JP4519508B2 - Dissimilar joints of steel and aluminum - Google Patents

Dissimilar joints of steel and aluminum Download PDF

Info

Publication number
JP4519508B2
JP4519508B2 JP2004125931A JP2004125931A JP4519508B2 JP 4519508 B2 JP4519508 B2 JP 4519508B2 JP 2004125931 A JP2004125931 A JP 2004125931A JP 2004125931 A JP2004125931 A JP 2004125931A JP 4519508 B2 JP4519508 B2 JP 4519508B2
Authority
JP
Japan
Prior art keywords
steel
aluminum
thickness
spot welding
reaction layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004125931A
Other languages
Japanese (ja)
Other versions
JP2005305504A (en
Inventor
亘 漆原
実佳子 武田
秀和 井戸
淳 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004125931A priority Critical patent/JP4519508B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to CNB2005800123956A priority patent/CN100509247C/en
Priority to KR1020067021820A priority patent/KR100790638B1/en
Priority to US11/578,406 priority patent/US7951465B2/en
Priority to CA002563282A priority patent/CA2563282A1/en
Priority to DE602005026923T priority patent/DE602005026923D1/en
Priority to EP05734494A priority patent/EP1738854B1/en
Priority to PCT/JP2005/007554 priority patent/WO2005102586A1/en
Publication of JP2005305504A publication Critical patent/JP2005305504A/en
Application granted granted Critical
Publication of JP4519508B2 publication Critical patent/JP4519508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、自動車、鉄道車両などの輸送分野、機械部品、建築構造物等の構造部材などとして好適な、鋼材とアルミニウム材との異材接合体関する。 The present invention, automotive, transportation areas like railway vehicles, machine parts, suitable as such a structural member, such as a building structure, about the dissimilar materials bonded body of the steel and the aluminum material.

スポット溶接は、一般には同種の金属部材同士を接合するが、例えば鉄系材料(以下、単に鋼材と言う)とアルミニウム系材料(純アルミニウムおよびアルミニウム合金を総称したもので、以下、単にアルミニウム材と言う)という異種の金属部材の接合(異材接合体)に適用することができれば、軽量化等に著しく寄与することができる。 In general, spot welding joins metal members of the same type together. For example, an iron-based material (hereinafter simply referred to as a steel material) and an aluminum-based material (generally referred to as pure aluminum and an aluminum alloy). If it can be applied to the joining of dissimilar metal members (dissimilar materials joined body), it can significantly contribute to weight reduction and the like.

しかし、鋼材とアルミニウム材とを接合する場合、接合部に脆い金属間化合物が生成しやすいために信頼性のある高強度を有する接合部(接合強度)を得ることは非常に困難であった。したがって、従来では、これら異種接合体(異種金属部材)の接合にはボルトやリベット等による接合がなされているが、接合継手の信頼性、気密性、コスト等の問題がある。   However, when a steel material and an aluminum material are joined, it is very difficult to obtain a reliable joint having high strength (joint strength) because a brittle intermetallic compound is easily generated in the joint. Therefore, conventionally, these dissimilar joined bodies (dissimilar metal members) are joined by bolts, rivets or the like, but there are problems such as reliability, air tightness, and cost of the joint joint.

そこで、従来より、これら異種接合体のスポット溶接法について多くの検討がなされてきている。例えば、アルミニウム材と鋼材の間に、アルミニウム−鋼クラッド材をインサートする方法が提案されている(特許文献1、2参照)。また、アルミニウム材と鋼材の間に絶縁体粒子を挟む方法(特許文献3参照)や、部材に予め凹凸を付ける方法(特許文献4参照)なども提案されている。
特開平6−63763号公報(請求項) 特開平7−178563号公報(請求項) 特開平5−228643号公報(請求項) 特開平9−174249号公報(請求項)
Thus, many studies have been made on spot welding methods for these different types of joined bodies. For example, a method of inserting an aluminum-steel clad material between an aluminum material and a steel material has been proposed (see Patent Documents 1 and 2). In addition, a method of sandwiching insulator particles between an aluminum material and a steel material (see Patent Document 3), a method of applying unevenness to a member in advance (see Patent Document 4), and the like have been proposed.
Japanese Patent Laid-Open No. 6-63763 (Claims) JP-A-7-178563 (Claims) JP-A-5-228643 (Claims) JP-A-9-174249 (Claims)

しかしながら、これらいずれの方法も、単なるスポット溶接ではなく、スポット溶接ラインの効率を著しく阻害するため、現実的な方法ではない。例えば、多層でのスポット溶接が必要となったり、インサート材などの抵抗体を挟むための新たな設備を溶接ラインに組み込む必要や、部材の加工など別の工程が必要である。このため、溶接コストも高くなり、溶接条件が著しく限定されるなど、作業上の問題も多い。   However, any of these methods is not a mere spot welding and is not a practical method because it significantly hinders the efficiency of the spot welding line. For example, it is necessary to perform spot welding in multiple layers, to install a new facility for sandwiching a resistor such as an insert material in a welding line, or to perform another process such as processing of a member. For this reason, there are many work problems such as high welding costs and extremely limited welding conditions.

また、これらいずれの方法も、素材である鋼材側やアルミニウム材側の因子の影響を考慮しておらず、スポット溶接条件を改善しても、素材の種類や、素材側の因子のばらつきによって、接合強度には大きな差異が生じるため、再現性に乏しいという大きな問題もある。   In addition, none of these methods considers the influence of factors on the steel or aluminum material side, and even if spot welding conditions are improved, depending on the type of material and the variation in factors on the material side, There is a big problem that the reproducibility is poor because of the large difference in the bonding strength.

これらの方法とは別の手法として、鋼材側に、鋼材よりも融点の低いMg、Alなどの金属の、中間層やめっき皮膜を設けたりする方法が提案されている(特許文献5、6、7、8、9参照)。これらの方法は、前記インサートなどの特別な手段を付加することなく、鋼材とアルミニウム材との異材を、鋼材と鋼材との同種の接合のように、直接スポット溶接にて接合することを目指している。このため、共通して、低融点である膜や層を鋼材とアルミニウム材との間に形成することで、脆い界面反応層を低減したり、界面に凹凸を形成をさせ、接合強度を高めようとしている。
特開平4−143083号公報(請求項) 特開平4−251676号公報(請求項) 特開平7−24581号公報(請求項、図1) 特開平7−178565号公報(請求項、第1〜5頁、第8〜15頁、図1) 特開2003−145278号公報(請求項、第1〜6頁、図1)
As a method different from these methods, there has been proposed a method of providing an intermediate layer or a plating film of a metal such as Mg or Al having a melting point lower than that of the steel material on the steel material side (Patent Documents 5 and 6). 7, 8, 9). These methods aim to join different materials of steel and aluminum by direct spot welding like the same kind of joining of steel and steel without adding special means such as the insert. Yes. For this reason, by forming a low melting point film or layer between steel and aluminum, it is possible to reduce the brittle interface reaction layer or form irregularities at the interface to increase the bonding strength. It is said.
JP-A-4-143833 (Claims) JP-A-4-251676 (Claims) JP-A-7-24581 (Claims, FIG. 1) JP-A-7-178565 (Claims, pages 1-5, pages 8-15, FIG. 1) JP 2003-145278 (Claims, pages 1 to 6, FIG. 1)

鋼材とアルミニウム材との異材を、直接スポット溶接にて接合できれば、既存の鋼材と鋼材とのスポット溶接ラインを、溶接条件はともかく、そのまま用いることができるため、利点が大きい。   If different materials of steel and aluminum can be joined directly by spot welding, the spot welding line between existing steel and steel can be used as it is regardless of the welding conditions, which is advantageous.

しかし、上記低融点である膜や層を鋼材とアルミニウム材との間に形成する方法には、未だ一長一短があり、実用的とは言い難い。例えば、Mgなどの中間層を設けた場合(特許文献5)は、母材での破断であっても、接合強度が80kgf程度と不十分である。   However, the method for forming the low melting point film or layer between the steel material and the aluminum material still has advantages and disadvantages, and is not practical. For example, when an intermediate layer of Mg or the like is provided (Patent Document 5), the bonding strength is insufficient at about 80 kgf even when the base material is broken.

Alなどをコーティングした場合(特許文献6)は、剪断引張強度としては上記Mgなどの場合よりも高くなっているものの、ナゲットが形成されない。このため、微視的な結合によるアンカー効果のみでは、剪断引張強度は確保できても、十字引張強度(剥離強度)の方が確保できず、用途は、剪断引張しか生じない特殊な用途に限定される。   When Al or the like is coated (Patent Document 6), the nugget is not formed although the shear tensile strength is higher than that of the Mg or the like. For this reason, even if only the anchor effect by microscopic bonding can secure the shear tensile strength, the cross tensile strength (peel strength) cannot be ensured, and the application is limited to special applications that only produce shear tension. Is done.

鋼材にAlめっきした上で、抵抗発熱体をインサートする場合(特許文献7)は、やはり、抵抗発熱体を挟むための新たな設備を溶接ラインに組み込む必要や、部材の加工など別の工程が必要である。   When a resistance heating element is inserted after aluminum plating is applied to the steel material (Patent Document 7), it is still necessary to incorporate new equipment for sandwiching the resistance heating element in the welding line, and other processes such as processing of the member. is necessary.

中間層金属の融点を、鋼材とアルミニウム材との融点との関係で規定した特許文献8は、接合界面に形成される金属間化合物を無くし、鋼材とアルミニウム材との活性面を直接接合している。このため、十字引張強度(剥離強度)で母材での破断を得ている。しかし、ナゲットが形成されず、相互拡散による密着層(中間層)が無いため、上記特許文献6と同様に、微視的な結合によるアンカー効果のみとなる。したがって、母材破断によって、一定の十字引張強度を有するものの、接合強度は低くならざるを得ず、要求特性に見合った、十分な十字引張強度が確保できない。   Patent Document 8 that stipulates the melting point of the intermediate layer metal in relation to the melting point of the steel material and the aluminum material eliminates the intermetallic compound formed at the joining interface and directly joins the active surfaces of the steel material and the aluminum material. Yes. For this reason, a fracture in the base material is obtained with a cross tensile strength (peel strength). However, since no nugget is formed and there is no adhesion layer (intermediate layer) due to mutual diffusion, only the anchor effect due to microscopic bonding is obtained as in the case of Patent Document 6. Therefore, although the base material has a certain cross tensile strength due to the fracture of the base material, the joint strength is inevitably low, and a sufficient cross tensile strength commensurate with the required characteristics cannot be ensured.

更に、上記特許文献9は、アルミめっき鋼材とアルミニウム材との接合界面に形成される金属間化合物が存在する領域の面積を、スポット溶接による溶融部面積全体との関係で、一定値(60%)以下に規定している。これによって、Al-Fe金属間化合物の周囲に、アルミニウム材側から供給されるアルミニウム溶融部を形成させている。そして、このアルミニウム溶融部が、Al-Fe金属間化合物が介在することなしに、鋼材と直接金属結合することで、剪断引張強度における母材での破断と、延性破断エネルギー8J以上を得ている。   Further, the above-mentioned Patent Document 9 describes the area of the area where the intermetallic compound formed at the joint interface between the aluminum-plated steel material and the aluminum material is present, with a constant value (60% Stipulated below. As a result, an aluminum melting portion supplied from the aluminum material side is formed around the Al—Fe intermetallic compound. And this aluminum fusion part has obtained the fracture | rupture in the base material in a shear tensile strength, and the ductile fracture energy 8J or more by carrying out a metal bond directly with steel materials, without interposing an Al-Fe intermetallic compound. .

ただ、この方法でも、アルミめっき鋼材やアルミニウム材などの母材側の成分組成や、アルミめっきの成分組成や厚みなどの影響を考慮していない。これらは、後述する通り、ナゲットを形成させる場合の接合強度や、必要溶接入熱量に大きな影響を与える。このため、高い接合強度が安定して得られる再現性や、必要溶接入熱量増大によるアルミニウム材の減肉量増大に基づく接合強度低下など、未だ多くの課題を残している。   However, even this method does not consider the influence of the component composition on the base material side such as an aluminum-plated steel material or aluminum material, or the component composition or thickness of the aluminum plating. As will be described later, these greatly affect the bonding strength when forming the nugget and the required welding heat input. For this reason, many problems still remain, such as reproducibility in which high joint strength can be stably obtained and reduction in joint strength due to an increase in the amount of thinning of the aluminum material due to an increase in the required welding heat input.

本発明はかかる課題を解決するためになされたものであり、鋼材とアルミニウム材との異材を、直接スポット溶接にて接合するに際し、再現性良く、また、アルミニウム材の減肉量増大など新たな問題が生じることなく、接合強度の高いスポット溶接をなしうる、鋼材とアルミニウム材との異材接合体提供するものである。 The present invention has been made in order to solve such problems, and when joining different materials of steel and aluminum by direct spot welding, the reproducibility is good, and a new amount of reduction in the thickness of the aluminum is increased. The present invention provides a dissimilar material joined body of a steel material and an aluminum material that can perform spot welding with high joint strength without causing problems.

上記目的を達成するための、本発明における鋼材とアルミニウム材との異材接合体の要旨は、鋼材とアルミニウム材とをスポット溶接にて接合した異材接合体であって、前記鋼材がMn:0.1〜3.0質量%を含み、板厚t1が0.3〜2.5mmの範囲であるとともに、前記アルミニウム材がSi:0.4〜2質量%を含み、板厚t2が0.5〜2.5mmの範囲であり、前記鋼材またはアルミニウム材の接合側表面に、3〜15μmの膜厚で、融点が350〜950℃のZn及び/またはAlからなるめっき皮膜を予め有し、前記スポット溶接におけるナゲット径が、前記板厚t2との関係で、4×t2 0.5〜7×t2 0.5の範囲であり、且つ、前記スポット溶接部におけるアルミニウム材の最小残存板厚が、前記元の板厚t 2 の50%以上であることとする。 In order to achieve the above object, the gist of the dissimilar material joined body of the steel material and the aluminum material in the present invention is a dissimilar material joined body obtained by joining the steel material and the aluminum material by spot welding, and the steel material is Mn: 0.1 to 3.0% by mass, the thickness t 1 is in the range of 0.3-2.5 mm, the aluminum material contains Si: 0.4-2% by mass, the thickness t 2 is in the range of 0.5-2.5 mm, It has a plating film made of Zn and / or Al with a film thickness of 3 to 15 μm and a melting point of 350 to 950 ° C. on the joining side surface of the steel or aluminum material, and the nugget diameter in the spot welding is the plate thickness in relation to t 2, 4 in the range of × t 2 0.5 to 7-× t 2 0.5, and the minimum remaining sheet thickness of the aluminum material in the spot weld, more than 50% of the original thickness t 2 and it is.

本発明者らは、上記従来技術の問題点を解決するために、スポット溶接による異材接合の際の素材条件の影響、特に、鋼材やアルミニウム材などの母材側の成分組成や板厚、溶接前に予め設けるめっき皮膜の融点、成分、膜厚などの因子と、接合の際に生成する界面反応層との関係に着目して鋭意研究を重ねた。この結果、これらの因子が、ナゲットを形成させる場合の接合強度に大きな影響を与えることを知見した。言い換えると、これらの因子を制御すれば、スポット溶接における異材接合の接合強度が向上することを知見した。   In order to solve the above-mentioned problems of the prior art, the inventors of the present invention have the effect of material conditions when joining different materials by spot welding, in particular, the component composition and thickness on the base material side such as steel and aluminum, welding, etc. Intensive research has been conducted focusing on the relationship between factors such as the melting point, components, and film thickness of the plating film provided in advance and the interface reaction layer formed during bonding. As a result, it has been found that these factors have a great influence on the bonding strength when forming the nugget. In other words, it has been found that if these factors are controlled, the joint strength of the dissimilar material joint in spot welding is improved.

本発明では、これらの因子を制御し、接合界面にて鋼材の溶融を制御することにより、界面反応層を最適厚さに抑制し、かつチリの発生を最小量に抑える。また、それに加えて、鋼材のMn含有量や、アルミ材のSi含有量を制御することにより、界面反応層中にMnやSiを濃化させて、界面反応層が容易に破壊されない金属間化合物層を形成する。   In the present invention, by controlling these factors and controlling the melting of the steel material at the joining interface, the interface reaction layer is suppressed to the optimum thickness, and generation of dust is suppressed to a minimum amount. In addition, by controlling the Mn content of the steel material and the Si content of the aluminum material, the Mn and Si are concentrated in the interfacial reaction layer, so that the interfacial reaction layer is not easily destroyed. Form a layer.

一般に、高い接合強度にてスポット溶接するには、ナゲットの形成を促進すればよく、ナゲット径が大きいほど剪断強度および十字引張強度ともに高くなることが知られている。また、ナゲット径は溶接の際の入熱量と関係があり、溶接の際の電流量が高いほど、また時間が長いほどナゲット径が大きくなる。このため、一般には、入熱量にてナゲット径を制御することによって、ナゲットの形成時に、界面拡散層を形成させ、接合強度の高い接合体を得るようにしている。勿論、一方でナゲット径が大きくなりすぎると、被溶接材料の表面まで溶融が達してチリができるため、適正なナゲット径を得ることが重要となる。   In general, in order to perform spot welding with a high joint strength, it is only necessary to promote the formation of a nugget, and it is known that the larger the nugget diameter, the higher the shear strength and the cross tensile strength. The nugget diameter is related to the amount of heat input during welding, and the nugget diameter increases as the amount of current during welding increases and the time increases. For this reason, generally, by controlling the nugget diameter by the amount of heat input, an interface diffusion layer is formed at the time of nugget formation to obtain a bonded body with high bonding strength. Of course, if the nugget diameter becomes too large, melting reaches the surface of the material to be welded and dust is formed, so it is important to obtain an appropriate nugget diameter.

しかしながら、鋼材とアルミニウム材との異材を接合する場合、鋼はアルミニウムと比較して融点、電気抵抗が高く、熱伝導率が小さいため、鋼側の発熱が大きくなる。このため、まず低融点のアルミニウム材が溶融し、次に鋼材の表面が溶融する。この結果として界面にて、Al-Fe系の脆い金属間化合物層が形成するため、高い接合強度は得られない。また、アルミニウム材の表面まで溶融が達してチリができると、アルミニウム材の減肉量が増大し、これによっても、高い接合強度が得られない。   However, when joining dissimilar materials of steel and aluminum, steel has a higher melting point and electric resistance than aluminum, and its thermal conductivity is small, so the heat generation on the steel side increases. For this reason, the low melting point aluminum material is first melted, and then the surface of the steel material is melted. As a result, an Al—Fe-based brittle intermetallic compound layer is formed at the interface, so that high bonding strength cannot be obtained. In addition, when the melting reaches the surface of the aluminum material and dust is formed, the amount of thinning of the aluminum material increases, and this also prevents high bonding strength from being obtained.

これに対して、溶融したアルミニウムと接触する鋼材との間に中間層を介在させることで、鋼とアルミの金属間化合物である界面反応層が形成する時間を制御し、適正な界面反応層厚さとすることができる。この中間層として、鋼材またはアルミニウム材表面に、アルミニウム材と融点が近いめっき皮膜を、溶接前に予め施す。これが前記した鋼材側に低融点のめっき皮膜を施す従来の方法である。   On the other hand, by interposing an intermediate layer between the molten aluminum and the steel material in contact with the steel, the time required for the interfacial reaction layer, which is an intermetallic compound of steel and aluminum, to be controlled, the appropriate interfacial reaction layer thickness It can be. As this intermediate layer, a plating film having a melting point close to that of the aluminum material is applied in advance to the surface of the steel material or aluminum material before welding. This is a conventional method of applying a low melting point plating film on the steel material side described above.

ただ、このめっき皮膜を溶接前に予め施すなど、中間層を介在させることのみでは、素材条件やスポット溶接条件の変動によっては、界面反応層が容易に破壊されるような脆い金属間化合物層が形成される可能性がある。   However, a brittle intermetallic compound layer that easily breaks the interfacial reaction layer can be obtained depending on changes in the material conditions and spot welding conditions only by interposing an intermediate layer, such as applying this plating film in advance before welding. It may be formed.

これに対して、本発明異材接合体では、前記した通り、鋼材のMn含有量や、アルミ材のSi含有量を制御し、界面反応層中にMnやSiを濃化させて、脆い金属間化合物層の形成を抑制して、界面反応層が容易に破壊されない金属間化合物層を形成する。   On the other hand, in the dissimilar material joined body of the present invention, as described above, the Mn content of the steel material and the Si content of the aluminum material are controlled, and Mn and Si are concentrated in the interfacial reaction layer, so The formation of the compound layer is suppressed to form an intermetallic compound layer in which the interface reaction layer is not easily destroyed.

また、本発明異材接合体では、鋼材やアルミニウム材などの母材側の板厚、溶接前に予め設けるめっき皮膜の融点、成分、膜厚などの因子を制御して、接合界面にて鋼材の溶融を制御することにより、界面反応層を最適厚さに抑制し、大きいナゲット径を得つつ、かつチリの発生を最小量に抑える。   Further, in the dissimilar material joined body of the present invention, by controlling factors such as the thickness of the base material side such as steel or aluminum, the melting point of the plating film provided in advance before welding, the component, the film thickness, etc. By controlling the melting, the interface reaction layer is suppressed to an optimum thickness, and a large nugget diameter is obtained, and generation of dust is suppressed to a minimum amount.

以上のように、本発明は、鋼材とアルミニウム材との異材を、直接スポット溶接にて接合するに際し、再現性良く、また、アルミニウム材の減肉量増大など新たな問題が生じることなく、接合強度の高いスポット溶接をなしうる効果を有する。   As described above, in the present invention, when different materials of a steel material and an aluminum material are directly joined by spot welding, the reproducibility is improved, and a new problem such as an increase in the thickness reduction of the aluminum material does not occur. It has the effect of enabling spot welding with high strength.

以下に、本発明の実施態様と、本発明の各要件の限定理由とを具体的に説明する。   Hereinafter, embodiments of the present invention and reasons for limiting the requirements of the present invention will be specifically described.

(異種接合体)
図1に本発明で規定する異種接合体の一態様を断面図で示す。図1において、3が鋼材(鋼板)1とアルミニウム材(アルミニウム合金板)2とをスポット溶接にて接合した異材接合体である。4は鋼材1の接合側表面に予め設けためっき皮膜である。なお、めっき皮膜4は、その目的からして、鋼材またはアルミニウム材のいずれかの接合側表面に少なくとも設けるが、このような接合側表面の片側(片面)だけではなく、接合側とは反対側の表面に(鋼材またはアルミニウム材の両面に)設けても勿論良い。5はスポット溶接における界面反応層6を有するナゲットで、図中に水平方向に矢印で示すナゲット径を有する。t1は鋼材の板厚、t2はアルミニウム材2の板厚、Δtはスポット溶接による接合後のアルミニウム材の最小残存板厚を示す。
(Heterogeneous)
FIG. 1 is a cross-sectional view showing an embodiment of a heterogeneous joined body defined by the present invention. In FIG. 1, 3 is a dissimilar material joined body in which a steel material (steel plate) 1 and an aluminum material (aluminum alloy plate) 2 are joined by spot welding. Reference numeral 4 denotes a plating film provided in advance on the joining side surface of the steel material 1. In addition, for the purpose, the plating film 4 is provided at least on the surface of the joining side of either the steel material or the aluminum material. Of course, it may be provided on the surface (on both surfaces of steel or aluminum). Reference numeral 5 denotes a nugget having an interface reaction layer 6 in spot welding, and has a nugget diameter indicated by an arrow in the horizontal direction in the drawing. t 1 is the thickness of the steel material, t 2 is the thickness of the aluminum material 2, and Δt is the minimum remaining thickness of the aluminum material after spot welding.

この図1は、後述する実施例における発明例のように、ナゲット径を確保しつつ、チリの発生を抑制してアルミニウム材の最小残存板厚を保持し、さらに鋼材の溶融を最小限に抑えた接合状態を示している。   This FIG. 1 shows the nugget diameter as well as the example of the invention described later, while suppressing the generation of dust and maintaining the minimum remaining thickness of the aluminum material, and further minimizing the melting of the steel material. The joined state is shown.

(鋼材)
本発明においては、使用する鋼材の形状を特に限定するものではなく、構造部材に汎用される、あるいは構造部材用途から選択される、鋼板、鋼形材、鋼管などの適宜の形状、材料が使用可能である。ただ、本発明では、鋼材のMn含有量と板厚t1とを規定する。即ち、本発明では、接合強度を向上させるために、鋼材がMn:0.1〜3.0質量%を含み、板厚t1が0.3〜2.5mmの範囲であることが必要である。
(Steel)
In the present invention, the shape of the steel material to be used is not particularly limited, and an appropriate shape and material such as a steel plate, a steel shape member, and a steel pipe, which are generally used for structural members or selected from structural member uses, are used. Is possible. However, in the present invention, the Mn content of the steel material and the plate thickness t 1 are defined. That is, in the present invention, in order to improve the bonding strength, the steel is Mn: 0.1 to 3.0 include mass%, the plate thickness t 1 is required to be in the range of 0.3 to 2.5 mm.

(鋼材のMn量)
鋼材中のMnは、後述するアルミ材中のSiとともに、接合界面に存在することにより、溶融したアルミニウムと鋼材との接触を遅らせるバリア効果がある。更に、界面反応層中に、Siとともに濃化して、脆い金属間化合物の形成を最小限に抑制し、界面反応層が容易に破壊されない金属間化合物層を形成する効果がある。鋼材中のMn含有量が0.1質量%未満では、この効果が得られず、界面反応層の形成を抑制することができず、接合強度が低下する。一方、鋼材中のMn含有量が3.0質量%を超えた場合、靭性が劣化して溶接部周辺にて割れやすくなり、接合強度が低下する。したがって、鋼材中のMn含有量は、0.1〜3.0質量%、好ましくは0.5〜3.0質量%、より好ましくは1〜2.5質量%の範囲とする。
(Mn content of steel)
Mn in the steel material has a barrier effect that delays the contact between the molten aluminum and the steel material by being present at the bonding interface together with Si in the aluminum material described later. Furthermore, it has the effect of concentrating with Si in the interfacial reaction layer, minimizing the formation of brittle intermetallic compounds and forming an intermetallic compound layer in which the interfacial reaction layer is not easily destroyed. If the Mn content in the steel material is less than 0.1% by mass, this effect cannot be obtained, the formation of the interface reaction layer cannot be suppressed, and the bonding strength decreases. On the other hand, when the Mn content in the steel material exceeds 3.0% by mass, the toughness is deteriorated and the steel is easily cracked around the welded portion, so that the joint strength is lowered. Therefore, the Mn content in the steel material is in the range of 0.1 to 3.0 mass%, preferably 0.5 to 3.0 mass%, more preferably 1 to 2.5 mass%.

本発明では、上記Mn以外の鋼材の成分組成、組織を限定するものではないが、上記鋼材の強度を得るためには高張力鋼(ハイテン)であることが好ましい。この点、高張力鋼の基本成分として、上記Mn以外に、C:0.05〜1%、Si:0.5〜3%を含むことが好ましい。なお、更に、Cr:0〜1%、Mo:0〜0.2%、Nb:0〜0.1%、V:0〜0.1%、Ti:0〜0.1%の一種または二種以上を、必要により選択的に含有させた鋼も適用できる。Cr、Mo、Nbは焼き入れ性を高めて強度を向上させ、V、Tiは析出硬化によって強度を向上させる。しかしながら、これら元素の過度の添加は、溶接部周辺の靭性を低下させ、ナゲット割れが生じやすくなる。   In the present invention, the component composition and structure of the steel material other than Mn are not limited, but in order to obtain the strength of the steel material, high-tensile steel (high tensile) is preferable. In this respect, it is preferable that C: 0.05 to 1% and Si: 0.5 to 3% are contained as basic components of the high-tensile steel in addition to the above Mn. Furthermore, one or two or more of Cr: 0 to 1%, Mo: 0 to 0.2%, Nb: 0 to 0.1%, V: 0 to 0.1%, Ti: 0 to 0.1% are optionally selected. Steel contained in can also be applied. Cr, Mo, and Nb improve hardenability and improve strength, and V and Ti improve strength by precipitation hardening. However, excessive addition of these elements reduces the toughness around the weld and tends to cause nugget cracks.

(鋼材の板厚)
また、本発明では、鋼材の板厚t1が0.3〜2.5mmである接合体であることが必要である。鋼材の板厚t1が0.3mm未満の場合、前記した構造部材や構造材料として必 要な強度や剛性を確保できず不適正である。また、それに加えて、スポット溶接による加圧によって、鋼材の変形が大きく、酸化皮膜が容易に破壊されるため、アルミニウムとの反応が促進される。その結果、金属間化合物が形成しやすくなる。一方、2.5mmを越える場合は、前記した構造部材や構造材料としては、他の接合 手段が採用されるため、スポット溶接を行って接合する必要性が少ない。このため、鋼材の板厚t1を2.5mmを超えて厚くする必要性はない。
(Steel thickness)
In the present invention, it is necessary that the thickness t 1 of the steel is a conjugate is 0.3 to 2.5 mm. If the thickness t 1 of the steel product is less than 0.3 mm, it can not be ensured the necessary strength and rigidity as the structure member or structural material is improper. In addition, since the steel material is largely deformed by pressurization by spot welding and the oxide film is easily destroyed, the reaction with aluminum is promoted. As a result, an intermetallic compound is easily formed. On the other hand, when the length exceeds 2.5 mm, other joining means are employed as the structural member or structural material described above, and therefore, there is little need to perform joint by spot welding. For this reason, there is no need to increase the thickness t 1 of the steel material beyond 2.5 mm.

(鋼材の強度)
なお、鋼材の強度については、本発明では制限するものではないが、引張強度が400MPa以上の高強度、更には500MPa以上の高強度であることが好ましい。引張強度が400MPa未満の場合、加圧によって鋼材の変形が大きく、アルミニウムとの反応が促進される結果、金属間化合物が形成しやすくなる。また、軟鋼では、一般に低合金鋼が多く、FeとAlの拡散が容易となり、脆い金属間化合物が形成しやすい。更には、構造部材としての接合体の要求剛性、強度を満足した上で、比較的薄肉の上記板厚t1として、軽量化するためにも、引張強度が400MPa以上、好ましくは500MPa以上の高強度であることが好ましい。例えば、軟鋼など、鋼材の引張強度が低い場合、比較的薄肉の上記板厚t1とした上で、構造部材としての接合体の要求剛性、強度を満足し、軽量化することが難しくなる。
(Strength of steel)
The strength of the steel material is not limited in the present invention, but the tensile strength is preferably a high strength of 400 MPa or more, and more preferably a high strength of 500 MPa or more. When the tensile strength is less than 400 MPa, the deformation of the steel material is increased by pressurization, and the reaction with aluminum is promoted. As a result, an intermetallic compound is easily formed. Mild steel is generally low-alloy steel, which facilitates diffusion of Fe and Al, and tends to form brittle intermetallic compounds. Furthermore, the tensile strength is 400 MPa or more, preferably 500 MPa or more in order to reduce the weight of the relatively thin plate thickness t 1 while satisfying the required rigidity and strength of the joined body as a structural member. The strength is preferred. For example, when the tensile strength of a steel material such as mild steel is low, it is difficult to reduce the weight by satisfying the required rigidity and strength of the joined body as a structural member after setting the plate thickness t 1 to be relatively thin.

(アルミニウム材)
本発明で用いるアルミニウム材は、その合金の種類や形状を特に限定するものではなく、各構造用部材としての要求特性に応じて、汎用されている板材、形材、鍛造材、鋳造材などが適宜選択される。ただ、本発明では、アルミニウム材鋼材のSi含有量と板厚t2とを規定する。即ち、本発明では、接合強度を向上させるために、アルミニウム材がSi:0.4〜2質量%を含み、板厚t2が0.5〜2.5mmの範囲であることが必要である。
(Aluminum material)
The aluminum material used in the present invention is not particularly limited in the type and shape of the alloy, and depending on the required characteristics as each structural member, commonly used plate materials, profiles, forging materials, casting materials, etc. It is selected appropriately. However, the present invention defines a Si content of the aluminum material steel and the plate thickness t 2. That is, in the present invention, in order to improve the bonding strength, it is necessary that the aluminum material contains Si: 0.4 to 2 % by mass and the plate thickness t2 is in the range of 0.5 to 2.5 mm.

(アルミニウム材のSi量)
アルミニウム材中のSiは、前記した鋼材中のMnとともに、接合界面に存在することにより、溶融したアルミニウムと鋼材との接触を遅らせるバリア効果がある。更に、界面反応層中に、Mnとともに濃化して、脆い金属間化合物の形成を最小限に抑制し、界面反応層が容易に破壊されない金属間化合物層を形成する効果がある。アルミニウム材中のSi含有量が0.4質量%未満では、この効果が得られず、界面反応層の形成を抑制することができず、接合強度が低下する。一方、アルミニウム材中のSi含有量が2質量%を超えた場合、靭性が劣化して、ナゲット周辺にて割れやすくなり、接合強度が低下する。したがって、アルミニウム材中のSi含有量は、0.4〜2質量%の範囲とする。
(Si content of aluminum material)
Si in the aluminum material, together with Mn in the steel material described above, has a barrier effect that delays the contact between the molten aluminum and the steel material by being present at the bonding interface. Furthermore, it has the effect of concentrating with Mn in the interfacial reaction layer, minimizing the formation of brittle intermetallic compounds and forming an intermetallic compound layer in which the interfacial reaction layer is not easily destroyed. If the Si content in the aluminum material is less than 0.4% by mass, this effect cannot be obtained, the formation of the interface reaction layer cannot be suppressed, and the bonding strength decreases. On the other hand, when the Si content in the aluminum material exceeds 2% by mass, the toughness is deteriorated, and it becomes easy to crack around the nugget, and the bonding strength is lowered. Therefore, the Si content in the aluminum material is in the range of 0.4 to 2% by mass.

(アルミニウム材の板厚)
本発明で使用するアルミニウム材の板厚t2は0.5〜2.5mmの範囲とする。アルミニウム材の板厚t2が0.5mm未満の場合、構造材料としての強度が不足して不適切であるのに加え、ナゲット径が得られず、アルミニウム材料表面まで溶融が達しやすくチリができやすいため、高い接合強度が得られない。一方、アルミニウム材の板厚t2が2.5mmを越える場合は、前記した鋼材の板厚の場合と 同様に、構造部材や構造材料としては他の接合手段が採用されるため、スポット溶接を行って接合する必要性が少ない。このため、アルミニウム材の板厚t2を2.5mmを超えて厚くする必要性はない。
(Aluminum thickness)
Thickness t 2 of the aluminum material used in the present invention is in the range of 0.5 to 2.5 mm. If the thickness t 2 of the aluminum material is less than 0.5 mm, in addition to the strength as a structural material is inappropriate missing, not nugget diameter can be obtained easily can dust easily melting reaches an aluminum material surface Therefore, high bonding strength cannot be obtained. On the other hand, if it exceeds the thickness t 2 is 2.5mm aluminum material, as in the case of the thickness of the above-described steel, because other joining means are employed as a structural member or structural material, subjected to spot welding Less need to be joined. Therefore, there is no need to increase the plate thickness t 2 of the aluminum material beyond 2.5 mm.

(アルミニウム材の種類)
アルミニウム材の強度についても、本発明では制限するものではないが、上記鋼材の場合と同様に、加圧による変形を抑えるために、強度(耐力)が高い方が望ましい。また、構造部材としての接合体の要求剛性、強度を満足した上で、比較的薄肉の上記板厚t2として、軽量化するためにも、強度(耐力)が高い方が望ましい。この点、アルミニウム合金の中でも強度が高く、この種構造用部材として汎用されている、A5000系、A6000系などの使用が最適である。
(Type of aluminum material)
The strength of the aluminum material is not limited in the present invention, but it is desirable that the strength (yield strength) is high in order to suppress deformation due to pressure, as in the case of the steel material. Also, in terms of satisfying the requirements stiffness, strength of the bonded body as a structural member, relatively as the thickness t 2 of the thin-walled, in order to lighten, who strength (yield strength) is high is preferable. In this respect, the use of A5000 series, A6000 series, etc., which are high in strength among aluminum alloys and are widely used as this kind of structural member, is optimal.

(めっき皮膜)
本発明では、前記した鋼材またはアルミニウム材のいずれかの接合側表面に、3〜15μmの膜厚で、融点が350〜950℃のZn及び/またはAlからなるめっき皮膜を、溶接前に予め設ける。鋼材とアルミニウム材との中間層となるよう、アルミニウム材と融点が近く、かつ適正な膜厚のめっき皮膜を施すことによって、鋼とアルミの金属間化合物である界面反応層が形成する時間を制御し、0.1〜5μmの適正な界面反応層厚さとすることができる。
(Plating film)
In the present invention, a plating film made of Zn and / or Al having a film thickness of 3 to 15 μm and a melting point of 350 to 950 ° C. is previously provided on the joining side surface of either the steel material or the aluminum material described above before welding. . Control the time for the interfacial reaction layer, which is an intermetallic compound of steel and aluminum, by applying a plating film with an appropriate film thickness that is close to the melting point of the aluminum material so that it becomes an intermediate layer between the steel and aluminum materials. In addition, an appropriate interfacial reaction layer thickness of 0.1 to 5 μm can be obtained.

この点、めっき皮膜の膜厚が3μm未満、あるいはめっき皮膜の融点が350℃未満の場合は、めっき皮膜が接合初期に系外に溶融排出してしまい、脆い界面反応層の形成を抑制できない。逆に、めっき皮膜の膜厚が15μm越え、あるいはめっき皮膜の融点が950℃を越えた場合は、めっき皮膜の系外への溶融排出に大きな溶接入熱量が必要となる。このため、アルミニウム材の溶融量が増加し、チリの発生によりアルミニウムの減肉量が大きくなる。したがって、めっき皮膜の膜厚は3〜15μm、好ましくは5〜10μmの範囲、めっき皮膜の融点は350〜950℃、好ましくは400〜900℃、更に好ましくはアルミの融点以上で900℃以下の範囲とする。 In this regard, when the thickness of the plating film is less than 3 μm or the melting point of the plating film is less than 350 ° C., the plating film melts and discharges out of the system at the initial stage of bonding, and the formation of a brittle interface reaction layer cannot be suppressed. On the contrary, when the thickness of the plating film exceeds 15 μm or the melting point of the plating film exceeds 950 ° C., a large amount of welding heat input is required for melting and discharging the plating film to the outside of the system. For this reason, the melting amount of the aluminum material is increased, and the amount of thinning of the aluminum is increased due to generation of dust. Therefore, the thickness of the plating film is in the range of 3 to 15 μm, preferably in the range of 5 to 10 μm, the melting point of the plating film is in the range of 350 to 950 ° C., preferably 400 to 900 ° C., and more preferably in the range of the melting point of aluminum to 900 ° C. or less. And

なお、めっき皮膜の膜厚は、めっき後のサンプルを切断し、樹脂に埋め込み、研磨をし、SEM観察を行って求める。この際には、2000倍の視野にて、3点厚さを測定し、これらを平均化して求めるのが好ましい。 The film thickness of the plating film is obtained by cutting a sample after plating, embedding in a resin, polishing, and performing SEM observation. In this case, it is preferable to measure the three-point thickness with a field of view of 2000 times and average them.

上記のような条件を満足するめっきの種類としては、鋼材に施す場合には鋼材の耐食性を確保でき、また、鋼材にもアルミニウム材にも容易にめっきが可能であることから、ZnやAlを主成分としためっき皮膜、好ましくは、Zn、Alの一種または二種を合計で80%以上含むめっき皮膜とすることが望ましい。 As for the types of plating that satisfy the above conditions, when applied to steel, the corrosion resistance of the steel can be secured, and since plating can be easily applied to both steel and aluminum, Zn and Al are used. A plating film containing the main component, preferably a plating film containing at least 80% in total of one or two of Zn and Al is desirable.

ZnやAlを主成分としためっき皮膜を、予め鋼材側に設けておけば、構造部材としての鋼材の耐食性も向上できる。鋼材は通常、塗装を施して使用されるが、例え、この塗装に傷が入っても、めっき皮膜中のZnやAlが優先的に腐食されるために、母材である鋼材を保護することができる。さらに、鋼材とアルミ材との電位差を小さくすることから、異種接合体での課題の一つである異種金属の接触腐食をも抑制することができる。 If a plating film mainly composed of Zn or Al is provided on the steel material side in advance, the corrosion resistance of the steel material as the structural member can be improved. Steel is usually used with a paint applied, but even if this paint is scratched, Zn and Al in the plating film are preferentially corroded, so the steel that is the base material must be protected. Can do. Furthermore, since the potential difference between the steel material and the aluminum material is reduced, contact corrosion of dissimilar metals, which is one of the problems in dissimilar joints, can be suppressed.

このようなZnやAlを主成分としためっき皮膜の種類は、例えば、Al、Al-Zn、Al-Si、Zn、Zn-Feなどが該当する。なお、本発明では、界面反応層中にMnやSiを濃化させて、脆い金属間化合物層の形成を抑制して、界面反応層が容易に破壊されない金属間化合物層を形成する。このためには、予め設けるめっき側に、SiやMnを含有する方が効率が良いようにみえる。この点、界面反応層中にMnやSiを濃化させようとすれば、ZnやAlを主成分としためっき中に、SiやMnを5質量%以上含有させる必要がある。しかし、一方で、めっき中のSiやMnが多すぎると、却って、ナゲット周辺で割れが生じやすくなる。この傾向はめっき中にMnを含む場合に、特に顕著であり、この意味で、Al-Siめっき皮膜以外の、MnやSiを含むZnやAlを主成分とするめっきは実用的ではない。言い換えると、この点からも、鋼材のMn含有量やアルミ材のSi含有量の制御で、界面反応層中にMnやSiを濃化させることの意義が分かる。 Examples of the type of plating film mainly composed of Zn or Al include Al, Al—Zn, Al—Si, Zn, and Zn—Fe. In the present invention, Mn and Si are concentrated in the interface reaction layer to suppress the formation of a brittle intermetallic compound layer, thereby forming an intermetallic compound layer in which the interface reaction layer is not easily destroyed. For this purpose, it seems that it is more efficient to contain Si or Mn on the plating side provided in advance. In this regard, if Mn and Si are to be concentrated in the interface reaction layer, it is necessary to contain 5% by mass or more of Si and Mn in the plating containing Zn or Al as a main component. On the other hand, however, if there is too much Si or Mn in the plating, cracks are likely to occur around the nugget. This tendency is particularly noticeable when Mn is contained in the plating. In this sense, plating containing Zn or Al containing Mn or Si as the main component other than the Al—Si plating film is not practical. In other words, this point also shows the significance of concentrating Mn and Si in the interface reaction layer by controlling the Mn content of the steel material and the Si content of the aluminum material.

これらの事項も踏まえ、本発明のめっき皮膜には、上記ZnやAlを主成分としためっき皮膜の内でも、特に88質量%以上のZnを含む亜鉛めっき皮膜が推奨される。また、その上で、更に8〜12質量%のFeを含む亜鉛めっき皮膜が鋼材の表面に施されていることが推奨される。   In consideration of these matters, among the plating films mainly composed of Zn or Al, a zinc plating film containing 88% by mass or more of Zn is particularly recommended for the plating film of the present invention. Further, it is recommended that a galvanized film containing 8 to 12% by mass of Fe is further applied to the surface of the steel material.

88質量%以上のZnを含む亜鉛めっき皮膜が鋼材表面に施されると、特に鋼材の耐食性が高く、亜鉛めっき皮膜は、融点を350〜950℃に制御しやすい。また、88質量%以上のZnを含む上に、更に8〜12質量%のFeを含む亜鉛めっきは、めっき皮膜の溶融排出時に残るFe成分とアルミ材とが効率よく反応する。これによって、短時間にて界面反応層の形成を制御し、0.1〜5μmの適正な界面反応層厚さとすることができる。もちろん耐食性も高く、異種金属接触腐食も抑制することができる。   When a galvanized film containing Zn of 88% by mass or more is applied to the steel surface, the corrosion resistance of the steel material is particularly high, and the galvanized film can easily control the melting point to 350 to 950 ° C. In addition, in the case of zinc plating containing 88% by mass or more of Zn and further containing 8 to 12% by mass of Fe, the Fe component remaining at the time of melting and discharging the plating film reacts efficiently with the aluminum material. Thereby, formation of the interface reaction layer can be controlled in a short time, and an appropriate interface reaction layer thickness of 0.1 to 5 μm can be obtained. Of course, the corrosion resistance is also high, and contact corrosion of different metals can be suppressed.

なお、めっき皮膜に、上記した成分以外の他の成分も含有しても良い。但し、融点範囲が本発明範囲から外れないように、また、耐食性が劣らないように、更には、ナゲット周辺での割れなどの溶接不良が生じないような、添加成分、添加量とする。   In addition, you may contain other components other than an above-described component in a plating film. However, in order to prevent the melting point range from deviating from the range of the present invention and to prevent the corrosion resistance from being inferior, the additive component and the addition amount are set so as not to cause poor welding such as cracking around the nugget.

鋼材やアルミニウム材のめっき方法については、本発明では制限するものではないが、既存の湿式、乾式などのめっき方法を用いることが可能である。特に、鋼材の亜鉛めっきにおいては、電気めっきや溶融めっき、溶融めっき後合金化処理を行う方法などが推奨される。また、アルミニウム材の亜鉛めっきにおいては、電気めっきや亜鉛置換めっきなどが例示される。   The plating method of the steel material or aluminum material is not limited in the present invention, but an existing wet or dry plating method can be used. In particular, in the galvanization of steel materials, methods such as electroplating, hot dipping, and alloying after hot dipping are recommended. Moreover, in galvanization of an aluminum material, electroplating, zinc displacement plating, etc. are illustrated.

以上、スポット溶接の材料側の必須乃至好ましい条件について説明したが、以下に、スポット溶接部の必須乃至好ましい条件について説明する。 Although the essential or preferable conditions on the material side of spot welding have been described above, the essential or preferable conditions of the spot welded part will be described below.

(ナゲット径)
スポット溶接におけるナゲット径は、アルミニウム材の板厚t2との関係で、4 ×t2 0.5〜7×t2 0.5の範囲となるようにスポット接合する。言い換えると、ナゲ ット径が4×t2 0.5〜7×t2 0.5の範囲となるようにスポット溶接条件を選定することが必要である。
(Nugget diameter)
Spot welding is performed so that the nugget diameter in spot welding is in the range of 4 × t 2 0.5 to 7 × t 2 0.5 in relation to the plate thickness t 2 of the aluminum material. In other words, it is necessary to select the spot welding conditions so that the nugget diameter is in the range of 4 × t 2 0.5 to 7 × t 2 0.5 .

従来から、同種の金属材料をスポット溶接する際には、金属材料tに対して、5×t0.5とすることが強度的にも作業性からみても、経済性からみても最適であるとされている。しかし、本発明のような異種金属材料同士の接合については報告が無い。この点、本発明者らは、スポット溶接におけるナゲット径が、アルミニウム材の板厚t2との関係で、4×t2 0.5〜7×t2 0.5の範囲であると十分な接合強度が得られ、さらに作業性、経済性ともに優れることを、新たに明らかにした。
即ち、本発明のような異種金属材料同士の接合の場合、最適ナゲット径は、アルミニウム材の板厚に依存しており、鋼材の板厚の影響は無視できるほど小さい。また、同種の金属材料のスポット溶接時の最適ナゲット径よりも大きい方に広く最適範囲が存在する。
Conventionally, when spot-welding the same kind of metal material, it is said that 5 × t 0.5 is optimal for the metal material t in terms of strength, workability, and economy. ing. However, there is no report about joining of dissimilar metal materials like this invention. In this regard, the present inventors have obtained a sufficient joint strength when the nugget diameter in spot welding is in the range of 4 × t 2 0.5 to 7 × t 2 0.5 in relation to the thickness t 2 of the aluminum material. In addition, it was newly clarified that both workability and economy are excellent.
That is, in the case of joining different metal materials as in the present invention, the optimum nugget diameter depends on the plate thickness of the aluminum material, and the influence of the plate thickness of the steel material is so small that it can be ignored. In addition, there is a wide optimum range larger than the optimum nugget diameter at the time of spot welding of the same kind of metal material.

ここで、ナゲット径が4×t2 0.5未満では、ナゲット径が小さく、接合強度が不十分である。また、ナゲット径が7×t2 0.5を越えると、ナゲット径は接合強度を得るのに十分であるが、チリが発生しやすく、アルミニウム材の減肉量が多いため、逆に接合強度が低下する。したがって、ナゲット径は4×t2 0.5〜7×t2 0.5の範囲とする必要があり、好ましくは5×t2 0.5〜7×t2 0.5の範囲とする。 Here, when the nugget diameter is less than 4 × t 2 0.5 , the nugget diameter is small and the bonding strength is insufficient. Also, if the nugget diameter exceeds 7 × t 2 0.5 , the nugget diameter is sufficient to obtain the bonding strength, but dust tends to occur and the amount of thinning of the aluminum material is large, so the bonding strength is reduced. To do. Therefore, the nugget diameter needs to be in the range of 4 × t 2 0.5 to 7 × t 2 0.5 , and preferably in the range of 5 × t 2 0.5 to 7 × t 2 0.5 .

(界面反応層)
また、本発明においては、前記した通り、スポット溶接において生成する界面反応層を制御する。この制御目安として、界面反応層の平均厚みを0.1〜5μmとすることが好ましい。脆い界面反応層の平均厚みが5μmを越えると、接合強度は著しく低下する。一方で、界面反応層の平均厚みが0.1μm未満の場合には、鋼材の酸化皮膜の影響が大きくなり、鋼材とアルミニウム材との金属間での接触が少なくなるために、逆に却って接合強度が低下する。したがって、界面反応層の平均厚みは0.1〜5μm、更には、0.1〜3μmとすることが好ましい。
この界面反応層の厚さの分析には、溶接部断面をSEM観察し、複数箇所の厚さを測定して平均化するのが簡便である。
(Interface reaction layer)
In the present invention, as described above, the interface reaction layer generated in spot welding is controlled. As a control measure, the average thickness of the interface reaction layer is preferably 0.1 to 5 μm. When the average thickness of the brittle interfacial reaction layer exceeds 5 μm, the bonding strength is significantly reduced. On the other hand, when the average thickness of the interfacial reaction layer is less than 0.1 μm, the influence of the oxide film on the steel material increases, and the contact between the steel material and the aluminum material is reduced. Decreases. Therefore, the average thickness of the interface reaction layer is preferably 0.1 to 5 μm, and more preferably 0.1 to 3 μm.
For the analysis of the thickness of the interface reaction layer, it is easy to observe the cross section of the welded part by SEM, measure the thickness at a plurality of locations, and average it.

また、本発明では、界面反応層中にMn、Siを所望のレベルに濃化させ、接合強度を高める。接合強度を高めるための、このMn、Siの濃化のレベルとしては、界面反応層中の厚み方向の中間点(厚み中心)での、Mn元素量とSi元素量とで規定することが好ましい。そして、接合強度を高めるための濃化レベルの目安として、この界面反応層中の厚み方向の中間点において、Mn元素量が鋼材のMn元素量との比で1.5倍以上、Si元素量がアルミニウム材のSi元素量との比で1.1倍以上で、かつ鋼材のSi元素量との比で1.1倍以上であることが好ましい。 Further, in the present invention, Mn and Si are concentrated to a desired level in the interface reaction layer to increase the bonding strength. The level of concentration of Mn and Si for increasing the bonding strength is preferably specified by the amount of Mn element and the amount of Si element at the middle point (thickness center) in the thickness direction in the interface reaction layer. . Then, as a rough indication for increasing the bonding strength, at the intermediate point in the thickness direction in the interface reaction layer, the amount of Mn element is more than 1.5 times the ratio of the amount of Mn element of steel, and the amount of Si element is aluminum. It is preferable that the ratio to the Si element amount of the material is 1.1 times or more and the ratio to the Si element amount of the steel material is 1.1 times or more.

これらMn、Siを上記所望のレベルに、界面反応層中に濃化させるためには、鋼材とアルミニウム材とのMn、Si含有量やスポット溶接条件などを適正化する必要がある。実際に試験したところでは、スポット溶接条件を適正化することにより、Mnは最大2.5倍、Siは最大1.8倍とすることができており、得られている濃化度の範囲では、これらMn、Siを濃化するほど接合強度が高くなる傾向にある。   In order to concentrate these Mn and Si to the above desired level in the interface reaction layer, it is necessary to optimize the Mn and Si contents and spot welding conditions of the steel material and the aluminum material. In actual testing, Mn can be increased up to 2.5 times and Si up to 1.8 times by optimizing spot welding conditions. As Si is concentrated, the bonding strength tends to increase.

界面反応層のMnやSiの濃化の程度は、溶接接合部の断面からのTEM-EDX分析やSIMSによる各々の二次イオン強度分析によって分析が可能であるが、SIMS(二次イオン質量分析装置)によってMnやSiの二次イオン強度を分析するのが誤差が少ないため推奨される。その上で、界面反応層の中間点でのMn、Si強度と、SIMSによって同様に求めたアルミニウム材、鋼材でのMn、Si強度との比から、界面反応層中のMn元素量/鋼材のMn元素量、界面反応層中のSi元素量/鋼材のSi元素量、界面反応層中のSi元素量/アルミニウム材のSi元素量として、各々求める。   The degree of concentration of Mn and Si in the interfacial reaction layer can be analyzed by TEM-EDX analysis from the cross section of the welded joint and each secondary ion intensity analysis by SIMS, but SIMS (secondary ion mass spectrometry) It is recommended to analyze the secondary ion intensity of Mn and Si using a device because there are few errors. Based on the ratio of Mn and Si strength at the midpoint of the interfacial reaction layer and the Mn and Si strengths obtained by SIMS in the same way using SIMS, the amount of Mn element in the interfacial reaction layer / steel material The amount of Mn element, the amount of Si element in the interface reaction layer / the amount of Si element in the steel material, and the amount of Si element in the interface reaction layer / the amount of Si element in the aluminum material are obtained respectively.

(アルミニウム材の減肉量)
上記した通り、接合強度を確保する意味で、スポット溶接による接合後のアルミニウム材の減肉量できるだけ小さくすることが望ましい。この一つの目安として、アルミニウム材の最小残存板厚Δtが、元の板厚t2の50%以上であることが望ましい。より望ましくは最小残存板厚Δtが元厚t2の90%以上であることが良い。このアルミニウム材の最小残存板厚Δtは、断面より光学顕微鏡また はSEMにて観察し、板厚減肉長さを測定し、元の板厚との差を取って求める。
(Aluminum material thickness reduction)
As described above, in order to secure the bonding strength, it is desirable to reduce the thickness of the aluminum material after bonding by spot welding as much as possible. As one guideline, it is desirable that the minimum remaining thickness Δt of the aluminum material is 50% or more of the original thickness t 2 . More preferably, it is a good minimum residual thickness Δt is more than 90% of the original thickness t 2. The minimum remaining thickness Δt of this aluminum material is obtained by observing the cross section with an optical microscope or SEM, measuring the thickness reduction thickness, and taking the difference from the original thickness.

(スポット溶接)
図2に、本発明異種接合体を得るためのスポット溶接の一態様を例示する。図2におい て、1は鋼板、2はアルミニウム合金板、3は異種接合体、5はナゲット、7と8は電極である。
(Spot welding)
FIG. 2 illustrates an embodiment of spot welding for obtaining the heterogeneous joint of the present invention. In FIG. 2, 1 is a steel plate, 2 is an aluminum alloy plate, 3 is a dissimilar joint, 5 is a nugget, and 7 and 8 are electrodes.

界面反応層の最適の制御として、界面反応層にめっき皮膜を残存させず、界面反応層の厚みを上記薄さに制御し、更に、界面反応層中にMnやSiを濃化させるには、スポット溶接条件も制御することが重要である。   For optimal control of the interfacial reaction layer, the plating film is not left in the interfacial reaction layer, the thickness of the interfacial reaction layer is controlled to the above-mentioned thickness, and further, Mn and Si are concentrated in the interfacial reaction layer. It is important to control spot welding conditions.

(溶接入熱量)
この際、最も重要となるのが溶接入熱量である。上記界面反応層の最適制御のためには、スポット溶接における入熱量の合計を、スポット溶接工程の総入熱量として、1000〜10000Asecの範囲、望ましくは2500〜7500Asecの範囲とする。
(Welding heat input)
At this time, the most important is the heat input of welding. For optimal control of the interface reaction layer, the total amount of heat input in spot welding is in the range of 1000 to 10,000 Asec, preferably in the range of 2500 to 7500 Asec, as the total heat input in the spot welding process.

この総入熱量が1000Asec未満、厳しくは2500Asec未満の場合は、界面からめっき皮膜層が完全に溶融排出せず、界面反応層が形成されず、めっき皮膜層が残存し、または界面反応層中へのめっき皮膜成分の残存が多くなり、また、ナゲットが十分に形成されない。このため、接合強度が低くなる。   When this total heat input is less than 1000 Asec, strictly less than 2500 Asec, the plating film layer is not completely melted and discharged from the interface, the interface reaction layer is not formed, the plating film layer remains, or enters the interface reaction layer The remaining plating film component increases, and nuggets are not sufficiently formed. For this reason, joint strength becomes low.

一方、この総入熱量が10000Asecを越える、厳しくは7500Asecを越える場合は、めっき皮膜成分は十分に溶融排出されるが、界面反応層が厚く成長する。また、チリの発生が増加することから、アルミニウム材の板厚が減少する。このため接合強度が低くなる。    On the other hand, when this total heat input exceeds 10,000 Asec, strictly exceeding 7500 Asec, the plating film component is sufficiently melted and discharged, but the interface reaction layer grows thick. Moreover, since the generation of dust increases, the thickness of the aluminum material decreases. For this reason, joining strength becomes low.

なお、スポット溶接工程の総入熱量は、溶接電流をI1、I2、‥‥(単位A)、溶接時間をT1、T2、‥‥(単位sec、ただし下付数字は溶接電流パターンのステップ)として、I1×T1+I2×T2+‥‥で表される。 The total heat input in the spot welding process is as follows: welding current is I 1 , I 2 ,... (Unit A), welding time is T 1 , T 2 ,. Step) is expressed as I 1 × T 1 + I 2 × T 2 +.

ナゲット径が、上記したように、4×t 0.5〜7×t 0.5の範囲となるためにはスポット溶接の選択される工程を高電流工程とすることが好ましい。このような高電流工程を設けることで、ナゲットの割れも抑制される。 As described above, in order for the nugget diameter to be in the range of 4 × t 2 0.5 to 7 × t 2 0.5 , it is preferable that the process selected for spot welding is a high current process. By providing such a high current process, cracking of the nugget is also suppressed.

より具体的には、スポット溶接が複数の工程からなるとともに、溶接電流値及び/または溶接時間の異なる2以上の工程を有し、最初の工程を除く少なくとも一つの工程において高電流工程とする。そして、この高電流工程では、調整した10kA以上の電流を、アルミニウム材の板厚t2との関係で、100×t2msec以下流すこととする。 More specifically, spot welding is composed of a plurality of processes, and has two or more processes having different welding current values and / or welding times, and at least one process other than the first process is a high current process. In this high current process, an adjusted current of 10 kA or more is allowed to flow for 100 × t 2 msec or less in relation to the thickness t 2 of the aluminum material.

前記した通り、高電流で短時間のスポット溶接が、ナゲット径の確保、チリの低減、界面反応層の低減をいずれも満たす。10kA未満の低電流の場合、ナゲッ トが形成、成長するのに十分な入熱量が得られない。ナゲット径を本発明の規定範囲内に保持するには、10kA以上に電流量を大きく増加することが必要である。また、100×t2msecを超える長時間の場合、ナゲット径は確保できるが 、チリの発生や界面反応層の成長をもたらすため、接合強度が低くなる。 As described above, high-current and short-time spot welding satisfies all of securing the nugget diameter, reducing dust, and reducing the interface reaction layer. In the case of a low current of less than 10 kA, there is not enough heat input to form and grow nuggets. In order to keep the nugget diameter within the specified range of the present invention, it is necessary to greatly increase the current amount to 10 kA or more. In addition, in the case of a long time exceeding 100 × t 2 msec, the nugget diameter can be secured, but since the generation of dust and the growth of the interface reaction layer are brought about, the bonding strength is lowered.

(高電流工程と総入熱量)
更に、このような高電流工程を設ける場合、上記界面反応層の最適制御のためには、高電流工程の前工程までのスポット溶接総入熱量を1000〜10000Asecの範囲とすることが好ましい。
(High current process and total heat input)
Furthermore, when providing such a high current process, it is preferable that the total amount of heat input by spot welding up to the previous process of the high current process is in the range of 1000 to 10,000 Asec for optimal control of the interface reaction layer.

なお、通常の同種金属での溶接と同様に、接合される鋼材やアルミニウム材の板厚の増加に伴って、上記各範囲内で、通電時間のみならず、電流量も増加させることが好ましい。   In addition, it is preferable to increase not only the energization time but also the amount of current within the above ranges as the thickness of the steel material or aluminum material to be joined increases as in the case of welding with the same kind of metal.

(加圧力)
スポット溶接時の加圧力については、特に規定するものではないが、異種材料間、電極と材料間の電気的接触を安定化し、ナゲット内の溶融金属をナゲット周辺の未溶融部で支え、さらにチリの発生を抑制するために、ある程度高い加圧力を必要とする。ただし、加圧力を増加するとナゲット径が小さくなる傾向にあるので、それに伴って電流量を増加する必要がある。
(Pressure)
The pressure applied during spot welding is not particularly specified, but it stabilizes the electrical contact between dissimilar materials, electrodes and materials, supports the molten metal in the nugget at the unmelted area around the nugget, and further In order to suppress the occurrence of this, a certain high pressure is required. However, since the nugget diameter tends to decrease as the applied pressure is increased, the amount of current needs to be increased accordingly.

(電極形状)
スポット溶接の電極形状についても、特に規定するものではないが、特にアルミニウム材側の電極8については、Rの大きいR型形状の電極が、通電初期の電流効率を上げるために望ましい。鋼材側の電極7はドーム型などのR型でもF型でも構わないが、同様にRの大きい方が望ましい。また、極性についても規定するものではないが、直流スポット溶接を用いる場合は、アルミニウム材側を陽極とし、鋼材側を陰極とする方が望ましい。
(Electrode shape)
The electrode shape of spot welding is not particularly specified, but particularly the electrode 8 on the aluminum material side is preferably an R-shaped electrode having a large R in order to increase current efficiency in the initial energization. The steel-side electrode 7 may be either a dome-shaped R-type or F-type, but similarly, a larger R is desirable. Although the polarity is not specified, when using DC spot welding, it is desirable to use the aluminum material side as an anode and the steel material side as a cathode.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより、下記実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。  Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention is not limited to the following examples. Of course, it is also possible to implement them, and they are all included in the technical scope of the present invention.

表1に示す化学成分(質量%)を含有する供試鋼を溶製し、1.2mmの板厚となるまで圧延を行い、薄鋼板を得た。圧延後の連続焼鈍においては、500〜1000℃の焼鈍後 、油洗または水洗を行い、その後焼き戻しにより各供試鋼の目標強度に調整した。   Test steels containing the chemical components (mass%) shown in Table 1 were melted and rolled to a plate thickness of 1.2 mm to obtain thin steel plates. In continuous annealing after rolling, oil washing or water washing was performed after annealing at 500 to 1000 ° C., and then adjusted to the target strength of each test steel by tempering.

また、アルミニウム材については板厚1mmの市販のA1050-O(Si:0.05質量%、Mn:含有無し、Al:99.50以上)、A6022-T4(Si:1.01質量%、Mn:0.07質量%、Mg:0.6質量%)、A6061-T4(Si:0.7質量%、Mn:0.07質量%、Mg:1.0質量%)の各アルミニウム合金板を用いた。   As for the aluminum material, a commercially available A1050-O with a thickness of 1 mm (Si: 0.05% by mass, Mn: not contained, Al: 99.50 or more), A6022-T4 (Si: 1.01% by mass, Mn: 0.07% by mass, Mg : 0.6 mass%) and A6061-T4 (Si: 0.7 mass%, Mn: 0.07 mass%, Mg: 1.0 mass%).

鋼材に亜鉛めっきを施す場合は、10%硫酸にて5分の酸洗・活性化後、以下の条件で、各種めっきを行った。 電気亜鉛めっきは、硫酸亜鉛400g/l、硫酸アルミニウム30g/l、塩化ナトリウム15g/l、ホウ酸30g/lに硫酸を加えてpHを3とした亜鉛めっき浴にて、20A/dm2の電流を流すことにより、亜鉛めっきを10μm施した。
Zn-10%Niめっきは、上記亜鉛めっき浴に硫酸ニッケル、塩化ニッケルを添加した浴にて10A/dm2の電流を流すことにより、Zn-10%Niめっきを10μm施した。また、比較例としてワット浴を用いて10A/dm2の電流を流すことにより、Niめっきを10μm施した。
In the case of galvanizing the steel material, after various pickling and activation with 10% sulfuric acid for 5 minutes, various plating was performed under the following conditions. Electrogalvanizing is performed at a current of 20 A / dm 2 in a zinc plating bath with a pH of 3 by adding sulfuric acid to zinc sulfate 400 g / l, aluminum sulfate 30 g / l, sodium chloride 15 g / l, boric acid 30 g / l. The galvanization was performed to 10 μm.
In the Zn-10% Ni plating, 10 μm of Zn-10% Ni plating was applied by flowing a current of 10 A / dm 2 in a bath in which nickel sulfate and nickel chloride were added to the above zinc plating bath. Also, by passing a current of 10A / dm 2 using a Watts bath as the comparative example was subjected 10μm Ni plating.

溶融めっきは鋼材のみに行い、各種溶融金属を用いて、Alめっき、Al-9%Siめっき、Zn-Feめっき(Fe量5、8、10、15の各%)をそれぞれ10μm施した。溶融Zn-10%Feめっきでは、溶融金属中のFe成分、温度、引き上げ温度を変化させることにより、膜厚を1、3、10、15、20μmに調整した。   Hot dip plating was performed only on steel materials, and using various molten metals, Al plating, Al-9% Si plating, and Zn-Fe plating (each of Fe amounts 5, 8, 10, and 15) were each performed by 10 μm. In hot-dip Zn-10% Fe plating, the film thickness was adjusted to 1, 3, 10, 15, and 20 μm by changing the Fe component, temperature, and pulling temperature in the molten metal.

また、アルミニウム材に亜鉛めっきを施す場合は、10%硝酸にて30秒酸洗した後、水酸化ナトリウム500g/l、酸化亜鉛100g/l、塩化第二鉄1g/l、ロッセル塩10g/lの処理液中にて30秒亜鉛置換処理を行った後に、亜鉛(亜鉛合金を含む)電気めっきを行った。   In addition, when galvanizing aluminum material, after pickling with 10% nitric acid for 30 seconds, sodium hydroxide 500g / l, zinc oxide 100g / l, ferric chloride 1g / l, Roselle salt 10g / l The zinc (including zinc alloy) electroplating was performed after the zinc replacement treatment for 30 seconds in the above treatment solution.

各めっき膜厚は、めっき後のサンプルを切断し、樹脂に埋め込み、研磨をし、SEM観察を行った。この際、2000倍の視野にて3点厚さを測定し、平均化して求めた。   Each plating film thickness was obtained by cutting a sample after plating, embedding in a resin, polishing, and performing SEM observation. At this time, the three-point thickness was measured in a 2000-fold field of view and averaged.

これら鋼板(鋼材)とアルミニウム合金板(アルミニウム材)とをJIS A 3137記載の十字引張試験片形状に加工した上で、スポット溶接を行い、異種接合体を作成した。 These steel plates (steel materials) and aluminum alloy plates (aluminum materials) were processed into the shape of a cross tensile test piece described in JIS A 3137, and then spot welding was performed to prepare dissimilar joined bodies.

スポット溶接は、表2に示すように、溶接工程1〜3の3つの溶接工程を、選択的に、かつ各溶接電流(kA)、各溶接時間(msec)にて、一点の溶接を行った。この際、溶接工程2を高電流工程と設定した。なお、各スポット溶接工程には、直流抵抗溶接試験機を用い、共通して、加圧力1.5kNとし、Cu-Cr合金からなるドーム型の電極を用い、陽極をアルミニウム材、陰極を鋼材とした。   In spot welding, as shown in Table 2, three welding processes of welding processes 1 to 3 were selectively performed at one welding current (kA) and welding time (msec). . At this time, the welding process 2 was set as a high current process. In each spot welding process, a DC resistance welding tester was used, and in common, the pressure was 1.5 kN, a dome-shaped electrode made of a Cu-Cr alloy was used, the anode was an aluminum material, and the cathode was a steel material. .

溶接後の異種接合体の、ナゲット径、アルミニウム材の最小残存板厚、界面反応層の厚さ、界面反応層へのMn、Siへの濃化度、接合強度、耐食性などを評価した。これらの結果を、表3〜7に各々示す。   The nugget diameter, the minimum remaining thickness of the aluminum material, the thickness of the interfacial reaction layer, the concentration of Mn and Si in the interfacial reaction layer, the bonding strength, the corrosion resistance, and the like were evaluated. These results are shown in Tables 3 to 7, respectively.

ナゲット径は、下記十字引張試験後の異種接合体のサンプルを用い、JIS A 3137記載の方法により、光学顕微鏡を用いた断面分析によって、鋼材側にて測定した。   The nugget diameter was measured on the steel material side by a cross-sectional analysis using an optical microscope by a method described in JIS A 3137 using a sample of a heterogeneous joint after the following cross tensile test.

アルミニウム最小残存板厚も、下記十字引張試験後の異種接合体のサンプルを用い、ナゲット径と同様に、JIS A 3137記載の方法により、光学顕微鏡を用いた断面分析によって、但し、アルミニウム材側にて3点測定し平均化した。そして、元のアルミニウム材の板厚との比(%)で求めた。なお、本実施例では鋼材の酸化皮膜の差異によっては、ナゲット径、アルミニウム材の最小残存板厚はほとんど変化しなかった。  The minimum aluminum remaining plate thickness was also measured by a cross-sectional analysis using an optical microscope by the method described in JIS A 3137, using a sample of a dissimilar joint after the following cross tensile test, but on the aluminum material side. 3 points were measured and averaged. And it calculated | required by ratio (%) with the plate | board thickness of the original aluminum material. In this example, the nugget diameter and the minimum remaining thickness of the aluminum material hardly changed depending on the difference in the oxide film of the steel material.

界面反応層(図1の6)の厚さ測定は、スポット溶接後の異種接合体のサンプルを用い、溶接部の中央にて切断し、樹脂に埋め込み、表面を研磨し、SEM観察を行った。この際、界面反応層の厚さが1μm以上の場合は2000倍の視野にて、界面反応層の厚さが1μm未満の場合は10000倍の視野にて、3点の厚さを測定し、平均化して求めた。   The thickness of the interface reaction layer (6 in Fig. 1) was measured using a sample of a heterogeneous joint after spot welding, cut at the center of the weld, embedded in resin, polished on the surface, and subjected to SEM observation. . At this time, when the thickness of the interface reaction layer is 1 μm or more, measure the thickness at three points with a field of view of 2000 times, and when the thickness of the interface reaction layer is less than 1 μm, with a field of view of 10,000 times, Obtained by averaging.

ここでの界面反応層とは、FeとAlの化合物層を指し、EDXにより、FeとAlがともに1wt%以上検出され、かつZnやNiの検出量がFe、Alよりも低い層をいう。即ち、FeとAlがともに1wt%以上検出されない層、またはZnやNiの検出量がFe、Alのいずれかより多い層はめっき層として界面反応層とはしなかった。   Here, the interfacial reaction layer refers to a compound layer of Fe and Al, which is a layer in which both Fe and Al are detected by EDX by 1 wt% or more, and the detected amount of Zn and Ni is lower than that of Fe and Al. That is, a layer in which both Fe and Al were not detected by 1 wt% or more, or a layer in which the detected amount of Zn or Ni was larger than either Fe or Al was not used as an interface reaction layer as a plating layer.

界面反応層のMnやSiの濃化の程度は、上記厚さ測定と同様に、埋め込みサンプルを作製し、断面からSIMS(CAMECA製ims5f)による二次イオン強度を測定した。一次イオンには8keVの酸素イオンを用い、接合界面を含む50×50μmの領域にて酸素イオンを照射して、正の二次イオンを検出することにより、界面と垂直方向にMn、Siの二次イオン強度を線分析した。測定は3回行い、界面反応層の中間点でのMn、Siの二次イオン強度と、アルミニウム材、鋼材でのMn、Siの二次イオン強度との比を各々MnやSiの濃化度として求め、平均化した。   The degree of concentration of Mn and Si in the interface reaction layer was measured by measuring the secondary ion intensity by SIMS (ims5f manufactured by CAMECA) from the cross section, similarly to the above thickness measurement. 8keV oxygen ions are used as the primary ions. By irradiating oxygen ions in a 50 × 50μm region including the junction interface and detecting the positive secondary ions, the secondary ions of Mn and Si are perpendicular to the interface. The secondary ionic strength was linearly analyzed. The measurement was performed three times, and the ratio of the secondary ion strength of Mn and Si at the midpoint of the interfacial reaction layer to the secondary ion strength of Mn and Si in the aluminum and steel materials was the concentration of Mn and Si, respectively. And averaged.

接合強度の評価としては、異種接合体の十字引張試験を実施した。十字引張試験は、予め求めたA6022のアルミニウム材同士のスポット溶接における接合強度=1.0kNを基準にした。そして、接合強度が0.9kN 以上であれば◎、0.7〜0.9kNであれば○、0.5〜0.7kNであれば△、0.5kN未満であれば×とした。   As an evaluation of the bonding strength, a cross tension test was performed on different types of bonded bodies. The cross tension test was performed based on a joint strength of 1.0 kN obtained by spot welding of aluminum materials of A6022 obtained in advance. And, when the bonding strength is 0.9 kN or more, ◎, when 0.7 to 0.9 kN, ◯, when 0.5 to 0.7 kN, Δ, and when less than 0.5 kN, ×.

この接合強度の評価において、○以上は、剪断引張が生じる用途は勿論、十字引張が生じる用途にも適用可能であることを示す。一方、△のレベルは、剪断引張強度は確保できても、十字引張強度(剥離強度)の方が確保できず、用途は、剪断引張しか生じない特殊な用途に限定されるレベルであることを示している。   In the evaluation of the bonding strength, “◯” or more indicates that the present invention can be applied not only to a use in which a shear tension occurs but also to a use in which a cross tension occurs. On the other hand, the level of Δ indicates that the cross tensile strength (peel strength) cannot be ensured even if the shear tensile strength can be secured, and the use is limited to a special use where only shear tension occurs. Show.

本実施例にて、接合強度の評価に十字引張試験を用いたのは、十字引張試験の方が、試験条件間での差異が大きかったためである。スポット溶接部は接合面に対して垂直方向の接合強度の方が、接合面に対して水平方向の接合強度に比して、強度が弱い。このため、接合面に対して水平方向に引っ張る剪断引張試験結果が良くても、接合面に対して垂直方向に引っ張る十字引張試験の結果が良いとは限らない。一方、十字引張試験の結果が良ければ、剪断引張試験結果の方も良いと言える。本実施例にても、剪断引張試験してみた結果は、上記十字引張試験結果と合致しており、十字引張試験にて○、◎の評価を得たものは、いずれも2.5kN以上の高い剪断強度であった。   In this example, the cross tension test was used for the evaluation of the bonding strength because the cross tension test had a larger difference between the test conditions. The spot welded portion is weaker in the bonding strength in the direction perpendicular to the bonding surface than in the horizontal direction with respect to the bonding surface. For this reason, even if the shear tensile test result of pulling in the horizontal direction with respect to the joint surface is good, the result of the cross tension test of pulling in the vertical direction with respect to the joint surface is not necessarily good. On the other hand, if the result of the cross tensile test is good, it can be said that the result of the shear tensile test is better. Also in this example, the result of the shear tensile test is consistent with the above-described cross tensile test result, and those that obtained an evaluation of ○ and ◎ in the cross tensile test are both higher than 2.5 kN. Shear strength.

表3の耐食性試験は、上記スポット溶接後の各異種接合体を、自動車材などでの使用を模擬して、リン酸亜鉛処理後に塗装処理を行なったものについて、行なった。即ち、各異種接合体のアルカリ脱脂を行い、水洗後、日本ペイント社製のサーフファイン5N-10の0.1%水溶液を用いて30秒表面調整処理を行った。その後、亜鉛イオン1.0g/l、ニッケルイオン1.0g/l、マンガンイオン0.8g/l、リン酸イオン15.0g/l、硝酸イオン6.0g/l、亜硝酸イオン0.12g/l、トーナー値2.5pt、全酸度22pt、遊離酸度0.3〜0.5pt、50℃の浴にて、2分リン酸亜鉛処理を行った。その後、カチオン電着塗料(日本ペイント社製パワートップV50グレー)により塗装し、170℃25分焼き付けし、30μmの塗装皮膜を形成した。   The corrosion resistance test in Table 3 was performed on each of the above-mentioned spot welded dissimilar joints that was subjected to a coating treatment after the zinc phosphate treatment, simulating the use in automobile materials and the like. That is, each heterozygote was subjected to alkaline degreasing, washed with water, and then subjected to a surface conditioning treatment for 30 seconds using a 0.1% aqueous solution of Surffine 5N-10 manufactured by Nippon Paint. Then, zinc ion 1.0g / l, nickel ion 1.0g / l, manganese ion 0.8g / l, phosphate ion 15.0g / l, nitrate ion 6.0g / l, nitrite ion 0.12g / l, toner value 2.5pt Then, zinc phosphate treatment was performed for 2 minutes in a bath having a total acidity of 22 pt, a free acidity of 0.3 to 0.5 pt, and a temperature of 50 ° C. Thereafter, it was coated with a cationic electrodeposition paint (Power Top V50 Gray, manufactured by Nippon Paint Co., Ltd.) and baked at 170 ° C. for 25 minutes to form a 30 μm paint film.

耐食性評価は、これらの塗装試験片の複合腐食試験にて行った。複合腐食試験は、塩水噴霧2時間、乾燥2時間、湿潤2時間を1サイクルとする試験をくり返し100回行なった。そして、複合腐食試験後の接合部を剥離させて観察し、Alの最大腐食深さを測定した。耐食性評価は、Alの最大腐食深さが0.01mm未満であれば○、0.01〜0.1mmであれば△、0.1mm以上であれば×とした。   The corrosion resistance was evaluated by a composite corrosion test of these coating test pieces. The combined corrosion test was repeated 100 times with a cycle of 2 hours of salt spray, 2 hours of drying and 2 hours of wetting. And the joint part after a composite corrosion test was peeled and observed, and the maximum corrosion depth of Al was measured. The corrosion resistance was evaluated as “◯” when the maximum corrosion depth of Al was less than 0.01 mm, “Δ” when 0.01 to 0.1 mm, and “x” when 0.1 mm or more.

表3は、鋼材側かアルミニウム材側かに種々のめっきを施した際の、めっき条件による接合強度への影響を示している。具体的には、表1の980MPa級高張力鋼板に各種めっきを施し、A6022のアルミニウム合金板と、表2のEの発明例の最適条件にてスポット溶接接合した場合の、溶接部の状況や接合強度を示す。   Table 3 shows the influence of the plating conditions on the bonding strength when various plating is performed on the steel material side or the aluminum material side. Specifically, the situation of the welded part when various plating was applied to the 980 MPa class high-tensile steel plate in Table 1 and spot-welded with A6022 aluminum alloy plate under the optimum conditions of the invention example E in Table 2 Indicates the bonding strength.

表3の比較例1から、最適条件にてスポット溶接接合しても、鋼材側かアルミニウム材側かに、めっきを設けない場合には、接合強度(十字引張試験結果)に劣るだけでなく、耐食性が劣ることが分かる。   From Comparative Example 1 in Table 3, not only the welding strength (cross tension test result) is inferior, but also when spot welding is performed under the optimum conditions, and plating is not provided on the steel material side or the aluminum material side, It can be seen that the corrosion resistance is inferior.

一方、発明例3、4、7〜10、12〜14は、鋼材またはアルミニウム材の表面に、3〜15μmの膜厚で、かつ融点が350〜950℃の範囲内にある、Zn及び/またはAlからなるめっき皮膜を予め施している。このため、比較的大きいナゲット径を得つつ、界面反応層を最適厚さに抑制し得ている。この結果、接合強度が高い。また、アルミニウム材の最小残存板厚も比較的厚く、減肉量も比較的小さいことから、チリの発生を最小量に抑えていることが分かる。   On the other hand, Invention Examples 3, 4, 7 to 10, and 12 to 14 are Zn and / or on the surface of a steel material or aluminum material, having a film thickness of 3 to 15 μm and a melting point in the range of 350 to 950 ° C. A plating film made of Al is applied in advance. For this reason, the interface reaction layer can be suppressed to the optimum thickness while obtaining a relatively large nugget diameter. As a result, the bonding strength is high. Moreover, since the minimum remaining plate | board thickness of aluminum material is also comparatively thick and the amount of thickness reduction is also comparatively small, it turns out that generation | occurrence | production of dust is suppressed to the minimum amount.

これに対して、比較例2、5、6、11、15、16は、鋼材またはアルミニウム材の表面に、Zn及び/またはAlからなるめっき皮膜を予め施しているものの、めっきの膜厚、融点、などが本発明範囲から外れる。   On the other hand, Comparative Examples 2, 5, 6, 11, 15, and 16 are pre-coated with a plating film made of Zn and / or Al on the surface of the steel or aluminum material, but the film thickness and melting point of the plating Etc. deviate from the scope of the present invention.

このため、例えば、めっきの融点が高すぎる比較例2、5、6、16は、最適条件にてスポット溶接接合しても、比較的大きいナゲット径は得られているものの、界面反応層が殆ど形成されていない。この結果、接合強度が著しく劣っている。また、アルミニウム材の最小残存板厚が比較的薄く、減肉量が比較的大きい。   For this reason, for example, Comparative Examples 2, 5, 6, and 16, where the melting point of the plating is too high, even though spot welding joining under optimum conditions, a relatively large nugget diameter is obtained, but the interface reaction layer is almost Not formed. As a result, the bonding strength is extremely inferior. Further, the minimum remaining plate thickness of the aluminum material is relatively thin, and the amount of thickness reduction is relatively large.

めっきの膜厚が薄すぎる比較例11は、めっきが無い比較例1と同様に、最適条件にてスポット溶接接合しても、接合強度に劣るだけでなく、耐食性が劣る。   In Comparative Example 11 in which the film thickness of the plating is too thin, similar to Comparative Example 1 in which there is no plating, even if spot-welded bonding is performed under optimum conditions, not only the bonding strength is inferior, but also the corrosion resistance is inferior.

逆に、めっきの膜厚が厚すぎる比較例15は、比較的大きいナゲット径は得られているものの、界面反応層が殆ど形成されていない。この結果、接合強度が著しく劣っている。また、アルミニウム材の最小残存板厚が比較的薄く、減肉量が比較的大きい。   On the contrary, in Comparative Example 15 in which the film thickness of the plating is too thick, a relatively large nugget diameter is obtained, but the interface reaction layer is hardly formed. As a result, the bonding strength is extremely inferior. Further, the minimum remaining plate thickness of the aluminum material is relatively thin, and the amount of thickness reduction is relatively large.

以上の結果から、本発明は、鋼材とアルミニウム材との異材を、直接スポット溶接にて接合するに際し、再現性良く、また、アルミニウム材の減肉量増大など新たな問題が生じることなく、接合強度の高いスポット溶接をなしうる効果を有することが分かる。また、本発明異材接合体における、鋼材やアルミニウム材などの母材側に、溶接前に予め設けるめっき皮膜の融点、成分、膜厚などの因子の臨界的な意義が分かる。   From the above results, the present invention has a good reproducibility when joining dissimilar steel and aluminum materials by direct spot welding, without causing new problems such as an increase in the thickness of aluminum materials. It can be seen that it has the effect of enabling spot welding with high strength. Moreover, the critical significance of factors, such as melting | fusing point of a plating film previously provided before welding, a component, and a film thickness, in base material side, such as steel materials and aluminum materials, in this invention dissimilar material joined body is understood.

次に、表4〜7は、表1の種々の強度の鋼板を用い、スポット溶接条件を表2のA〜Gまで変えた場合の、スポット溶接条件による接合強度への影響を示している。より具体的には、表1の270〜980MPa級までの種々の強度の鋼板を、溶融Zn-10%Feめっきを10μm予め施す、同じめっき条件にして、前記各種アルミニウム合金板と、表2のA〜Gまでのスポット溶接接合した場合の、溶接部の状況や接合強度を示す。   Next, Tables 4 to 7 show the influence on the bonding strength by the spot welding conditions when the steel sheets having various strengths in Table 1 are used and the spot welding conditions are changed from A to G in Table 2. More specifically, steel sheets having various strengths from 270 to 980 MPa in Table 1 were preliminarily subjected to hot-dip Zn-10% Fe plating 10 μm, and the same plating conditions were used. The situation of a welding part and joining strength at the time of spot welding joining from A to G are shown.

表4は、270MPa級鋼板とA1050-Oのアルミニウム合金板との組み合わせの異材接合体である。表5は、440MPa級鋼板とA6022-T4のアルミニウム合金板との組み合わせの異材接合体である。表6は、590MPa級鋼板とA6061-T4のアルミニウム合金板との組み合わせの異材接合体である。表7は、980MPa級鋼板とA6022-T4のアルミニウム合金板との組み合わせの異材接合体である。なお、表4〜7において、耐食性試験結果は全て○であったため、各表には記載していない。   Table 4 shows a joined body of dissimilar materials of a combination of a 270 MPa class steel plate and an aluminum alloy plate of A1050-O. Table 5 shows a joined material of different materials composed of a combination of a 440 MPa class steel plate and an aluminum alloy plate of A6022-T4. Table 6 shows the dissimilar joints of a combination of a 590 MPa grade steel plate and an aluminum alloy plate of A6061-T4. Table 7 shows a joined body of dissimilar materials of a combination of a 980 MPa class steel plate and an aluminum alloy plate of A6022-T4. In Tables 4 to 7, all corrosion resistance test results were ○, so they are not shown in each table.

表4において、A1050の純アルミ系のアルミニウム合金板を用いた場合(鋼中のMn量は本発明範囲内)、素材アルミニウム材中のSi量が本発明範囲よりも低すぎる。この結果、界面反応層中のSiの対アルミニウム材Si比が比較的低く、界面反応層中にSiが濃化していない。このため、表4から分かる通り、表2のA〜Gまでのスポット溶接条件によらず、高い接合強度を得られない。   In Table 4, when a pure aluminum-based aluminum alloy plate of A1050 is used (the Mn content in the steel is within the range of the present invention), the Si content in the material aluminum material is too lower than the range of the present invention. As a result, the Si to aluminum material Si ratio in the interface reaction layer is relatively low, and Si is not concentrated in the interface reaction layer. For this reason, as can be seen from Table 4, high joint strength cannot be obtained regardless of the spot welding conditions from A to G in Table 2.

表5において、上の比較例二つは、表2のA(総入熱量が小さすぎる)、B(高電流工程2の入熱量が小さすぎる)のスポット溶接条件で接合している。このため、A6022のアルミニウム合金板を用い、素材アルミニウム材中のSi量が本発明範囲内であり、鋼中のMn量も本発明範囲内であっても、界面反応層自体が生成していない。この結果、その下の4つの発明例に比較して、接合強度が著しく低くなっている。   In Table 5, the above two comparative examples are joined under the spot welding conditions of A (total heat input is too small) and B (heat input in the high current process 2 is too small) in Table 2. For this reason, an aluminum alloy plate of A6022 is used, and the amount of Si in the material aluminum material is within the scope of the present invention, and even if the amount of Mn in steel is within the scope of the present invention, the interface reaction layer itself is not generated. . As a result, the bonding strength is remarkably low compared to the four invention examples below.

また、表5において、一番下の比較例は、表2のG(総入熱量が大きすぎる)のスポット溶接条件で接合している。このため、界面反応層の平均厚みが5μmを越えて厚くなっており、接合強度は低下している。これは、アルミニウム材の最小残存板厚が50%未満と著しく薄く、減肉量が著しく大きいことにもよる。   Further, in Table 5, the lowermost comparative example is joined under spot welding conditions of G (total heat input is too large) in Table 2. For this reason, the average thickness of the interface reaction layer exceeds 5 μm, and the bonding strength is reduced. This is due to the fact that the minimum remaining thickness of the aluminum material is extremely thin, less than 50%, and the amount of thinning is remarkably large.

これに対して、表5の4つの発明例は、ナゲット径が4×t2 0.5〜7 ×t2 0.5の範囲となっており、界面反応層の厚みも好ましい範囲内で、界面反応層のMnやSiの濃化度も比較的高い。このため、比較例に比して接合強度が著しく高い。 In contrast, in the four invention examples in Table 5, the nugget diameter is in the range of 4 × t 2 0.5 to 7 × t 2 0.5 , and the thickness of the interface reaction layer is also within a preferable range. The concentration of Mn and Si is also relatively high. For this reason, the bonding strength is significantly higher than that of the comparative example.

ただ、表5の4つの発明例の中でも、表2のD、Eの最適スポット溶接条件で接合している発明例は、溶接電流値、時間の異なる工程1〜3、あるいは1、2を有し、工程2において、10kA以上の電流を100×t2msec以下流す高電流工程としている。また、高電流工程2の前工程である工程1のスポット溶接総入熱量を1000〜10000Asecの範囲としている。この結果、表2のC(工程1のスポット溶接総入熱量小)、とF(総入熱量大)など、これらの最適条件から外れたスポット溶接条件で接合している発明例に比して、接合強度が比較的高い。 However, among the four invention examples in Table 5, the invention examples that are joined under the optimum spot welding conditions D and E in Table 2 have processes 1 to 3, or 1, 2 with different welding current values and times. In step 2, a high current process is performed in which a current of 10 kA or more flows for 100 × t 2 msec or less. In addition, the total amount of spot welding heat input in step 1 which is the previous step of the high current step 2 is in the range of 1000 to 10,000 Asec. As a result, C in Table 2 (Spot welding total heat input small amount of process 1), F (total heat input large amount), etc., compared to the invention example joined under spot welding conditions deviating from these optimum conditions The bonding strength is relatively high.

表6においても、上の比較例二つは、表2のA(総入熱量が小さすぎる)、B(高電流工程2の入熱量が小さすぎる)のスポット溶接条件で接合している。このため、A6061のアルミニウム合金板を用い、素材アルミニウム材中のSi量が本発明範囲内であり、鋼中のMn量も本発明範囲内であっても、A溶接条件では、界面反応層自体が生成しておらず、B溶接条件では、界面反応層自体が生成しているものの界面反応層のMnやSiの濃化度が低い。この結果、その下の4つの発明例に比較して、接合強度が著しく低くなっている。   Also in Table 6, the above two comparative examples are joined under the spot welding conditions of A (total heat input amount is too small) and B (heat input amount of high current process 2 is too small) in Table 2. For this reason, using the aluminum alloy plate of A6061, even if the Si content in the material aluminum material is within the scope of the present invention, and the Mn content in the steel is also within the scope of the present invention, the interface reaction layer itself under the A welding conditions In the B welding conditions, although the interface reaction layer itself is generated, the concentration of Mn and Si in the interface reaction layer is low. As a result, the bonding strength is remarkably low compared to the four invention examples below.

また、表6において、一番下の比較例は、表2のG(総入熱量が大きすぎる)のスポット溶接条件で接合している。このため、界面反応層の平均厚みが5μmを越えて厚くなっており、接合強度は低下している。これは、アルミニウム材の最小残存板厚が0%であり、減肉量が著しく大きいことにもよる。   Further, in Table 6, the lowermost comparative example is joined under spot welding conditions of G (total heat input is too large) in Table 2. For this reason, the average thickness of the interface reaction layer exceeds 5 μm, and the bonding strength is reduced. This is because the minimum remaining plate thickness of the aluminum material is 0% and the amount of thinning is remarkably large.

これに対して、表6の4つの発明例は、ナゲット径が4×t2 0.5〜7 ×t2 0.5の範囲となっており、界面反応層の厚みも好ましい範囲内で、界面反応層のMnやSiの濃化度も比較的高い。このため、比較例に比して接合強度が著しく高い。 On the other hand, in the four invention examples in Table 6, the nugget diameter is in the range of 4 × t 2 0.5 to 7 × t 2 0.5 , and the thickness of the interface reaction layer is within a preferable range. The concentration of Mn and Si is also relatively high. For this reason, the bonding strength is significantly higher than that of the comparative example.

ただ、表6の4つの発明例の中でも、表2のD、Eの最適スポット溶接条件で接合している発明例は、溶接電流値、時間の異なる工程1〜3、あるいは1、2を有し、工程2において、10kA以上の電流を100×t2msec以下流す高電流工程としている。また、高電流工程2の前工程である工程1のスポット溶接総入熱量を1000〜10000Asecの範囲としている。この結果、表2のF(総入熱量大)など、これらの最適条件から外れたスポット溶接条件で接合している発明例に比して、接合強度が比較的高い。 However, among the four invention examples in Table 6, the invention examples that are joined under the optimum spot welding conditions of D and E in Table 2 have processes 1 to 3, or 1, 2 with different welding current values and times. In step 2, a high current process is performed in which a current of 10 kA or more flows for 100 × t 2 msec or less. In addition, the total amount of spot welding heat input in step 1 which is the previous step of the high current step 2 is in the range of 1000 to 10,000 Asec. As a result, the bonding strength is relatively high as compared with the invention examples in which the welding is performed under spot welding conditions deviating from these optimum conditions such as F (large amount of heat input) in Table 2.

なお、C(工程1のスポット溶接総入熱量小)の最適条件から外れたスポット溶接条件で接合している発明例も、D、Eの最適スポット溶接条件で接合している発明例と同様に接合強度が高く、表5の同じく、Cのスポット溶接条件で接合している発明例とは違った結果となっている。これは、同じく総入熱量小であっても、表6の方の鋼板の強度が比較的高いためであり、工程1の総入熱量小の場合に、より高強度な鋼板を用いることの、溶接制約条件の緩和も含めた利点を示している。   In addition, the invention example joined under the spot welding conditions deviating from the optimum condition of C (total spot welding heat input in step 1) is the same as the invention example joined under the optimum spot welding conditions of D and E. As shown in Table 5, the joining strength is high, and the results are different from those of the invention example in which joining is performed under the spot welding condition of C. This is because even if the total heat input is small, the strength of the steel sheet in Table 6 is relatively high, and if the total heat input in step 1 is small, using a higher strength steel sheet, Advantages including relaxation of welding constraints are shown.

表7においても、上の比較例二つは、表2のA(総入熱量が小さすぎる)、B(高電流工程2の入熱量が小さすぎる)のスポット溶接条件で接合している。このため、A6022のアルミニウム合金板を用い、素材アルミニウム材中のSi量が本発明範囲内であり、鋼中のMn量も本発明範囲内であっても、A溶接条件では、界面反応層自体が生成しておらず、B溶接条件では、界面反応層自体が生成しているものの界面反応層のMnやSiの濃化度が低い。この結果、その下の3つの発明例に比較して、接合強度が著しく低くなっている。   Also in Table 7, the above two comparative examples are joined under the spot welding conditions A (total heat input is too small) and B (heat input in the high current process 2 is too small) in Table 2. Therefore, using the aluminum alloy plate of A6022, even if the amount of Si in the material aluminum material is within the scope of the present invention, and the amount of Mn in the steel is also within the scope of the present invention, under the A welding conditions, the interface reaction layer itself In the B welding conditions, although the interface reaction layer itself is generated, the concentration of Mn and Si in the interface reaction layer is low. As a result, the bonding strength is remarkably low compared to the three invention examples below.

また、表7において、一番下の比較例は、表2のG(総入熱量が大きすぎる)のスポット溶接条件で接合している。このため、界面反応層の平均厚みが5μmを越えて厚くなっており、接合強度は低下している。これは、アルミニウム材の最小残存板厚が0%であり、減肉量が著しく大きいことにもよる。   In Table 7, the lowermost comparative example is joined under spot welding conditions of G (total heat input is too large) in Table 2. For this reason, the average thickness of the interface reaction layer exceeds 5 μm, and the bonding strength is reduced. This is because the minimum remaining plate thickness of the aluminum material is 0% and the amount of thinning is remarkably large.

これに対して、表7の3つの発明例は、ナゲット径が4×t2 0.5〜7 ×t2 0.5の範囲となっており、界面反応層の厚みも好ましい範囲内で、界面反応層のMnやSiの濃化度も比較的高い。このため、比較例に比して接合強度が著しく高い。3つの発明例の中でも2つは、表2のD、Eの最適スポット溶接条件で接合している発明例は、溶接電流値、時間の異なる工程1〜3、あるいは1、2を有し、工程2において、10kA以上の電流を100×t2msec以下流す高電流工程としている。また、高電流工程2の前工程である工程1のスポット溶接総入熱量を1000〜10000Asecの範囲としている。 On the other hand, in the three invention examples in Table 7, the nugget diameter is in the range of 4 × t 2 0.5 to 7 × t 2 0.5 , and the thickness of the interface reaction layer is also within a preferable range. The concentration of Mn and Si is also relatively high. For this reason, the bonding strength is significantly higher than that of the comparative example. Of the three invention examples, two of the invention examples joined in the optimum spot welding conditions of D and E in Table 2 have steps 1 to 3, or 1, 2 with different welding current values and times. Process 2 is a high current process in which a current of 10 kA or more flows for 100 × t 2 msec or less. In addition, the total amount of spot welding heat input in step 1 which is the previous step of the high current step 2 is in the range of 1000 to 10,000 Asec.

また、C(工程1のスポット溶接総入熱量小)の最適条件から外れたスポット溶接条件で接合している発明例も、D、Eの最適スポット溶接条件で接合している発明例と同様に接合強度が高い。これは、表6と同様の鋼板の強度効果であり、工程1の総入熱量小の場合に、より高強度な鋼板を用いることの、溶接制約条件の緩和も含めた利点を示している。   In addition, the invention example joined under the spot welding conditions deviating from the optimum condition of C (total spot welding heat input in step 1) is the same as the invention example joined under the optimum spot welding conditions of D and E. High bonding strength. This is the same strength effect of the steel sheet as in Table 6, and shows the advantage of using a higher-strength steel sheet when the total heat input in step 1 is small, including relaxation of welding constraints.

なお、表7の表2のF(総入熱量大)の最適条件から外れたスポット溶接条件で接合している比較例は、表7の他の発明例に比して接合強度が比較的低い。この結果は、前記表5、6の同じFのスポット溶接条件で接合している発明例の結果と異なる。また、比較例は、このアルミニウム材の最小残存板厚が30%と著しく薄く、減肉量が著しく大きい。これは、表7の980MPa級鋼板のような高強度になると、総入熱量が大きい場合の、アルミニウム材の減肉量などへの悪影響がより大きくなるものと推考される。   Note that the comparative example in which welding is performed under spot welding conditions deviating from the optimum condition of F (total heat input) in Table 2 in Table 7 has a relatively low bonding strength as compared to other invention examples in Table 7. . This result is different from the results of the invention examples joined in the spot welding conditions of the same F in Tables 5 and 6 above. Further, in the comparative example, the minimum remaining plate thickness of this aluminum material is remarkably thin at 30%, and the thickness reduction is remarkably large. This is presumed that when the strength is high, such as the 980 MPa grade steel sheet in Table 7, the adverse effect on the thinning amount of the aluminum material becomes larger when the total heat input is large.

以上の表4〜7の結果から、素材条件を満たした上で、高い接合強度を得られるスポット溶接条件としては、総入熱量が必須であることが分かる。また、電流値が10kA以上であり、接合時間が100×t2msec以下(実施例ではアルミ材の板厚が1mmであるから100msec以下)流す、高電流工程が有効であることが望ましいことが分かる。 From the results in Tables 4 to 7 above, it is understood that the total heat input is indispensable as the spot welding conditions that can obtain high joint strength after satisfying the material conditions. In addition, it is desirable that a high current process in which a current value is 10 kA or more and a joining time is 100 × t 2 msec or less (in the example, the aluminum material is 1 mm in thickness because it is 100 msec or less) is effective. I understand.

また、鋼中のMn量、アルミニウム材中のSi量が請求項範囲内でも、スポット溶接条件によって、界面反応層の厚さが5μmを越える場合や、アルミニウム材の最小残存板厚が50%未満の場合、界面反応層のMn、Si濃化度やナゲット径が本発明の請求範囲を満たさない場合は、接合強度が低くなることがわかる。言い換えると、本発明で規定する要旨を満たすことによって、界面反応層を最適範囲に制御でき、界面反応層のMn、Si濃化度を高くできて、アルミニウム材の減肉量を抑制した、高い接合強度の接合体を得ることができる。   Even if the amount of Mn in steel and the amount of Si in the aluminum material are within the scope of the claims, depending on the spot welding conditions, the thickness of the interface reaction layer exceeds 5 μm, or the minimum remaining plate thickness of the aluminum material is less than 50% In this case, it can be seen that when the Mn, Si concentration and the nugget diameter of the interface reaction layer do not satisfy the claims of the present invention, the bonding strength decreases. In other words, by satisfying the gist stipulated in the present invention, the interfacial reaction layer can be controlled within the optimum range, the Mn and Si concentration of the interfacial reaction layer can be increased, and the amount of thinning of the aluminum material is suppressed, which is high A bonded body having a bonding strength can be obtained.

したがって、これらの実施例の結果から、本発明で規定する各要件の臨界的な意義が分かる。
Therefore, from the results of these examples, the critical significance of each requirement defined in the present invention can be understood.

Figure 0004519508
Figure 0004519508

Figure 0004519508
Figure 0004519508

Figure 0004519508
Figure 0004519508

Figure 0004519508
Figure 0004519508

Figure 0004519508
Figure 0004519508

Figure 0004519508
Figure 0004519508

Figure 0004519508
Figure 0004519508

本発明によれば、クラッド材などの他材料を入れることなく、また別工程を入れることなく、更に、鋼材側やアルミニウム材側、あるいはスポット溶接側条件を大きく変えることなく、接合強度の高いスポット溶接をなしうる、鋼材とアルミニウム材との異種接合体を提供できる。このような接合体は、自動車、鉄道車両などの輸送分野、機械部品、建築構造物等における各種構造部材として大変有用に適用できる。したがって、本発明は鋼材とアルミニウムとの異種接合体の用途を大きく拡大するものである。   According to the present invention, a spot having a high bonding strength without any other material such as a clad material, without a separate process, and without significantly changing the conditions on the steel material side, the aluminum material side, or the spot welding side. Dissimilar joints of steel and aluminum that can be welded can be provided. Such a joined body can be very usefully applied as various structural members in transportation fields such as automobiles and railway vehicles, machine parts, building structures, and the like. Therefore, the present invention greatly expands the use of the heterogeneous joined body of steel and aluminum.

本発明の異種接合体を示す断面図である。It is sectional drawing which shows the dissimilar joined body of this invention. 異種接合体を得るためのスポット溶接の態様を示す説明図である。It is explanatory drawing which shows the aspect of the spot welding for obtaining a dissimilar joined body.

符号の説明Explanation of symbols

1:鋼板、2:アルミニウム合金板、3:異種接合体、4:酸化皮膜、
5:ナゲット、6:界面反応層、7、8:電極
1: steel plate, 2: aluminum alloy plate, 3: dissimilar joined body, 4: oxide film,
5: Nugget, 6: Interfacial reaction layer, 7, 8: Electrode

Claims (4)

鋼材とアルミニウム材とをスポット溶接にて接合した異材接合体であって、前記鋼材がMn:0.1〜3.0質量%を含み、板厚t1が0.3〜2.5mmの範囲であるとともに、前記アルミニウム材がSi:0.4〜2質量%を含み、板厚t2が0.5〜2.5mmの範囲であり、前記鋼材またはアルミニウム材の接合側表面に、3〜15μmの膜厚で、融点が350〜950℃のZn及び/またはAlからなるめっき皮膜を予め有し、前記スポット溶接におけるナゲット径が、前記板厚t2との関係で、4×t2 0.5〜7×t2 0.5の範囲であり、且つ、前記スポット溶接部におけるアルミニウム材の最小残存板厚が、前記元の板厚t2の50%以上であることを特徴とする鋼材とアルミニウム材との異材接合体。 A steel material and an aluminum material a dissimilar materials bonded body formed by bonding by spot welding, the steel product Mn: 0.1 to 3.0 include mass%, the plate thickness t 1 is in the range of 0.3 to 2.5 mm, the aluminum material There Si: 0.4 to 2 comprises a mass%, in the range plate thickness t 2 of 0.5 to 2.5 mm, the steel material or bonding surface of the aluminum material, with a thickness of 3 to 15 [mu] m, a melting point of from 350 to 950 ° C. The nugget diameter in the spot welding is in the range of 4 × t 2 0.5 to 7 × t 2 0.5 in relation to the plate thickness t 2, and a plating film made of Zn and / or Al of the minimum residual sheet thickness of the aluminum material in the spot welds, dissimilar materials bonded body of the steel and the aluminum material, characterized in that at least 50% of the original thickness t 2. 前記めっき皮膜が、鋼材接合側表面に施された、88質量%以上のZnを含む亜鉛めっき皮膜である請求項1に記載の鋼材とアルミニウム材との異材接合体。   2. The dissimilar material joined body of steel material and aluminum material according to claim 1, wherein the plating film is a zinc plating film containing Zn of 88% by mass or more, which is applied to a steel material bonding side surface. 前記亜鉛めっき皮膜が8〜12質量%のFeを含む請求項2に記載の鋼材とアルミニウム材との異材接合体。   The dissimilar material joined body of steel materials and aluminum materials according to claim 2 in which said galvanization film contains 8-12 mass% Fe. 前記スポット溶接によるナゲットの鋼材との接合界面に0.1〜5μmの厚みの界面反応層を有しており、この界面反応層中の厚み方向の中間点において、Mn元素量が鋼材のMn元素量との比で1.5倍以上、Si元素量がアルミニウム材のSi元素量との比で1.1倍以上で、かつ鋼材のSi元素量との比で1.1倍以上である請求項1乃至3のいずれか1項に記載の鋼材とアルミニウム材との異材接合体。   It has an interface reaction layer with a thickness of 0.1 to 5 μm at the interface between the nugget and the steel material by spot welding, and at the midpoint of the thickness direction in this interface reaction layer, the amount of Mn element and the amount of Mn element of the steel material The ratio of Si is 1.5 times or more, the Si element amount is 1.1 times or more with respect to the Si element amount of the aluminum material, and the ratio with respect to the Si element amount of the steel material is 1.1 times or more. The dissimilar-materials joined body of the steel materials and aluminum materials as described in a term.
JP2004125931A 2004-04-21 2004-04-21 Dissimilar joints of steel and aluminum Expired - Fee Related JP4519508B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004125931A JP4519508B2 (en) 2004-04-21 2004-04-21 Dissimilar joints of steel and aluminum
KR1020067021820A KR100790638B1 (en) 2004-04-21 2005-04-20 Joined body of dissimilar materials comprising steel material and aluminum material, and joining method therefor
US11/578,406 US7951465B2 (en) 2004-04-21 2005-04-20 Joined body of dissimilar materials comprising steel material and aluminum material, and joining method therefor
CA002563282A CA2563282A1 (en) 2004-04-21 2005-04-20 Steel-aluminum welded material and method of fabricating the same
CNB2005800123956A CN100509247C (en) 2004-04-21 2005-04-20 Joined body of different materials of steel material and aluminum material and method for joining the same
DE602005026923T DE602005026923D1 (en) 2004-04-21 2005-04-20 CONNECTED BODY OF VARIOUS MATERIALS COMPRISING STEEL MATERIAL AND ALUMINUM MATERIAL AND CONNECTION METHOD THEREFOR
EP05734494A EP1738854B1 (en) 2004-04-21 2005-04-20 Joined body of dissimilar materials comprising steel material and aluminum material, and joining method therefor
PCT/JP2005/007554 WO2005102586A1 (en) 2004-04-21 2005-04-20 Joined body of dissimilar materials comprising steel material and aluminum material, and joining method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004125931A JP4519508B2 (en) 2004-04-21 2004-04-21 Dissimilar joints of steel and aluminum

Publications (2)

Publication Number Publication Date
JP2005305504A JP2005305504A (en) 2005-11-04
JP4519508B2 true JP4519508B2 (en) 2010-08-04

Family

ID=35434859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125931A Expired - Fee Related JP4519508B2 (en) 2004-04-21 2004-04-21 Dissimilar joints of steel and aluminum

Country Status (2)

Country Link
JP (1) JP4519508B2 (en)
CN (1) CN100509247C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11351625B2 (en) 2018-02-09 2022-06-07 Toyota Jidosha Kabushiki Kaisha Method for joining dissimilar metal plates
US11351624B2 (en) 2018-01-24 2022-06-07 Toyota Jidosha Kabushiki Kaisha Method for joining dissimtilar metal plates

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1987904B1 (en) 2006-02-23 2015-08-12 Kabushiki Kaisha Kobe Seiko Sho Joint product between steel product and aluminum material
JP5134261B2 (en) * 2006-03-02 2013-01-30 株式会社神戸製鋼所 Dissimilar joints of steel and aluminum
JP5138957B2 (en) * 2006-08-30 2013-02-06 株式会社神戸製鋼所 Dissimilar joints of steel and aluminum
JP2008105087A (en) * 2006-10-27 2008-05-08 Honda Motor Co Ltd Joining method of iron member with aluminum member, and iron-aluminum joined structure
JP5134269B2 (en) * 2006-11-20 2013-01-30 株式会社神戸製鋼所 Dissimilar material joint of steel and aluminum and spot welding method thereof
JP5376391B2 (en) 2007-03-30 2013-12-25 日産自動車株式会社 Dissimilar metal joining method and joining structure
JP5572046B2 (en) * 2010-09-13 2014-08-13 株式会社神戸製鋼所 Dissimilar material joining method
CN103143831B (en) * 2013-03-19 2015-04-22 哈尔滨工业大学(威海) Method for hot-pressure welding aluminum-steel dissimilar material
CN103231203B (en) * 2013-05-11 2015-09-16 哈尔滨工业大学(威海) A kind of For Dissimilar Materials Aluminium method of attachment
US9999938B2 (en) * 2013-08-23 2018-06-19 GM Global Technology Operations LLC Multi-step direct welding of an aluminum-based workpiece to a steel workpiece
US10166627B2 (en) * 2013-10-04 2019-01-01 GM Global Technology Operations LLC Aluminum alloy to steel welding process
US10010966B2 (en) 2014-02-14 2018-07-03 GM Global Technology Operations LLC Electrode for resistance spot welding of dissimilar metals
US20150352658A1 (en) * 2014-06-10 2015-12-10 GM Global Technology Operations LLC Intruding feature in aluminum alloy workpiece to improve al-steel spot welding
CN105436682A (en) * 2014-08-28 2016-03-30 上海拖拉机内燃机有限公司 Spot or projection welding method using potential difference between positive and negative electrodes
US10376984B2 (en) * 2015-03-30 2019-08-13 GM Global Technology Operations LLC Conical shaped current flow to facilitate dissimilar metal spot welding
CN104889613B (en) * 2015-05-15 2017-03-15 江苏金晟元特种阀门股份有限公司 Intelligent welding technique
US10245675B2 (en) 2015-10-14 2019-04-02 GM Global Technology Operations LLC Multi-stage resistance spot welding method for workpiece stack-up having adjacent steel and aluminum workpieces
EP3416775A1 (en) * 2016-02-15 2018-12-26 Novelis, Inc. Method for improving quality of aluminum resistance spot welding
US10675702B2 (en) 2016-02-16 2020-06-09 GM Global Technology Operations LLC Joining of light metal alloy workpieces to steel workpieces using resistance spot welding and adhesive
US10751830B2 (en) 2016-04-08 2020-08-25 GM Global Technology Operations LLC Welding electrode for use in a resistance spot welding workpiece stack-ups that include an aluminum workpiece and a steel workpiece
US10625367B2 (en) 2016-04-08 2020-04-21 GM Global Technology Operations LLC Method of resistance spot welding aluminum to steel
US10675703B2 (en) 2016-04-08 2020-06-09 GM Global Technology Operations LLC Al-steel weld joint
US10857619B2 (en) * 2016-04-14 2020-12-08 GM Global Technology Operations LLC Control of intermetallic compound growth in aluminum to steel resistance welding
US10682724B2 (en) 2016-04-19 2020-06-16 GM Global Technology Operations LLC Resistance spot welding of aluminum-to-aluminum, aluminum-to-steel, and steel-to-steel in a specified sequence and using a cover
US10675704B2 (en) 2016-04-22 2020-06-09 GM Global Technology Operations LLC Alternately direct resistance spot welding of Al-to-Al, al-to-steel, and steel-to-steel with welding electrode having oxide-disrupting structural features
US10421148B2 (en) 2016-04-25 2019-09-24 GM Global Technology Operations LLC External heat assisted welding of dissimilar metal workpieces
US10857618B2 (en) 2018-02-28 2020-12-08 GM Global Technology Operations LLC Improving mechanical performance of Al-steel weld joints by limiting steel sheet deformation
US11065710B2 (en) 2018-03-14 2021-07-20 GM Global Technology Operations LLC Resistance spot welding workpiece stack-ups having a steel workpiece and an aluminum workpiece with a steel plate
JP7003805B2 (en) * 2018-03-30 2022-01-21 日本製鉄株式会社 Joined structure and its manufacturing method
JP7047543B2 (en) * 2018-03-30 2022-04-05 日本製鉄株式会社 Joined structure and its manufacturing method
JP7003806B2 (en) * 2018-03-30 2022-01-21 日本製鉄株式会社 Joined structure and its manufacturing method
JP6885523B2 (en) * 2019-05-24 2021-06-16 日本製鉄株式会社 Manufacturing method of spot welded joints and spot welded joints

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251676A (en) * 1991-01-28 1992-09-08 Nisshin Steel Co Ltd Method for resistance welding steel and aluminum material
JPH0639558A (en) * 1992-07-23 1994-02-15 Sumitomo Metal Ind Ltd Resistance welding method of aluminum and steel
JPH0655277A (en) * 1991-10-18 1994-03-01 Nisshin Steel Co Ltd Joining method for steel material and aluminum-base material
JPH06142941A (en) * 1991-05-31 1994-05-24 Nisshin Steel Co Ltd Method for improving corrosion resistance of joined part between steel plate and dissimilar metallic plate
JPH07155964A (en) * 1993-12-08 1995-06-20 Sumitomo Metal Ind Ltd Clad insert material suitable for resistance welding of surface treated steel sheet and a1 sheet
JPH10262363A (en) * 1997-03-18 1998-09-29 Sumitomo Light Metal Ind Ltd Reaction plate for linear motor car, and its manufacture
JP2003145278A (en) * 2001-11-13 2003-05-20 Kobe Steel Ltd Joined body of different kinds and method for resistance spot welding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251676A (en) * 1991-01-28 1992-09-08 Nisshin Steel Co Ltd Method for resistance welding steel and aluminum material
JPH06142941A (en) * 1991-05-31 1994-05-24 Nisshin Steel Co Ltd Method for improving corrosion resistance of joined part between steel plate and dissimilar metallic plate
JPH0655277A (en) * 1991-10-18 1994-03-01 Nisshin Steel Co Ltd Joining method for steel material and aluminum-base material
JPH0639558A (en) * 1992-07-23 1994-02-15 Sumitomo Metal Ind Ltd Resistance welding method of aluminum and steel
JPH07155964A (en) * 1993-12-08 1995-06-20 Sumitomo Metal Ind Ltd Clad insert material suitable for resistance welding of surface treated steel sheet and a1 sheet
JPH10262363A (en) * 1997-03-18 1998-09-29 Sumitomo Light Metal Ind Ltd Reaction plate for linear motor car, and its manufacture
JP2003145278A (en) * 2001-11-13 2003-05-20 Kobe Steel Ltd Joined body of different kinds and method for resistance spot welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11351624B2 (en) 2018-01-24 2022-06-07 Toyota Jidosha Kabushiki Kaisha Method for joining dissimtilar metal plates
US11351625B2 (en) 2018-02-09 2022-06-07 Toyota Jidosha Kabushiki Kaisha Method for joining dissimilar metal plates

Also Published As

Publication number Publication date
JP2005305504A (en) 2005-11-04
CN1946506A (en) 2007-04-11
CN100509247C (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP4519508B2 (en) Dissimilar joints of steel and aluminum
US10857619B2 (en) Control of intermetallic compound growth in aluminum to steel resistance welding
US8487206B2 (en) Joint product between steel product and aluminum material, spot welding method for the joint product, and electrode chip for use in the joint product
KR100790638B1 (en) Joined body of dissimilar materials comprising steel material and aluminum material, and joining method therefor
CN101405105B (en) Joint product between steel product and aluminum material, spot welding method for the joint product, and electrode chip for use in the joint product
JP4971821B2 (en) Dissimilar material joining method between steel and aluminum
US11524358B2 (en) Mechanical performance of al-steel weld joints
JP2018039019A (en) Spot-welding method
JP5138957B2 (en) Dissimilar joints of steel and aluminum
RU2764247C1 (en) Welding method for the manufacture of a prefabricated structure of at least two metal substrates
JP4690087B2 (en) Dissimilar joints of steel and aluminum and their joining methods
US20210308784A1 (en) An assembly of at least 2 metallic substrates
JPH0655277A (en) Joining method for steel material and aluminum-base material
US11548091B2 (en) Pretreatment of weld flanges to mitigate liquid metal embrittlement cracking in resistance welding of galvanized steels
JP5134269B2 (en) Dissimilar material joint of steel and aluminum and spot welding method thereof
JP4640995B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP4469165B2 (en) Dissimilar joints of steel and aluminum and their joining methods
JP2007277717A (en) Steel sheet for brazing bonding to aluminum based material, bonding material using the steel sheet, and bonding joint
US11919102B2 (en) Assembly of at least 2 metallic substrates
JP4838491B2 (en) Dissimilar joints of steel and aluminum
WO2023139923A1 (en) Projection-welded joint and projection welding method
KR20240119314A (en) Projection weld joints and projection welding methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4519508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees