JP4519471B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP4519471B2
JP4519471B2 JP2004008890A JP2004008890A JP4519471B2 JP 4519471 B2 JP4519471 B2 JP 4519471B2 JP 2004008890 A JP2004008890 A JP 2004008890A JP 2004008890 A JP2004008890 A JP 2004008890A JP 4519471 B2 JP4519471 B2 JP 4519471B2
Authority
JP
Japan
Prior art keywords
switching elements
motor
field
power conversion
semiconductor switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004008890A
Other languages
Japanese (ja)
Other versions
JP2005204430A (en
Inventor
大祐 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Elevator and Building Systems Corp
Original Assignee
Toshiba Elevator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Co Ltd filed Critical Toshiba Elevator Co Ltd
Priority to JP2004008890A priority Critical patent/JP4519471B2/en
Priority to MYPI20050101A priority patent/MY148186A/en
Priority to TW094101006A priority patent/TWI274467B/en
Priority to CNA2005800023252A priority patent/CN1910812A/en
Priority to PCT/JP2005/000730 priority patent/WO2005069476A1/en
Publication of JP2005204430A publication Critical patent/JP2005204430A/en
Application granted granted Critical
Publication of JP4519471B2 publication Critical patent/JP4519471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B19/00Mining-hoist operation
    • B66B19/007Mining-hoist operation method for modernisation of elevators

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Control Of Direct Current Motors (AREA)
  • Dc-Dc Converters (AREA)
  • Elevator Control (AREA)

Description

本発明は、IGBT(Insulated Gate Bipolar Transistor)等を含む半導体スイッチング素子を用いた三相電力変換機能を備えた電力変換装置に関する。   The present invention relates to a power conversion device having a three-phase power conversion function using a semiconductor switching element including an IGBT (Insulated Gate Bipolar Transistor).

従来のエレベータシステムでは、エレベータ駆動用に大型の直流電動機が用いられていたが、現在では新規に直流電動機を使用することはなく、多くは3相交流誘導電動機や永久磁石電動機が用いられている。しかし、一方では、未だ過去の直流電動機をそのまま使用しているエレベータシステムが多く存在し、中には既に20年以上稼動しているものもあり、かなり老朽化が進んでいる。   In a conventional elevator system, a large DC motor is used for driving an elevator. However, a DC motor is not newly used at present, and a three-phase AC induction motor or a permanent magnet motor is often used. . However, on the other hand, there are still many elevator systems that use the past DC motors as they are, and some of them have already been operated for more than 20 years, and are aging considerably.

そこで、以上のように老朽化が進んでいるエレベータシステムのリニューアル化が実施されつつあるが、予算、工事期間、撤去スペース等の観点から、直流電動機をそのまま残し、制御装置のみを交換する制御リニューアル工法がとられている。   Therefore, although the aging elevator system is being renewed as described above, the renewal of the control system that replaces only the control device while leaving the DC motor in place from the viewpoint of budget, construction period, removal space, etc. Construction method is taken.

今、現在、一般に用いられている制御装置は、交流電動機のコンバータ装置−インバータ装置によるPWM制御が主流となっているが、制御リニューアル工法では、当該インバータ装置相当部分に三相電力変換機能をもつ直流チョッパ回路を用いた電力変換装置を構成し、直流電動機の駆動に用いられている。   At present, PWM control by a converter device-inverter device of an AC electric motor is mainly used as a control device that is generally used. However, the control renewal method has a three-phase power conversion function in a portion corresponding to the inverter device. A power converter using a DC chopper circuit is configured and used to drive a DC motor.

図7は従来の電力変換装置の構成を示す図である。
同図において、51は3相交流電源及びコンバータ装置を含んで所要の直流電圧を発生する直流電源であって、この直流電源51から発生される直流電圧はP側母線52p,N側母線52n間に印加される。53は同じくP側母線52pとN側母線52nとの間に接続され、二相の電力変換機能をもつ複数のスイッチング素子53p1,53n1、53p2,53n2で構成される電機子用チョッパ装置、54はコンバータ装置等(図示せず)及び電機子用チョッパ装置53等のスイッチング素子の動作時に発生するサージ電圧を抑える平滑コンデンサである。
FIG. 7 is a diagram showing a configuration of a conventional power converter.
In the figure, reference numeral 51 denotes a DC power supply that includes a three-phase AC power supply and a converter device and generates a required DC voltage. The DC voltage generated from the DC power supply 51 is between the P-side bus 52p and the N-side bus 52n. To be applied. 53 is similarly connected between the P-side bus 52p and the N-side bus 52n, and includes a plurality of switching elements 53p1, 53n1, 53p2, and 53n2 having a two-phase power conversion function. This is a smoothing capacitor that suppresses a surge voltage generated when a switching device such as a converter device (not shown) or an armature chopper device 53 is operated.

55は直流電動機であって、電機子用チョッパ装置53から出力される動力線56a、56bに接続されている。57は直流電動機55の界磁コイル、58は界磁コイル57に通電し、界磁磁束を制御する界磁制御ユニットである。59は電機子電流用カレントセンサである。   Reference numeral 55 denotes a DC motor, which is connected to power lines 56 a and 56 b output from the armature chopper device 53. 57 is a field coil of the DC motor 55, and 58 is a field control unit that controls the field magnetic flux by energizing the field coil 57. Reference numeral 59 denotes an armature current sensor.

次に、以上のような装置の動作について説明する。
コンバータ装置等の直流電源51から所要とする直流電圧がP側母線52p−N側母線52n間に印加される。さらに、図示しない制御部から出力されるゲート制御信号に基づいて電機子用チョッパ装置53を構成するスイッチング素子53p1〜53n2をゲート制御し、P側母線52p−N側母線52n間に印加される直流電圧をチョッパ動作することにより、直流電動機55の電機子間に印加する電圧を制御し、直流電動機55を駆動する。また、直流電動機55は、界磁磁束が無ければ駆動しないので、別ユニットである界磁制御ユニット58から界磁コイル57に界磁電流を流して界磁磁束を生成し、直流電動機55を駆動可能とする。
Next, the operation of the above apparatus will be described.
A required DC voltage is applied between the P-side bus 52p and the N-side bus 52n from a DC power source 51 such as a converter device. Further, the switching elements 53p1 to 53n2 constituting the armature chopper device 53 are gate-controlled based on a gate control signal output from a control unit (not shown), and a direct current applied between the P-side bus 52p and the N-side bus 52n. By choppering the voltage, the voltage applied between the armatures of the DC motor 55 is controlled to drive the DC motor 55. Further, since the DC motor 55 is not driven unless there is a field magnetic flux, it is possible to drive the DC motor 55 by generating a field magnetic flux by causing a field current to flow from the field control unit 58 which is a separate unit to the field coil 57. To do.

また、従来のもう1つの電力変換装置としては、図8に示すような構成のものが提案されている。この電力変換装置は、3相インバータ装置のうち、2相の電力変換機能をもつスイッチング素子53p1〜53n2が電機子チョッパ装置53aを構成し、残りの1相のスイッチング素子53p3,53n3が界磁用チョッパ装置53bを構成するとともに、界磁用チョッパ装置53bを構成するスイッチング素子53p3,53n3の共通接続部から導出される動力線56dと電力変換装置自体のN側母線52n側から出力される動力線56cとに直流電動機55の界磁コイル57が接続され、図7に示す界磁制御ユニット58を不要にした技術である(特許文献1)。
特開平08−256497号公報
Further, as another conventional power conversion device, one having a configuration as shown in FIG. 8 has been proposed. In this power converter, among the three-phase inverter devices, switching elements 53p1 to 53n2 having a two-phase power conversion function constitute an armature chopper device 53a, and the remaining one-phase switching elements 53p3 and 53n3 are for field use. A power line 56d derived from a common connection portion of the switching elements 53p3 and 53n3 constituting the chopper device 53b and the power line outputted from the N-side bus 52n side of the power converter itself while constituting the chopper device 53b. This is a technique in which the field coil 57 of the DC motor 55 is connected to 56c, and the field control unit 58 shown in FIG. 7 is not required (Patent Document 1).
Japanese Patent Application Laid-Open No. 08-256497

ところで、以上のような電力変換装置では、次のような問題点が指摘されている。
先ず、前者の電力変換装置では、界磁制御ユニット58が設けられているが、このユニット58が別ユニットとなっているので、新たな設置スペースを必要とする点である。因みに、エレベータ等のリニューアル物件では、既に機械室の大きさが決定され、その大きさに合せて必要な設備を設けているので、あらためて設置スペースを確保できない可能性が出てくる。
By the way, the following problems are pointed out in the above power converters.
First, in the former power converter, the field control unit 58 is provided, but since this unit 58 is a separate unit, a new installation space is required. By the way, in renewal properties such as elevators, the size of the machine room has already been determined, and necessary equipment has been provided in accordance with the size, so there is a possibility that the installation space cannot be secured again.

また、界磁制御ユニット58が別ユニットの場合、界磁制御ユニット58を制御するゲート制御信号の信号線(図示せず)が長くなり、ノイズ等によって誤動作を生じさせる可能性がある。他の盤などに収納することも考えられるが、盤内の改造やノイズ対策等が必要になってくる。   Further, when the field control unit 58 is a separate unit, a signal line (not shown) of a gate control signal for controlling the field control unit 58 becomes long, which may cause a malfunction due to noise or the like. Although it can be stored in other panels, it is necessary to modify the panel and take measures against noise.

さらに、電力変換装置では、通常、三相コンバータ装置又は三相インバータ装置が使用されるが、そのうち電機子用チョッパ装置53では2相の電力変換機能だけを使用するので、完全に1相分が残ってしまう問題がある。   Further, in the power conversion device, a three-phase converter device or a three-phase inverter device is usually used. Of these, the armature chopper device 53 uses only a two-phase power conversion function. There is a problem that remains.

次に、後者の界磁制御ユニットを不要とした電力変換装置では、直流電動機55の高速化、大容量化に従い、当該電動機55の誘起電圧が高くなり、直流電源電圧が大きくなっている為、界磁コイル57の定格電圧が直流電源電圧に比べて小さくなってしまい、界磁コイル57に大きな電圧負荷がかかり、コイル57の絶縁劣化を引き起こして破損する可能性がある。   Next, in the power conversion device that does not require the latter field control unit, the induced voltage of the motor 55 increases and the DC power supply voltage increases as the speed and capacity of the DC motor 55 increase. The rated voltage of the coil 57 becomes smaller than the DC power supply voltage, and a large voltage load is applied to the field coil 57, which may cause insulation deterioration of the coil 57 and breakage.

本発明は上記事情に鑑みてなされたもので、界磁制御ユニットを不要とし、直流電動機の界磁コイルの定格電圧がPN母線間電圧よりも低い場合でも、界磁コイルに加わる電圧を低く抑えてコイル破損を回避する電力変換装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and does not require a field control unit, and even when the rated voltage of the field coil of the DC motor is lower than the voltage between the PN buses, the voltage applied to the field coil is kept low. It aims at providing the power converter device which avoids damage.

また、本発明の他の目的は、界磁コイルではなく、電力変換装置内部の出力線と回生用抵抗とを接続し、回生時にPN母線間の電圧上昇を抑制する電力変換装置を提供することにある。   Another object of the present invention is to provide a power converter that connects an output line inside the power converter and a regenerative resistor, not a field coil, and suppresses a voltage increase between PN buses during regeneration. It is in.

(1) 上記課題を解決するために、本発明は、所要の直流電圧が印加されるPN母線間に、三相の電力変換機能をもつ複数の半導体スイッチング素子及びこれら複数の半導体スイッチング素子の動作時に発生するサージ電圧を抑える複数の平滑コンデンサがそれぞれ直列に接続され、界磁コイルを有する直流電動機を駆動する三相の電力変換装置において、
前記三相の電力変換機能をもつ複数の半導体スイッチング素子のうち、二相分の電力変換機能をもつ複数の半導体スイッチング素子の出力側に前記直流電動機の電機子が接続され、外部から供給される第1のゲート制御信号のもとにチョッパ動作を行う電機子用チョッパ装置と、前記三相の電力変換機能をもつ複数の半導体スイッチング素子のうち、残りの一相分の電力変換機能をもつ複数の半導体スイッチング素子で構成され、外部から供給される第2のゲート制御信号のもとにチョッパ動作を行う界磁用チョッパ装置と、この界磁用チョッパ装置を構成する複数の半導体スイッチング素子の接続部と前記複数の平滑コンデンサの中点との間に前記界磁コイルとともに帰還用回路素子が接続され、前記平滑コンデンサの中点電圧を、当該界磁用チョッパ装置によるチョッパ動作によって前記界磁コイルに通電し、かつ前記界磁コイルに蓄えられる電力エネルギーを前記平滑コンデンサの中点に戻す界磁電圧低減回路とを設けた構成である。
(1) In order to solve the above problems, the present invention provides a plurality of semiconductor switching elements having a three-phase power conversion function between PN buses to which a required DC voltage is applied, and operations of the plurality of semiconductor switching elements. In a three-phase power converter that drives a DC motor having a field coil, each of which is connected in series with a plurality of smoothing capacitors that suppress the surge voltage that sometimes occurs,
The armature of the DC motor is connected to the output side of the plurality of semiconductor switching elements having the power conversion function for two phases among the plurality of semiconductor switching elements having the three-phase power conversion function, and supplied from the outside A plurality of armature chopper devices that perform a chopper operation based on a first gate control signal and a plurality of semiconductor switching elements having the three-phase power conversion function and having a power conversion function for the remaining one phase. A field chopper device configured to perform chopper operation based on a second gate control signal supplied from the outside and a plurality of semiconductor switching elements constituting the field chopper device A feedback circuit element is connected together with the field coil between the smoothing capacitor and a middle point of the plurality of smoothing capacitors, The chopper operation by the use chopper device supplying an electric current to the field coil, and a configuration in which the field voltage reduction circuit to return the power energy stored in the field coil to the midpoint of the smoothing capacitor.

この発明は以上のような構成とすることにより、外部の制御部から界磁用チョッパ装置に第2のゲート制御信号を送出し、ここでチョッパ動作を行うことにより、直流電動機の界磁コイルの定格電圧がPN母線間電圧よりも低い場合でも、平滑コンデンサの中点電圧を界磁用チョッパ装置でチョッパ動作を行って界磁コイルに通電し、かつ界磁コイルに蓄えられたエネルギを帰還用回路素子を通して平滑コンデンサの中点に帰還させることにより、結果として、界磁コイルの負荷電圧を抑制でき、ひいては界磁コイルの破損を未然に回避でき、界磁制御ユニットを設けることなく直流電動機を確実に制御することができる。   With this configuration, the second control signal is sent from the external control unit to the field chopper device, and the chopper operation is performed here, so that the field coil of the DC motor can be controlled. Even when the rated voltage is lower than the voltage between PN buses, the midpoint voltage of the smoothing capacitor is chopper-operated with the field chopper device to energize the field coil, and the energy stored in the field coil is used for feedback. By feeding back to the middle point of the smoothing capacitor through the circuit element, as a result, the load voltage of the field coil can be suppressed, and therefore the field coil can be prevented from being damaged in advance, and the DC motor can be surely provided without providing a field control unit. Can be controlled.

なお、前記(1)の構成の電力変換装置において、複数の平滑コンデンサが3個以上直列に接続されている場合、前記界磁電圧低減回路は、前記界磁用チョッパ装置を構成する複数の半導体スイッチング素子の接続部と前記3個以上の平滑コンデンサの最も前記N側母線に近い隣り合う平滑コンデンサの接続点との間に前記界磁コイルとともに帰還用回路素子を接続することにより、直流電動機の界磁コイルの定格電圧がPN母線間電圧の半分より低い場合でも、最もN側母線に近い隣り合う平滑コンデンサの接続点に生じる電圧をチョッパ動作を行って界磁コイルに界磁コイルに通電し、かつ界磁コイルに蓄えられたエネルギを帰還用回路素子を通して平滑コンデンサの前記接続点に戻しているので、界磁コイルにかかる負荷電圧が小さくなり、絶縁劣化等による破損を無くすことができる。   In the power conversion device having the configuration (1), when three or more smoothing capacitors are connected in series, the field voltage reduction circuit includes a plurality of semiconductors constituting the field chopper device. By connecting a feedback circuit element together with the field coil between a connection portion of the switching element and a connection point of the adjacent smoothing capacitor closest to the N-side bus of the three or more smoothing capacitors, Even when the rated voltage of the field coil is lower than half of the voltage between the PN buses, the voltage generated at the connection point of the adjacent smoothing capacitor closest to the N-side bus is chopper operated to energize the field coil to the field coil Since the energy stored in the field coil is returned to the connection point of the smoothing capacitor through the feedback circuit element, the load voltage applied to the field coil is small. Ri, it is possible to eliminate the damage caused by insulation deterioration and the like.

(3) また、本発明は、所要の直流電圧が印加されるPN母線間に、三相の電力変換機能をもつ複数の半導体スイッチング素子及びこれら複数の半導体スイッチング素子の動作時に発生するサージ電圧を抑える複数の平滑コンデンサがそれぞれ直列に接続され、かつ界磁制御ユニットから界磁電流の流入制御される界磁コイルを有する直流電動機を駆動する三相の電力変換装置において、
前記三相の電力変換機能をもつ複数の半導体スイッチング素子のうち、二相分の電力変換機能をもつ複数の半導体スイッチング素子の出力側に前記直流電動機の電機子が接続され、外部から供給される第1のゲート制御信号のもとにチョッパ動作を行う電機子用チョッパ装置と、前記三相の電力変換機能をもつ複数の半導体スイッチング素子のうち、残りの一相分の電力変換機能をもつ複数の半導体スイッチング素子で構成され、外部から供給されるスイッチング制御信号のもとにスイッチング動作を行う抵抗接続装置と、この抵抗接続装置を構成する複数の半導体スイッチング素子の接続点と前記N側母線との間に接続され、前記直流電動機の回生モード時、前記抵抗接続装置によるスイッチング動作によって前記PN母線間に現れる電圧を低減するように回生電流を消費させる回生電流消費抵抗とを設けた構成である。
(3) Further, the present invention provides a plurality of semiconductor switching elements having a three-phase power conversion function and a surge voltage generated during operation of the plurality of semiconductor switching elements between PN buses to which a required DC voltage is applied. In the three-phase power converter for driving a DC motor having a field coil in which a plurality of smoothing capacitors to be suppressed are connected in series and the field current is controlled to flow from the field control unit,
The armature of the DC motor is connected to the output side of the plurality of semiconductor switching elements having the power conversion function for two phases among the plurality of semiconductor switching elements having the three-phase power conversion function, and supplied from the outside A plurality of armature chopper devices that perform a chopper operation based on a first gate control signal and a plurality of semiconductor switching elements having the three-phase power conversion function and having a power conversion function for the remaining one phase. A resistance connection device configured to perform a switching operation based on a switching control signal supplied from the outside, a connection point of a plurality of semiconductor switching elements constituting the resistance connection device, and the N-side bus The voltage that appears between the PN buses due to the switching operation by the resistance connection device during the regeneration mode of the DC motor It is a structure in which a regenerative current consumption resistor to consume the regenerative current to reduce.

この発明は以上のような構成とすることにより、直流電動機の回生モード時、PN母線間の電圧を増大させて界磁コイル側に悪影響を与えるが、残りの一相分の電力変換機能をもつ複数の半導体スイッチング素子をもって抵抗接続装置を構成し、かつこの複数の半導体スイッチング素子の接続点からN側母線に回生電流消費抵抗を接続し、抵抗接続装置を構成するスイッチング素子の動作により、前記PN母線間の増大する電圧を低減するように回生電流消費抵抗に回生電流を流して消費するので、界磁コイルの破損を未然に回避できる。   With the above configuration, the present invention increases the voltage between the PN buses in the regenerative mode of the DC motor and adversely affects the field coil side, but has a power conversion function for the remaining one phase. A resistance connection device is configured with a plurality of semiconductor switching elements, and a regenerative current consuming resistor is connected from the connection point of the plurality of semiconductor switching elements to the N-side bus, and the operation of the switching elements constituting the resistance connection device causes the PN Since the regenerative current is passed through the regenerative current consumption resistor so as to reduce the increasing voltage between the buses, the field coil can be prevented from being damaged.

しかも、何れの電力変換装置においても、エレベータのリニューアル時に界磁コイルを有する直流電動機を生かしつつ、現在、一般に使用されている3相電力変換機能を備えたものを用いて実現できる。   In addition, any power conversion device can be realized by using a DC motor having a field coil at the time of elevator renewal and having a three-phase power conversion function that is generally used at present.

(3) さらに、本発明は、前記(1)又は(2)の電力変換装置において、
直流電動機に代えて交流電動機に適用しようとする場合、前記三相の電力変換機能をもつ複数の半導体スイッチング素子をもって三相インバータ装置とするとともに、このインバータ装置を構成する各相の複数の半導体スイッチング素子の接続点から前記直流電動機の電機子及び界磁コイル又は回生電流消費抵抗に接続される出力線をそのまま前記交流電動機に接続すれば、かかる電力変換装置をそのまま交流電動機にも適用できる。
(3) Furthermore, the present invention provides the power converter according to (1) or (2),
When applying to an AC motor instead of a DC motor, a plurality of semiconductor switching elements having the three-phase power conversion function are used as a three-phase inverter device, and a plurality of semiconductor switching devices for each phase constituting the inverter device If an output line connected to the armature and field coil or regenerative current consumption resistance of the DC motor from the connection point of the element is connected to the AC motor as it is, the power converter can be applied to the AC motor as it is.

本発明は、三相電力変換機能をもつ複数の半導体スイッチング素子のうち、特に二相の電力変換機能をもつ電機子用チョッパ装置以外に、残りの一相の電力変換機能を有効に利用し、界磁コイルに加わる電圧を低く抑えるように制御することにより、界磁制御ユニットを不要とする一方、界磁コイルに加わる電圧負荷を下げて破損を回避できる電力変換装置を提供できる。   The present invention effectively uses the remaining one-phase power conversion function in addition to the chopper device for armature having a two-phase power conversion function, among a plurality of semiconductor switching elements having a three-phase power conversion function, By controlling so that the voltage applied to the field coil is kept low, it is possible to provide a power conversion device that eliminates the need for the field control unit and reduces the voltage load applied to the field coil to avoid breakage.

また、本発明は、残りの一相の電力変換機能を有効に利用し、回生用抵抗と接続することにより、回生時のPN母線間の電圧上昇を抑制できる電力変換装置を提供できる。   Moreover, this invention can provide the power converter device which can suppress the voltage rise between the PN bus | baths at the time of regeneration by utilizing effectively the remaining one-phase power conversion function, and connecting with the resistor for regeneration.

以下、本発明の実施の形態について図面を参照して説明する。
(第1の実施の形態)
図1は本発明に係る電力変換装置の一実施の形態を示す構成図である。
同図において1は、例えば3相交流電源2から出力される交流電力を直流電力に変換し、所要の直流電圧を直流電動機3の電機子3a,3bに供給し、当該直流電動機3を駆動する本発明の要部となる電力変換装置である。4は直流電動機3の界磁コイル、5は電力変換装置1から直流電動機3の電機子3a,3bに接続される動力線6a,6bに流れる電機子電流を検出する電機子電流用カレントセンサである。7は電力変換装置1を構成する三相電力変換機能等を有する半導体スイッチング素子にゲート制御信号を送出し制御する制御部である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a configuration diagram showing an embodiment of a power converter according to the present invention.
In FIG. 1, for example, 1 converts AC power output from a three-phase AC power source 2 into DC power, supplies a required DC voltage to the armatures 3 a and 3 b of the DC motor 3, and drives the DC motor 3. It is the power converter device used as the principal part of this invention. 4 is a field coil of the DC motor 3, and 5 is an armature current sensor for detecting an armature current flowing from the power converter 1 to the power lines 6 a and 6 b connected to the armatures 3 a and 3 b of the DC motor 3. is there. Reference numeral 7 denotes a control unit that sends and controls a gate control signal to a semiconductor switching element having a three-phase power conversion function and the like constituting the power conversion device 1.

この電力変換装置1は、具体的には、三相交流電源2から出力される交流電力を、外部の制御部7から出力されるゲート制御信号のもとにゲート制御されるIGBT等の複数のコンバータ用スイッチング素子11a,…でチョッパ動作を行って所要電力の直流電圧に変換するコンバータ装置11と、P側母線12p,N側母線12n間に接続され、このコンバータ装置11で変換された直流電圧を、外部の制御部7から出力されるゲート制御信号のもとにゲート制御されるIGBT等の複数のスイッチング素子13p1−13n1、13p2−13n2でチョッパ動作を行って動力線6a,6bを通して直流電動機3の電機子3a,3bに供給する電機子用チョッパ装置13aと、通常,3相の電力変換機能のうち、その2相分のスイッチング素子13p1〜13n2が電機子用チョッパ装置13aとして使用されるが、その残りの1相分を前記界磁コイル4に印加する電圧を取得するために、P側母線12pとN側母線12nとの間に直列接続され、前述同様に外部の制御部7からのゲート制御信号のもとにゲート制御されるIGBT等の界磁チョッパ用のスイッチング素子13p3、13n3よりなる界磁用チョッパ装置13bと、界磁電圧低減回路としての界磁中点電圧取得回路14と、界磁電流用カレントセンサ15とによって構成されている。   Specifically, the power conversion device 1 is configured such that an AC power output from the three-phase AC power source 2 is a plurality of IGBTs and the like that are gate-controlled based on a gate control signal output from an external control unit 7. The converter device 11 that performs chopper operation by the converter switching elements 11a,... And converts it into a DC voltage of the required power, and the DC voltage that is connected between the P-side bus 12p and the N-side bus 12n and converted by the converter device 11 Is driven by a plurality of switching elements 13p1-13n1, 13p2-13n2, such as IGBTs, which are gate-controlled based on a gate control signal output from an external control unit 7, and a DC motor is supplied through power lines 6a and 6b. 3 of armature chopper device 13a to be supplied to 3 armatures 3a and 3b, and switching of the two phases of the three-phase power conversion function The elements 13p1 to 13n2 are used as the armature chopper device 13a. In order to obtain a voltage for applying the remaining one phase to the field coil 4, the P-side bus 12p and the N-side bus 12n A field chopper device 13b composed of switching elements 13p3 and 13n3 for field choppers such as IGBTs connected in series between them and gate-controlled in accordance with a gate control signal from the external control unit 7 as described above; A field midpoint voltage acquisition circuit 14 as a field voltage reduction circuit and a field current current sensor 15 are configured.

なお、電機子電流用カレントセンサ5で検出される電機子検出電流や界磁電流用カレントセンサ15で検出される界磁検出電流は制御部7に導入されている。   The armature detection current detected by the armature current current sensor 5 and the field detection current detected by the field current current sensor 15 are introduced into the control unit 7.

この界磁中点電圧取得回路14は、P側母線12pとN側母線12nとの間に直列接続された複数の平滑コンデンサ14a1及び14a2と、同じくP側母線12pとN側母線12nとの間に直列接続され、かつこれら平滑コンデンサ14a1,14a2に印加される電圧が均等に配分するように個別に並列接続されるバランス抵抗14b1,14b2と、界磁用チョッパ装置13bを構成するスイッチング素子13p3と13n3との接続点と前記平滑コンデンサ14a1,14a2の中点14cとの間に設けられ、スイッチング素子13n3のオン時、平滑コンデンサ14a1,14a2の中点電圧が界磁コイル4−動力線6c−スイッチング素子13n3−N側母線12nの経路で界磁電流が流れ、スイッチング素子13n3のオフ時、界磁コイル4に蓄えられる電力エネルギーを平滑コンデンサ14a1,14a2の中点11cに戻して界磁コイル4間の電圧を降下させる帰還用半導体素子14dとが設けられている。   This field midpoint voltage acquisition circuit 14 includes a plurality of smoothing capacitors 14a1 and 14a2 connected in series between the P-side bus 12p and the N-side bus 12n, and between the P-side bus 12p and the N-side bus 12n. Are connected in series and individually connected in parallel so that the voltages applied to the smoothing capacitors 14a1 and 14a2 are evenly distributed, and a switching element 13p3 constituting the field chopper device 13b, 13n3 and a midpoint 14c of the smoothing capacitors 14a1 and 14a2, and when the switching element 13n3 is turned on, the midpoint voltage of the smoothing capacitors 14a1 and 14a2 is the field coil 4-power line 6c-switching. When field current flows through the path of element 13n3-N side bus 12n and switching element 13n3 is off A feedback semiconductor element 14d to lower the voltage between the field coil 4 by returning the power energy stored in the field coil 4 at the midpoint 11c of the smoothing capacitor 14a1,14a2 are provided.

そして、平滑コンデンサ14a1,14a2の中点14cから導出される動力線6dに界磁コイル4の一端側が接続され、また界磁用チョッパ装置13bを構成するスイッチング素子13p3と13n3との接続点から導出される動力線6cに界磁電流用カレントセンサ15を介して界磁コイル4の他端側が接続されている。   One end side of the field coil 4 is connected to the power line 6d derived from the middle point 14c of the smoothing capacitors 14a1 and 14a2, and derived from the connection point between the switching elements 13p3 and 13n3 constituting the field chopper device 13b. The other end of the field coil 4 is connected to the power line 6c via the field current current sensor 15.

次に、以上のような電力変換装置の動作について図2を参照して説明する。
先ず、制御部7からコンバータ装置11にゲート制御信号を発信し、当該コンバータ装置11を構成する複数のスイッチング素子11a,…をスイッチング制御し、交流電源2から出力される三相交流電力を所要電力の直流電圧に変換する(ST1)。その後、制御部7は、カレントセンサ15等による検出電流から界磁磁束が確立しているか否かを判断し(ST2)、確立されていない場合には界磁用チョッパ装置13bのスイッチング素子13n3にゲート制御信号を送出し、平滑コンデンサ14a1、14a2で分圧された中点14cの中点電圧を対し、スイッチング素子13n3でチョッパ動作を行い、界磁コイル4に通電する(ST3)。
Next, the operation of the power conversion apparatus as described above will be described with reference to FIG.
First, a gate control signal is transmitted from the control unit 7 to the converter device 11 to control switching of the plurality of switching elements 11a,... Constituting the converter device 11, and the three-phase AC power output from the AC power supply 2 is required power. (ST1). Thereafter, the control unit 7 determines whether or not the field magnetic flux is established from the current detected by the current sensor 15 or the like (ST2). If not established, the control unit 7 applies the switching element 13n3 of the field chopper device 13b. A gate control signal is sent, the midpoint voltage of the midpoint 14c divided by the smoothing capacitors 14a1 and 14a2 is applied, a chopper operation is performed by the switching element 13n3, and the field coil 4 is energized (ST3).

このとき、界磁用スイッチング素子13n3のオン状態時、平滑コンデンサ14a1,14a2の接続点である中点14cに現れる電圧に基づき、中点14c−界磁コイル4−界磁電流用カレントセンサ15−スイッチング素子13n3−N側母線12nの経路を通ってN側母線12nに電流が流入するが、このときの電流,つまり界磁電流を界磁電流用カレントセンサ15で検出し、制御部7に送出する(ST4)。一方、界磁用スイッチング素子13n3のオフ状態時、界磁コイル4に蓄えられたエネルギは、帰還用半導体素子14dを通って平滑コンデンサ14c1,14c2の中点14cに帰還され、界磁コイル4間の電圧を降下させる。   At this time, when the field switching element 13n3 is in the ON state, based on the voltage appearing at the midpoint 14c, which is the connection point of the smoothing capacitors 14a1 and 14a2, the midpoint 14c—the field coil 4—the current sensor 15 for the field current. The current flows into the N-side bus 12n through the path of the switching element 13n3-N-side bus 12n. At this time, the current, that is, the field current is detected by the field current sensor 15 and sent to the control unit 7. (ST4). On the other hand, when the field switching element 13n3 is in the OFF state, the energy stored in the field coil 4 is fed back to the midpoint 14c of the smoothing capacitors 14c1 and 14c2 through the feedback semiconductor element 14d. Reduce the voltage.

制御部7においては、界磁電流用カレントセンサ15の検出電流と予め設定される設定電流とを比較し、検出電流が設定電流に達していない場合、ゲート制御信号を送出する。界磁用チョッパ装置13bのスイッチング素子13p3,13n3は、ゲート制御信号に従い、チョッパ動作を行い、所要とする界磁電流を通電し、界磁磁束を確立する(ST5)。   The control unit 7 compares the detected current of the field current current sensor 15 with a preset current, and sends a gate control signal if the detected current does not reach the preset current. The switching elements 13p3 and 13n3 of the field chopper device 13b perform a chopper operation according to the gate control signal, energize a required field current, and establish a field magnetic flux (ST5).

そして、以上のような一連の処理動作の実行後、ステップST2に戻って界磁磁束が確立されたと判断された場合、制御部7は、引き続き、直流電動機3を始動するか否かを判断する(ST6)。このとき、直流電動機3の始動指令が発生している場合、制御部7は、電機子用チョッパ装置13aのチョッパ用スイッチング素子13p1〜13n2にゲート制御信号を送信する。電機子用チョッパ装置13aは、ゲート制御信号に従い、チョッパ動作を行い、所要の駆動電圧を直流電動機3の電機子3a,3b間に印加し、直流電動機3を運転する(ST7)。この直流電動機3が運転している間、電機子電流用カレントセンサ5によって直流電動機3の電機子3a,3bに流入する電流を検出し、制御部7に送信する(ST8)。この制御部7では、電機子電流用カレントセンサ5の検出電流と予め設定される設定電流とを比較しつつ、ゲート制御信号を電機子用チョッパ装置13aのチョッパ用スイッチング素子13p1〜13n2に送信する。この電機子用チョッパ装置13aは、制御部7からのゲート制御信号に従い、P・N側母線12p・12n間の電圧のチョッパ動作を行い、電機子3a,3bに電機子電流を流し、直流電動機3の運転制御を行う(ST9)。   Then, after performing the series of processing operations as described above, when it is determined that the field magnetic flux has been established by returning to step ST2, the control unit 7 determines whether or not to continue the DC motor 3. (ST6). At this time, when a start command for the DC motor 3 is generated, the control unit 7 transmits a gate control signal to the chopper switching elements 13p1 to 13n2 of the armature chopper device 13a. The armature chopper device 13a performs a chopper operation according to the gate control signal, applies a required drive voltage between the armatures 3a and 3b of the DC motor 3, and operates the DC motor 3 (ST7). While the DC motor 3 is in operation, the current flowing into the armatures 3a and 3b of the DC motor 3 is detected by the armature current sensor 5 and transmitted to the control unit 7 (ST8). The control unit 7 transmits a gate control signal to the chopper switching elements 13p1 to 13n2 of the armature chopper device 13a while comparing the detection current of the armature current current sensor 5 with a preset set current. . The armature chopper device 13a performs a chopper operation of a voltage between the P and N side buses 12p and 12n in accordance with a gate control signal from the control unit 7, and causes an armature current to flow through the armatures 3a and 3b. 3 is controlled (ST9).

さらに、直流電動機3の運転中に所定周期ごとに電動機停止指令が入力されたか否かを判断し(ST10)、停止指令が入力されていない場合にはステップST7に戻り、同様の処理を繰り返し実行する。   Further, it is determined whether or not a motor stop command is input at predetermined intervals during the operation of the DC motor 3 (ST10). If no stop command is input, the process returns to step ST7 and the same processing is repeatedly executed. To do.

以上のような実施の形態によれば、コンバータ装置等で変換された所要の直流電圧が印加されるN・P母線12p・12n間に平滑コンデンサ14a1,14a2を直列接続し、同じく複数の界磁チョッパ用スイッチング素子13p3,13n3を有する界磁チョッパ装置13bを接続し、これら界磁チョッパ用スイッチング素子13p3,13n3の共通接続点と平滑コンデンサ14a1,14a2の中点との間に帰還用半導体素子14dを接続し、コンデンサの中点電圧をチョッパ動作しながら直流電動機3の界磁コイル4に印加する構成としたので、直流電動機3の界磁コイル4の定格電圧がN・P母線12p・12n間の印加電圧よりも低い場合でも、界磁チョッパ装置13bで前記中点電圧をチョッパ動作させながら界磁コイル4に印加する一方、当該スイッチング素子13n3のオフ状態時に界磁コイル4に蓄えられたエネルギを帰還用半導体素子14dを通して平滑コンデンサ14a1,14a2の中点14cに帰還させることにより、結果として、界磁コイル4にかかる負荷電圧を低減化でき、ひいては界磁コイル4の絶縁劣化がなくなって破損を未然に回避でき、界磁制御ユニットを設けることなく直流電動機3を制御することができる。   According to the embodiment as described above, the smoothing capacitors 14a1 and 14a2 are connected in series between the N and P buses 12p and 12n to which the required DC voltage converted by the converter device or the like is applied, and a plurality of field magnets are also connected. A field chopper device 13b having chopper switching elements 13p3 and 13n3 is connected, and a feedback semiconductor element 14d is connected between the common connection point of the field chopper switching elements 13p3 and 13n3 and the midpoint of the smoothing capacitors 14a1 and 14a2. And the middle voltage of the capacitor is applied to the field coil 4 of the DC motor 3 while performing chopper operation, so that the rated voltage of the field coil 4 of the DC motor 3 is between the N and P buses 12p and 12n. Even when the applied voltage is lower than the applied voltage, the field coil 4 while the midpoint voltage is operated by the field chopper device 13b. On the other hand, when the switching element 13n3 is turned off, the energy stored in the field coil 4 is fed back to the midpoint 14c of the smoothing capacitors 14a1 and 14a2 through the feedback semiconductor element 14d. As a result, the field coil 4 Load voltage applied to the magnetic field coil 4 can be reduced, so that the insulation deterioration of the field coil 4 can be eliminated and damage can be avoided, and the DC motor 3 can be controlled without providing a field control unit.

(第2の実施の形態)
図3は本発明に係る電力変換装置の他の実施の形態を示す構成図である。なお、同図において図1と同一又は等価な部分には同一符号を付して詳しくは図1の説明に譲り、以下、図1と比較して異なる部分について説明する。
(Second Embodiment)
FIG. 3 is a block diagram showing another embodiment of the power converter according to the present invention. In the figure, the same or equivalent parts as in FIG. 1 are denoted by the same reference numerals and will be described in detail with reference to FIG. 1, and different parts will be described below compared with FIG.

この電力変換装置は、界磁磁束を生成するための回路,つまり界磁チョッパ装置13b及び界磁電圧低減回路を除き、他の構成は図1と同様な構成である。   This power converter is the same as that shown in FIG. 1 except for a circuit for generating a field magnetic flux, that is, a field chopper device 13b and a field voltage reduction circuit.

前記界磁チョッパ装置13bは、図1と同様にP側母線12pとN側母線12nとの間に正側スイッチング素子13p3及び負側スイッチング素子13n3の直列回路が接続されている。   In the field chopper device 13b, a series circuit of a positive switching element 13p3 and a negative switching element 13n3 is connected between a P-side bus 12p and an N-side bus 12n, as in FIG.

前記界磁電圧低減回路としては、P側母線12pとN側母線12nとの間に3個以上の平滑コンデンサ14a1,14a2,…,14anが直列に接続され、これら各平滑コンデンサに均等な電圧が印加されるように個別にバランス抵抗14b1,14b2,…,14bnが接続されている。さらに、正側スイッチング素子13p3及び負側スイッチング素子13n3の共通接続点と、前記複数の平滑コンデンサ14a1,14a2,…,14anのうち最もN側母線12n側に近い平滑コンデンサ14a(n−1)(図示せず)及び14anの共通接続点14eとの間に帰還用半導体素子14dが接続されている。   As the field voltage reduction circuit, three or more smoothing capacitors 14a1, 14a2,..., 14an are connected in series between the P-side bus 12p and the N-side bus 12n, and an equal voltage is applied to each of the smoothing capacitors. Balance resistors 14b1, 14b2,..., 14bn are individually connected so as to be applied. Further, the common connection point of the positive side switching element 13p3 and the negative side switching element 13n3, and the smoothing capacitor 14a (n−1) closest to the N side bus 12n side among the plurality of smoothing capacitors 14a1, 14a2,. (Not shown) and a common connection point 14e of 14an are connected to the feedback semiconductor element 14d.

そして、この共通接続点14eから導出される動力線6dに界磁コイル4の一端側が接続され、また正側スイッチング素子13p3及び負側スイッチング素子13n3の共通接続点から導出される動力線6cに界磁電流用カレントセンサ15を介して界磁コイル4の他端側が接続されている。   One end of the field coil 4 is connected to the power line 6d derived from the common connection point 14e, and the field is connected to the power line 6c derived from the common connection point of the positive side switching element 13p3 and the negative side switching element 13n3. The other end of the field coil 4 is connected via a magnetic current sensor 15.

この実施の形態においては、P側母線12pとN側母線12nとの間に3個以上の平滑コンデンサ14a1,14a2,…,14anを接続した場合の例であって、その動作は図1と同様であるので、ここでは省略する。   This embodiment is an example in which three or more smoothing capacitors 14a1, 14a2,..., 14an are connected between the P-side bus 12p and the N-side bus 12n, and the operation is the same as in FIG. Therefore, it is omitted here.

この実施の形態によれば、直流電動機3の界磁コイル4の定格電圧がP側母線12p−N側母線12n間電圧の半分より低い場合でも、P・N側母線12p・12n間に直列に接続された最もN側母線12nに近い平滑コンデンサ14anで分圧された電圧を界磁チョッパ装置13bでチョッパ動作することにより、当該スイッチング素子13n3のオフ状態時に界磁コイル4に蓄えられたエネルギを帰還用半導体素子14dを通してN側母線11b側に近い平滑コンデンサ14a(n−1)(図示せず)及び14anの共通接続点11eに帰還させることにより、界磁コイル4にかかる負荷電圧を小さくでき、ひいては界磁コイル4の破損を未然に回避でき、界磁制御ユニットを設けることなく直流電動機3を制御することができる。   According to this embodiment, even when the rated voltage of the field coil 4 of the DC motor 3 is lower than half of the voltage between the P-side bus 12p and the N-side bus 12n, it is connected in series between the P and N-side buses 12p and 12n. By operating the voltage divided by the smoothing capacitor 14an closest to the connected N-side bus 12n by the field chopper device 13b, the energy stored in the field coil 4 when the switching element 13n3 is in the OFF state By returning to the common connection point 11e of the smoothing capacitor 14a (n-1) (not shown) and 14an close to the N side bus 11b through the feedback semiconductor element 14d, the load voltage applied to the field coil 4 can be reduced. As a result, the field coil 4 can be prevented from being damaged, and the DC motor 3 can be controlled without providing a field control unit.

(第3の実施の形態)
図4は本発明に係る電力変換装置の他の実施の形態を示す構成図である。
同図において1は、例えば3相交流電源2から出力される交流電力を直流電力に変換し、所要の直流電圧を直流電動機3の電機子3a,3bに供給し、当該直流電動機3を駆動する本発明の要部となる電力変換装置である。4は直流電動機3の界磁コイル、5は電力変換装置1から直流電動機3の電機子3a,3bに接続される動力線6a,6bに流れる電機子電流を検出する電機子電流用カレントセンサ、8は界磁コイル4に流入する電流を制御することにより界磁磁束を制御する界磁制御ユニットである。
(Third embodiment)
FIG. 4 is a block diagram showing another embodiment of the power conversion device according to the present invention.
In FIG. 1, for example, 1 converts AC power output from a three-phase AC power source 2 into DC power, supplies a required DC voltage to the armatures 3 a and 3 b of the DC motor 3, and drives the DC motor 3. It is the power converter device used as the principal part of this invention. 4 is a field coil of the DC motor 3, 5 is an armature current sensor for detecting an armature current flowing from the power converter 1 to the power lines 6 a and 6 b connected to the armatures 3 a and 3 b of the DC motor 3, A field control unit 8 controls the field magnetic flux by controlling the current flowing into the field coil 4.

この電力変換装置1は、3相交流電源2から出力される交流電力を所要とする直流電圧に整流するダイオード整流装置21と、スイッチング素子の動作時に発生するサージ電圧を抑える平滑コンデンサ22と、前記ダイオード整流装置21で変換される直流電源の印加されるP側母線12p−N側母線12n間に接続され、母線12p−12n間に印加された直流電圧を、外部の制御部7からのゲート制御信号のもとにゲート制御されるIGBT等の複数の電機子チョッパ用スイッチング素子13p1〜13n2でチョッピングし、直流電動機3の電機子3a,3bに供給する電機子用チョッパ装置13aと、通常,3相の電力変換機能のうち、その2相分が電機子用チョッパ装置13aとして使用されるが、その残りの1相分を回生電流消費用のために、P側母線12pとN側母線12nとの間に直列接続され、前述同様に外部の制御部7からのゲート制御信号のもとにゲート制御される回生用スイッチング素子13p4及び13n4よりなる回生電流消費装置13cと、この回生電流消費装置13cの回生用スイッチング素子13p4及び13n4の共通接続点とN側母線12nとの間に接続され、回生電流を消費する回生電流消費抵抗23と、母線12p−12n間に印加された直流電圧を検出する電圧検出器24とで構成されている。   The power converter 1 includes a diode rectifier 21 that rectifies AC power output from the three-phase AC power supply 2 to a required DC voltage, a smoothing capacitor 22 that suppresses a surge voltage generated during operation of the switching element, Gate control from an external control unit 7 is applied between the P-side bus 12p-N side bus 12n to which the DC power source converted by the diode rectifier 21 is applied, and the DC voltage applied between the buses 12p-12n is applied. An armature chopper device 13a chopped by a plurality of armature chopper switching elements 13p1 to 13n2 such as an IGBT gate-controlled under a signal and supplied to the armatures 3a and 3b of the DC motor 3; Of the phase power conversion function, the two phases are used as the armature chopper device 13a, but the remaining one phase is consumed by the regenerative current. Therefore, the switching elements 13p4 and 13n4 for regeneration are connected in series between the P-side bus 12p and the N-side bus 12n, and are gate-controlled based on the gate control signal from the external control unit 7 as described above. A regenerative current consumption device 13c, and a regenerative current consumption resistor 23 that is connected between a common connection point of the regenerative switching elements 13p4 and 13n4 of the regenerative current consumption device 13c and the N-side bus 12n, and consumes the regenerative current; , And a voltage detector 24 for detecting a DC voltage applied between the buses 12p-12n.

次に、以上のような電力変換装置の動作について図5を参照して説明する。   Next, the operation of the power conversion apparatus as described above will be described with reference to FIG.

三相交流電源2から出力される三相交流電力をダイオード整流装置21で整流し、所要電力の直流電圧を取り出し、P側母線12p−N側母線12n間に印加する(ST21)。このとき、制御部7は、界磁コイル4による界磁磁束の確立の有無を判断し(ST22)、界磁磁束が確立されていない場合には界磁制御ユニット8から界磁コイル4に界磁電流を流し(ST23)、界磁磁束を確立する(ST22)。   The three-phase AC power output from the three-phase AC power source 2 is rectified by the diode rectifier 21, the DC voltage of the required power is taken out and applied between the P-side bus 12p and the N-side bus 12n (ST21). At this time, the control unit 7 determines whether or not the field magnetic flux is established by the field coil 4 (ST22). If the field magnetic flux is not established, the field current is supplied from the field control unit 8 to the field coil 4. (ST23) and the field magnetic flux is established (ST22).

ステップST22において、界磁磁束が確立されていると判断された場合、制御部7は、直流電動機3を始動するか否かを判断する(ST24)。このとき、直流電動機3の始動指令が発生している場合、電機子用チョッパ装置13aのチョッパ用スイッチング素子13a1にゲート制御信号を送信する。電機子用チョッパ装置13aは、ゲート制御信号に従い、チョッパ動作を行い、得られる駆動電圧を電機子3a,3b間に印加し、直流電動機3を運転する(ST25)。   When it is determined in step ST22 that the field magnetic flux has been established, the control unit 7 determines whether or not to start the DC motor 3 (ST24). At this time, when a start command for the DC motor 3 is generated, a gate control signal is transmitted to the chopper switching element 13a1 of the armature chopper device 13a. The armature chopper device 13a performs a chopper operation according to the gate control signal, applies the obtained drive voltage between the armatures 3a and 3b, and operates the DC motor 3 (ST25).

制御部7は、直流電動機3の運転時、電機子電流用カレントセンサ5から直流電動機3の電機子3a,3bに流入する電機子電流を取り込み(ST26)、また電圧検出器24から母線12p−12n間に印加される直流電圧を取り込み(ST30)、以下のような処理を実行する。   When the DC motor 3 is in operation, the control unit 7 takes in the armature current flowing into the armatures 3a and 3b of the DC motor 3 from the armature current sensor 5 (ST26), and from the voltage detector 24 to the bus 12p- The DC voltage applied between 12n is taken in (ST30), and the following processing is executed.

すなわち、制御部7は、電機子電流用カレントセンサ5で検出される電機子電流を取り込み、この電機子電流と予め設定される設定電流とを比較しつつ、ゲート制御信号を電機子用チョッパ装置13aのチョッパ用スイッチング素子13p1〜13n2に送信する。電機子用チョッパ装置13aは、制御部7からのゲート制御信号に従い、P・N側母線12p・12n間の電圧に対するチョッパ動作を行い、電機子3a,3bに電機子電流を流し、直流電動機3の運転制御を行う(ST27)。さらに、直流電動機3の運転中に所定周期ごとに電動機停止指令が入力されたか否かを判断し(ST28)、停止指令が入力されていない場合にはステップST26に戻り、同様の処理を繰り返し実行する。   That is, the control unit 7 takes in the armature current detected by the armature current current sensor 5, compares the armature current with a preset current, and sends the gate control signal to the armature chopper device. It transmits to the switching elements 13p1 to 13n2 for chopper 13a. The chopper device 13a for armature performs a chopper operation on the voltage between the P and N side buses 12p and 12n in accordance with the gate control signal from the control unit 7, and causes the armature current to flow through the armatures 3a and 3b. The operation control is performed (ST27). Further, it is determined whether or not a motor stop command is input at predetermined intervals during the operation of the DC motor 3 (ST28). If no stop command is input, the process returns to step ST26 and the same process is repeated. To do.

また、制御部7は、電圧検出器24で検出される母線12p−12n間電圧を取り込んだ後(ST30)、この母線間電圧と予め設定される設定電圧とを比較し、直流電動機3が回生モードにあるか否かを判断する(ST31)。通常、直流電動機3が回生モードにある場合、母線12p−12n間の電圧が上昇するので、電圧検出器24からの母線間電圧が設定電圧を越えたとき、回生モードと判断する。ここで、回生モードと判断された場合、回生電流消費装置13cの回生用スイッチング素子13p4,13n4にゲート制御信号を送信し(ST32)、回生用スイッチング素子13p4をオン動作させることにより、母線12p−12n間に回生電流消費抵抗23を接続する(ST33)。つまり、回生用スイッチング素子13p4をオン動作させることにより、P側母線12pと回生電流消費抵抗23とを接続し、当該回生電流消費抵抗23に電流を流すことにより、母線12p−12n間の電圧を降下させる。   In addition, after taking in the voltage between the buses 12p-12n detected by the voltage detector 24 (ST30), the control unit 7 compares the voltage between the buses with a preset voltage, and the DC motor 3 is regenerated. It is determined whether or not the mode is set (ST31). Normally, when the DC motor 3 is in the regenerative mode, the voltage between the buses 12p-12n rises. Therefore, when the voltage between the buses from the voltage detector 24 exceeds the set voltage, the regenerative mode is determined. Here, when the regeneration mode is determined, a gate control signal is transmitted to the regeneration switching elements 13p4 and 13n4 of the regeneration current consuming device 13c (ST32), and the regeneration switching element 13p4 is turned on, whereby the bus 12p− The regenerative current consumption resistor 23 is connected between 12n (ST33). That is, by turning on the regenerative switching element 13p4, the P-side bus 12p and the regenerative current consumption resistor 23 are connected, and by passing a current through the regenerative current consumption resistor 23, the voltage between the buses 12p-12n is increased. Lower.

その後、制御部7は、電圧検出器24で検出される母線間検出電圧と予め定める設定電圧とを比較し、母線間検出電圧が設定電圧まで下がった場合(ST34)、回生電流消費装置13cに送信しているゲート制御信号を停止する(ST35)。   Thereafter, the control unit 7 compares the detection voltage between the buses detected by the voltage detector 24 with a predetermined set voltage, and if the detection voltage between the buses has dropped to the set voltage (ST34), the control unit 7 sends the regenerative current consumption device 13c to The gate control signal being transmitted is stopped (ST35).

従って、以上のような実施の形態によれば、コンバータ等の電力回生機能をもたず、また三相電力変換機能をもつスイッチング素子の三相電力変換装置を直流電動機3に適用する場合でも、残りの一相のスイッチング素子を回生電流消費装置13cとして構成し、かつ、回生電流消費装置13を構成する回生用スイッチング素子13p4,13n4の接続点とN側母線12nとの間に回生電流消費抵抗23を接続することにより、回生モード時にスイッチング素子13p4,13n4をオン・オフ制御し、母線12p−12n間の増加していく電圧を回生電流消費抵抗23で消費させるので、確実に母線間電圧の上昇を食い止めることができ、ひいては界磁コイル4への電圧負荷の低減化に寄与し、界磁コイル4の破損を未然に回避することができる。   Therefore, according to the embodiment as described above, even when a three-phase power conversion device of a switching element having no power regeneration function such as a converter and having a three-phase power conversion function is applied to the DC motor 3, The remaining one-phase switching element is configured as the regenerative current consuming device 13c, and the regenerative current consuming resistance is between the connection point of the regenerative switching elements 13p4 and 13n4 constituting the regenerative current consuming device 13 and the N-side bus 12n. 23, the switching elements 13p4 and 13n4 are controlled to be turned on and off in the regeneration mode, and the increasing voltage between the buses 12p-12n is consumed by the regenerative current consumption resistor 23. It is possible to stop the rise, thereby contributing to a reduction in the voltage load on the field coil 4 and avoiding damage to the field coil 4 in advance. It can be.

(第4の実施の形態)
図6は本発明に係る電力変換装置のさらに他の実施の形態を示す構成図である。
この実施の形態は、エレベータのリニューアル時、既設のエレベータ設備状態やユーザの要求に鑑み、直流電動機3から三相誘導電動機や三相永久磁石同期電動機等の三相交流電動機に変更しようとする例である。
(Fourth embodiment)
FIG. 6 is a block diagram showing still another embodiment of the power converter according to the present invention.
This embodiment is an example of changing from a DC motor 3 to a three-phase AC motor such as a three-phase induction motor or a three-phase permanent magnet synchronous motor in consideration of the existing elevator equipment state and user requirements when the elevator is renewed. It is.

同図において、21は3相交流電源2から出力される交流電力を所要電力の直流電圧に整流するダイオード整流装置、13dはダイオード整流装置21で整流された直流電圧が印加されるP側母線12p−N側母線12n間に接続され、制御部7(図示せず)からのゲート制御信号のもとにゲート制御される3相コンバータ機能を有するIGBT等の複数のチョッパ用スイッチング素子13p1−13n1、13p2−13n2、13p5−13n5からなるチョッパ装置、22は、スイッチング素子13p1−13n1、13p2−13n2、13p5−13n5の動作時に発生するサージ電圧を抑える平滑コンデンサ22である。チョッパ装置13dからは直流電動機3及び界磁コイル4または回生電流消費抵抗23と接続する動力線6a〜6cが導出されている。   In the figure, reference numeral 21 denotes a diode rectifier that rectifies AC power output from the three-phase AC power source 2 into a DC voltage of required power, and 13d denotes a P-side bus 12p to which the DC voltage rectified by the diode rectifier 21 is applied. A plurality of chopper switching elements 13p1-13n1, such as an IGBT having a three-phase converter function that is connected between the N-side bus 12n and gate-controlled under a gate control signal from a control unit 7 (not shown); A chopper device 22 including 13p2-13n2 and 13p5-13n5 is a smoothing capacitor 22 that suppresses a surge voltage generated when the switching elements 13p1-13n1, 13p2-13n2, and 13p5-13n5 are operated. Power lines 6 a to 6 c connected to the DC motor 3 and the field coil 4 or the regenerative current consumption resistor 23 are led out from the chopper device 13 d.

今、電動機の設備形態としては、例えば3種類の電動機設備31、32、33が存在すると仮定すると、ユーザが直流電動機3を生かそうとする場合、電動機設備31又は32を採用することになる。この電動機設備31、32については、前述する実施の形態で説明した通りである。   Assuming that there are, for example, three types of motor facilities 31, 32, and 33, the motor facility 31 or 32 is used when the user intends to make use of the DC motor 3. The motor facilities 31 and 32 are as described in the above-described embodiment.

しかし、ユーザ等の要求により、既に設置されている直流電動機3をも三相交流電動機に変更しようとする場合がある。このような要求時、3相電力変換機能をもつ半導体スイッチング素子を3相コンバータ機能を有するチョッパ装置13dとして使用することにより、電動機設備33に適用することができる。この電動機設備33は、三相誘導電動機や三相永久磁石同期電動機のような三相交流電動機34を備えた構成である。   However, the DC motor 3 that has already been installed may be changed to a three-phase AC motor due to a request from a user or the like. When such a request is made, the semiconductor switching element having the three-phase power conversion function can be applied to the motor equipment 33 by using it as the chopper device 13d having the three-phase converter function. The electric motor equipment 33 has a configuration including a three-phase AC motor 34 such as a three-phase induction motor or a three-phase permanent magnet synchronous motor.

エレベータのリニューアル時、電動機設備31を採用する場合、外部動力線6a及び6bに直流電動機3の電機子3a,3b側を接続し、また外部動力線6cに界磁コイル4の一端部を接続するとともに、当該界磁コイル4の他端側を平滑コンデンサ22に導き、例えば複数の平滑コンデンサの中点14b(図1参照)に接続する構成である。   When the motor equipment 31 is employed when the elevator is renewed, the armatures 3a and 3b of the DC motor 3 are connected to the external power lines 6a and 6b, and one end of the field coil 4 is connected to the external power line 6c. At the same time, the other end side of the field coil 4 is guided to the smoothing capacitor 22 and connected to, for example, the midpoints 14b of the plurality of smoothing capacitors (see FIG. 1).

エレベータのリニューアル時、電動機設備32を採用する場合、同様に外部動力線6a及び6bに直流電動機3の電機子3a,3b側を接続し、また外部動力線6cに回生電流消費抵抗23を接続するとともに、当該回生電流消費抵抗23を電力変換装置のN側母線11b側に接続する構成となる。   When the motor equipment 32 is employed during the renewal of the elevator, the armatures 3a and 3b of the DC motor 3 are similarly connected to the external power lines 6a and 6b, and the regenerative current consumption resistor 23 is connected to the external power line 6c. At the same time, the regenerative current consumption resistor 23 is connected to the N-side bus 11b side of the power converter.

さらに、エレベータのリニューアル時、直流電動機3でなく、三相交流電動機34をもつ電動機設備33を採用しようとする場合、外部動力線6a〜6cに三相交流電動機34の図示しない各相の動力端子台と接続し、チョッパ装置13dを図示しない制御部によりインバータ装置として動作させることにより、三相交流電動機34を運転制御することが可能となる。   Further, when the motor equipment 33 having the three-phase AC motor 34 is used instead of the DC motor 3 at the time of renewal of the elevator, the power terminals of the respective phases (not shown) of the three-phase AC motor 34 are connected to the external power lines 6a to 6c. It is possible to control the operation of the three-phase AC motor 34 by connecting to the base and operating the chopper device 13d as an inverter device by a control unit (not shown).

この実施の形態によれば、エレベータのリニューアル時や故障時、何れの電動機設備にも対応できるだけでなく、例えば負荷である既設の直流電動機を三相交流電動機に交換した場合、電力変換装置自体を交換することなく、わずかな改造のみで交流電動機を運転制御することができる。   According to this embodiment, when the elevator is renewed or failed, not only can it cope with any motor equipment, but for example, when an existing DC motor as a load is replaced with a three-phase AC motor, the power conversion device itself is replaced. The AC motor can be operated and controlled with little modification without replacement.

その他、本発明は、上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲で種々変形して実施できる。例えば図6の構成では、交流電源2から出力される交流電力を所要電力の直流電圧に変換するに際し、ダイオード整流装置21を用いたが、図1に示すコンバータ装置11を用いて構成してもよい。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, in the configuration of FIG. 6, the diode rectifier 21 is used to convert the AC power output from the AC power source 2 into the DC voltage of the required power, but the converter device 11 shown in FIG. Good.

また、各実施の形態は可能な限り組み合わせて実施することが可能であり、その場合には組み合わせによる効果が得られる。さらに、上記各実施の形態には種々の上位,下位段階の発明が含まれており、開示された複数の構成要素の適宜な組み合わせにより種々の発明が抽出され得るものである。例えば問題点を解決するための手段に記載される全構成要件から幾つかの構成要件が省略されうることで発明が抽出された場合には、その抽出された発明を実施する場合には省略部分が周知慣用技術で適宜補われるものである。   Further, the embodiments can be implemented in combination as much as possible, and in that case, the effect of the combination can be obtained. Further, each of the above embodiments includes various higher-level and lower-level inventions, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, when an invention is extracted because some constituent elements can be omitted from all the constituent elements described in the means for solving the problem, the omitted part is used when the extracted invention is implemented. Is appropriately supplemented by well-known conventional techniques.

本発明に係る電力変換装置の一実施の形態を示す構成図。The block diagram which shows one Embodiment of the power converter device which concerns on this invention. 図1に示す電力変換装置の動作を説明する動作フロー図。The operation | movement flowchart explaining operation | movement of the power converter device shown in FIG. 図1に示す電力変換装置の一部を改良した構成図。The block diagram which improved a part of power converter shown in FIG. 本発明に係る電力変換装置の他の実施の形態を示す構成図。The block diagram which shows other embodiment of the power converter device which concerns on this invention. 図4に示す電力変換装置の動作を説明する動作フロー図。The operation | movement flowchart explaining operation | movement of the power converter device shown in FIG. 本発明に係る電力変換装置のさらに他の実施の形態を示す構成図。The block diagram which shows other embodiment of the power converter device which concerns on this invention. 従来の電力変換装置を示す構成図。The block diagram which shows the conventional power converter device. 従来のさらに別の電力変換装置を示す構成図。The block diagram which shows another conventional power converter device.

符号の説明Explanation of symbols

1…電力変換装置、2…3相交流電源、3…直流電動機、3a,3b…電機子、4…界磁コイル、5…電機子電流用カレントセンサ、6a〜6c…動力線、7…制御部、8…界磁制御ユニット、11…コンバータ装置、12p…P側母線、12n…N側母線、13a…電機子用チョッパ装置、13b…界磁用チョッパ装置、13c…回生電流消費装置、14…界磁中点電圧取得回路、14a1,14a2,…,14an…平滑コンデンサ、14b1,14b2,…,14bn…バランス抵抗、14d…帰還用半導体素子、15…界磁電流用カレントセンサ、21…ダイオード整流装置、22…平滑コンデンサ、23…回生電流消費抵抗、24…電圧検出器、34…三相交流電動機。   DESCRIPTION OF SYMBOLS 1 ... Power converter device, 2 ... Three-phase alternating current power supply, 3 ... DC motor, 3a, 3b ... Armature, 4 ... Field coil, 5 ... Current sensor for armature current, 6a-6c ... Power line, 7 ... Control , 8 ... Field control unit, 11 ... Converter device, 12p ... P side bus, 12n ... N side bus, 13a ... Chopper device for armature, 13b ... Chopper device for field, 13c ... Regenerative current consumption device, 14 ... Field 14a1, 14a2, ..., 14an ... smoothing capacitors, 14b1, 14b2, ..., 14bn ... balance resistors, 14d ... feedback semiconductor elements, 15 ... current sensors for field current, 21 ... diode rectifiers , 22 ... smoothing capacitor, 23 ... regenerative current consumption resistance, 24 ... voltage detector, 34 ... three-phase AC motor.

Claims (4)

所要の直流電圧が印加されるPN母線間に、三相の電力変換機能をもつ複数の半導体スイッチング素子及びこれら複数の半導体スイッチング素子の動作時に発生するサージ電圧を抑える複数の平滑コンデンサがそれぞれ直列に接続され、界磁コイルを有する直流電動機を駆動する三相の電力変換装置において、
前記三相の電力変換機能をもつ複数の半導体スイッチング素子のうち、二相分の電力変換機能をもつ複数の半導体スイッチング素子の出力側に前記直流電動機の電機子が接続され、外部から供給される第1のゲート制御信号のもとにチョッパ動作を行う電機子用チョッパ装置と、
前記三相の電力変換機能をもつ複数の半導体スイッチング素子のうち、残りの一相分の電力変換機能をもつ複数の半導体スイッチング素子で構成され、外部から供給される第2のゲート制御信号のもとにチョッパ動作を行う界磁用チョッパ装置と、
この界磁用チョッパ装置を構成する複数の半導体スイッチング素子の接続部と前記複数の平滑コンデンサの中点との間に前記界磁コイルとともに帰還用回路素子が接続され、前記平滑コンデンサの中点電圧を、当該界磁用チョッパ装置によるチョッパ動作によって前記界磁コイルに通電し、かつ前記界磁コイルに蓄えられる電力エネルギーを前記平滑コンデンサの中点に戻す界磁電圧低減回路とを備えたことを特徴とする電力変換装置。
A plurality of semiconductor switching elements having a three-phase power conversion function and a plurality of smoothing capacitors for suppressing a surge voltage generated during operation of each of these semiconductor switching elements are connected in series between PN buses to which a required DC voltage is applied. In a three-phase power converter that drives a DC motor that is connected and has a field coil,
The armature of the DC motor is connected to the output side of the plurality of semiconductor switching elements having the power conversion function for two phases among the plurality of semiconductor switching elements having the three-phase power conversion function, and supplied from the outside An armature chopper device that performs chopper operation under the first gate control signal;
Of the plurality of semiconductor switching elements having the three-phase power conversion function, the second gate control signal is configured by a plurality of semiconductor switching elements having a power conversion function for the remaining one phase, and is supplied from the outside. And a field chopper device that performs chopper operation;
A feedback circuit element is connected together with the field coil between a connection portion of a plurality of semiconductor switching elements constituting the field chopper device and a midpoint of the plurality of smoothing capacitors, and a midpoint voltage of the smoothing capacitor And a field voltage reduction circuit for energizing the field coil by the chopper operation by the field chopper device and returning the power energy stored in the field coil to the midpoint of the smoothing capacitor. A power conversion device.
請求項1に記載の電力変換装置において、
前記複数の平滑コンデンサが3個以上直列に接続されている場合、
前記界磁電圧低減回路は、前記界磁用チョッパ装置を構成する複数の半導体スイッチング素子の接続部と前記3個以上の平滑コンデンサの最も前記N側母線に近い隣り合う平滑コンデンサの接続点との間に前記界磁コイルとともに帰還用回路素子を接続することを特徴とする電力変換装置。
The power conversion device according to claim 1,
When three or more smoothing capacitors are connected in series,
The field voltage reduction circuit includes a connection portion between a plurality of semiconductor switching elements constituting the field chopper device and a connection point between adjacent smoothing capacitors closest to the N-side bus of the three or more smoothing capacitors. A power conversion device comprising a feedback circuit element connected together with the field coil.
所要の直流電圧が印加されるPN母線間に、三相の電力変換機能をもつ複数の半導体スイッチング素子及びこれら複数の半導体スイッチング素子の動作時に発生するサージ電圧を抑える複数の平滑コンデンサがそれぞれ直列に接続され、かつ界磁制御ユニットから界磁電流の流入制御される界磁コイルを有する直流電動機を駆動する三相の電力変換装置において、
前記三相の電力変換機能をもつ複数の半導体スイッチング素子のうち、二相分の電力変換機能をもつ複数の半導体スイッチング素子の出力側に前記直流電動機の電機子が接続され、外部から供給される第1のゲート制御信号のもとにチョッパ動作を行う電機子用チョッパ装置と、
前記三相の電力変換機能をもつ複数の半導体スイッチング素子のうち、残りの一相分の電力変換機能をもつ複数の半導体スイッチング素子で構成され、外部から供給されるスイッチング制御信号のもとにスイッチング動作を行う回生電流消費装置と、
この回生電流消費装置を構成する複数の半導体スイッチング素子の接続点と前記N側母線との間に接続され、前記直流電動機の回生モード時、前記回生電流消費装置によるスイッチング動作によって前記PN母線間に現れる電圧を低減するように回生電流を消費させる回生電流消費抵抗とを備えたことを特徴とする電力変換装置。
A plurality of semiconductor switching elements having a three-phase power conversion function and a plurality of smoothing capacitors for suppressing a surge voltage generated during operation of each of these semiconductor switching elements are connected in series between PN buses to which a required DC voltage is applied. In a three-phase power converter that drives a DC motor that is connected and has a field coil that is controlled to receive a field current from a field control unit,
The armature of the DC motor is connected to the output side of the plurality of semiconductor switching elements having the power conversion function for two phases among the plurality of semiconductor switching elements having the three-phase power conversion function, and supplied from the outside An armature chopper device that performs chopper operation under the first gate control signal;
Among the semiconductor switching elements having the three-phase power conversion function, the semiconductor switching elements are composed of a plurality of semiconductor switching elements having the power conversion function for the remaining one phase, and are switched based on a switching control signal supplied from the outside. A regenerative current consuming device that performs the operation;
The regenerative current consuming device is connected between a connection point of a plurality of semiconductor switching elements and the N-side bus. When the DC motor is in a regenerative mode, the regenerative current consuming device switches between the PN buses by a switching operation. A power conversion device comprising: a regenerative current consumption resistor that consumes a regenerative current so as to reduce a voltage that appears.
請求項1ないし請求項3の何れか一項に記載の電力変換装置において、
負荷としての前記直流電動機に代えて交流電動機に適用しようとする場合、
前記三相の電力変換機能をもつ複数の半導体スイッチング素子をもって三相インバータ装置とするとともに、このインバータ装置を構成する各相の複数の半導体スイッチング素子の接続点から前記直流電動機の電機子及び界磁コイル又は回生電流消費抵抗に接続される出力線をそのまま前記交流電動機に接続する構成としたことを特徴とする電力変換装置。
In the power converter according to any one of claims 1 to 3,
When trying to apply to an AC motor instead of the DC motor as a load,
A plurality of semiconductor switching elements having a three-phase power conversion function are used as a three-phase inverter device, and the armature and field of the DC motor are connected from the connection points of the plurality of semiconductor switching elements of each phase constituting the inverter device. A power conversion device characterized in that an output line connected to a coil or a regenerative current consumption resistor is connected to the AC motor as it is.
JP2004008890A 2004-01-16 2004-01-16 Power converter Expired - Lifetime JP4519471B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004008890A JP4519471B2 (en) 2004-01-16 2004-01-16 Power converter
MYPI20050101A MY148186A (en) 2004-01-16 2005-01-11 Power conversion device
TW094101006A TWI274467B (en) 2004-01-16 2005-01-13 Power conversion device
CNA2005800023252A CN1910812A (en) 2004-01-16 2005-01-14 Electric power converting apparatus
PCT/JP2005/000730 WO2005069476A1 (en) 2004-01-16 2005-01-14 Electric power converting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008890A JP4519471B2 (en) 2004-01-16 2004-01-16 Power converter

Publications (2)

Publication Number Publication Date
JP2005204430A JP2005204430A (en) 2005-07-28
JP4519471B2 true JP4519471B2 (en) 2010-08-04

Family

ID=34792251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008890A Expired - Lifetime JP4519471B2 (en) 2004-01-16 2004-01-16 Power converter

Country Status (5)

Country Link
JP (1) JP4519471B2 (en)
CN (1) CN1910812A (en)
MY (1) MY148186A (en)
TW (1) TWI274467B (en)
WO (1) WO2005069476A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100468947C (en) * 2007-03-16 2009-03-11 南京航空航天大学 AC motor matrix type controller with DC excitation function
JP5471152B2 (en) * 2009-08-18 2014-04-16 富士電機株式会社 Electric motor drive method
US9178449B2 (en) * 2011-01-11 2015-11-03 Toyota Jidosha Kabushiki Kaisha Motor drive system control apparatus
DE102011003759A1 (en) * 2011-02-08 2012-08-09 Robert Bosch Gmbh Energy storage device for a separately excited electrical machine
CN102394561B (en) * 2011-10-14 2014-07-30 杭州拜特电驱动技术有限公司 Control method and control system of separately excited motor
ITTO20130305A1 (en) * 2013-04-16 2014-10-17 Ansaldobreda Spa ELECTRIC TRACTION SYSTEM
CN104953907B (en) * 2014-03-24 2018-07-13 晶豪科技股份有限公司 D.c. motor the number of turns switching method and its device
CN105197756A (en) * 2015-09-11 2015-12-30 苏州市新瑞奇节电科技有限公司 Power-saving escalator
CN111204631B (en) * 2020-01-21 2021-06-08 日立楼宇技术(广州)有限公司 Elevator brake follow current control method, device, equipment and medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231390A (en) * 1985-07-31 1987-02-10 Mitsubishi Electric Corp Controller of motor
JPH08256497A (en) * 1995-03-16 1996-10-01 Fuji Electric Co Ltd Motor drive method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231390A (en) * 1985-07-31 1987-02-10 Mitsubishi Electric Corp Controller of motor
JPH08256497A (en) * 1995-03-16 1996-10-01 Fuji Electric Co Ltd Motor drive method

Also Published As

Publication number Publication date
WO2005069476A1 (en) 2005-07-28
CN1910812A (en) 2007-02-07
TW200531427A (en) 2005-09-16
MY148186A (en) 2013-03-15
TWI274467B (en) 2007-02-21
JP2005204430A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
KR950015173B1 (en) Ac motor control apparatus
WO2005069476A1 (en) Electric power converting apparatus
JP6356716B2 (en) Motor control device having torque command limiter
EP2605989B1 (en) Electricity supply apparatus and an elevator system
JP2007037275A (en) Motor driving device also serving as charge control device
US11031896B2 (en) Motor driving apparatus and refrigeration cycle equipment
JP2011004449A (en) Matrix converter circuit
JP2012196143A (en) Motor control device
JP5049251B2 (en) Motor control device
JP2008081215A (en) Three-phase load operation device
JP2007028752A (en) Elevator motor controller
KR20210126362A (en) Elevator drive system including ard
JP5571987B2 (en) Braking method for brushless DC motor
JP6121082B1 (en) Motor control device
CN114447885B (en) Three-phase motor driving circuit and method
EP1225685A2 (en) Drive circuit and method for driving a switched reluctance machine
JP3764455B2 (en) DC load controller
JP6762175B2 (en) Motor controller and air conditioner
JP4415428B2 (en) Motor control method
JP2019140755A (en) Connection switching device
JP4146716B2 (en) Lifting magnet device power supply mechanism
TWI760790B (en) Motor drive system and motor drive device
JPH01174229A (en) Inverter device uninterruptible in service
US11177756B2 (en) Electric motor drive device and air conditioner
JP2013232996A (en) Inverter device and inverter power receiving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4519471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term