置が挙げられる。   The position where the acceleration, deceleration, reacceleration, and stop operations are started can be arbitrarily selected as long as the difference in the heating time can be kept within a range of 0 to 1 second. 14, the position where the workpiece 1 is transferred from the first transport mechanism to the second transport mechanism is the acceleration position A, and the rear end of the workpiece 1 is on the entrance side of the firing region 42. The position reaching the inner opening end of the opening 45 is the deceleration position B, the position where the front end of the workpiece 1 reaches the inner opening end of the outlet opening 46 in the firing region 42 is the reacceleration position C, and the second transfer. There is an arrangement in which the stop position D is a position where the workpiece 1 is transferred from the mechanism to the third transport mechanism.

なお、各動作の開始位置をこれ以外の配置にする場合にも、減速の開始時における被熱処理物1の位置(減速位置B)と再加速の開始時における被熱処理物1の位置(再加速位置C)とが、焼成領域42を搬送方向において二等分する直線Iに対して線対称となるようにすることが、被熱処理物1の各部位の焼成領域42内における加熱時間を均一化する上で好ましい。   Even when the start position of each operation is set to other positions, the position of the workpiece 1 at the start of deceleration (deceleration position B) and the position of the workpiece 1 at the start of reacceleration (reacceleration) The position C) is symmetrical with respect to the straight line I that bisects the firing region 42 in the transport direction, so that the heating time in the firing region 42 of each part of the object to be heat treated 1 is made uniform. This is preferable.

被熱処理物1の各部位の内で焼成領域内における加熱時間が最も長い部位と最も短い部位との加熱時間の差は、前記各動作の開始位置、特に減速位置Bと再加速位置Cとによって制御することが可能であり、これらの位置を適宜調整することで、前記加熱時間の差が0〜1秒の範囲内に収まるようにすることができる。なお、本発明において、「焼成領域内における加熱時間」とは、被熱処理物1の各部位が、焼成領域42内(入口側開口部45内及び出口側開口部46内は除く)に滞在している時間を意味する。前記加熱時間の差が1秒を超えると被熱処理物1の加熱状態にムラが生じ良好な製品特性を得にくくなる。   The difference in heating time between the longest heating time and the shortest heating time in the firing region among the respective portions of the workpiece 1 depends on the start position of each operation, particularly the deceleration position B and the reacceleration position C. It is possible to control, and by appropriately adjusting these positions, the difference in the heating time can fall within the range of 0 to 1 second. In the present invention, the “heating time in the firing region” means that each part of the object to be heat-treated 1 stays in the firing region 42 (except in the entrance-side opening 45 and the exit-side opening 46). Means time. If the difference in heating time exceeds 1 second, unevenness occurs in the heated state of the object to be heat-treated 1 and it becomes difficult to obtain good product characteristics.

加速位置Aと減速位置Bとの間、及び再加速位置Cと停止位置Dとの間は、焼成領域42における被熱処理物1の搬送時間全体を短くする観点から比較的高速で搬送を行い、減速位置Bと再加速位置Cとの間は、必要な加熱時間を確保できるよう比較的低速で搬送を行う。このように加速や減速を行って焼成領域42内における被熱処理物1の搬送速度を変化させるとともに、減速位置Bや再加速位置C等を調整するなどして、前記のように被熱処理物1各部位の加熱時間の差を所定範囲内とすることで、焼成領域42における被熱処理物1の搬送を短時間で素早く実施しつつも、必要な焼成時間を確保し、更に、被熱処理物1全体の加熱時間をほぼ均一にすることが可能となる。   Between the acceleration position A and the deceleration position B, and between the reacceleration position C and the stop position D, the transfer is performed at a relatively high speed from the viewpoint of shortening the entire transfer time of the object to be heat-treated 1 in the firing region 42, Between the deceleration position B and the reacceleration position C, conveyance is performed at a relatively low speed so as to ensure a necessary heating time. In this way, acceleration and deceleration are performed to change the conveying speed of the object to be heat-treated 1 in the firing region 42, and the heat-treated object 1 is adjusted as described above by adjusting the deceleration position B, the reacceleration position C, and the like. By setting the difference in the heating time of each part within a predetermined range, the necessary heat treatment time is ensured while carrying the material to be heat-treated 1 in the firing region 42 quickly in a short time. It becomes possible to make the whole heating time substantially uniform.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(参考例)
本発明に係る熱処理炉において、図15に示すように、焼成領域42の長さをL1、被熱処理物1の搬送方向における長さをY、入口側開口部45と出口側開口部46が形成された炉壁の厚さを各々L2とし、YとL2は等しいものとする。第一の搬送機構から第二の搬送機構への被熱処理物1の受け渡し後、第二の搬送機構から第三の搬送機構への被熱処理物1の受け渡しまでの間の第二の搬送機構による被熱処理物1の搬送が、加速、減速、再加速、停止という挙動を示すようにし、第一の搬送機構から第二の搬送機構への被熱処理物1の受け渡しが行われる位置を加速位置A、被熱処理物1の前端が入口側開口部45の内部側開口端に達する位置を減速位置B、被熱処理物1の前端が出口側開口部46の内部側開口端に達する位置を再加速位置C、第二の搬送機構から第三の搬送機構への被熱処理物1の受け渡しが行われる位置を停止位置Dとし、加速位置Aから減速位置Bまでの搬送速度をv1、減速位置Bから再加速位置Cまでの搬送速度をv2とし、再加速位置Cから停止位置Dまでの搬送速度はv1に等しいものとする。ここで、被熱処理物1の後端を0(最小値)をとし、被熱処理物1の搬送方向における長さYを最大値として、独立変数yを導入すると、被熱処理物1の後端からの距離がyである部位の焼成領域42内における加熱時間T(y)は下式(1)により求められる。
T(y)=L1/v2−(Y−y)/v2+(Y−y)/v1 ……(1)
(Reference example)
In the heat treatment furnace according to the present invention, as shown in FIG. 15, the length of the firing region 42 is L 1 , the length in the transport direction of the workpiece 1 is Y, and the inlet side opening 45 and the outlet side opening 46 are It is assumed that the thickness of the formed furnace wall is L 2, and Y and L 2 are equal. After the delivery of the object to be heat-treated 1 from the first conveyance mechanism to the second conveyance mechanism, by the second conveyance mechanism from the second conveyance mechanism to the delivery of the object to be treated 1 to the third conveyance mechanism. The position at which the workpiece 1 is transferred from the first transfer mechanism to the second transfer mechanism is set to the acceleration position A so that the transfer of the workpiece 1 is accelerated, decelerated, reaccelerated, and stopped. The position where the front end of the object to be heat-treated 1 reaches the inner opening end of the inlet side opening 45 is the deceleration position B, and the position where the front end of the object to be heat treated 1 reaches the inner opening end of the outlet side opening 46 is re-accelerated. C, the position where the workpiece 1 is transferred from the second transport mechanism to the third transport mechanism is the stop position D, the transport speed from the acceleration position A to the deceleration position B is v 1 , and from the deceleration position B the conveying speed of up reacceleration position C and v 2, the re-acceleration position C Conveying speed to stop position D are equal to v 1. Here, when the independent variable y is introduced with the rear end of the workpiece 1 being 0 (minimum value) and the length Y in the transport direction of the workpiece 1 being the maximum value, the rear end of the workpiece 1 is The heating time T (y) in the firing region 42 at the site where the distance is y is obtained by the following equation (1).
T (y) = L 1 / v 2 - (Y-y) / v 2 + (Y-y) / v 1 ...... (1)

下記の条件で上式(1)より、被熱処理物1の各部の加熱時間を算出し、その結果をグラフ化して図19に示した。
1=0.4(m)
2=0.15(m)
Y=0.15(m)
1=15(m/分)
2=4(m/分)
The heating time for each part of the object to be heat-treated 1 was calculated from the above formula (1) under the following conditions, and the result was graphed and shown in FIG.
L 1 = 0.4 (m)
L 2 = 0.15 (m)
Y = 0.15 (m)
v 1 = 15 (m / min)
v 2 = 4 (m / min)

図19に示すとおり、本例では、被熱処理物1の前端(被熱処理物1の後端からの距離が150mmの部位)が加熱時間の最も長い部位、被熱処理物1の後端(被熱処理物1の後端からの距離が0mmの部位)が加熱時間の最も短い部位となり、両者の加熱時間の差は1.65秒(=6秒−4.35秒)であった。   As shown in FIG. 19, in this example, the front end of the object to be heat-treated 1 (the part whose distance from the rear end of the object to be heat-treated 1 is 150 mm) is the part with the longest heating time, and the rear end of the object to be heat-treated 1 The part where the distance from the rear end of the object 1 was 0 mm) was the part with the shortest heating time, and the difference between the two heating times was 1.65 seconds (= 6 seconds−4.35 seconds).

また、前記条件で実際に熱処理を実施し、被熱処理物の前端、中央(被熱処理物1の後端からの距離が75mmの部位)、後端を測定点として、熱電対により温度を測定し、その結果をグラフ化して図23に示した。この図に示すとおり、本例では、被熱処理物の前端、中央、後端で最高温度に大きな差が生じ、加熱時間の短い部位ほど最高温度が低かった。   In addition, the heat treatment was actually performed under the above conditions, and the temperature was measured with a thermocouple using the front end, the center of the heat-treated object (the distance from the rear end of the heat-treated object 1 as 75 mm), and the rear end as the measurement points. The results are shown in a graph in FIG. As shown in this figure, in this example, there was a large difference in the maximum temperature between the front end, the center, and the rear end of the object to be heat-treated, and the maximum temperature was lower as the heating time was shorter.

(実施例1)
図16に示すように、被熱処理物1の中央が入口側開口部45の内部側開口端に達する位置を減速位置B、被熱処理物1の中央が出口側開口部46の内部側開口端に達する位置を再加速位置Cとした以外は、前記参考例と同じ条件とし、被熱処理物1の後端からの距離がyである部位の焼成領域42内における加熱時間T(y)を下式(2)(y<0.075(m)のとき)及び下式(3)(y>0.075(m)のとき)により求め、その結果をグラフ化して図20に示した。
T(y)=L1/v2+(y−Y/2)(1/v2−1/v1) ……(2)
T(y)=L1/v2−(y−Y/2)(1/v2−1/v1) ……(3)
Example 1
As shown in FIG. 16, the position where the center of the workpiece 1 reaches the inner opening end of the inlet opening 45 is the deceleration position B, and the center of the workpiece 1 is the inner opening end of the outlet opening 46. The heating time T (y) in the firing region 42 of the part where the distance from the rear end of the object to be heat-treated 1 is y is the same as that in the reference example except that the reaching position is the reacceleration position C. It calculated | required by (2) (when y <0.075 (m)) and the following Formula (3) (when y> 0.075 (m)), and the result was graphed and shown in FIG.
T (y) = L 1 / v 2 + (y-Y / 2) (1 / v 2 -1 / v 1) ...... (2)
T (y) = L 1 / v 2 - (y-Y / 2) (1 / v 2 -1 / v 1) ...... (3)

図20に示すとおり、本例では、被熱処理物1の中央が加熱時間の最も長い部位、被熱処理物1の前端及び後端が加熱時間の最も短い部位となり、両者の加熱時間の差は0.825秒(=6秒−5.175秒)であった。   As shown in FIG. 20, in this example, the center of the object to be heat treated 1 is the part with the longest heating time, and the front end and the rear end of the object to be heat treated 1 are the parts with the shortest heating time. .825 seconds (= 6 seconds−5.175 seconds).

また、前記条件で実際に熱処理を実施し、被熱処理物の前端、中央、後端を測定点として、熱電対により温度を測定し、その結果をグラフ化して図24に示した。この図に示すとおり、本例では、被熱処理物の前端、中央、後端で最高温度に幾分差が生じたものの、その差は前記参考例の結果(図23)と比較すると小さなものであった。   Further, the heat treatment was actually carried out under the above conditions, the temperature was measured with a thermocouple using the front end, the center, and the rear end of the object to be heat treated as measurement points, and the result was graphed and shown in FIG. As shown in this figure, in this example, although there were some differences in the maximum temperature at the front end, center, and rear end of the object to be heat treated, the difference was small compared to the result of the reference example (FIG. 23). there were.

(実施例2)
図17に示すように、被熱処理物1の後端が入口側開口部45の内部側開口端に達する位置を減速位置B、被熱処理物1の前端が出口側開口部46の内部側開口端に達する位置を再加速位置Cとした以外は、前記参考例と同じ条件とし、被熱処理物1の後端からの距離がyである部位の焼成領域42内における加熱時間T(y)を下式(4)により求め、その結果をグラフ化して図21に示した。
T(y)=(L1−Y)/v2+Y/v1 ……(4)
(Example 2)
As shown in FIG. 17, the position where the rear end of the object to be heat treated 1 reaches the inner opening end of the inlet side opening 45 is the deceleration position B, and the front end of the object to be heat treated 1 is the inner opening end of the outlet side opening 46. The heating time T (y) in the firing region 42 of the part where the distance from the rear end of the object to be heat-treated 1 is y is set to be the same as in the above-described reference example except that the position reaching the re-acceleration position C is set to the re-acceleration position C. It calculated | required by Formula (4) and the result was graphed and shown in FIG.
T (y) = (L 1 −Y) / v 2 + Y / v 1 (4)

図21に示すとおり、本例では、被熱処理物1の各部の加熱時間は全て同一(4.53秒)であり、各部の加熱時間の差は0であった。   As shown in FIG. 21, in this example, the heating time for each part of the object 1 to be heat-treated was all the same (4.53 seconds), and the difference in the heating time for each part was zero.

また、前記条件で実際に熱処理を実施し、被熱処理物の前端、中央、後端を測定点として、熱電対により温度を測定し、その結果をグラフ化して図25に示した。この図に示すとおり、本例では、被熱処理物の前端、中央、後端で最高温度に殆ど差が生じなかった。   Further, the heat treatment was actually carried out under the above conditions, the temperature was measured with a thermocouple using the front end, the center, and the rear end of the object to be heat treated as measurement points, and the result was graphed and shown in FIG. As shown in this figure, in this example, there was almost no difference in the maximum temperature between the front end, the center, and the rear end of the object to be heat treated.

(実施例3)
図18に示すように、被熱処理物1の前端が入口側開口部45の内部側開口端に達する位置を減速位置B、被熱処理物1の後端が出口側開口部46の内部側開口端に達する位置を再加速位置Cとした以外は、前記参考例と同じ条件とし、被熱処理物1の後端からの距離がyである部位の焼成領域42内における加熱時間T(y)を下式(5)により求め、その結果をグラフ化して図22に示した。
T(y)=L1/v2 ……(5)
(Example 3)
As shown in FIG. 18, the position where the front end of the object to be heat-treated 1 reaches the inner opening end of the inlet side opening 45 is the deceleration position B, and the rear end of the object to be heat treated 1 is the inner opening end of the outlet side opening 46. The heating time T (y) in the firing region 42 of the part where the distance from the rear end of the object to be heat-treated 1 is y is set to be the same as in the above-described reference example except that the position reaching the re-acceleration position C is set to the re-acceleration position C. It calculated | required by Formula (5) and the result was graphed and it showed in FIG.
T (y) = L 1 / v 2 (5)

図22に示すとおり、本例では、被熱処理物1の各部の加熱時間は全て同一(6秒)であり、各部の加熱時間の差は0であった。   As shown in FIG. 22, in this example, the heating time for each part of the object to be heat treated 1 was the same (6 seconds), and the difference in the heating time for each part was 0.

また、前記条件で実際に熱処理を実施し、被熱処理物の前端、中央、後端を測定点として、熱電対により温度を測定し、その結果をグラフ化して図26に示した。この図に示すとおり、本例では、被熱処理物の前端、中央、後端で最高温度に殆ど差が生じなかった。   Further, the heat treatment was actually performed under the above conditions, and the temperature was measured with a thermocouple using the front end, the center, and the rear end of the object to be heat treated as measurement points, and the result was graphed and shown in FIG. As shown in this figure, in this example, there was almost no difference in the maximum temperature between the front end, the center, and the rear end of the object to be heat treated.

以上、参考例及び実施例1〜3の結果より、実施例2や実施例3のように減速位置と再加速位置を配置すると、被熱処理物全体の加熱時間が均一になり最も好ましいことがわかる。実際の熱処理に当たって、実施例2と実施例3の何れの配置を採用するかは、必要な加熱時間や目標とする搬送のサイクルタイム等により決定すればよい。また、実施例1は、実施例2や実施例3のように被熱処理物の各部の加熱時間の差が0にはならないものの、その差は参考例の1/2程度であり、諸般の事情により実施例2や実施例3のような配置が困難であるような場合には、実施例1のような配置を採用することでも、十分な均熱加熱が可能となる場合があり得る。実施例1〜3に共通するのは、図16〜18に示すとおり、減速位置Bと再加速位置Cとが、焼成領域を搬送方向において二等分する直線Iに対して線対称となっていることである。このような配置になっていると、被熱処理物の各部の加熱時間に分布が生じたとしても、それは被熱処理物の長さ方向の中心を最大の加熱時間とした前後対称の分布となり、参考例のように前端と後端とで加熱時間に大きな差が生じることはない。   As described above, from the results of the reference examples and Examples 1 to 3, it is found that when the deceleration position and the reacceleration position are arranged as in Example 2 and Example 3, the heating time of the entire heat-treated object becomes uniform, which is most preferable. . In the actual heat treatment, the arrangement of the second embodiment and the third embodiment may be determined based on the required heating time, the target transport cycle time, and the like. In Example 1, although the difference in the heating time of each part of the object to be heat-treated does not become 0 as in Example 2 and Example 3, the difference is about ½ of the reference example. Therefore, in the case where the arrangement as in Example 2 or Example 3 is difficult, there may be a case where sufficient soaking is possible even by adopting the arrangement as in Example 1. In common with Examples 1 to 3, as shown in FIGS. 16 to 18, the deceleration position B and the reacceleration position C are symmetrical with respect to a straight line I that bisects the firing region in the transport direction. It is that you are. With such an arrangement, even if a distribution occurs in the heating time of each part of the object to be heat treated, it becomes a symmetric distribution with the maximum heating time at the center in the length direction of the object to be heat treated. As in the example, there is no significant difference in heating time between the front end and the rear end.

本発明の連続式熱処理炉及び熱処理方法は、太陽電池基板等の熱処理に好適に使用することができるものである。   The continuous heat treatment furnace and heat treatment method of the present invention can be suitably used for heat treatment of solar cell substrates and the like.

本発明に係る連続式熱処理炉の実施形態の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of embodiment of the continuous heat processing furnace which concerns on this invention. 第一の搬送機構の実施形態の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of embodiment of a 1st conveyance mechanism. 第一の搬送機構の動作を示す概略説明図である。It is a schematic explanatory drawing which shows operation | movement of a 1st conveyance mechanism. 第一の搬送機構の動作を示す概略説明図である。It is a schematic explanatory drawing which shows operation | movement of a 1st conveyance mechanism. 第一の搬送機構の動作を示す概略説明図である。It is a schematic explanatory drawing which shows operation | movement of a 1st conveyance mechanism. 第一の搬送機構の動作を示す概略説明図である。It is a schematic explanatory drawing which shows operation | movement of a 1st conveyance mechanism. 第一の搬送機構の動作を示す概略説明図である。It is a schematic explanatory drawing which shows operation | movement of a 1st conveyance mechanism. 第一の搬送機構において、ビーム及び支持体に各々保持部材が装着された状態を示す説明図である。In a 1st conveyance mechanism, it is explanatory drawing which shows the state by which the holding member was each mounted | worn with the beam and the support body. 第二の搬送機構の実施形態の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of embodiment of a 2nd conveyance mechanism. 第二の搬送機構において、ビームに対する保持部材の装着状態の例を示す説明図である。It is explanatory drawing which shows the example of the mounting state of the holding member with respect to a beam in a 2nd conveyance mechanism. 第一の搬送機構から第二の搬送機構へ被熱処理物が受け渡される際の動作を示す概略説明図である。It is a schematic explanatory drawing which shows the operation | movement at the time of delivering a to-be-heated material from a 1st conveyance mechanism to a 2nd conveyance mechanism. 第一の搬送機構から第二の搬送機構へ被熱処理物が受け渡される際の動作を示す概略説明図である。It is a schematic explanatory drawing which shows the operation | movement at the time of delivering a to-be-heated material from a 1st conveyance mechanism to a 2nd conveyance mechanism. 第一の搬送機構から第二の搬送機構へ被熱処理物が受け渡される際の動作を示す概略説明図である。It is a schematic explanatory drawing which shows the operation | movement at the time of delivering a to-be-heated material from a 1st conveyance mechanism to a 2nd conveyance mechanism. 第一の搬送機構から第二の搬送機構へ被熱処理物が受け渡される際の動作を示す概略説明図である。It is a schematic explanatory drawing which shows the operation | movement at the time of delivering a to-be-heated material from a 1st conveyance mechanism to a 2nd conveyance mechanism. 第一の搬送機構から第二の搬送機構へ被熱処理物が受け渡される際の動作を示す概略説明図である。It is a schematic explanatory drawing which shows the operation | movement at the time of delivering a to-be-heated material from a 1st conveyance mechanism to a 2nd conveyance mechanism. を上下分割構造とした状態を示す説明図である。It is explanatory drawing which shows the state which made the furnace the upper and lower division structure. 第三の搬送機構の実施形態の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of embodiment of a 3rd conveyance mechanism. 第三の搬送機構の動作を示す概略説明図である。It is a schematic explanatory drawing which shows operation | movement of a 3rd conveyance mechanism. 第三の搬送機構の動作を示す概略説明図である。It is a schematic explanatory drawing which shows operation | movement of a 3rd conveyance mechanism. 第三の搬送機構の動作を示す概略説明図である。It is a schematic explanatory drawing which shows operation | movement of a 3rd conveyance mechanism. 第三の搬送機構の動作を示す概略説明図である。It is a schematic explanatory drawing which shows operation | movement of a 3rd conveyance mechanism. 第三の搬送機構の動作を示す概略説明図である。It is a schematic explanatory drawing which shows operation | movement of a 3rd conveyance mechanism. 搬送路が複数列設けられた本発明に係る連続式熱処理炉の焼成領域内部を上方から見た概略説明図である。It is the schematic explanatory drawing which looked at the inside of the baking area | region of the continuous-type heat treatment furnace which concerns on this invention provided with multiple rows of conveyance paths from the upper direction. 搬送路が複数列設けられた本発明に係る連続式熱処理炉の焼成領域内部を側面方向から見た概略説明図である。It is the schematic explanatory drawing which looked at the inside of the baking area | region of the continuous-type heat treatment furnace which concerns on this invention provided with multiple rows of conveyance paths from the side surface direction. 搬送路が複数列設けられた従来の連続式熱処理炉の焼成領域内部を上方から見た概略説明図である。It is the schematic explanatory drawing which looked at the inside of the baking area | region of the conventional continuous heat processing furnace provided with multiple rows of conveyance paths from the upper direction. 搬送路が複数列設けられた従来の連続式熱処理炉の焼成領域内部を側面方向から見た概略説明図である。It is the schematic explanatory drawing which looked at the inside of the baking area | region of the conventional continuous heat processing furnace provided with multiple rows of conveyance paths from the side surface direction. 搬送路が複数列設けられた本発明に係る連続式熱処理炉の焼成領域を搬送方向側から見た概略説明図である。It is the schematic explanatory drawing which looked at the baking area | region of the continuous heat processing furnace which concerns on this invention provided with multiple rows of conveyance paths from the conveyance direction side. 加速、減速、再加速、停止の各動作が開始される位置を示す概要説明図である。It is outline | summary explanatory drawing which shows the position where each operation | movement of acceleration, deceleration, reacceleration, and a stop is started. 参考例における条件等を示す概要説明図である。It is an outline explanatory view showing conditions etc. in a reference example. 実施例1における条件等を示す概要説明図である。FIG. 3 is a schematic explanatory diagram illustrating conditions and the like in the first embodiment. 実施例2における条件等を示す概要説明図である。FIG. 10 is a schematic explanatory diagram illustrating conditions and the like in the second embodiment. 実施例3における条件等を示す概要説明図である。10 is a schematic explanatory diagram showing conditions and the like in Example 3. FIG. 参考例の結果を示すグラフである。It is a graph which shows the result of a reference example. 実施例1の結果を示すグラフである。3 is a graph showing the results of Example 1. 実施例2の結果を示すグラフである。10 is a graph showing the results of Example 2. 実施例3の結果を示すグラフである。10 is a graph showing the results of Example 3. 参考例の結果を示すグラフである。It is a graph which shows the result of a reference example. 実施例1の結果を示すグラフである。3 is a graph showing the results of Example 1. 実施例2の結果を示すグラフである。10 is a graph showing the results of Example 2. 実施例3の結果を示すグラフである。10 is a graph showing the results of Example 3.

符号の説明Explanation of symbols

1…被熱処理物、2…ビーム、3…支持体、4…ビーム支持体、5…保持部材、6…保持部材、11…ビーム、11a…空気供給口、11b…空気排出口、13…支持体、15…保持部材、15a…脚部、21…ビーム、22…リフター、23…昇降駆動装置、24…水平移動装置、25…ビーム駆動装置、26…受け取り板、33…断熱材、34…溝、41…乾燥・脱バインダー領域、42…焼成領域、43…(上側)、44…(下側)、45…入口側開口部、46…出口側開口部、51…入口、52…出口、61…インフラスタイン(IR)ヒーター、62…電気ヒーター、71…他の搬送ライン、81…隔壁、81a…上部隔壁、81b…下部隔壁。 DESCRIPTION OF SYMBOLS 1 ... Material to be heat-treated, 2 ... Beam, 3 ... Support, 4 ... Beam support, 5 ... Holding member, 6 ... Holding member, 11 ... Beam, 11a ... Air supply port, 11b ... Air discharge port, 13 ... Support Body, 15 ... Holding member, 15a ... Leg, 21 ... Beam, 22 ... Lifter, 23 ... Lifting drive device, 24 ... Horizontal movement device, 25 ... Beam drive device, 26 ... Receiving plate, 33 ... Insulating material, 34 ... Groove, 41 ... drying / debinding region, 42 ... firing region, 43 ... furnace (upper side), 44 ... furnace (lower side), 45 ... inlet side opening, 46 ... outlet side opening, 51 ... inlet, 52 ... Outlet, 61 ... Infrastein (IR) heater, 62 ... Electric heater, 71 ... Other transfer line, 81 ... Partition, 81a ... Upper partition, 81b ... Lower partition

Claims (11)

炉の入口側から出口側に向かって、被熱処理物の乾燥及び/又は脱バインダー処理を行う少なくとも1つの乾燥・脱バインダー領域と、被熱処理物の焼成を行う焼成領域とが順に設けられ、前記被熱処理物が前記乾燥・脱バインダー領域を搬送されながら乾燥及び/又は脱バインダー処理された後、前記焼成領域を搬送されながら焼成される連続式熱処理炉であって、
前記被熱処理物を搬送するための搬送機構として、一定のストロークで上昇、前進、下降、後退という動作を周期的に繰り返すビーム又は線材を備えた第一の搬送機構と、同じく一定のストロークで上昇、前進、下降、後退という動作を周期的に繰り返すビーム又は線材を備えた第二の搬送機構と、一定のストロークで上昇、前進、下降、後退という動作を周期的に繰り返すビームを備えた第三の搬送機構とを有し、
前記乾燥・脱バインダー領域では前記被熱処理物の搬送を前記第一の搬送機構により行い、前記焼成領域では前記被熱処理物の搬送を前記第二の搬送機構により行い、前記焼成領域を搬送された後の前記被熱処理物を、前記第三の搬送機構により炉外の所定位置まで搬送するものであり、
前記焼成領域において、前記第二の搬送機構のビーム又は線材の周囲の少なくとも一部を、ビーム又は線材とは一体化していない断熱材で囲んだ連続式熱処理炉。
From the entrance side to the exit side of the furnace, at least one drying / debinding region for drying and / or debinding the heat-treated material, and a firing region for firing the heat-treated material are provided in order, A continuous heat treatment furnace in which a material to be heat-treated is dried and / or debindered while being transported through the drying / debinding region, and then fired while being transported through the firing region,
As the transport mechanism for transporting the object to be heat-treated, the first transport mechanism equipped with a beam or wire that periodically repeats ascending, advancing, descending, and retreating with a constant stroke, and also rising with a constant stroke , A second transport mechanism that includes a beam or wire that periodically repeats the operations of forward, downward, and backward movement, and a third that includes a beam that periodically repeats the upward, forward, downward, and backward movements at a constant stroke. And a transport mechanism
In the drying / debinding area, the heat-treated object is conveyed by the first conveying mechanism, and in the baking area, the heat-treated object is conveyed by the second conveying mechanism, and the baking area is conveyed. The latter to-be-heated material is transported to a predetermined position outside the furnace by the third transport mechanism,
A continuous heat treatment furnace in which at least a part of the periphery of the beam or wire of the second transport mechanism is surrounded by a heat insulating material that is not integrated with the beam or wire in the firing region.
前記第一の搬送機構のビーム又は線材に前記被熱処理物を保持するための保持部材が装着された請求項1に記載の連続式熱処理炉。   The continuous heat treatment furnace according to claim 1, wherein a holding member for holding the object to be heat-treated is attached to the beam or wire of the first transport mechanism. 前記第二の搬送機構のビーム又は線材に前記被熱処理物を保持するための保持部材が装着された請求項1又は2に記載の連続式熱処理炉。   The continuous heat treatment furnace according to claim 1 or 2, wherein a holding member for holding the object to be heat-treated is attached to the beam or wire of the second transport mechanism. 前記第二の搬送機構のビームが、両端に開口部を有する中空体であり、一方の開口部を空気供給口、他方の開口部を空気排出口として、雰囲気調整用の空気を前記ビームの内部を流通させて炉内に送り込むようにした請求項1ないし3何れか一項に記載の連続式熱処理炉。   The beam of the second transport mechanism is a hollow body having openings at both ends, one opening is used as an air supply port, and the other opening is used as an air discharge port. The continuous heat treatment furnace according to any one of claims 1 to 3, wherein a continuous heat treatment furnace is circulated and fed into the furnace. 少なくとも前記焼成領域において、炉が上下に分割された構造を有し、上側の炉及び/又は下側の炉を上下方向に駆動させることにより、前記焼成領域の入口側及び出口側の開口部の高さを変更可能とした請求項1ないし4の何れか一項に記載の連続式熱処理炉。   At least in the firing region, the furnace has a structure that is vertically divided, and by driving the upper furnace and / or the lower furnace in the up-and-down direction, the openings on the inlet side and the outlet side of the firing region are provided. The continuous heat treatment furnace according to any one of claims 1 to 4, wherein the height can be changed. 前記第一の搬送機構、第二の搬送機構及び第三の搬送機構を備えた前記被熱処理物の搬送路が、炉内に平行して複数列設けられており、少なくとも前記焼成領域において、前記各搬送路間に隔壁が設置され、当該隔壁によって前記各搬送路が区画された請求項1ないし5の何れか一項に記載の連続式熱処理炉。   A plurality of rows of the heat treatment object conveyance paths provided with the first conveyance mechanism, the second conveyance mechanism, and the third conveyance mechanism are provided in parallel in the furnace, and at least in the firing region, The continuous heat treatment furnace according to any one of claims 1 to 5, wherein a partition wall is installed between the transport paths, and the transport paths are partitioned by the partition walls. 前記隔壁により区画された前記各搬送路に、それぞれ独立して温度制御可能な加熱手段が別個に設けられた請求項6に記載の連続式熱処理炉。   The continuous heat treatment furnace according to claim 6, wherein heating means capable of independently controlling the temperature are separately provided in each of the conveyance paths partitioned by the partition walls. 前記加熱手段が、前記被熱処理物の搬送方向と平行に配置されたU字状の電気ヒーターである請求項7に記載の連続式熱処理炉。   The continuous heat treatment furnace according to claim 7, wherein the heating means is a U-shaped electric heater disposed in parallel with a conveyance direction of the object to be heat treated. 熱処理対象となる前記被熱処理物が太陽電池基板である請求項1ないし8の何れか一項に記載の連続式熱処理炉。   The continuous heat treatment furnace according to any one of claims 1 to 8, wherein the object to be heat treated is a solar cell substrate. 請求項1ないし9の何れか一項に記載の連続式熱処理炉を使用した熱処理方法であって、前記第一の搬送機構から前記第二の搬送機構への前記被熱処理物の受け渡し後、前記第二の搬送機構から前記第三の搬送機構への前記被熱処理物の受け渡しまでの間の前記第二の搬送機構による前記被熱処理物の搬送が、加速、減速、再加速、停止という挙動を示すようにするとともに、前記被熱処理物の部位の内で焼成領域内における加熱時間が最も長い部位と最も短い部位との加熱時間の差が0〜1秒の範囲内に収まるようにする熱処理方法。   A heat treatment method using the continuous heat treatment furnace according to any one of claims 1 to 9, wherein after the delivery of the heat-treated material from the first transport mechanism to the second transport mechanism, Transport of the heat-treated object by the second transport mechanism between the second transport mechanism and the delivery of the heat-treated material to the third transport mechanism is accelerated, decelerated, reaccelerated, and stopped. And a difference in heating time between the longest part and the shortest part in the firing region of the part to be heat treated within the range of 0 to 1 second. . 前記減速の開始時における前記被熱処理物の位置と前記再加速の開始時における前記被熱処理物の位置とが、前記焼成領域を搬送方向において二等分する直線に対して線対称となるようにする請求項10に記載の熱処理方法。   The position of the object to be heat-treated at the start of the deceleration and the position of the object to be heat-treated at the start of the reacceleration are symmetrical with respect to a straight line that bisects the firing region in the transport direction. The heat treatment method according to claim 10.
JP2005137502A 2004-10-04 2005-05-10 Continuous heat treatment furnace and heat treatment method Active JP4523479B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005137502A JP4523479B2 (en) 2005-03-01 2005-05-10 Continuous heat treatment furnace and heat treatment method
EP05021141A EP1647789A1 (en) 2004-10-04 2005-09-28 Continuous heat treatment furnace and heat treatment method
US11/239,250 US7645136B2 (en) 2004-10-04 2005-09-30 Continuous heat treatment furnace and heat treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005055749 2005-03-01
JP2005137502A JP4523479B2 (en) 2005-03-01 2005-05-10 Continuous heat treatment furnace and heat treatment method

Publications (2)

Publication Number Publication Date
JP2006275499A JP2006275499A (en) 2006-10-12
JP4523479B2 true JP4523479B2 (en) 2010-08-11

Family

ID=37210443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137502A Active JP4523479B2 (en) 2004-10-04 2005-05-10 Continuous heat treatment furnace and heat treatment method

Country Status (1)

Country Link
JP (1) JP4523479B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365884B2 (en) * 2011-06-09 2013-12-11 ウシオ電機株式会社 Halogen heater lamp unit and heat treatment apparatus
JP6076263B2 (en) * 2011-12-26 2017-02-08 有限会社ヨコタテクニカ Heat treatment device
CN117524703B (en) * 2022-08-04 2024-05-28 南通三优佳磁业有限公司 Sintering device for magnetic powder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144794U (en) * 1988-03-25 1989-10-04
JP2000310491A (en) * 1999-04-27 2000-11-07 Tokai Konetsu Kogyo Co Ltd Continuous tunnelling electric kiln
JP2001147083A (en) * 1999-09-09 2001-05-29 Ngk Insulators Ltd Method of introducing clean air into kiln
JP2002048475A (en) * 2000-08-07 2002-02-15 Ngk Insulators Ltd Heat treatment method of substrate and continuous heat treating furnace used for it
JP2002206863A (en) * 2001-01-12 2002-07-26 Ngk Insulators Ltd Continuously heat treating furnace
JP2004286426A (en) * 2003-03-06 2004-10-14 Ngk Insulators Ltd Low sensible heat capacity carrying mechanism and heat treatment furnace and heat treatment method using the mechanism
JP2004333074A (en) * 2003-05-12 2004-11-25 Ishikawajima Harima Heavy Ind Co Ltd Base plate heat-treatment apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109412A (en) * 1976-03-10 1977-09-13 Nippon Steel Corp Walking beam type continuous heating furnace
JPS58213820A (en) * 1982-06-02 1983-12-12 Daido Steel Co Ltd Heat treatment device
JPS6237313A (en) * 1985-08-09 1987-02-18 Chugai Ro Kogyo Kaisha Ltd Walking beam type heating furnace for billet
JPH01277193A (en) * 1988-04-27 1989-11-07 Central Glass Co Ltd Heat treatment device
JPH0762589B2 (en) * 1988-08-16 1995-07-05 シャープ株式会社 Heating device
JPH03215622A (en) * 1990-01-17 1991-09-20 Sumitomo Metal Ind Ltd Walking beam
JPH0488118A (en) * 1990-07-31 1992-03-23 Kawasaki Steel Corp Material transporting method for walking beam type heating furnace
JPH04147957A (en) * 1990-10-09 1992-05-21 Toyota Motor Corp Heat insulating aluminum-based member
JPH04254514A (en) * 1991-02-05 1992-09-09 Daido Steel Co Ltd Steel billet heating furnace
JP2985331B2 (en) * 1991-02-28 1999-11-29 株式会社村田製作所 Batch type firing furnace
JPH07201949A (en) * 1993-12-29 1995-08-04 Denkoo:Kk Continuous heat treatment apparatus
JPH10183233A (en) * 1996-12-20 1998-07-14 Sumitomo Metal Ind Ltd Heat insulating skid pipe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144794U (en) * 1988-03-25 1989-10-04
JP2000310491A (en) * 1999-04-27 2000-11-07 Tokai Konetsu Kogyo Co Ltd Continuous tunnelling electric kiln
JP2001147083A (en) * 1999-09-09 2001-05-29 Ngk Insulators Ltd Method of introducing clean air into kiln
JP2002048475A (en) * 2000-08-07 2002-02-15 Ngk Insulators Ltd Heat treatment method of substrate and continuous heat treating furnace used for it
JP2002206863A (en) * 2001-01-12 2002-07-26 Ngk Insulators Ltd Continuously heat treating furnace
JP2004286426A (en) * 2003-03-06 2004-10-14 Ngk Insulators Ltd Low sensible heat capacity carrying mechanism and heat treatment furnace and heat treatment method using the mechanism
JP2004333074A (en) * 2003-05-12 2004-11-25 Ishikawajima Harima Heavy Ind Co Ltd Base plate heat-treatment apparatus

Also Published As

Publication number Publication date
JP2006275499A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
US7645136B2 (en) Continuous heat treatment furnace and heat treatment method
JP4335825B2 (en) Walking beam heat treatment equipment
JP4523479B2 (en) Continuous heat treatment furnace and heat treatment method
CN100413020C (en) Continuous heat treatment furnace and heat treatment method
JP2007187398A (en) Continuous heat treatment furnace
JP3683166B2 (en) Substrate heat treatment method and continuous heat treatment furnace used therefor
JP4456033B2 (en) Continuous heat treatment furnace and heat treatment method
WO2004079283A1 (en) Carrying mechanism using wire material, heat treating furnace using the mechanism, and heat treating method
EP1439563A2 (en) Heat treatment method and heat treatment furnace for plasma display panel substrate
JP5732655B2 (en) Batch type firing furnace
JP4445476B2 (en) Heat treatment furnace and solar cell
JP4447482B2 (en) Walking beam heat treatment equipment
JP2006132921A (en) Continuous heat treatment furnace
WO2008044286A1 (en) Continuous heat treatment furnace
JP4541326B2 (en) Continuous heat treatment furnace and heat treatment method
JP4515117B2 (en) Conveying mechanism using wire, heat treatment furnace and heat treatment method using the same
JP2006132922A (en) Continuous heat treatment furnace
JP2012233649A (en) Continuous heat treatment furnace
JP2007178038A (en) Conveyance mechanism, heat treating furnace, and heat treating method
RU2403519C2 (en) System of thermal treatment with slot aerators
JP2004286426A (en) Low sensible heat capacity carrying mechanism and heat treatment furnace and heat treatment method using the mechanism
US3354293A (en) Electric furnace for ceramics
JP2003014375A (en) Continuous calcination furnace apparatus for workpiece plate
JP5498652B2 (en) Heat treatment furnace
JP2007178037A (en) Conveyance mechanism and heat treating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Ref document number: 4523479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4