JP4520843B2 - Method for producing biodegradable film - Google Patents

Method for producing biodegradable film Download PDF

Info

Publication number
JP4520843B2
JP4520843B2 JP2004362957A JP2004362957A JP4520843B2 JP 4520843 B2 JP4520843 B2 JP 4520843B2 JP 2004362957 A JP2004362957 A JP 2004362957A JP 2004362957 A JP2004362957 A JP 2004362957A JP 4520843 B2 JP4520843 B2 JP 4520843B2
Authority
JP
Japan
Prior art keywords
film
temperature
stretching
biodegradable film
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004362957A
Other languages
Japanese (ja)
Other versions
JP2006168159A (en
Inventor
在昌 李
幸子 古橋
秀樹 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meredian Inc
Original Assignee
Meredian Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meredian Inc filed Critical Meredian Inc
Priority to JP2004362957A priority Critical patent/JP4520843B2/en
Publication of JP2006168159A publication Critical patent/JP2006168159A/en
Application granted granted Critical
Publication of JP4520843B2 publication Critical patent/JP4520843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、生分解性フィルムの製造方法に関し、さらに詳しくは、ポリヒドロキシアルカノエート(以下、「PHA」と略記する。)を主成分とする熱可塑性樹脂からなるフィルムの製造方法に関する。   The present invention relates to a method for producing a biodegradable film, and more particularly to a method for producing a film made of a thermoplastic resin containing polyhydroxyalkanoate (hereinafter abbreviated as “PHA”) as a main component.

自然環境中に廃棄された膨大なプラスチック類が環境破壊の原因となっているという社会的な問題がクローズアップされて以来、自然環境中で分解して二酸化炭素と水に還元される生分解性プラスチックの開発が精力的に進められている。現在、知られている生分解性プラスチックは、製法で分類すると、化学合成法(例えば、ポリ乳酸、ポリブチレンサクシネート)、天然物配合品(例えば、デンプンやセルロース及びこれらと他の分解性プラスチックのブレンド品)、微生物産生ポリエステル(例えば、ポリ(3−ヒドロキシブチレート)(以下、「PHB」と略記する。)、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシバレレート)(以下、「PHBV」と略記する。))等のPHA類がある。   Biodegradability that is decomposed in the natural environment and reduced to carbon dioxide and water since the social problem that the huge amount of plastics discarded in the natural environment causes environmental destruction The development of plastic is underway. At present, known biodegradable plastics are classified according to production methods, such as chemical synthesis methods (for example, polylactic acid and polybutylene succinate), natural product blends (for example, starch and cellulose, and these and other degradable plastics). ), Microorganism-produced polyester (for example, poly (3-hydroxybutyrate) (hereinafter abbreviated as “PHB”), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (hereinafter, Abbreviated as “PHBV”))) and the like.

これらの中にあって、微生物産生ポリエステルは、微生物が体内に蓄積する貯蔵物質であり、微生物が飢餓状態に陥ったときにエネルギー源として使用される高分子物質である。自然界には、微生物産生ポリエステルを分解する微生物が多数生息しており、微生物が産生するポリエステルは、土壌中、河川中、湖水中、海水中、活性汚泥中、堆肥(コンポスト)中等、自然環境にあっても、好気性、嫌気性、いずれの環境下でも優れた分解性を示す。また、燃焼時には有毒ガスを発生せず、植物由来原料を使用しており、地球上の二酸化炭素を増大させないカーボンニュートラルである、といった優れた特徴を有している。PHAの中でも、単独重合体であるPHBは、結晶化度が最も高く、融点も高い。PHAが共重合体の場合、構成するモノマー単位(成分)の組成比を制御することで、融点(耐熱性)や柔軟性等の物性を変化させることが可能である。   Among these, microbial-produced polyester is a storage material in which microorganisms accumulate in the body, and is a polymer substance that is used as an energy source when microorganisms are starved. There are many microorganisms in the natural environment that decompose microorganism-producing polyester. Polyesters produced by microorganisms are found in natural environments such as soil, rivers, lake water, seawater, activated sludge, and compost. Even if it exists, it shows the decomposability | degradability which was excellent in any environment of aerobic and anaerobic. In addition, it has excellent characteristics such that it does not generate toxic gas during combustion, uses plant-derived materials, and is carbon neutral that does not increase carbon dioxide on the earth. Among PHA, PHB which is a homopolymer has the highest crystallinity and a high melting point. When PHA is a copolymer, physical properties such as melting point (heat resistance) and flexibility can be changed by controlling the composition ratio of the monomer units (components) constituting the PHA.

このように、PHAは、再生可能な植物原料から製造されており、生分解性に優れていることから、廃棄物の問題が解決され、環境適合性に優れるため、包装材料、食器材料、建築・土木・農業・園芸材料等への適用が期待されつつある。   In this way, PHA is manufactured from renewable plant raw materials and is excellent in biodegradability, which solves the problem of waste and is excellent in environmental compatibility.・ It is expected to be applied to civil engineering, agriculture, horticultural materials.

その一方で、PHAは、加工性に関して二つの大きな問題を有する。一つは、遅い結晶化速度に由来する加工性の悪さ、もう一つは、高温に加熱した場合の熱分解による分子量低下である。例えば、PHA類のなかでもPHBは、融点が175℃と高温であり、加工温度が高くなることから、加熱加工時に熱分解し易く、成形体の分子量が低下してしまうため加工幅は狭い。一方、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)(以下、「PHBH」と略記する。)の場合、共重合成分のうち、3−ヒドロキシヘキサノエート成分の比率が増大すると融点は低下し、熱加工温度を下げることができ、熱分解を抑制できる。また、PHA類の遅い結晶化速度を改善するために、結晶核剤の添加検討が多く行われており、結晶核剤として窒化ホウ素やタルク等が知られている。   On the other hand, PHA has two major problems with processability. One is poor processability resulting from a slow crystallization rate, and the other is a decrease in molecular weight due to thermal decomposition when heated to a high temperature. For example, among PHAs, PHB has a high melting point of 175 ° C. and a high processing temperature. Therefore, it is easy to be thermally decomposed during heat processing, and the molecular weight of the molded body is reduced, so that the processing width is narrow. On the other hand, in the case of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (hereinafter abbreviated as “PHBH”), the proportion of the 3-hydroxyhexanoate component among the copolymer components increases. Then, melting | fusing point falls, heat processing temperature can be lowered | hung and thermal decomposition can be suppressed. Further, in order to improve the slow crystallization speed of PHAs, many studies have been made on the addition of a crystal nucleating agent, and boron nitride, talc and the like are known as the crystal nucleating agent.

PHAは、溶融状態から冷却すると、ガラス転移温度(以下、「Tg」と略記する。)以上の温度で結晶化するが、そのフィルムは脆くて延伸が困難であり、そのため強度の高いフィルムを作ることができなかった。延伸が困難な理由は、PHAの結晶化で発生する大きな球晶のため、あるいは、PHAの非晶部に起こる二次結晶化によるクラック発生のためといわれている(例えば、非特許文献1、非特許文献2参照。)。   When PHA is cooled from the molten state, it crystallizes at a temperature equal to or higher than the glass transition temperature (hereinafter abbreviated as “Tg”). However, the film is brittle and difficult to stretch, and thus a high strength film is produced. I couldn't. The reason why the drawing is difficult is said to be due to large spherulites generated by crystallization of PHA, or because of the occurrence of cracks due to secondary crystallization that occurs in the amorphous part of PHA (for example, Non-Patent Document 1, (Refer nonpatent literature 2.).

この問題を解決するために、繊維化においては、押出機で溶融したPHAを押出直後にポリマーのTg以下に急冷したのちにTg以上に加熱して延伸する方法が提案されている(例えば、特許文献1参照。)。また、フィルムの作製においても、PHAの溶融フィルムを形成したのち、Tg+10℃以下に急冷、固化して非晶質のフィルムを作製し、該非晶質フィルムを延伸し、さらに緊張熱処理することが提案されている(例えば、特許文献2参照。)。   In order to solve this problem, in fiberization, a method has been proposed in which PHA melted in an extruder is rapidly cooled to Tg of a polymer immediately after extrusion, and then heated and stretched to Tg or more (for example, a patent) Reference 1). Also, in the production of films, after forming a PHA melt film, it is proposed to rapidly cool and solidify to Tg + 10 ° C or lower to produce an amorphous film, and then stretch the amorphous film, followed by tension heat treatment. (For example, see Patent Document 2).

これらの方法は、溶融したポリマーをTg以下に急冷して非晶質のままで一旦固化することが特徴であるが、一般にPHAのTgは室温以下であり、Tg以下に急冷することは工業的には経済的でない。また、フィルムの場合は、繊維に比べて延伸の度合いが小さくて大きな張力がかからないために大きな球晶が発生しやすいという問題があった。
特開2002−371431号公報 特開2003−311824号公報 “Biopolymers” Volume 4, Polyesters III Applications and Commercial Products, WILEY-VCH, p64 井上義夫監修、グリーンプラスチック最新技術、シーエムシー出版、p147
These methods are characterized in that the melted polymer is rapidly cooled to Tg or less and solidified once in an amorphous state. In general, the Tg of PHA is room temperature or less, and it is industrially necessary to rapidly cool to Tg or less. It is not economical. Further, in the case of a film, there is a problem that large spherulites are likely to be generated because the degree of stretching is smaller than that of fibers and no large tension is applied.
JP 2002-371431 A JP 2003-31824 A “Biopolymers” Volume 4, Polyesters III Applications and Commercial Products, WILEY-VCH, p64 Supervised by Yoshio Inoue, latest green plastic technology, CM Publishing, p147

本発明の目的は、PHA類を用いてフィルムでの延伸を可能にする実用的な方法を見出し、高強度の生分解性フィルムが得られる製造方法を提供することである。本発明のさらなる目的は、強度のみならず柔軟性や伸びにも優れた生分解性フィルムを提供することである。   An object of the present invention is to find a practical method that enables stretching with a film using PHAs, and to provide a production method capable of obtaining a high-strength biodegradable film. A further object of the present invention is to provide a biodegradable film that is excellent not only in strength but also in flexibility and elongation.

本発明者らは、上記の目的を達成すべく鋭意検討を行った結果、溶融したフィルムを一旦結晶化させた後、樹脂の軟化温度以下でかつガラス転移温度以上の温度で圧力をかけることによって延伸(圧延)することにより、さらに高度に延伸することが可能になり、強度の高いフィルムが得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors once crystallized the molten film, and then applying pressure at a temperature below the softening temperature of the resin and above the glass transition temperature. By stretching (rolling), it has become possible to stretch to a higher degree and a film having high strength can be obtained, and the present invention has been completed.

即ち、本発明の第1は、ポリヒドロキシアルカノエートを主成分とする熱可塑性樹脂からなるフィルムを製造するに際し、前記樹脂を溶融してフィルム状に形成し、溶融したフィルムを一旦結晶化させた後、前記樹脂の融点以下でかつガラス転移温度以上の温度で圧延して一次延伸し、さらに前記圧延温度より高い温度で二次延伸することを特徴とする生分解性フィルムの製造方法である。   That is, in the first aspect of the present invention, when producing a film made of a thermoplastic resin mainly composed of polyhydroxyalkanoate, the resin is melted to form a film, and the melted film is once crystallized. Thereafter, the biodegradable film is produced by rolling at a temperature not higher than the melting point of the resin and not lower than the glass transition temperature, followed by primary stretching, and further secondary stretching at a temperature higher than the rolling temperature.

本発明の第2は、前記生分解性フィルムの製造方法において、前記一次延伸の圧延をロールを用いて行う方法である。   A second aspect of the present invention is a method for rolling the primary stretching using a roll in the method for producing the biodegradable film.

本発明の第3は、前記生分解性フィルムの製造方法において、ロール圧延を20〜90℃の範囲内の温度で行う方法である。   A third aspect of the present invention is a method of performing roll rolling at a temperature in the range of 20 to 90 ° C. in the method for producing the biodegradable film.

本発明の第4は、前記生分解性フィルムの製造方法において、前記ポリヒドロキシアルカノエートが、微生物から生産される、下記式(1)
[−CHR−CH2−CO−O−] (1)
(但し、式(1)中、RはCn2n+1で表されるアルキル基で、nは1〜15の整数である。)
で示される2種以上の繰り返し単位からなる脂肪族ポリエステル共重合体である方法である。
4th of this invention is a manufacturing method of the said biodegradable film, The said polyhydroxyalkanoate is produced from microorganisms, following formula (1)
[—CHR—CH 2 —CO—O—] (1)
(However, in the formula (1), R is an alkyl group represented by C n H 2n + 1, n is an integer of 1 to 15.)
It is the method which is an aliphatic polyester copolymer which consists of 2 or more types of repeating units shown by these.

本発明の第5は、前記生分解性フィルムの製造方法において、前記ポリヒドロキシアルカノエートが、前記式(1)において、n=1及び3からなるポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)(PHBH)である方法である。   According to a fifth aspect of the present invention, in the method for producing a biodegradable film, the polyhydroxyalkanoate is a poly (3-hydroxybutyrate-co-3- wherein n = 1 and 3 in the formula (1). Hydroxyhexanoate) (PHBH).

さらに、本発明の第6は、前記生分解性フィルムの製造方法において、前記ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート、PHBH)における共重合成分の組成比が、(3−ヒドロキシブチレート)/(3−ヒドロキシシヘキサノエート)=99/1〜70/30(mol/mol)である方法である。   Furthermore, a sixth aspect of the present invention is the method for producing a biodegradable film, wherein the composition ratio of the copolymer component in the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBH) is (3 -Hydroxybutyrate) / (3-hydroxycyhexanoate) = 99/1 to 70/30 (mol / mol).

本発明に係る生分解性フィルムの製造方法によれば、従来、強度の高いフィルムを得ることが困難であったPHAを用いてフィルムとして十分な強度を持ち、かつ必要に応じて柔軟で引張り伸びの良いフィルムを得ることができる。これによって、PHAの特徴である優れた生分解性を生かして、ゴミ袋、コンポスト袋、農業用フィルム等の用途に使用できるフィルムが製造可能となる。また、PHAは植物由来のポリマーであり、二酸化炭素を増やすことがなく地球環境に優しく、地球温暖化防止に貢献することができる。   According to the method for producing a biodegradable film according to the present invention, a PHA that has conventionally been difficult to obtain a high-strength film has sufficient strength as a film, and is flexible and stretchable as necessary. A good film can be obtained. This makes it possible to produce films that can be used for applications such as garbage bags, compost bags, agricultural films, etc., taking advantage of the excellent biodegradability characteristic of PHA. PHA is a plant-derived polymer that is gentle to the global environment without increasing carbon dioxide and can contribute to the prevention of global warming.

本発明に用いるPHAとしては、PHB、下記式(1)
[−CHR−CH2−CO−O−] (1)
(但し、式(1)中、RはCn2n+1で表されるアルキル基で、nは1〜15の整数である。)
で示される2種以上の繰り返し単位からなる脂肪族ポリエステル共重合体(ポリヒドロキシアルカン酸共重合体(ポリヒドロキシアルカノエートコポリマー)、例えば、PHBV、PHBH等)が挙げられる。これらのPHAのうち、PHBを用いても高強度のフィルムを得ることは可能であるが、このポリマーは融解温度と加工温度が近くて加工温度幅が狭く、また得られたフィルムが硬く柔軟性に乏しい傾向にある。また、PHBVは、3−ヒドロキシバレレートの含有率によって物性は変化するが、3−ヒドロキシブチレートと3−ヒドロキシバレレートとの構造の差異が側鎖のメチレン基1つの差異であるため、結晶化度が大きく変化することがなく、やはり柔軟性には限界がある。それに対し、PHBHにおいては、3−ヒドロキシヘキサノエートの含有率が高まると急激に結晶化度が低下し、柔軟で引張り伸びの高いポリマーを得ることが可能である。従って、本発明に用いるPHAとしては、PHBHがより好ましい。この場合、前記PHBHにおける共重合成分の組成比が、(3−ヒドロキシブチレート)/(3−ヒドロキシヘキサノエート)=99/1〜70/30(mol/mol)であれば、さらに好ましい。前記組成比が99/1よりも高い、即ち3−ヒドロキシブチレートが多すぎるとPHBに近くなり加工温度幅が狭くなり、またフィルムも硬くなる傾向になる。前記組成比が70/30より低い、即ち3−ヒドロキシヘキサノエートが多すぎると樹脂の融点が低くなりすぎフィルムの耐熱性が低下する傾向になる。
As PHA used for this invention, PHB and following formula (1)
[—CHR—CH 2 —CO—O—] (1)
(However, in the formula (1), R is an alkyl group represented by C n H 2n + 1, n is an integer of 1 to 15.)
And an aliphatic polyester copolymer (polyhydroxyalkanoic acid copolymer (polyhydroxyalkanoate copolymer) such as PHBV and PHBH). Among these PHAs, it is possible to obtain a high-strength film even if PHB is used, but this polymer is close to the melting temperature and processing temperature and the processing temperature range is narrow, and the resulting film is hard and flexible. Tend to be poor. In addition, although physical properties of PHBV change depending on the content of 3-hydroxyvalerate, the difference in structure between 3-hydroxybutyrate and 3-hydroxyvalerate is a difference in one methylene group in the side chain. The degree of conversion does not change greatly and the flexibility is still limited. On the other hand, in PHBH, when the content of 3-hydroxyhexanoate is increased, the crystallinity is drastically decreased, and it is possible to obtain a flexible polymer having high tensile elongation. Accordingly, PHBH is more preferable as the PHA used in the present invention. In this case, it is more preferable that the composition ratio of the copolymerization component in the PHBH is (3-hydroxybutyrate) / (3-hydroxyhexanoate) = 99/1 to 70/30 (mol / mol). When the composition ratio is higher than 99/1, that is, when 3-hydroxybutyrate is too much, it is close to PHB, the processing temperature width is narrowed, and the film tends to be hard. When the composition ratio is lower than 70/30, that is, when 3-hydroxyhexanoate is too much, the melting point of the resin becomes too low and the heat resistance of the film tends to be lowered.

本発明で使用するPHA類としては、微生物が産生するもの、即ち発酵合成法により得られるものを用いることが好ましい。この発酵合成法に利用できる微生物としては、PHA類生産能を有する微生物であれば特に限定されない。PHB生産菌としては、アルカリゲネス・ユートロファス(Alcaligenes eutrophus、ラルストニア・ユートロファ(Ralstonia eutropha)ともいう。)、アルカリゲネス・ラタス(Alcaligenes latus)、アルカリゲネス・ファエカリス(Alcaligenes faecalis)等のアルカリゲネス属等の天然微生物が知られており、これらの微生物ではPHBが菌体内に蓄積される。また、ヒドロキシブチレートとその他のヒドロキシアルカノエートとの共重合体生産菌としては、PHBV及びPHBH生産菌であるアエロモナス・キャビエ(Aeromonas caviae)、ポリ(3−ヒドロキシブチレート−コ−4−ヒドロキシブチレート)生産菌であるアルカリゲネス・ユートロファス(Alcaligenes eutrophus)等が知られている。特に、PHBHに関し、PHBHの生産性を上げるために、PHA合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32、FERM BP−6038)(J.Bateriol., 179, 4821-4830頁(1997))等がより好ましく、これら微生物を適切な条件で培養して菌体内にPHBHを蓄積させた微生物菌体が用いられる。   As the PHAs used in the present invention, those produced by microorganisms, that is, those obtained by a fermentation synthesis method are preferably used. The microorganism that can be used in the fermentation synthesis method is not particularly limited as long as it is a microorganism having the ability to produce PHAs. Examples of PHB-producing bacteria include natural microorganisms such as Alkigenes eutrophus (Alcaligenes eutrophus, Ralstonia eutropha), Alkigenes latus, Alcaligenes faecalis, and other natural microorganisms. In these microorganisms, PHB accumulates in the microbial cells. Examples of the copolymer-producing bacteria of hydroxybutyrate and other hydroxyalkanoates include PHBV and PHBH-producing bacteria such as Aeromonas caviae and poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Alcaligenes eutrophus, which is a rate producing bacterium, is known. In particular, with regard to PHBH, in order to increase the productivity of PHBH, Alcaligenes eutrophus AC32 strain (FERM BP-6038) into which genes of PHA synthase group have been introduced (J. Bateriol., 179, 4821-4830) (1997)) is more preferable, and microbial cells obtained by culturing these microorganisms under appropriate conditions and accumulating PHBH in the cells are used.

上記のようなPHA類生産能を有する微生物の培養に用いる炭素源、培養条件は、特開平5−93049号公報、特開2001−340078号公報等に記載されている。例えば炭素源としては、植物油や魚油等等の油脂を用い、培養は炭素源以外の窒素、リン、ミネラル等の栄養素の制限下で微生物菌体の内部に貯蔵物質としてPHAを産生させる。また、培養条件としてのpH、温度、通気量、培養時間等は適宜調整して行われる。   Carbon sources and culture conditions used for culturing microorganisms having the ability to produce PHAs as described above are described in JP-A-5-93049, JP-A-2001-340078, and the like. For example, fats and oils such as vegetable oil and fish oil are used as the carbon source, and culture is performed to produce PHA as a storage substance inside the microbial cell under the restriction of nutrients such as nitrogen, phosphorus and minerals other than the carbon source. In addition, pH, temperature, aeration volume, culture time and the like as culture conditions are appropriately adjusted.

本発明で用いるPHAの重量平均分子量(以下、「Mw」と略記する。)は5万〜300万の範囲である。Mwが低すぎると溶融粘度が低くなりすぎて加工が難しく、高すぎると溶融粘度が高くなりすぎて流動性が乏しくなるうえに剪断発熱が大きくなるため加工が難しくなる。加工に適したPHAのMwの範囲は、10万〜150万程度である。   The PHA used in the present invention has a weight average molecular weight (hereinafter abbreviated as “Mw”) in the range of 50,000 to 3,000,000. If the Mw is too low, the melt viscosity becomes too low and difficult to process, and if it is too high, the melt viscosity becomes too high and the fluidity becomes poor, and the shear heat generation becomes large and the process becomes difficult. The range of Mw of PHA suitable for processing is about 100,000 to 1,500,000.

本発明のPHAフィルムには、通常、樹脂フィルムの製造に用いられる配合剤、例えば、酸化防止剤、熱安定剤、耐候剤、紫外線吸収剤、染料もしくは顔料等の着色剤、可塑剤、増粘剤、滑剤、結晶核剤、耐電防止剤、タルクもしくは炭酸カルシウム等の無機充填剤等を目的に応じて使用することができる。   The PHA film of the present invention usually contains compounding agents used in the production of resin films, for example, antioxidants, heat stabilizers, weathering agents, ultraviolet absorbers, colorants such as dyes or pigments, plasticizers, thickening agents. Agents, lubricants, crystal nucleating agents, antistatic agents, inorganic fillers such as talc or calcium carbonate, and the like can be used depending on the purpose.

また、PHAの特徴を損ねない範囲で、他のポリマーをブレンドしてもよい。ブレンドするポリマーとしては、PHAの生分解性を損ねないものが好ましく、化学合成法で製造される、ポリ乳酸やポリブチレンサクシネート等、デンプンやセルロース等の天然物が挙げられる。   Moreover, you may blend another polymer in the range which does not impair the characteristic of PHA. The polymer to be blended is preferably a polymer that does not impair the biodegradability of PHA, and includes natural products such as polylactic acid and polybutylene succinate, such as starch and cellulose, which are produced by a chemical synthesis method.

本発明に係る生分解性フィルムの製造方法は、PHAを主成分とする熱可塑性樹脂を原料として、熱プレス、押出機、ロール、カレンダー等で樹脂を溶融させてフィルム状とし、溶融したフィルムを一旦結晶化させた後、樹脂の軟化点温度以下で、かつガラス転移温度(Tg)より高い温度で圧力をかけることにより延伸(圧延)し(一次延伸)、さらに前記圧延温度より高い温度で延伸(二次延伸)する。   The method for producing a biodegradable film according to the present invention uses a thermoplastic resin mainly composed of PHA as a raw material, melts the resin with a hot press, an extruder, a roll, a calender, or the like to form a film. Once crystallized, the resin is stretched (rolled) by applying pressure at a temperature lower than the softening point temperature of the resin and higher than the glass transition temperature (Tg) (primary stretching), and further stretched at a temperature higher than the rolling temperature. (Secondary stretching).

前記方法において、溶融したフィルムを結晶化させる温度に関しては特に制限はないが、溶融したフィルムを一旦Tg付近の温度まで急冷させ、その後温度を上げて結晶化させたり、溶融したフィルムをそのまま室温雰囲気で冷却して結晶化させてもよい。なお、後述する実施例においては、一定の結晶化をさせるため、実験の都合上、前者の方法で結晶化させた。   In the above method, the temperature at which the melted film is crystallized is not particularly limited, but the melted film is rapidly cooled to a temperature near Tg, and then the temperature is raised to crystallize, or the melted film is left in a room temperature atmosphere. It may be cooled and crystallized. In the examples described later, for the purpose of experimentation, the former method was used for crystallization.

また、前記一次延伸における圧延は、ロールを用いて行うロール圧延が簡便でかつ工業的にも適用できることから好ましい。ロール圧延は、20〜90℃程度の温度範囲にロールを加温し、延伸倍率はロールのクリアランスを調節することによって行うことができる。ロール圧延倍率は、1.2〜5倍程度の範囲で行うことができる。   Moreover, the rolling in the primary stretching is preferable because roll rolling performed using a roll is simple and can be applied industrially. Roll rolling can be performed by heating the roll in a temperature range of about 20 to 90 ° C., and adjusting the draw ratio by adjusting the clearance of the roll. Roll rolling ratio can be performed in the range of about 1.2 to 5 times.

さらに、前記二次延伸も、融点以下、ガラス転移温度以上の温度範囲で行うが、好ましくは、30〜90℃で行う。温度が低すぎると二次延伸倍率が高くできず、温度が高すぎると樹脂が軟化して破断してしまい、やはり二次延伸倍率を高くすることができない。二次延伸は、好ましくは、加温空気中、温水中等で好適に行うことができる。   Furthermore, the secondary stretching is also carried out at a temperature range below the melting point and above the glass transition temperature, preferably at 30 to 90 ° C. If the temperature is too low, the secondary stretching ratio cannot be increased. If the temperature is too high, the resin is softened and fractured, and the secondary stretching ratio cannot be increased. The secondary stretching can be suitably performed in warm air or warm water.

以下、本発明に係る生分解性フィルムの製造方法について、実施例に基づき、さらに詳細に説明するが、本発明はこれらの実施例のみに制限されるものではない。   Hereinafter, although the manufacturing method of the biodegradable film which concerns on this invention is demonstrated in detail based on an Example, this invention is not restrict | limited only to these Examples.

(実施例1〜6、比較例)
アエロモナス・キャビエ(Aeromonas caviae)由来のPHA合成酵素群遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32、受託番号FERM BP-6038)を用いて、特開2001−340078号公報の実施例1に記載された方法により培養を行い、PHBHの生産を行った。即ち、アルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus C32、受託番号FERM BP-6038)(以下、「AC32株」と略す。)を次のように培養した。前培地の組成は1w/v% Meat−extract、1w/v% Bacto−Trypton、0.2w/v% Yeast−extract、0.9w/v% Na2HPO4・12H2O、0.15w/v% KH2PO4、(pH6.7)とした。ポリエステル生産培地の組成は1.1w/v% Na2HPO4・12H2O、0.19w/v% KH2PO4、0.6w/v% (NH42SO4、0.1w/v% MgSO4・7H2O、0.5v/v% 微量金属塩溶液(0.1N塩酸に1.6w/v% FeCl3・6H2O、1w/v% CaCl2・2H2O、0.02w/v% CoCl2・6H2O、0.016w/v% CuSO4・5H2O、0.012w/v% NiCl3・6H2O、0.01w/v% CrCl3・6H2Oを溶かしたもの。)、2w/v% プロエキスAP−12(播州調味料)、5×10-6w/v% カナマイシンとした。炭素源は油脂のみとし、パーム油、パーム核油またはヤシ油4w/v%を3回に分けて添加した。AC32株のグリセロールストックを前培地に接種して20時間培養し、6Lの生産培地を入れた10Lジャーファーメンター(丸菱バイオエンジ製MD−500型)に1.5v/v%接種した。運転条件は、培養温度30℃、攪拌速度400rpm、通気量1.8L/minとし、pHは6.6から6.8の間でコントロールした。コントロールには5規定の硫酸と水酸化ナトリウムとを使用した。培養は72時間まで行った。遠心分離によって菌体を回収し、メタノールで洗浄後、凍結乾燥した。この乾燥菌体からクロロホルムを用いてポリエステル(PHBH)を抽出した後、PHBHを含んだクロロホルム溶液から濾過によって菌体成分を除去し、ろ液にメタノールを加えてPHBHを沈殿させた。その後、遠心分離によって上澄み液を除去し、乾燥させてPHBHを回収した。培養終了後のPHBHの平均Mwは138万であった。これを35ミリ単軸押出機で押出温度190℃でペレット化し、3−ヒドロキシヘキサン酸の含有率7モル%、Mw=40万、融点(以下、「Tm」と略記する。)=144〜147℃、Tg=約4℃のPHBH樹脂ペレットを得た。前記PHBH樹脂のペレット試料を真空プレス機に入れ、真空プレス機内部温度約150℃で試料を溶融して空気を抜いた。その後、プレス機を氷水に入れTg以下まで急冷し、厚さ約1mmのフィルムを作製した。作製したフィルムを40℃で12時間結晶化させた。結晶化させたフィルムを5mm×25mm角に切断し、井元製作所製の加熱延伸機を用いて、40℃のロール圧延温度で、ロール回転速度を変えて、延伸倍率が約2倍になるように2本ロール間隙間でロール圧延した。ロール圧延したフィルムを幅1mmに切り、40℃、60℃、80℃、90℃の温浴中で、手回し延伸機にて種々の倍率に二次延伸した。延伸後、直ちに氷水中で冷却した。
(Examples 1-6, comparative example)
In Example 1 of JP 2001-340078 A, using Alcaligenes eutrophus AC32 strain (accession number FERM BP-6038) into which a PHA synthase group gene derived from Aeromonas caviae was introduced. Culture was performed by the method described to produce PHBH. Specifically, Alcaligenes eutrophus AC32 strain (Alcaligenes eutrophus C32, accession number FERM BP-6038) (hereinafter abbreviated as “AC32 strain”) was cultured as follows. The composition of the pre-medium was 1 w / v% Meat-extract, 1 w / v% Bacto-Trypton, 0.2 w / v% Yeast-extract, 0.9 w / v% Na 2 HPO 4 · 12H 2 O, 0.15 w / It was set as v% KH 2 PO 4 (pH 6.7). The composition of the polyester production medium is 1.1 w / v% Na 2 HPO 4 · 12H 2 O, 0.19 w / v% KH 2 PO 4 , 0.6 w / v% (NH 4 ) 2 SO 4 , 0.1 w / v% MgSO 4 .7H 2 O, 0.5 v / v% trace metal salt solution (1.6 W / v% FeCl 3 .6H 2 O in 0.1 N hydrochloric acid, 1 w / v% CaCl 2 .2H 2 O, 0 0.02 w / v% CoCl 2 .6H 2 O, 0.016 w / v% CuSO 4 .5H 2 O, 0.012 w / v% NiCl 3 .6H 2 O, 0.01 w / v% CrCl 3 .6H 2 O 2 w / v% Proextract AP-12 (Banshu seasoning), 5 × 10 −6 w / v% kanamycin. The carbon source was oil and fat alone, and palm oil, palm kernel oil or palm oil 4 w / v% was added in three portions. The glycerol stock of the AC32 strain was inoculated into the pre-culture medium and cultured for 20 hours, and then inoculated at 1.5 v / v% into a 10 L jar fermenter (Maruhishi Bio-Engineered MD-500 type) containing 6 L of production medium. The operating conditions were a culture temperature of 30 ° C., a stirring speed of 400 rpm, an aeration rate of 1.8 L / min, and a pH controlled between 6.6 and 6.8. For control, 5N sulfuric acid and sodium hydroxide were used. The culture was performed for up to 72 hours. The cells were collected by centrifugation, washed with methanol, and lyophilized. After the polyester (PHBH) was extracted from the dried cells using chloroform, the cell components were removed from the chloroform solution containing PHBH by filtration, and methanol was added to the filtrate to precipitate PHBH. Thereafter, the supernatant was removed by centrifugation and dried to recover PHBH. The average Mw of PHBH after completion of the culture was 1.38 million. This was pelletized with a 35 mm single screw extruder at an extrusion temperature of 190 ° C., and the content of 3-hydroxyhexanoic acid was 7 mol%, Mw = 400,000, melting point (hereinafter abbreviated as “Tm”) = 144 to 147. A PHBH resin pellet having a Tg of about 4 ° C. was obtained. The PHBH resin pellet sample was placed in a vacuum press machine, and the sample was melted at a vacuum press machine internal temperature of about 150 ° C. to remove air. Thereafter, the press machine was put into ice water and rapidly cooled to Tg or less to produce a film having a thickness of about 1 mm. The produced film was crystallized at 40 ° C. for 12 hours. The crystallized film is cut into 5 mm × 25 mm square, and using a heat stretching machine manufactured by Imoto Seisakusho, at a roll rolling temperature of 40 ° C., the roll rotation speed is changed so that the stretching ratio is about twice. Roll rolling was performed in the gap between the two rolls. The roll-rolled film was cut into a width of 1 mm and secondarily stretched at various magnifications with a hand-drawing stretcher in a warm bath at 40 ° C., 60 ° C., 80 ° C., and 90 ° C. Immediately after stretching, it was cooled in ice water.

上記のようにして得られたフィルムについて、以下の方法で機械的物性測定を行った。
引張試験:米倉製作所製の引張試験機 CATY500BHを使用して行った(試験長:20mm、引張速度:200mm/min)。
About the film obtained as mentioned above, the mechanical property measurement was performed with the following method.
Tensile test: A tensile tester CATY500BH manufactured by Yonekura Seisakusho was used (test length: 20 mm, tensile speed: 200 mm / min).

結晶化温度40℃、ロール圧延(一次延伸)温度40℃で、一次延伸倍率を変えた時のフィルムの最大トータル延伸倍率(二次延伸後の延伸倍率)を表1に示す。   Table 1 shows the maximum total stretch ratio (stretch ratio after secondary stretching) of the film when the primary stretching ratio was changed at a crystallization temperature of 40 ° C. and a roll rolling (primary stretching) temperature of 40 ° C.

Figure 0004520843
Figure 0004520843

表1から明らかなように、比較例の如くロール圧延による一次延伸を行わないと、ほとんど延伸ができず(フィルムが破断してしまう)、最大トータル延伸倍率は2倍以上にはならない。これに対し、ロール圧延(一次延伸)を行うと、二次延伸が可能になり、最大トータル延伸倍率は20倍にもなる。ロール圧延倍率を2倍にすると最大延伸倍率が最も高くなった。   As is apparent from Table 1, unless primary stretching by roll rolling is performed as in the comparative example, stretching is almost impossible (the film breaks), and the maximum total stretching ratio is not twice or more. On the other hand, when roll rolling (primary stretching) is performed, secondary stretching is possible, and the maximum total stretching ratio is 20 times. When the roll rolling ratio was doubled, the maximum draw ratio was the highest.

また、一次延伸のロール圧延倍率を2.0に固定し、二次延伸温度を60℃(実施例4−1)、80℃(実施例4−2)と変えた時のフィルムの引張り物性を表2に示す。   Further, the tensile property of the film when the roll stretching ratio of the primary stretching is fixed to 2.0 and the secondary stretching temperature is changed to 60 ° C. (Example 4-1) and 80 ° C. (Example 4-2). It shows in Table 2.

Figure 0004520843
Figure 0004520843

表2から明らかなように、トータル延伸倍率が高くなるほど、引張り強度、引張り弾性率が高くなり、20倍に延伸したフィルムでは最も高い値が得られた。また、80℃での延伸の方がより高い引張り物性を示した。   As is clear from Table 2, the higher the total draw ratio, the higher the tensile strength and the tensile modulus, and the highest value was obtained for the film stretched 20 times. Further, stretching at 80 ° C. showed higher tensile physical properties.

さらに、二次延伸速度を50mm分及び500mm/分で行った場合のフィルムの引張り物性を図1及び図2に示す。図1及び図2から明らかなように、二次延伸速度が500mm/分の方が高い引張り物性を示した。また、結晶化温度を30℃、40℃、60℃、80℃と変えても延伸倍率はそれほど変わらず、引張り物性も同等であった。   Furthermore, the tensile physical properties of the film when the secondary stretching speed is 50 mm and 500 mm / min are shown in FIGS. As is clear from FIGS. 1 and 2, the tensile property was higher when the secondary stretching speed was 500 mm / min. Further, even when the crystallization temperature was changed to 30 ° C., 40 ° C., 60 ° C., and 80 ° C., the draw ratio did not change so much, and the tensile properties were equivalent.

二次延伸速度が50mm/分及び500mm/分の場合の延伸倍率(倍)と引張強度との関係を示すグラフである。It is a graph which shows the relationship between the draw ratio (times) and tensile strength in case secondary stretch speed is 50 mm / min and 500 mm / min. 二次延伸速度が50mm/分及び500mm/分の場合の延伸倍率(倍)と引張弾性率との関係を示すグラフである。It is a graph which shows the relationship between a draw ratio (times) and a tensile elasticity modulus in case secondary stretch speed is 50 mm / min and 500 mm / min.

Claims (6)

ポリヒドロキシアルカノエートを主成分とする熱可塑性樹脂からなるフィルムを製造するに際し、前記樹脂を溶融してフィルム状に形成し、前記溶融したフィルムを一旦結晶化させた後、前記樹脂の融点以下でかつガラス転移温度以上の温度で圧延して一次延伸し、さらに前記圧延温度より高い温度で二次延伸することを特徴とする生分解性フィルムの製造方法。   In manufacturing a film made of a thermoplastic resin mainly composed of polyhydroxyalkanoate, the resin is melted to form a film, and after the molten film is crystallized, the melting point of the resin is below the melting point. And the manufacturing method of the biodegradable film characterized by rolling at the temperature more than a glass transition temperature, carrying out primary extending | stretching, and also extending | stretching secondary at temperature higher than the said rolling temperature. 前記一次延伸の圧延をロールを用いて行うことを特徴とする請求項1記載の生分解性フィルムの製造方法。   The method for producing a biodegradable film according to claim 1, wherein the primary stretching is performed using a roll. ロール圧延温度が20〜90℃の範囲内である請求項2記載の生分解性フィルムの製造方法。   The method for producing a biodegradable film according to claim 2, wherein the roll rolling temperature is in the range of 20 to 90 ° C. 前記ポリヒドロキシアルカノエートが、微生物から生産される、下記式(1)
[−CHR−CH2−CO−O−] (1)
(但し、式(1)中、RはCn2n+1で表されるアルキル基で、nは1〜15の整数である。)
で示される2種以上の繰り返し単位からなる脂肪族ポリエステル共重合体である請求項1〜3のいずれかに記載の生分解性フィルムの製造方法。
The polyhydroxyalkanoate is produced from a microorganism and has the following formula (1)
[—CHR—CH 2 —CO—O—] (1)
(However, in the formula (1), R is an alkyl group represented by C n H 2n + 1, n is an integer of 1 to 15.)
The manufacturing method of the biodegradable film in any one of Claims 1-3 which is an aliphatic polyester copolymer which consists of 2 or more types of repeating units shown by these.
前記ポリヒドロキシアルカノエートが、前記式(1)において、n=1及び3からなるポリ(3−ヒドロキブチレート−コ−3−ヒドロキシヘキサノエート)である請求項4記載の生分解性フィルムの製造方法。   The biodegradable film according to claim 4, wherein the polyhydroxyalkanoate is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) consisting of n = 1 and 3 in the formula (1). Production method. 前記ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)における共重合成分の組成比が、(3−ヒドロキシブチレート)/(3−ヒドロキシヘキサノエート)=99/1〜70/30(mol/mol)である請求項5記載の生分解性フィルムの製造方法。
The composition ratio of the copolymerization component in the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) is (3-hydroxybutyrate) / (3-hydroxyhexanoate) = 99/1 to 70 / The method for producing a biodegradable film according to claim 5, which is 30 (mol / mol).
JP2004362957A 2004-12-15 2004-12-15 Method for producing biodegradable film Active JP4520843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362957A JP4520843B2 (en) 2004-12-15 2004-12-15 Method for producing biodegradable film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004362957A JP4520843B2 (en) 2004-12-15 2004-12-15 Method for producing biodegradable film

Publications (2)

Publication Number Publication Date
JP2006168159A JP2006168159A (en) 2006-06-29
JP4520843B2 true JP4520843B2 (en) 2010-08-11

Family

ID=36669409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362957A Active JP4520843B2 (en) 2004-12-15 2004-12-15 Method for producing biodegradable film

Country Status (1)

Country Link
JP (1) JP4520843B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018567A1 (en) * 2006-08-10 2008-02-14 Kaneka Corporation Biodegradable resin composition and molded body thereof
JP2010059215A (en) * 2006-12-29 2010-03-18 Tokyo Institute Of Technology Biodegradable resin sheet
JP7007968B2 (en) * 2018-03-23 2022-02-10 株式会社カネカ Poly (3-hydroxybutyrate) resin sheet
CN113825620A (en) * 2019-05-13 2021-12-21 三菱瓦斯化学株式会社 Aliphatic polyester copolymer
JPWO2021251162A1 (en) * 2020-06-09 2021-12-16
EP4434725A1 (en) 2021-11-16 2024-09-25 Kaneka Corporation Stretched film and method for producing same
EP4434724A1 (en) 2021-11-16 2024-09-25 Kaneka Corporation Method for producing stretched film
WO2023189584A1 (en) * 2022-03-29 2023-10-05 株式会社カネカ Method for producing stretched film
CN114851528B (en) * 2022-07-06 2022-09-23 北京蓝晶微生物科技有限公司 Polyhydroxyalkanoate forming body and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152418A (en) * 1984-12-26 1986-07-11 Idemitsu Petrochem Co Ltd Manufacture of thermoplastic resin sheet
JPH11172021A (en) * 1997-12-16 1999-06-29 Agency Of Ind Science & Technol Aliphatic polyester film and production thereof
JP2001046094A (en) * 1999-08-10 2001-02-20 Kanegafuchi Chem Ind Co Ltd Separation and purification of poly-3-hydroxyalkanoic acid
JP2002060510A (en) * 2000-08-24 2002-02-26 National Institute Of Advanced Industrial & Technology Blended aliphatic polyester sheet and method for producing the same
JP2002371431A (en) * 2001-06-11 2002-12-26 Kanegafuchi Chem Ind Co Ltd Biodegradable fiber and method for producing the same
JP2003311824A (en) * 2002-02-21 2003-11-06 Japan Science & Technology Corp High strength film of polyhydroxyalkane and manufacturing method therefor
JP2004148775A (en) * 2002-11-01 2004-05-27 Toppan Printing Co Ltd Method for forming film of resin
JP2006045365A (en) * 2004-08-05 2006-02-16 Kaneka Corp Film composed of poly(3-hydroxy butylate-co-3-hydroxy hexanoate)

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152418A (en) * 1984-12-26 1986-07-11 Idemitsu Petrochem Co Ltd Manufacture of thermoplastic resin sheet
JPH11172021A (en) * 1997-12-16 1999-06-29 Agency Of Ind Science & Technol Aliphatic polyester film and production thereof
JP2001046094A (en) * 1999-08-10 2001-02-20 Kanegafuchi Chem Ind Co Ltd Separation and purification of poly-3-hydroxyalkanoic acid
JP2002060510A (en) * 2000-08-24 2002-02-26 National Institute Of Advanced Industrial & Technology Blended aliphatic polyester sheet and method for producing the same
JP2002371431A (en) * 2001-06-11 2002-12-26 Kanegafuchi Chem Ind Co Ltd Biodegradable fiber and method for producing the same
JP2003311824A (en) * 2002-02-21 2003-11-06 Japan Science & Technology Corp High strength film of polyhydroxyalkane and manufacturing method therefor
JP2004148775A (en) * 2002-11-01 2004-05-27 Toppan Printing Co Ltd Method for forming film of resin
JP2006045365A (en) * 2004-08-05 2006-02-16 Kaneka Corp Film composed of poly(3-hydroxy butylate-co-3-hydroxy hexanoate)

Also Published As

Publication number Publication date
JP2006168159A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP6015748B2 (en) Biodegradable polyester resin composition
JP6339939B2 (en) Polyester resin composition and molded article containing the resin composition
US20170198136A1 (en) Polyester resin composition, molded article formed from such resin composition, and method for manufacturing such molded article
Wen et al. Crystallization behaviors and morphology of biodegradable poly (3-hydroxybutyrate-co-4-hydroxybutyrate)
JP6780152B2 (en) Molecular weight control technology for PHA copolymer produced by halophilic bacteria
JP6592862B2 (en) Polyester fiber
Kushwah et al. RETRACTED ARTICLE: Towards understanding polyhydroxyalkanoates and their use
JP6401615B2 (en) Resin composition, resin molded body, and production method thereof
WO2006038373A1 (en) High-strength fiber of biodegradable aliphatic polyester and process for producing the same
JP5212183B2 (en) Resin composition and molded article using the same
JP5556010B2 (en) Thermoplastic resin molding method and molded article
JP4520843B2 (en) Method for producing biodegradable film
JP5509588B2 (en) Resin composition and molded article using the same
WO2008018567A1 (en) Biodegradable resin composition and molded body thereof
CN115160546A (en) Long-chain random copolyester resin easy to crystallize and adjustable in biodegradation rate and preparation method thereof
JP5556009B2 (en) Molding method and molded article of resin composition
JP6172795B2 (en) POLYESTER RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED BODY FORMED FROM SAME COMPOSITION
Zhang Development of polyhydroxybutyrate based blends for compostable packaging
JP2021091866A (en) Poly(3-hydroxybutyrate) resin tube and method for producing the same
JP2005041980A (en) Plasticizer for resin and resin composition containing the plasticizer, and molded form obtained by molding the resin composition
JP2006045365A (en) Film composed of poly(3-hydroxy butylate-co-3-hydroxy hexanoate)
US20230145613A1 (en) Poly(3-hydroxybutyrate)-based resin tube and method for producing same
JP3864188B2 (en) High strength and high modulus fiber of polyhydroxyalkanoic acid and method for producing the same
US20080200637A1 (en) Biodegradable resin sheet
JP6675612B2 (en) Method for producing biodegradable fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4520843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250