TW200531427A - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
TW200531427A
TW200531427A TW094101006A TW94101006A TW200531427A TW 200531427 A TW200531427 A TW 200531427A TW 094101006 A TW094101006 A TW 094101006A TW 94101006 A TW94101006 A TW 94101006A TW 200531427 A TW200531427 A TW 200531427A
Authority
TW
Taiwan
Prior art keywords
power conversion
motor
switching elements
voltage
semiconductor switching
Prior art date
Application number
TW094101006A
Other languages
Chinese (zh)
Other versions
TWI274467B (en
Inventor
Daisuke Kobayashi
Original Assignee
Toshiba Elevator Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Kk filed Critical Toshiba Elevator Kk
Publication of TW200531427A publication Critical patent/TW200531427A/en
Application granted granted Critical
Publication of TWI274467B publication Critical patent/TWI274467B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B19/00Mining-hoist operation
    • B66B19/007Mining-hoist operation method for modernisation of elevators

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Elevator Control (AREA)
  • Control Of Direct Current Motors (AREA)
  • Dc-Dc Converters (AREA)

Abstract

In a three-phase power conversion device that drives a DC motor (3) having a field magnet coil (4), semiconductor switching elements having a three-phase power conversion function and smoothing capacitors (14a1), (14a2) are respectively connected in series between P and N buses to which DC voltage is applied. Of these, the DC motor is operated by the chopper action of an armature chopper device (13a) constituted by semiconductor switching elements having a two-phase power conversion function. A feedback circuit element (14d) is connected with a field magnet coil between the field magnet chopper device (13b) constituted by semiconductor switching elements having a power conversion function of the remaining single phase, and the mid-point (14c) of the smoothing capacitors. The voltage of the mid-point is passed to the field magnet coil by the chopper action by the field magnet chopper device and the energy accumulated on the field magnet coil is thereby returned to the mid-point of the feedback circuit element.

Description

200531427 (1) 九、發明說明 【發明所屬之技術領域】 本發明係關於採用具有 IGBT(Insulated Gate Bipolar Transistor)等半導體開關元件的三相電力變換機能之電力 變換裝置。 【先前技術】 過去的升降機系統,係利用大型直流電動機作爲升降 機驅動用(具體而言,使用於升降機等的驅動上);現在多 採用三相交流誘導電動機或永磁電動機,而不是採用新型 直流電動機。但另一方面,仍有多數升降機系統延續過去 使用直流電動機的情形存在,其中不乏已經運轉2 0年以 上的老舊化系統。 雖然已經陸續汰換更新這些老舊化的升降機系統,但 是有礙於預算、工期、拆裝空間等因素,因此仍然保留直 流電動機,僅實施更換控制裝置之控制更新工法。 一般現在使用的控制裝置,以利用交流電動機的轉換 裝置-換流裝置進行PWM控制爲主流;而控制更新工 法,係由相當於該換流裝置且採用具有三相電力變換機能 的直流截波(chopper)電路之電力變換裝置所組成,用以驅 動直流電動機。 第1圖係傳統電力變換裝置之構造圖。 該圖中,5 1爲直流電源,係包含三相交流電源及轉 換裝置,用以發生必要直流電壓,而該直流電源5 1發生 -4 - 200531427 (2) 的直流電壓施加於p側母線5 2 p、N側母線5 2 η間。5 3爲 電樞用截波(chopper)裝置,接續於相同之ρ側母線52ρ和 Ν側母線5 2η間,係由具有二相電力變換機能的複數開關 元件53ρ1、53η1、53ρ2、53π2所組成;54爲平滑電容 器,用以抑制轉換裝置(無圖示)等、及電樞用截波 (chopper)裝置53等開關元件動作時發生的突波電壓。 55爲直流電動機,接續於電樞用截波(chopper)裝震 53導出的動力線56a、56b間。57爲直流電動機55的勵 磁線圈;5 8爲勵磁控制單元,係通電於勵磁線圈5 7,用 以控制勵磁磁通;5 9爲電樞電流用電流感測器。 接著說明上述裝置的相關動作。 由轉換裝置等直流電源5 1施加必要直流電壓於P側 母線52p-N側母線52xi間。甚至,伴隨無圖示的控制部所 輸出的閘控制訊號,對構成電樞用截波(chopper)裝置53 的開關元件53pl〜53n2進行閥控制,並經由對P側母線 5 2 p - N側母線5 2 η間的施加直流電壓進行截波(c h 〇 p p e r)動 作,用以控制直流電動機5 5電樞間的施加電壓,進而驅 動直流電動機5 5。另外,由於直流電動機5 5須有勵磁磁 通方可驅動之故,因此將勵磁電流自其他元件之勵磁控制 單元5 8流向勵磁線圈5 7,產生勵磁磁通用以驅動直流電 動機5 5。 此外,第2圖係爲過去悉知建議的另一種傳統電力變 換裝置之構造圖。此種電力變換裝置,係由三相反流器裝 置中具有二相電力變換機能的開關元件5 3 p 1〜5 3 η 2組成 - 5 - 200531427 (3) 電樞截波(chopper)裝置 5 3 a ;其餘一相開關元件5 3 p3、 5 3 n3組成勵磁用截波(chopper)裝置53b,同時將直流電動 機55的勵磁線圈57接續於組成勵磁用截波(chopper)裝置 5 3b的開關元件53P3、53n3之共同接續部導出的動力線 5 6d、和電力變換裝置本體N側母線52η側的輸出動力線 5 6c,則無須第1圖所示勵磁控制單元5 8。如日本公開特 許公報之特開平0 8-25 6497號所示技術。 • 然而,上列電力變換裝置尙有其次問題點存在。 首先,前項電力變換裝置雖設有勵磁控制單元5 8, 但是此元件5 8係屬於外部另設元件,需要新設置空間。 也就是說,當升降機等更新物件時,既已受限於機械室的 大小,須配合該大小設置必要設備,故可能發生無法確保 設置空間的情形。 尙且,勵磁控制單元5 8屬於外部另設元件之場合, 可能因控制勵磁控制單元5 8之閘控制訊號的信號線(無圖 ® 示)較長、以及噪音等因素,導致誤動作的情形發生。雖 然可收納於其他盤內,但仍需要考量盤內改造、噪音對策 等必要因素。 甚至在電力變換裝置方面,雖然通常使用三相轉換裝 置或三相換流裝置,但因其中的電樞用截波(chopper)裝置 5 3僅使用二相電力變換機能之故,於是造成一相電力完 全殘留的問題。 另一方面,後項電力變換裝置雖不需勵磁控制單元, 但伴隨著直流電動機5 5的高速化、大容量化趨勢,該電 -6 -200531427 (1) IX. Description of the invention [Technical field to which the invention belongs] The present invention relates to a power conversion device using a three-phase power conversion function having a semiconductor switching element such as an IGBT (Insulated Gate Bipolar Transistor). [Previous technology] In the past, elevator systems used large DC motors as elevator drives (specifically, used in the drive of elevators, etc.); nowadays, three-phase AC induction motors or permanent magnet motors are used instead of new DC. electric motor. On the other hand, there are still many elevator systems that continue to use DC motors in the past. Among them, there are many old systems that have been in operation for more than 20 years. Although these old elevator systems have been replaced and upgraded one after another, due to factors such as budget, construction period, disassembly space, etc., DC motors are still retained, and only the control and update method of replacing control devices is implemented. Generally, the control devices currently in use are mainly PWM control using the conversion device of the AC motor-converter; and the control update method is based on the equivalent of the converter and the use of a three-phase power converter with a DC cut-off ( chopper) circuit consists of a power conversion device to drive a DC motor. Fig. 1 is a structural diagram of a conventional power conversion device. In the figure, 51 is a DC power supply, which includes a three-phase AC power supply and a conversion device to generate the necessary DC voltage, and the DC power supply 51 generates -4-200531427 (2) The DC voltage is applied to the p-side bus 5 Between 2 p and N-side bus bars 5 2 η. 53 is a chopper device for armature, which is connected between the same ρ-side bus bar 52ρ and N-side bus bar 5 2η, and is composed of a plurality of switching elements 53ρ1, 53η1, 53ρ2, and 53π2 having a two-phase power conversion function. ; 54 is a smoothing capacitor for suppressing a surge voltage generated when a switching device such as a switching device (not shown) and the armature chopper device 53 are operated. 55 is a DC motor, which is connected between the power lines 56a and 56b derived from the armature chopper-equipped shock 53. 57 is the excitation coil of the DC motor 55; 58 is the excitation control unit, and is energized to the excitation coil 57 to control the excitation magnetic flux; 59 is the current sensor for the armature current. Next, operations related to the above-mentioned device will be described. A necessary DC voltage is applied from a DC power source 51 such as a converter to the P-side bus 52p-N-side bus 52xi. In addition, with the gate control signal output from the control unit (not shown), valve control is performed on the switching elements 53pl to 53n2 constituting the chopper device 53 for the armature, and the P side bus 5 2 p-N side The applied DC voltage between the bus bars 5 2 η performs a chopping operation to control the applied voltage between the armature of the DC motor 55 and drive the DC motor 55. In addition, because the DC motor 55 needs to have an excitation magnetic flux before it can be driven, the excitation current flows from the excitation control unit 58 of the other components to the excitation coil 57, and it is common to generate excitation to drive the DC motor. 5 5. In addition, FIG. 2 is a structural diagram of another conventional power conversion device known in the past. This type of power conversion device consists of a switching element 5 3 p 1 ~ 5 3 η 2 with a two-phase power conversion function in a three-phase inverter device.-5-200531427 (3) Armature chopper device 5 3 a; The remaining one-phase switching elements 5 3 p3, 5 3 n3 constitute a chopper device 53b for excitation, and the excitation coil 57 of the DC motor 55 is connected to a chopper device 5 3b for excitation. The power line 5 6d derived from the common connection portion of the switching elements 53P3 and 53n3 and the output power line 5 6c on the N-side bus bar 52n side of the power conversion device body do not need the excitation control unit 58 shown in FIG. 1. The technique is shown in Japanese Patent Application Laid-Open No. 0 8-25 6497. • However, the power conversion devices listed above have the following problems. First, although the power conversion device of the preceding paragraph is provided with an excitation control unit 5 8, this element 5 8 is an externally-installed component and requires a new installation space. In other words, when updating objects such as elevators, they are already limited by the size of the machinery room. Necessary equipment must be installed in accordance with the size, so there may be cases where the installation space cannot be ensured. In addition, if the excitation control unit 58 is an externally-installed component, the signal line (not shown in the figure) that controls the gate control signal of the excitation control unit 58 may cause a malfunction due to long signals. The situation happened. Although it can be stored in other panels, it is still necessary to consider the necessary factors such as the in-panel modification and noise countermeasures. Even in terms of power conversion devices, although a three-phase conversion device or a three-phase converter is usually used, the armature chopper device 53 uses only a two-phase power conversion function, which results in a one-phase The problem of completely remaining power. On the other hand, although the latter power conversion device does not require an excitation control unit, with the trend of higher speed and larger capacity of the DC motor 55, this power -6-

200531427 (4) 動機55的誘導電壓越來越高,且® 於是勵磁線圈5 7的額定電壓低於德 磁線圈5 7電壓負載過大,引起線圈 的可能。 本發明有鑒於上述事項進而開發 供:即使沒有勵磁控制單元,且直滴 定電壓低於PN母線間電壓之場合, 圈的施加電壓、避免線圈破損之電力 另外,本發明的另一目的並不是 是在於提供:接續電力變換裝置內部 阻,用以抑制再生時PN流排間電壓 裝置。 【發明內容】 (U爲達成上述目的,本發明構進 一種三相電力變換裝置,係指於 PN母線間,各自串聯接續具有三相 半導體開關元件、以及用來抑制此複 作時發生的突波電壓之複數平滑電容 磁線圈的直流電動機,其設置構造爲 上述具有三相電力變換機能的: 中,於具有其中二相電力變換機能的 之輸出側,接續上述直流電動機的電 1閘控制訊號進行截波(chopper) 流電壓亦逐漸增大, 流電源電壓,導致勵 5 7絕緣劣化而有破損 完成,其目的在於提 電動機的勵磁線圈額 亦可抑制降低勵磁線 變換裝置。 在勵磁線圈方面,而 的輸出線及再生用電 上升情形之電力變換 :如下,即 施加必要直流電壓的 電力變換機能的複數 數半導體開關元件動 器,用以驅動附有勵 複數半導體開關元件 複數半導體開關元件 樞,伴隨外部提供第 動作之電樞用截波 200531427 (5) (chopper)裝置;以及上述具有三相電力變換機能的複數半 導體開關元件中,由其餘一相具有電力變換機能的複數半 導體開關元件所組成,伴隨外部供給第2閘控制訊號進行 截波(chopper)動作之勵磁用截波(chopper)裝置;以及構 成勵磁用截波(chopper)裝置的複數半導體開關元件之接續 部和上述複數平滑電容器的中點之間,一倂接續勵磁線圈 及回授用電路元件,經由勵磁用截波(chopper)裝置對前述 平滑電容器的中點電壓進行截波(chopper)動作,使其通過 上述勵磁線圈,且將積蓄在上述勵磁線圈的電力能源送回 上述平滑電容器中點之勵磁電壓降壓電路。 本發明採用上述構造,將外部控制部的第2閘控制訊 號傳送到勵磁用截波(chopper)裝置,用以進行截波 (chopper)動作,此時,即使直流電動機勵磁線圈的額定電 壓低於PN母線間電壓之場合,也可以藉由勵磁用截波 (chopper)裝置進行截波(chopper)動作,使得平滑電容器 的中點電壓通過勵磁線圈,且將積蓄於勵磁線圈的能源通 過回授用電路元件送回平滑電容器中點,結果可抑制勵磁 線圈的負載電壓,進一步防止勵磁線圈破損於未然,無須 設置勵磁控制單元即可確實控制直流電動機。 另外,在上述(1 )構造的電力變換裝置中,串聯接續 三個以上的平滑電容器之場合,則在構成勵磁用截波 (chopper)裝置的複數半導體開關元件接續部、和上述三個 以上平滑電容器中最靠近N側母線的相鄰平滑電容器的 接續點之間,一倂接續上述勵磁線圈及回授用電路元件, -8-200531427 (4) The induced voltage of the motor 55 is getting higher and higher, and the rated voltage of the excitation coil 57 is lower than that of the German coil 57. The voltage load is too large, which may cause the coil. The present invention has been developed in view of the above-mentioned matters. Even if there is no excitation control unit and the direct titration voltage is lower than the voltage between the PN buses, the applied voltage of the coil and the power to prevent the coil from being broken. In addition, another object of the present invention is not to It is to provide: an internal resistance connected to the power conversion device to suppress the voltage between the PN current rails during regeneration. [Summary of the Invention] (U In order to achieve the above object, the present invention constructs a three-phase power conversion device, which refers to a PN bus, each of which has a three-phase semiconductor switching element connected in series, and is used to suppress the sudden occurrence of this duplication. The DC motor of the complex smooth capacitor magnetic coil of the wave voltage is configured as described above with the three-phase power conversion function: In the output side having the two-phase power conversion function, it is connected to the electric brake control signal of the DC motor. The chopper current voltage is also gradually increased, and the current supply voltage causes the excitation 5 7 insulation to be deteriorated and damaged. The purpose is to increase the excitation coil of the motor and also suppress the reduction of the excitation line conversion device. In the case of magnetic coils, the power conversion of the output line and the increase in regeneration power is as follows: the complex semiconductor switching element actuator that applies the power conversion function of the necessary DC voltage to drive the complex semiconductor switching element Switch element armature, chopped wave for armature with externally provided first action 200531427 (5) (chopp er) device; and the above-mentioned plurality of semiconductor switching elements having three-phase power conversion functions are composed of the remaining plurality of semiconductor switching elements having power conversion functions in the other phase, and chopper operation is performed with the external supply of a second gate control signal Chopper device for excitation; and a continuous excitation coil and feedback between the connection part of the plurality of semiconductor switching elements constituting the chopper device for excitation and the midpoint of the complex smoothing capacitor The chopper operation is performed on the midpoint voltage of the smoothing capacitor by a circuit element via a chopper device for excitation, and the chopper is passed through the excitation coil, and the power energy stored in the excitation coil is transmitted. The excitation voltage step-down circuit back to the midpoint of the smoothing capacitor. The present invention adopts the above-mentioned structure, and transmits the second gate control signal of the external control unit to the chopper device for excitation for chopper Operation, at this time, even if the rated voltage of the excitation coil of the DC motor is lower than the voltage between the PN buses, the excitation interception wave ( chopper) device performs chopper operation so that the midpoint voltage of the smoothing capacitor passes through the excitation coil, and the energy stored in the excitation coil is returned to the midpoint of the smoothing capacitor through the feedback circuit element, and as a result, the excitation can be suppressed. The load voltage of the coil further prevents the excitation coil from being damaged, and the DC motor can be controlled without the need for an excitation control unit. In addition, in the power conversion device of the above (1) structure, three or more smoothing capacitors are connected in series. In this case, between the connection part of the plurality of semiconductor switching elements constituting the chopper device for the excitation and the connection point of the adjacent smoothing capacitor closest to the N-side bus among the three or more smoothing capacitors, the above connection is continued. Excitation coil and feedback circuit components, -8-

200531427 (6) 構成上述勵磁電壓降壓電路,此時,即使直流霄 線圈的額定電壓低於PN母線間電壓的一半,/力 近N側母線的相鄰平滑電容器接續點的發生電 波(chopper)動作使其通過勵磁線圈,且將積蓄於 的能源經由回授用電路元件送回平滑電容器的 點,因此可以減少勵磁線圈的負載電壓,避免因 等原因而導致破損的情形。 (2)其次,本發明爲一種三相電力變換裝置 施加必要直流電壓的PN母線間,各自串聯接續 電力變換機能的複數半導體開關元件、以及用來 數半導體開關元件動作時發生的突波電壓之複數 器,驅動具有可控制勵磁控制單元流入勵磁電流 圈之直流電動機。其設置構造爲: 上述具有三相電力變換機能的複數半導體 中,具有其中二相電力變換機能的複數半導體開 輸出側,接續上述直流電動機的電樞,伴隨外部 閘控制訊號進行截波(chopper)動作之電樞用截被 裝置;以及上述具有三相電力變換機能的複數半 元件中,由其餘一相具有電力變換機能的複數半 元件所組成,伴隨外部提供開關控制信號進行開 電阻接續裝置;以及接續於構成電阻接續裝置的 體開關元件接續點和上述N側母線之間,在前 動機再生模式時’經由則述電阻接纟買裝置進彳了開 減少前述P N母線間的發生電壓’用以消耗再生 I動機勵磁 \可對最靠 :壓進行截 卜勵磁線圈 前述接續 丨絕緣劣化 ,係指於 具有三相 抑制此複 平滑電容 的勵磁線 開關元件 關元件之 提供第1 [(chopper) 導體開關 導體開關 關動作之 複數半導 述直流電 關動作, 電流之再 200531427 (7) 生電流消耗電阻。 本發明如同上述構造,於直流電動機再 然使得PN母線間電壓增大帶給勵磁線圈不 其餘一相具有電力變換機能的複數半導體開 阻接續系統,且在這些複數半導體開關元 側母線間接續再生電流消耗電阻,利用構成 的開關元件動作,降低上述PN母線間增大 再生電通過再生電流消耗電阻而被消耗,可 圈破損於未然。 而不論是哪一種電力變換裝置,於升降 活用附有勵磁線圈的直流電動機的同時,現 一般採用具備三相電力變換機能者。 (3)甚至,本發明之上述(1)、(2)電力變 採用交流電動機取代直流電動機之場合,係 相電力變換機能的複數半導體開關元件之三 及構成該換流裝置的各相複數半導體開關元 接續於上述直流電動機電樞及勵磁線圈或再 阻之輸出線,原封不動地接續於前述交流電 電力變換裝置亦可直接適用交流電動機。 本發明提供一種電力變換裝置,於具有 機能的複數半導體開關元件中,除了具有二 能的電樞用截波(chopper)裝置以外,尙有效 的電力變換機能,經由控制降低勵磁線圈上 用以省略勵磁控制單元的同時,亦可降低勵 生模式時,雖 良影響,但因 關元件組成電 件接續點和N 電阻接續裝置 的電壓,使得 以防範勵磁線 機更新時,除 實面上,現今 換裝置中,欲 將前述具有三 相轉換裝置、 件接續點導出 生電流消耗電 動機的話,該 三相電力變換 相電力變換機 利用剩餘一相 的施加電壓, 磁線圈上的電 -10 - 200531427 (8) 壓負載,避免其破損。 另外,本發明提供一種電力變換裝置,可有效利用剩 餘一相的電力變換機能,經由接續再生用電阻’用以抑制 再生時PN母線間的電壓上升。 【實施方法】 以下佐以圖面說明本發明的一實施例。 (實施例1) 第3圖係顯示本發明相關電力變換裝置的一實施例之 構造圖。 該圖中,1是電力變換裝置,爲本發明主要部份,係 將三相交流電源2輸出的交流電力變換爲直流電力,提供 必要直流電壓給直流電動機3的電樞3 a、3 b,用以驅動 該直流電動機3。4爲直流電動機3的勵磁線圈;5爲電 樞電流用電流感測器’可以檢測出從電力變換裝置1導出 接續直流電動機3電樞3 a、3 b間之動力線6 a、6 b中流動 的電樞電流。7是控制部,係對於構成電力變換裝置1且 具有三相電力變換機能等的半導體開關元件,控制送出閘 控制訊號。 具體而g ’此電力變換裝置1,係由:伴隨外部控制 部送出的閘控制訊號,進行閥控制的IG B T等複數轉換用 開關元件1 1 a · · ·,發生截波(c h 〇 p p e r)動作,將三相交流電 源2輸出的交流電力變換成必要直流電壓之轉換裝置 -11 - 200531427 (9) 1 1 ;以及接續於P側母線1 2 p、N側母線12 η之間,伴隨 外部控制部7送出的閘控制訊號進行閥控制的IGBT等複 數開關元件13ρ卜13nl、13ρ2-13η2,發生截波(chopper)動 作,使得該轉換裝置1 1轉換的直流電壓通過動力線6a、 6b,用以供給直流電動機3的電樞3 a、3 b之電樞用截波 (chopper)裝置13a;通常三相電力變換機能中的其中二相 開關元件13pl〜13n2作爲電樞用截波(chopper)裝置13a 使用,不過,爲了取得施加於前述勵磁線圈上的殘留一相 電壓,故在P側母線12p和N側母線1 2n間,串聯接續 上述同樣具有伴隨外部控制部7送出的閘控制訊號進行閥 控制的IGBT等勵磁截波用開關元件13p3、13n3,用以構 成勵磁用截波(chopper)裝置13b;以及作爲勵磁電壓降壓 電路之勵磁中點電壓取得電路1 4 ;以及勵磁電流用電流 感測器1 5所構成。 再將電樞電流用電流感測器5測出的電樞檢出電流、 或勵磁電流用電流感測器1 5測出的勵磁檢出電流導入控 制部7中。 此勵磁中點電壓取得電路1 4,係設置有:串聯接續 在P側母線1 2p及N側母線12η之的間複數平滑電容器 14al及14a2 ;以及同樣地串聯接續於Ρ側母線12ρ及Ν 側母線12η之間,用以均等分配平滑電容器14al及14a2 的施加電壓且分別與其並聯接續之平衡電阻1 4b 1、 1 4 b2 ;設置於構成勵磁用截波(chopper)裝置13b之開關元 件1 3 p 3和1 3 η 3的接續點、和前述平滑電容器1 4 a 1和 -12 - 200531427 (10) 14a2的中點14c之間,開關元件I3n3開啓時,平滑電容 器14al、14a2的中點電壓通過勵磁線圈4-動力線6c-開 關元件13n3-N側流排12η的路徑,且勵磁電流流入,當 開關元件1 3 η3關閉時,積蓄在勵磁線圈4的電力能源回 歸平滑電容器14a 1、14a2的中點14c,用以降低勵磁線 圈4間電壓的回授用半導體元件14d。 然後,將平滑電容器14al、14 a2中點14c導出的動 力線6d,接續於勵磁線圈4的一端;再將構成勵磁用截 波(chopper)裝置13b之開關元件13p3和13n3接續點導出 的動力線6c通過勵磁電流用電流檢測器,並接續於勵磁 線圈4的另一端。 接著,佐以第4圖面說明上述電力變換裝置的動作情 形。 首先’控制部7對轉換裝置1 1送出閘控制訊號,進 而控制構成該轉換裝置1 1的複數開關元件1 1 a...之開 關’將交流電源2輸出的三相交流電力變換成必要電力的 直流電壓(ST1 )。其後,控制部7依據電流感測器1 5等的 測出電流判斷是否建立勵磁磁通(ST2);若判定無建立之 場合’則對勵磁用截波(c h 〇 p p e r)裝置1 3 b的開關元件 13n3送出閘控制訊號,並經由開關元件ι3η3對平滑電容 器 14al、Ma2的分壓中點 14c之中點電壓進行截波 (chopper)動作,通電於勵磁線圈(ST3)。 此時,當勵磁用開關元件1 3n3處於開啓狀態時,平 滑電容器1 4 a〗、1 4 a2的接續點中點1 4 c 5之發生電壓,通 -13 - 200531427 (11) 過中點14c-勵磁線圈4-勵磁電流用電流感測器15-開關元 件1 3 n3 -N側流排1 2n的路徑,電流流入N側流排1 2n, 此時的電流也就是勵磁電流,可經由勵磁電流用電流感測 器15測出,並送至控制部7(ST4)。另一方面,當勵磁用 開關元件1 3n3處於關閉狀態時,積蓄在勵磁線圈4的電 力能源則通過回授用半導體元件1 4d,送回平滑電容器 14al、14a2的中點14c,用以降低勵磁線圈4間的電壓。 在控制部7方面,則比較勵磁電流用電流感測器1 5 的檢出電流和預設電流,當檢出電流未達到預設電流之場 合,送出閘控制訊號。於是勵磁用截波(c h 〇 p p e r)裝置1 3 b 的開關素子13p3、13n3依循該閘控制訊號進行截波 (chopper)動作,使得必要勵磁電流通過,用以確立勵磁磁 通(ST5)。 在實施上述一連串的處理動作後,回到步驟ST2,當 判定建立勵磁磁通之場合,控制部7接著判斷直流電動機 3是否開始動作(ST6)。此時,確認直流電動機接收到開 始動作指令之場合,控制部7即對電樞用截波(chopper)裝 置13a的截波(chopper)開關元件13pl〜13n2送出閘控制 訊號。電樞用截波(chopper)裝置13a依照該閘控制訊號, 進行截波(chopper)動作,施加必要驅動電壓於直流電動機 3的電樞3a、3b之間,使直流電動機運轉(ST7)。在直流 電動機3運轉期間,經由電樞電流用電流感測器5,檢測 直流電動機3的電樞3 a、3 b的流入電流,並對控制部7 發送信號(S T 8 )。該控制部7會持續比較電樞電流用電流 -14- 200531427 (12) 檢測器5的檢測電流及預設電流,並對電樞用截波 (chopper)裝置13a的截波用開關元件13ρι〜13n2送出閘 控制訊號。該電樞用截波(chopper)裝置1 3a依據該控制部 7送出的閘控制訊號,對PN母線1 2ρ · 1 2n間的電壓進行 截波(chopper)動作,使得電樞電流通過電樞3a、3b,用 以控制直流電動機3的運轉情形(S T 9 )。 甚至’每固定週期判斷有無直流電動機3運轉時的電 動機停止指令(ST1 0),若判定無停止指令之場合,則回歸 步驟S T7,反覆實施相同處理程序。 依據以上實施例可知,本構造係爲··將轉換裝置等轉 換必要直流電源,施加於N · P母線1 2 ρ · 1 2 η間,並串 聯接續平滑電容器14al、14a2於其間,且同樣接續具有 複數勵磁截波用開關元件 1 3 p 3、1 3 η 3的勵磁截波 (chopper)裝置13b,然後在這些勵磁截波用開關元件 13p3、13n3的共同接續點及平滑電容器14al、14a2的中 點14c之間,接續回授用半導體元件14d,一邊進行電容 器中點電壓截波(c h 〇 p p e r)動作,一邊將其施加於直流電動 機3的勵磁線圈4之構造。因此,即使直流電動機3的勵 磁線圈4的額定電壓低於N · P母線1 2ρ · 1 2n間的施加 電壓,勵磁截波(chopper)裝置13b如前面所述,一邊對電 容器中點電壓進行截波(chopper)動作,一邊將其施加於勵 磁線圈4的同時,可藉由關閉該開關元件1 3n3,使得積 蓄在勵磁線圈4的能源通過回授用半導體元件1 4d,送回 平滑電容器1 4 a 1、1 4 a2的中點1 4 c,結果,不但可以降 -15- 200531427 (13) 低勵磁線圈4的負載電壓,減少勵磁線圈4的絕緣劣化、 避免其破損,尙且不需設置勵磁控制單元即可控制直流電 動機3。 (實施例2) 第5圖係本發明相關電力變換裝置的另一實施例之構 造圖。該圖中與第三圖相同或同等部份的相同符號,請參 ® 照第3圖詳細說明,以下針對與第3圖相異部分進行說 明。 一種電力變換裝置,除勵磁磁通生成電路,也就是勵 磁截波(chopper)裝置13b及勵磁電壓降壓電路之外,其他 構造與第3圖構造相同。 上述勵磁截波(chopper)裝置13b,與第3圖相同地在 P側母線1 2p和N側母線1 2n之間,接續其正極側開關元 件1 3 p 3及負極側開關元件1 3 η 3組成的串聯電路。 ® 前述勵磁電壓降壓電路,係指於Ρ側母線1 2ρ及Ν 側母線 1 2η之間,串聯接續 3個以上的平滑電容器 14al、14a2、…、14an,並接續用以平衡各個平滑電容器 的施加電壓之平衡電阻14bl、14b2、…、14bn。甚至在 正極側開關元件1 3p3及負極側開關元件1 3n3的共通接續 點、以及前述複數平滑電容器14al、14a2、…、14an中 最靠近N側母線1 2η的相鄰平滑電容器1 4 a ( η- 1 )(無 圖示)和1 4 an間的共通接續點1 4 e之間,接續回授用半 導體元件14d。 -16- 200531427 (14) 然後將該共通接續點1 4 e導出動力線6 d,接續於勵 磁線圈4,另外從正極側開關元件1 3 p 3和負極側開關元 件1 3 n3的共通接續點導出的動力線6 c,通過勵磁電流用 電流感測器後,接續於勵磁線圈4的另一端。 本實施例,係指於P側母線1 2P及N側母線1 2n之 間,串聯接續3個以上的平滑電容器14al、14a2、…、 1 4an,並接續用以平衡各個平滑電容器的施加電壓之平衡 ^電阻14131、1灿2、...、141^之場合,其動作與第3圖相 同,故在此省略。 依據本實施例可知,即使直流電動機3的勵磁線圈4 的額定電壓低於P側母線1 2p-N側母線1 2η間電壓的一半 之場合,亦可經由勵磁截波(chopper)器裝置13b,對串聯 接續於P · N側母線12ρ · 12n間,最靠近N側母線的平 滑電容器14an的分壓電壓,進行截波(chopper)動作,使 得該開關元件1 3n3處於開啓狀態時,積蓄在勵磁線圈4 w 的能源通過回授用半導體元件:I 4d,送回最靠近N側母線 1 lb側的平滑電容器l4a ( n-Ι )(無圖示)、14ail的共通 接續點1 4 e,因此可以降低勵磁線圈4的負載電壓,避免 勵fei線圈4破損,即使沒有設置勵fe;控制單元,仍可以控 制直流電動機3。 (實施例3) 弟6圖係顯不本發明相關電力變換裝置的其他實纟包^ 之構造圖。 -17- 200531427 (15) 該圖中,1是電力變換裝置,爲本發明主要部份’係 將三相交流電源2輸出的交流電力變換爲直流電力’提供 必要直流電壓給直流電動機3的電樞3 a、3 b ’用以驅動 該直流電動機3。4爲直流電動機3的勵磁線圈;5爲電 樞電流用電流感測器,可以檢測出從電力變換裝置1導出 接續直流電動機3電樞3 a、3 b間之動力線6 a、6b中流動 的電樞電流。8是勵磁控制單元,藉由控制流入勵磁線圈 • 4的電流,用以控制勵磁磁通。 此電力變換裝置1,係由:將三相交流電源2輸出的 交流電力整流爲必要直流電壓之二極體整流裝置2 1 ;以 及抑制開關元件動作時發生的突波電壓之平滑電容器 22 ;以及接續於施加前述二極體整流裝置轉換直流電源之 P側母線1 2p-N側母線1 2n間,藉由伴隨外部控制部7輸 出閘控制訊號進行閥控制之IGBT等複數開關元件13?1-13nl、13p2-13n2,對施加於母線 12p-12n的直流電壓進 ® 行截波(c h 〇 p p e r)動作,並提供給直流電動機 3的電樞 3a、3b之電樞用截波(chop per)裝置13a;通常三相電力變 換機能中的二相部分作爲電樞用截波(chopper)裝置13a使 用,不過爲了將殘留的一相部分作爲再生電流消耗用,故 在P側母線1 和N側母線I 2n間,串聯接續上述同樣 伴隨外部控制部7輸出的閘控制訊號進行閥控制的再生用 開關元件1 3 p4、1 3 n4構成之再生電流消耗裝置〗3 c ;接 續在構成再生電流消耗裝置1 3 c的再生用開關元件1 3 p4 和1 3 η 4的共通接續點和n側母線1 2 η之間,用以消耗再 -18- 200531427 (16) 生電流之再生電流消耗電阻2 3 ;以及檢測施加於母線 12ρ-12η間的直流電壓之檢壓器24所構成。 其次,佐以第7圖面說明上述電力變換裝置的動作情 形。 經由二極體整流裝置2 1對三相交流電源2輸出的三 相交流電力進行整流,取出必要電力之直流電壓,施加於 Ρ側母線1 2ρ-Ν側母線1 2η之間(ST21 )。此時,控制部 Φ 7判斷勵磁線圈4是否建立勵磁磁通(ST22),若判定沒有 建立勵磁磁通之場合,則自勵磁控制單元8送出勵磁電流 通過勵磁線圈 4 ( ST23 ),以確定建立勵磁磁通 (ST22 )。 步驟ST22判定建立勵磁磁通之場合,控制部7則判 斷驅動直流電動機3是否開始動作(ST2 4)。此時,直流電 動機接收到開始動作指令之場合,即對電樞用截波 (chopper)裝置13a的截波(chopper)開關元件13pl送出閘 ^ 控制訊號。電樞用截波(chopper)裝置13a依照該閘控制訊 號進行截波(chopper)動作,並將獲得的必要驅動電壓施加 於直流電動機3的電樞3 a、3 b間,使直流電動機運轉 (ST25)。 控制部7於直流電動機3運轉期間,擷取經由電樞電 流用電流感測器流入直流電動機3的電樞3 a、3 b的電樞 電流(ST26 ),或是擷取經由檢壓器24施加於母線]2p-1 2n之間的直流電壓(S T3 0 ),並實施下列處理。 也就是說’控制部7擷取電樞電流用電流感測器5檢 -19- 200531427 (17) 出的電樞電流,並持續比較該電樞電流及預設電流,對電 樞用截波(chopper)裝置13a的截波用開關元件I3pl〜 13n2送出閘控制訊號。電樞用截波(chopper)裝置13a依 照控制部7送出的閘控制訊號,對P · N母線1 2p . 12n 間的電壓進行截波(chopper)動作,使得電樞電流通過電樞 3 a、3 b,用以控制直流電動機3的運轉(S T2 7)。甚至,每 固定週期判斷有無直流電動機3運轉時的電動機停止指令 (ST2 8),若判定無停止指令之場合,則回到步驟 ST26, 反覆實施相同處理程序。 另外,控制部7在擷取檢壓器24檢測出的母線12p-12η間電壓後(ST30),比較該母線間電壓及預設電壓,判 斷直流電動機3是否處於再生模式(ST31)。通常,直流電 動機3處於再生模式場合,母線12Ρ-12η間的電壓會上 升,因此檢壓器24檢出的母線間電壓高於預設電壓時, 則判定爲再生模式。在此,判定爲再生模式之場合,則對 再生電流消耗裝置13c的再生用開關元件13Ρ4、13η4送 出閘控制訊號(ST32),並將再生用開關元件13ρ4處於開 啓狀態,接續母線 12ρ-12η間的再生電流消耗電阻 2 3(ST33)。也就是說,藉由再生開關元件Ι3ρ4的開啓動 作,使得Ρ側母線和再生電流消耗電阻接續,藉由電流通 過該再生電流消耗電阻23方式,降低母線12ρ-12η間電 壓。 其後’控制部7會比較檢壓器24檢測出的母線間檢 出電壓和預設電壓,當母線間檢出電壓低於預設電壓時 -20- 200531427 (18) (ST34)’則停止對再生電壓流消耗裝置13c送 號(ST35) 〇 因此,依據以上實施例可知,即使不具有 電力再生機能’或是具有三相電力變換機能的 成的三相電力變換裝置適用於直流電動機3 可經由殘留一相的開關元件構成再生電流消耗 並接續於構成再生電流消耗裝置1 3 c的再生 1 3 p 4、1 3 η 4的接續點和N側流排1 2 η之間, 模式時,對開關元件1 3 ρ 4、1 3 η 4進行開啓· 使得再生電流消耗電阻2 3持續消耗母線1 2 ρ · 的電壓,確實地抑制母線間電壓的上升情形, 降低勵磁線圈的電壓負載,避免勵磁線圈破損 (實施例4) 第8圖係顯示本發明相關電力變換裝置的 之構造圖。 本實施例有鑒於升降機更新時的既設升 態、使用者的需求,故將直流電動機3變更爲 動機、三相永磁同等電動機等的三相交流電動 該圖中,2 1爲二極體整流裝置,係將三相 輸出的交流電力整流爲必要電力的直流電壓; (chopper)裝置,接續於施加上述二極體整流裝 電源之P側母線12p-N側母線12η間,由 7 (無圖示)送出的閘控制訊號進行閥控制且具 :出閘控制訊 變流器等的 開關元件組 之場合,亦 裝置 1 3c, 用開關元件 當處於再生 關閉控制, 1 2 η間增加 並且有效地 於未然。 其他實施例 降機設備狀 三相誘導電 機之例。 交流電源2 1 3 d爲截波 置轉換直流 伴隨控制部 有三相變流 -21 - 200531427 (19) 機能的I G B T等複數截波用開關元件1 3 P 1 -1 3 n 1、1 3 P 2 - 13n2、13p5-13n5所構成;22爲平滑電谷益’用以抑制開 關元件 13pl-13nl、 13p2-13n2、 13p5-13n5 動作時發生的 突波電壓。另外自截波(chopper)裝置13d導出動力線6a 〜6 c,用以接續直流電動機3及勵磁線圈4或再生電流消 耗電阻2 3。 假設現今電動機的設備形態,譬如有電動機設備 • 3 1、3 2、3 3這3種存在的話,使用者如欲利用直流電動 機3之場合,應採用電動機設備3 1或3 2。而該電動機設 備3 1、3 2的相關說明如前述實施例。 不過,也有依據使用者的需求,將既設的直流電動機 3更換爲三相交流電動機的情形存在。此時可將具有三相 電力變換機能的半導體開關元件素子作爲具有三相變流機 能的截波(chopper)裝置13d使用,即可適用電動機設備 3 3。此電動機設備3 3具有如同三相誘導電動機或三相永 ^ 磁同等電動機之三相交流電動機3 4的構造。 升降機更新時’採用電動機設備3 1之場合,其構造 爲:將外部動力線6 a及6b接續於直流電動機3的電樞 3a、3b側’再將外部動力線6c接續於勵磁線圈4 一端, 同時從該勵磁線圈4的另一端導向平滑電容器2 2,例如 接續在複數平滑電容器中點14c(參考第3圖)。 升降機更新時,採用電動機設備3 2之場合,其構造 爲·同樣地將外部動力線6 a及6 b接續於直流電動機3的 電樞3a、3b側,並將外部動力線6c接續於再生電流消耗 - 22- 200531427 (20) 電阻23,且該再生電流消耗電阻23與電力變換裝置的N 側母線1 1 b側接續。 甚至當升降機更新時,不使用直流電動機3,改採用 具有三相交流電動機3 4的電動機設備3 3之場合,其構造 爲:將外部動力線6a〜6c接續於三相交流電動機34中無 圖不的各相動力端子台,截波(chopper)裝置13d受無圖示 的控制部指示,作爲換流裝置進行動作,用以控制三相交 ® 流電動機3 4運轉。 依據本實施例可知,當升降機更新時、故障時,不但 可以對應各種電動機設備進行處理,即使將負載的既設直 流電動機更換爲三相交流電動機之場合,也不需要更換電 力變換裝置本體,僅需施以改造就可以控制運轉交流電動 機。 此外,本發明不受限於上述實施例,只要在不脫離上 述要旨的範圍內,皆可實施各種推演轉換。如第8圖構 ^ 造,雖然在將交流電源2輸出的交流電力變換爲必要電力 直流電壓時,使用二極體整流裝置,但也可以採用第3圖 所示的轉換裝置1 1構造。 另外,儘可能地將各實施例相互組合實施,亦有相得 益彰之成效。甚至包含上述各實施例中的各種高階、低階 發明,將其指示的數項構成要素適當地組合,則可取得各 項發明。譬如說,自解決問題手段所記載的全部構成要素 中,省略幾項構成要素而取得發明之場合,則在實施該發 明時,採用熟知慣用的技術適當地補足該省略部分。 -23- 200531427 (21) 產業上之利用可能性 本發明提供一種電力變換裝置,於具有三相電力變換 機能的複數半導體開關元件中,除了具有二相電力變換機 能的電樞用截波(chopper)裝置以外,尙有效利用剩餘一相 的電力變換機能,經由控制降低勵磁線圈上的施加電壓, 用以省略勵磁控制單元的同時,亦可降低勵磁線圈上的電 • 壓負載,避免其破損。 另外,本發明提供一種電力變換裝置,可有效利用剩 餘一相的電力變換機能,經由接續再生用電阻,用以抑制 再生時PN母線間的電壓上升。 【圖式簡單說明】 第1圖係顯示傳統電力變換裝置之構造圖。 第2圖係顯示其他傳統電力變換裝置之構造圖。 ^ 第3圖係顯示本發明相關電力變換裝置的一實施例之 構造圖。 第4圖係說明第3圖所示電力變換裝置動作之動作流 程圖。 第5圖係部分改良第3圖所示電力變換裝置之構造 圖。 第6圖係顯示本發明相關電力變換裝置的另一實施例 之構造圖。 第7圖係說明第6圖所示電力變換裝置動作之動作流 -24- 200531427 (22) 程圖。 第8圖係顯示本發明相關電力變換裝置的其他實施例 之構造圖。200531427 (6) The above-mentioned excitation voltage step-down circuit is constituted. At this time, even if the rated voltage of the DC coil is less than half of the voltage between the PN buses, electric waves (chopper) occur at the connection points of adjacent smoothing capacitors near the N-side bus. ) Action to pass through the excitation coil and return the stored energy to the point of the smoothing capacitor via the feedback circuit element. Therefore, the load voltage of the excitation coil can be reduced to avoid damage due to other reasons. (2) Secondly, the present invention is a three-phase power conversion device in which a PN bus bar to which a necessary DC voltage is applied is connected in series to each of a plurality of semiconductor switching elements that successively convert the power conversion function and a surge voltage that occurs when the semiconductor switching elements are operated. The multiplier drives a DC motor with a controllable excitation control unit flowing into the excitation current coil. The installation structure is as follows: Among the above-mentioned plural semiconductors having three-phase power conversion functions, the plural semiconductors having two-phase power conversion functions are on the output side, connected to the armature of the DC motor, and choppered with an external brake control signal. Intercepting device for armature in motion; and among the above-mentioned plural half-elements with three-phase power conversion function, it is composed of the remaining plural half-elements with power-conversion function, and it is provided with an external switch control signal to open the resistance connection device; And connected between the connection point of the body switching element constituting the resistance connection device and the N-side busbar, in the regenerative mode of the motor, it is used to reduce the voltage generated between the PN busbars through the resistance connection purchase device. Exciting with a regenerative motor I can excite the most continuity of the excitation coil. The insulation degradation described above refers to the provision of the switching element of the excitation line switching element with three-phase suppression of this complex smoothing capacitor. (chopper) Conductor Switch Plurality of Conductor Switch Off Action Then 200,531,427 (7) generated current consumption resistance. The present invention has the same structure as the above. In the DC motor, the voltage between the PN buses is increased again, which brings the excitation coils to a plurality of semiconductor open-resistance connection systems with power conversion functions in the remaining phase. The regenerative current consumption resistor is operated by the switching element configured to reduce the increase in the regenerative power between the PN buses described above. The regenerative power is consumed by the regenerative current consumption resistor, and the loop can be damaged. Regardless of the type of power conversion device, a person with a three-phase power conversion function is generally used while lifting and using a DC motor with an excitation coil. (3) Even when the above-mentioned (1) and (2) of the present invention adopt an AC motor instead of a DC motor, the third of the plural semiconductor switching elements of the phase power conversion function and the plural semiconductors of each phase constituting the inverter device The switching element is connected to the armature of the DC motor and the exciting coil or the re-resistance output line, and it is directly connected to the AC power conversion device and can also be directly applied to the AC motor. The invention provides a power conversion device. Among a plurality of semiconductor switching elements having functions, in addition to a chopper device having an armature having two functions, the effective power conversion function is controlled, and the excitation coil is used to reduce the effect on the excitation coil. While omitting the excitation control unit, it can also reduce the excitation mode. Although it has a good effect, the voltage of the connection point of the electrical components and the resistance of the N resistance connection device makes it necessary to prevent the update of the excitation line machine. In the above current device, if you want to derive the current consumption motor with the three-phase conversion device and the connection point, the three-phase power conversion phase power converter uses the remaining one phase of the applied voltage, and the power on the magnetic coil is -10. -200531427 (8) Press the load to avoid damage. In addition, the present invention provides a power conversion device that can effectively utilize the remaining one-phase power conversion function and suppress the voltage rise between the PN busbars during regeneration by connecting a regeneration resistor '. [Implementation method] An embodiment of the present invention will be described below with reference to the drawings. (Embodiment 1) Figure 3 is a structural diagram showing an embodiment of a power conversion device according to the present invention. In the figure, 1 is a power conversion device, which is the main part of the present invention. It converts the AC power output from the three-phase AC power source 2 into DC power, and supplies the necessary DC voltage to the armature 3 a, 3 b of the DC motor 3. It is used to drive the DC motor 3. 4 is the excitation coil of the DC motor 3; 5 is the current sensor for the armature current. It can detect that the DC motor 3 is connected to the armature 3 a and 3 b from the power conversion device 1. The armature current flowing in the power lines 6 a, 6 b. Reference numeral 7 is a control unit for controlling the output brake control signal for the semiconductor switching element constituting the power conversion device 1 and having a three-phase power conversion function. Specifically, the power conversion device 1 is composed of a complex conversion switching element 1 such as IG BT that performs valve control in accordance with a gate control signal sent from an external control unit, and chopping occurs (ch 〇pper). Converter for converting the AC power output from the three-phase AC power source 2 into the necessary DC voltage-11-200531427 (9) 1 1; and connected between the P-side busbar 1 2 p and the N-side busbar 12 η, with external The gate control signal sent from the control unit 7 is used for valve control of IGBT and other complex switching elements 13ρ, 13nl, 13ρ2-13η2, and chopper action occurs, so that the DC voltage converted by the conversion device 11 passes through the power lines 6a, 6b. The armature chopper device 13a for supplying the armature 3 a, 3 b of the DC motor 3; usually two-phase switching elements 13pl to 13n2 in the three-phase power conversion function are used as the armature chopper. ) The device 13a is used. However, in order to obtain the residual one-phase voltage applied to the excitation coil, the above-mentioned brake control is also provided in series between the P-side bus 12p and the N-side bus 12 2n, which is also sent by the external control unit 7. Information Switching element 13p3, 13n3 for field-clamping, such as IGBT, for valve control is used to form chopper device 13b for field-excitation; and field mid-point voltage acquisition circuit as field-voltage step-down circuit 1 4 And a current sensor 15 for the exciting current. The armature detection current measured by the armature current current sensor 5 or the excitation detection current measured by the field current current sensor 15 is introduced into the control unit 7. This excitation midpoint voltage obtaining circuit 14 is provided with a plurality of smoothing capacitors 14al and 14a2 connected in series between the P-side busbar 12p and the N-side busbar 12η; and in the same manner, the P-side busbar 12ρ and Ν are connected in series. Between the side busbars 12η, the applied voltages of the smoothing capacitors 14al and 14a2 are evenly distributed and connected in parallel with the balancing resistors 1 4b 1 and 1 4 b2 respectively; the switching elements provided in the exciter chopper device 13b Between the connection point of 1 3 p 3 and 1 3 η 3 and the smoothing capacitor 1 4 a 1 and -12-200531427 (10) 14a2, when the switching element I3n3 is turned on, the middle of the smoothing capacitors 14al and 14a2 The point voltage passes through the path of the excitation coil 4-the power line 6c-the switching element 13n3-N side current drain 12η, and the excitation current flows in. When the switching element 1 3 η3 is turned off, the power energy stored in the excitation coil 4 returns to smooth. The midpoint 14c of the capacitors 14a1 and 14a2 is a feedback semiconductor element 14d for reducing the voltage between the excitation coils 4. Then, the power line 6d derived from the midpoint 14c of the smoothing capacitors 14al and 14a2 is connected to one end of the excitation coil 4. Then, the connection points of the switching elements 13p3 and 13n3 constituting the chopper device 13b for the excitation are derived. The power line 6 c passes the current detector for the exciting current, and is connected to the other end of the exciting coil 4. Next, the operation of the power conversion device will be described with reference to the fourth figure. First, the 'control section 7 sends a brake control signal to the conversion device 11 and further controls the switches of the plurality of switching elements 1 1 a ... constituting the conversion device 11' to convert the three-phase AC power output from the AC power source 2 into necessary power DC voltage (ST1). Thereafter, the control unit 7 judges whether or not an excitation magnetic flux is established (ST2) based on the measured current of the current sensor 15 or the like; if it is determined that no excitation magnetic flux has been established, the excitation interruption (ch pper) device 1 is established. The switching element 13n3 of 3b sends out a brake control signal, and performs a chopper operation on the midpoint voltage of the divided voltage midpoint 14c of the smoothing capacitors 14al and Ma2 via the switching element ι3η3, and energizes the excitation coil (ST3). At this time, when the excitation switching element 1 3n3 is on, the voltage at the connection point 1 4 c 5 of the smoothing capacitors 1 4 a and 1 4 a 2 passes through -13-200531427 (11) the midpoint 14c-excitation coil 4-excitation current sensor 15-switching element 1 3 n3 -N-side current rail 12 2n path, current flows into N-side current rail 12 2n, the current at this time is also the excitation current Can be measured by the current sensor 15 for the exciting current and sent to the control unit 7 (ST4). On the other hand, when the excitation switching element 1 3n3 is in the off state, the electric energy stored in the excitation coil 4 is returned to the midpoint 14c of the smoothing capacitors 14al and 14a2 through the feedback semiconductor element 1d, which is used for Reduce the voltage between the field coils 4. In the control section 7, the detection current of the current sensor 15 for the exciting current and the preset current are compared, and when the detected current does not reach the preset current, a brake control signal is sent. Therefore, the switching elements 13p3 and 13n3 of the chopping device 1 3 b for excitation follow the gate control signal to perform chopper operation, so that the necessary exciting current is passed to establish the exciting magnetic flux (ST5 ). After performing the series of processing operations described above, the process returns to step ST2. When it is determined that the field magnetic flux is established, the control unit 7 next determines whether the DC motor 3 has started operation (ST6). At this time, when it is confirmed that the DC motor has received the start operation command, the control unit 7 sends a brake control signal to the chopper switching elements 13pl to 13n2 of the chopper device 13a for the armature. The armature chopper device 13a performs a chopper operation in accordance with the brake control signal, applies a necessary driving voltage between the armature 3a, 3b of the DC motor 3, and operates the DC motor (ST7). During the operation of the DC motor 3, the inflow current of the armature 3a, 3b of the DC motor 3 is detected via the armature current sensor 5, and a signal is sent to the control unit 7 (S T 8). This control unit 7 continuously compares the current for armature current -14- 200531427 (12) The detection current of the detector 5 and the preset current, and cuts the switching element 13ρ of the armature chopper device 13a ~ 13n2 sends out the gate control signal. The armature chopper device 13a performs chopper operation on the voltage between the PN bus 12p and 12n based on the brake control signal sent from the control unit 7, so that the armature current passes through the armature 3a. And 3b are used to control the operation of the DC motor 3 (ST 9). Even if the motor stop command (ST1 0) at the time when the DC motor 3 is running is determined every fixed period, if it is determined that there is no stop command, the process returns to step S T7 and the same processing procedure is repeatedly performed. It can be known from the above embodiments that the structure is to convert a necessary DC power source, such as a conversion device, to the N · P bus 1 2 ρ · 1 2 η, and to connect the smoothing capacitors 14al and 14a2 in series therebetween, and the same connection A field chopper device 13b having a plurality of switching elements for excitement cuts 1 3 p 3, 1 3 η 3, and a common connection point of these switching elements 13p3 and 13n3 for cutoffs, and a smoothing capacitor 14al Between the midpoints 14c of 14a2 and 14c2, the semiconductor element 14d for feedback is connected, and the capacitor midpoint voltage chopping operation is performed, and the structure is applied to the excitation coil 4 of the DC motor 3. Therefore, even if the rated voltage of the excitation coil 4 of the DC motor 3 is lower than the applied voltage between the N · P busbars 1 2ρ · 1 2n, the excitation chopper device 13 b applies the midpoint voltage to the capacitor as described above. Chopper operation is performed. While applying it to the exciting coil 4, the switching element 1 3n3 can be turned off, so that the energy stored in the exciting coil 4 can be sent back through the feedback semiconductor element 1 4d. The smoothing capacitors 1 4 a 1 and 1 4 a 2 have a midpoint 1 4 c. As a result, not only can they be reduced by -15-200531427 (13) The load voltage of the field coil 4 is reduced, the insulation degradation of the field coil 4 is reduced, or its damage is avoided Therefore, the DC motor 3 can be controlled without setting an excitation control unit. (Embodiment 2) Fig. 5 is a configuration diagram of another embodiment of a power conversion device according to the present invention. In this figure, the same symbols as those in the third figure are the same or the same. Please refer to Figure 3 for a detailed description. The following sections describe the differences from Figure 3. A power conversion device has the same structure as the structure shown in FIG. 3 except for the field magnetic flux generating circuit, that is, the field chopper device 13b and the field voltage step-down circuit. The above-mentioned excitation chopper device 13b is connected between the P-side busbar 12p and the N-side busbar 12n in the same manner as in FIG. 3, and is connected to the positive-side switching element 1 3p 3 and the negative-side switching element 1 3 η. 3 series circuits. ® The aforementioned excitation voltage step-down circuit refers to the connection between three or more smoothing capacitors 14al, 14a2, ..., 14an in series between the P-side busbar 1 2ρ and the N-side busbar 12 2η, and the connection is used to balance each smoothing capacitor. The balanced resistances 14bl, 14b2, ..., 14bn of the applied voltage. Even at the common connection point of the positive-side switching element 1 3p3 and the negative-side switching element 1 3n3, and the adjacent smoothing capacitor 1 4 a (n) of the aforementioned plurality of smoothing capacitors 14al, 14a2, ..., 14an, which is closest to the N-side busbar 1 2η -1) (not shown) and the common connection point 1 4 e between 14 an and 14 b are connected to the semiconductor device for feedback. -16- 200531427 (14) The common connection point 1 4 e is then led to the power line 6 d, connected to the excitation coil 4, and the common connection from the positive side switching element 1 3 p 3 and the negative side switching element 1 3 n3 The power line 6 c derived from the point is passed to the other end of the exciting coil 4 after passing the current sensor for the exciting current. This embodiment refers to connecting more than 3 smoothing capacitors 14al, 14a2, ..., 1 4an in series between the P-side busbar 12P and the N-side busbar 12n, and connecting them to balance the applied voltage of each smoothing capacitor. In the case of the balanced resistors 14131, 1can2, ..., 141 ^, the operations are the same as those in FIG. 3, and are omitted here. According to this embodiment, it can be known that even when the rated voltage of the excitation coil 4 of the DC motor 3 is lower than half of the voltage between the P-side busbar 1 2p-N-side busbar 12 and 2η, a chopper device can be used. 13b, perform chopper operation on the divided voltage of the smoothing capacitor 14an connected in series between the P · N side buses 12ρ · 12n and closest to the N side buses, so that when the switching element 1 3n3 is on, it accumulates The energy in the field coil 4 w passes the semiconductor element for feedback: I 4d, and returns the smoothing capacitor l4a (n-1) (not shown) closest to the N-side busbar 1 lb side (not shown), and the common connection point of 14ail 1 4 e. Therefore, the load voltage of the excitation coil 4 can be reduced, and damage to the excitation coil 4 can be avoided. Even if an excitation control unit is not provided, the DC motor 3 can still be controlled. (Embodiment 3) FIG. 6 is a structural diagram showing other practical packages of a power conversion device related to the present invention. -17- 200531427 (15) In the figure, 1 is a power conversion device, which is the main part of the present invention, 'converts the AC power output from the three-phase AC power supply 2 to DC power' and supplies the necessary DC voltage to the power of the DC motor 3 The armature 3 a and 3 b ′ are used to drive the DC motor 3. 4 is an excitation coil of the DC motor 3; 5 is an armature current sensor, which can detect that the power from the power conversion device 1 is connected to the DC motor 3. The armature current flowing in the power lines 6 a, 6 b between the armature 3 a, 3 b. 8 is an excitation control unit, which controls the current flowing into the excitation coil 4 to control the excitation magnetic flux. This power conversion device 1 is a diode rectifier 2 1 that rectifies the AC power output from the three-phase AC power source 2 into a necessary DC voltage; and a smoothing capacitor 22 that suppresses a surge voltage generated when the switching element operates; and Connected between the P-side busbars 1 2p-N-side busbars 1 2n to which the aforementioned diode rectifier is used to convert DC power, and a plurality of switching elements 13? 1- 13nl, 13p2-13n2, chop the DC voltage applied to the bus 12p-12n, and provide the chop per to the armature 3a, 3b of the DC motor 3 Device 13a; Generally, the two-phase part of the three-phase power conversion function is used as an armature chopper device 13a. However, in order to use the remaining one-phase part as the regenerative current consumption, it is on the P-side bus 1 and N-side. Between the bus bars I 2n, the regeneration current consumption device composed of the regeneration switching elements 1 3 p4 and 1 3 n4 for valve control, which are also accompanied by the gate control signal output from the external control unit 7 in series, is connected in series. 3 c; Current consumption device 1 3 c The regeneration switching element 1 3 p4 and 1 3 η 4 have a common connection point with the n-side busbar 1 2 η to consume the regenerative current consumption of 18-18200531427 (16) Resistor 2 3; and a voltage detector 24 configured to detect a DC voltage applied to the bus bar 12ρ-12η. Next, the operation of the power conversion device will be described with reference to Fig. 7. The three-phase AC power output from the three-phase AC power source 2 is rectified by the diode rectifier 21, and the DC voltage of the necessary power is taken out and applied between the P-side busbar 1 2ρ-N-side busbar 12 2η (ST21). At this time, the control section Φ 7 determines whether the excitation coil 4 establishes an excitation magnetic flux (ST22). If it is determined that the excitation magnetic flux is not established, the self-excitation control unit 8 sends an excitation current through the excitation coil 4 ( ST23) to determine the establishment of the field flux (ST22). When it is determined in step ST22 that the field magnetic flux is established, the control unit 7 determines whether or not the driving DC motor 3 starts to operate (ST2 4). At this time, when the DC motor receives the start operation command, the chopper switching element 13pl of the chopper device 13a for armature sends a brake control signal. An armature chopper device 13a performs a chopper operation in accordance with the brake control signal, and applies the necessary driving voltage obtained between the armature 3a and 3b of the DC motor 3 to operate the DC motor ( ST25). The control unit 7 captures the armature current (ST26) flowing into the armature 3a, 3b of the DC motor 3 through the armature current sensor during the operation of the DC motor 3, or captures the voltage through the voltage detector 24 A DC voltage (S T3 0) applied to the bus bar] 2p-1 2n was subjected to the following processing. That is, the 'control part 7 captures the armature current detected by the armature current sensor 5-19-200531427 (17), and continuously compares the armature current and the preset current, and intercepts the armature. (Chopper) The cut-off switching elements I3pl to 13n2 of the device 13a send out a gate control signal. The chopper device 13a for the armature performs chopper operation on the voltage between the P · N busbars 12p and 12n according to the brake control signal sent from the control unit 7, so that the armature current passes through the armature 3a, 3 b is used to control the operation of the DC motor 3 (S T2 7). Furthermore, it is determined at each fixed cycle whether there is a motor stop command when the DC motor 3 is running (ST2 8). If it is determined that there is no stop command, the process returns to step ST26 and the same processing routine is repeatedly executed. In addition, the control unit 7 extracts the voltage between the bus bars 12p-12n detected by the voltage detector 24 (ST30), compares the voltage between the bus bars and the preset voltage, and determines whether the DC motor 3 is in the regeneration mode (ST31). Generally, when the DC motor 3 is in the regeneration mode, the voltage between the bus bars 12P-12n will rise. Therefore, when the voltage between the bus bars detected by the voltage detector 24 is higher than the preset voltage, it is determined as the regeneration mode. If it is determined as the regeneration mode, the brake control signal (ST32) is sent to the regeneration switching elements 13P4 and 13η4 of the regeneration current consuming device 13c, and the regeneration switching element 13ρ4 is turned on, and the bus is connected between 12ρ-12η. Regenerative current consumption resistor 2 3 (ST33). In other words, by turning on the regenerative switching element 13p4, the P-side bus and the regenerative current consumption resistor are connected, and the current across the regenerative current consumption resistor 23 is used to reduce the voltage between the buses 12p-12n. Thereafter, the 'control section 7 compares the detected voltage between the bus bars and the preset voltage detected by the voltage detector 24, and stops when the detected voltage between the bus bars is lower than the preset voltage -20- 200531427 (18) (ST34)' and stops. Send a number to the regenerative voltage current consuming device 13c (ST35). Therefore, according to the above embodiment, it can be known that even if it does not have a power regeneration function or a three-phase power conversion device with a three-phase power conversion function, it is suitable for a DC motor. 3 The regenerative current consumption is constituted by the remaining one-phase switching element and is connected between the junction of the regenerative 1 3 p 4 and 1 3 η 4 and the N-side busbar 1 2 η constituting the regenerative current consumption device 1 3 c. In the mode, Turn on the switching elements 1 3 ρ 4 and 1 3 η 4 so that the regenerative current consumption resistor 2 3 continuously consumes the voltage of the bus 1 2 ρ · to reliably suppress the rise of the voltage between the buses and reduce the voltage load of the excitation coil. Avoiding Damage of Excitation Coil (Embodiment 4) FIG. 8 is a structural diagram showing a power conversion device according to the present invention. In this embodiment, in view of the existing lifting state and the needs of the user when the elevator is updated, the DC motor 3 is changed to a three-phase AC electric motor such as a motive or a three-phase permanent magnet equivalent motor. In the figure, 21 is a diode rectifier. Device, which rectifies the three-phase output AC power to the DC voltage of the necessary power; (chopper) device, connected between the P-side bus 12p-N-side bus 12η to which the above-mentioned diode rectified power is applied, from 7 (not shown) (Shown) When the gate control signal sent out is used for valve control and has a switch element group such as a gate control signal converter, it also installs 1 3c. When the switch element is in regenerative shutdown control, it increases and effectively increases between 1 2 η Yu Weiran. Other Embodiments An example of a three-phase induction motor in the form of a lowering device. AC power supply 2 1 3 d is a three-phase converter with a cut-off-set DC accompaniment control unit. 21-200531427 (19) Functional IGBT and other complex cut-off switching elements 1 3 P 1 -1 3 n 1, 1 3 P 2 -13n2, 13p5-13n5; 22 is a smooth power valley, which is used to suppress the surge voltage that occurs when the switching elements 13pl-13nl, 13p2-13n2, and 13p5-13n5 operate. In addition, a power line 6a to 6c is derived from a chopper device 13d for connecting the DC motor 3 and the exciting coil 4 or the regenerative current dissipation resistor 23. Assuming the current motor equipment form, for example, if there are three types of motor equipment: 3 1, 3, 2 and 3, if users want to use the DC motor 3, they should use the motor equipment 3 1 or 32. The relevant descriptions of the motor equipment 3 1 and 3 2 are as described in the foregoing embodiment. However, there are cases where the existing DC motor 3 is replaced with a three-phase AC motor according to the needs of the user. In this case, the semiconductor switching element element having the three-phase power conversion function can be used as a chopper device 13d having the three-phase current conversion function, and the motor equipment 3 3 can be applied. This motor equipment 33 has a structure similar to a three-phase induction motor or a three-phase permanent-magnet equivalent three-phase AC motor 34. When the elevator is renewed, when the motor equipment 31 is used, the structure is such that the external power lines 6 a and 6 b are connected to the armature 3 a and 3 b sides of the DC motor 3, and the external power line 6 c is connected to one end of the excitation coil 4. At the same time, the smoothing capacitor 22 is guided from the other end of the exciting coil 4 at the same time, for example, it is connected to the midpoint 14c of the complex smoothing capacitor (refer to FIG. 3). When the elevator is renewed, when the electric motor equipment 3 2 is used, its structure is similarly connected to the armature 3a, 3b side of the DC motor 3 with the external power lines 6 a and 6 b, and the external power line 6 c is connected to the regenerative current. Power consumption-22- 200531427 (20) The resistance 23 is connected to the N-side bus 1 1 b side of the power conversion device. Even when the lift is updated, instead of using a DC motor 3, a motor device 3 3 having a three-phase AC motor 34 is used instead. The structure is such that the external power lines 6a to 6c are connected to the three-phase AC motor 34. For each phase power terminal block, the chopper device 13d is instructed by a control unit (not shown) to operate as a commutation device to control the operation of the three-phase AC motor 34. According to this embodiment, it can be known that when the elevator is updated or malfunctioned, not only can it handle various motor equipment, but even when the existing DC motor of the load is replaced with a three-phase AC motor, the main body of the power conversion device does not need to be replaced. The transformation can control the operation of the AC motor. In addition, the present invention is not limited to the above embodiments, and various deduction conversions can be performed as long as they do not depart from the gist of the above. As shown in FIG. 8, although the diode rectifier is used to convert the AC power output from the AC power source 2 into the necessary power DC voltage, a converter device 11 structure as shown in FIG. 3 may be used. In addition, as far as possible, the embodiments can be implemented in combination with each other, and have mutually beneficial effects. Even if various high-order and low-order inventions in the above embodiments are included, and several constituent elements indicated by them are appropriately combined, various inventions can be obtained. For example, in the case where an invention is obtained by omitting several constituent elements out of all the constituent elements described in the self-solving means, when implementing the present invention, well-known conventional techniques are used to appropriately supplement the omitted portions. -23- 200531427 (21) Industrial Applicability The present invention provides a power conversion device, in a plurality of semiconductor switching elements having a three-phase power conversion function, in addition to a chopper for armature having a two-phase power conversion function. In addition to the device, 尙 effectively utilizes the power conversion function of the remaining one phase, and reduces the applied voltage on the excitation coil through control, so as to omit the excitation control unit, and also reduce the electrical and voltage load on the excitation coil to avoid It's broken. In addition, the present invention provides a power conversion device that can effectively utilize the remaining one-phase power conversion function and suppress the voltage rise between the PN busbars during regeneration by connecting a regeneration resistor. [Brief description of the drawings] FIG. 1 is a structural diagram showing a conventional power conversion device. Fig. 2 is a structural diagram showing other conventional power conversion devices. ^ Fig. 3 is a structural diagram showing an embodiment of a power conversion device according to the present invention. Fig. 4 is an operation flowchart illustrating the operation of the power conversion device shown in Fig. 3. Fig. 5 is a partial modification of the structure of the power conversion device shown in Fig. 3. Fig. 6 is a configuration diagram showing another embodiment of a power conversion device according to the present invention. FIG. 7 is a flowchart showing the operation flow of the power conversion device shown in FIG. -24- 200531427 (22). Fig. 8 is a structural diagram showing another embodiment of a power conversion device according to the present invention.

【主要元件符號】 1 2 3 3a、3 b 4 5 6a、6b、6c、6 d 7 8 11 11a 1 2n 1 2 p 13a 13b 13c 13d 1 3 n 1、1 3 n 2、1 3 n 3 1 3 p 1、1 3 p 2、1 3 p 3 電力變換裝置 三相交流電源 直流電動機 電樞 勵磁線圈 電樞電流用電流感測器 動力線 控制部 勵磁控制單元‘ 轉換裝置 轉換用開關元件 N側母線 P側母線 電樞用截波裝置 勵磁用截波裝置 再生電流消耗裝置 截波(c h 〇 p p e r ) 截波用開關元件 截波用開關元件 -25- 200531427[Symbols of main components] 1 2 3 3a, 3 b 4 5 6a, 6b, 6c, 6 d 7 8 11 11a 1 2n 1 2 p 13a 13b 13c 13d 1 3 n 1, 1 3 n 2, 1 3 n 3 1 3 p 1, 1 3 p 2, 1 3 p 3 Power conversion device Three-phase AC power supply DC motor Armature excitation coil Current sensor for armature current Power line control excitation control unit 'Conversion device Switching element for conversion N-side busbar P-side busbar armature wave-cutting device excitation wave-cutting device regenerative current consumption device wave-cutting (ch pppp) wave-cutting switching element wave-cutting switching element-25- 200531427

(23) 1 3n4 、1 3p4 再 生 用 開 關 元 件 1 3n5 、1 3p5 截 波 用 開 關 元 件 14 勵 磁 中 點 電 壓 取 得電路 1 4al 、14a2 、. ··、平 滑 電 容 Man 1 4b 1 、1 4b2 、. ··、平 衡 電 阻 1 4bn 14c 平 滑 電 容 器 14al 、 14a2 點 1 4d 回 授 用 電 路 元 件 回 授 用 半 導 體 元 件 1 4e 平 滑 電 容 14a ( η- 1 )和 之 共 同 接 續 點 15 勵 磁 電 流 用 電 流 感測器 2 1 二 極 體 整 流 裝 置 22 平 滑 電 容 23 再 生 電 流 消 耗 電 阻 24 檢 壓 器 3 1、 32、3 3 電 動 機 設 備 34 二 相 交 流 電 動 機 5 1 直 流 電 源 5 2n N 側 母 線 52p P 側_ 母; 線 53、 53 a 電 樞 用 截 波 裝 置 的中 1 4 an -26- 200531427(23) 1 3n4, 1 3p4 regeneration switching element 1 3n5, 1 3p5 cut-off switching element 14 excitation midpoint voltage acquisition circuit 14al, 14a2, ..., smoothing capacitors Man 1 4b 1, 1 4b2, ... ··, balance resistor 1 4bn 14c smoothing capacitor 14al, 14a2 point 1 4d feedback circuit element feedback semiconductor element 1 4e smoothing capacitor 14a (η-1) and common connection point 15 current sensor for field current 2 1 Diode rectifier 22 Smoothing capacitor 23 Regenerative current consumption resistor 24 Voltage detector 3 1, 32, 3 3 Motor equipment 34 Two-phase AC motor 5 1 DC power supply 5 2n N-side bus 52p P-side _ bus; line 53 , 53 a of the chopping device for armature 1 4 an -26- 200531427

(24) 53b 53nl、 53n2、 53n3 53pl、53p2、5 3 p 3 54 5 5 56a、56b、56c、56d 5 7 5 8 59 勵磁用截波裝置 開關元件 開關元件 平滑電容 直流電動機 動力線 勵磁線圈 勵磁控制單元 電樞電流用電流感測器(24) 53b 53nl, 53n2, 53n3 53pl, 53p2, 5 3 p 3 54 5 5 56a, 56b, 56c, 56d 5 7 5 8 59 Excitation wave-cutting device Switching element Switching element Smooth capacitor DC motor Power line excitation Coil excitation control unit current sensor for armature current

-27--27-

Claims (1)

200531427 (1) 十、申請專利範圍 1 . 一種電力變換裝置,係於施加必要直流電壓的PN 母線間,將持有三相的電力變換機能之複數個半導體開關 元件、及抑制於此些複數個半導體開關元件動作時所產生 的突波電壓來之複數個平滑電容,來加以各自串聯接續, 用以驅動具有勵磁線圈的直流電動機;其特徵爲備有: 前述持有三相的電力變換機能之複數個半導體開關元 ® 件之中,於持有其中二相電力變換機能的複數個半導體開 關元件之輸出側,將前述直流電動機的電樞加以接續,於 供給來自外部之第1閘控制訊號之範圍下,進行截波動作 之電樞用截波裝置;和 前述持有三相的電力變換機能之複數個半導體開關元 件之中,以持有其餘一相電力變換機能的複數個半導體開 關元件來加以構成,於供給來自外部之第2閘控制訊號之 範圍下,進行截波動作之勵磁用截波裝置;和 ^ 於構成此勵磁用截波裝置的複數個半導體開關元件之 接續部與前述複數個平滑電容的中點之間,接續前述勵磁 線圈及回授用電路元件,將前述平滑電容的中點電壓,藉 由該勵磁用截波裝置的截波動作,通電於前述勵線圈,且 將積蓄於前述勵磁線圈的電力能源送回前述平滑電容的中 點之勵磁電壓降壓電路。 2.如申請專利範圍第1項中所記載之電力變換裝 置,其中:於串聯接續3個以上之前述複數平滑電容之場 合,前述勵磁電壓降壓電路,係在構成前述勵磁用截波裝 -28- 200531427 (2) 置的複數半導體開關元件之接續部與前述三個以上平滑電 容中最鄰接靠近前述N側母線的平滑電容之接續點之 間,將前述勵磁線圈及回授用電路元件來加以接續。 3 . —種電力變換裝置,係於施加必要直流電壓的PN 母線間,將持有三相電力變換機能之複數個半導體開關元 件、及可將於此些複數個半導體開關元件動作時所產生的 突波電壓來加以抑制之複數個平滑電容,來加以各自串聯 接續,用以驅動具有控制來自勵磁控制單元的勵磁電流的 流入之勵磁線圈之直流電動機;其特徵爲備有: 前述持有三相的電力變換機能之複數數半導體開關元 件之中,於持有其中二相電力變換機能的複數個半導體開 關元件之輸出側,將前述直流電動機的電樞加以接續,於 供給來自外部之第1閘控制訊號之範圍下,進行截波動作 之電樞用截波裝置;和 前述持有三相的電力變換機能之複數個半導體開關元 件之中’以持有其餘一相電力變換機能的複數個半導體開 關元件來加以構成,於供給來自外部之第2閘控制訊號之 範圍下’進行開關動作之再生電流消耗裝置;和 接續於構成此再生電流消耗裝置的複數個半導體開關 元件的接續點與前述N側母線之間,於前述直流電動機 的再生模式時,藉由前述再生電流消耗裝置的開關動作, 減低產生於前述PN母線間的電壓,用以消耗再生電流之 再生電流消耗電阻。 4 ·如申請專利範圍第丨項至第3項中任一項所記載之 -29 - 200531427 (3) 電力轉換裝置’其中:將代換做爲負載之直流電動機、適 用於交流電動機之場合,以持有前述三相的電力變換機能 之複數個半導體開關元件,做爲三相換流裝置的同時,由 構成該換流裝置各個相的複數個半導體開關兀件的接續 點,接續於上述直流電動機電樞及勵磁線圈或再生電流消 耗電阻之輸出線,直接接續於前述交流電動機。200531427 (1) 10. Scope of patent application 1. A power conversion device is connected between a PN bus bar to which a necessary DC voltage is applied, and a plurality of semiconductor switching elements that have a three-phase power conversion function, and is restricted to these plurality The surge voltage generated by the semiconductor switching element comes from a plurality of smoothing capacitors, which are connected in series to drive a DC motor with an exciting coil. It is characterized by: The three-phase power conversion function described above. Among the plurality of semiconductor switching elements, the armature of the DC motor is connected to the output side of the plurality of semiconductor switching elements holding the two-phase power conversion function, and the first brake control signal is supplied from the outside. Within the range, the armature cut-off device that performs the cut-off operation; and among the plurality of semiconductor switching elements having the three-phase power conversion function described above, to hold the remaining plurality of semiconductor switching elements of the one-phase power conversion function It is configured to perform the excitation of the cut-off operation within the range of the second gate control signal supplied from the outside. Using a wave-cutting device; and ^ between the connection portion of the plurality of semiconductor switching elements constituting the field-closing wave-cutting device and the midpoint of the plurality of smoothing capacitors, connecting the field coil and the feedback circuit element, The midpoint voltage of the smoothing capacitor is energized to the exciting coil by the wave-cutting operation of the exciting intercepting device, and the electric energy energy stored in the exciting coil is returned to the midpoint excitation of the smoothing capacitor. Voltage step-down circuit. 2. The power conversion device described in item 1 of the scope of the patent application, wherein: when three or more of the aforementioned plurality of smoothing capacitors are connected in series, the aforementioned excitation voltage step-down circuit constitutes the aforementioned excitation interception wave -28- 200531427 (2) The connection between the connection part of the plurality of semiconductor switching elements and the connection point of the smoothing capacitor closest to the N-side busbar among the three or more smoothing capacitors is used for the aforementioned excitation coil and feedback. Circuit components to connect. 3. A power conversion device, which is generated between a plurality of semiconductor switching elements that will hold a three-phase power conversion function between PN bus bars to which a necessary DC voltage is applied, and which can be generated when these plurality of semiconductor switching elements are operated. A plurality of smoothing capacitors for suppressing the surge voltage are connected in series to drive a DC motor having an exciting coil that controls the inflow of the exciting current from the exciting control unit; it is characterized by: Among the plurality of semiconductor switching elements having three-phase power conversion functions, the armature of the aforementioned DC motor is connected to the output side of the plurality of semiconductor switching elements having two-phase power conversion functions, and the power is supplied from the outside. Within the scope of the first gate control signal, the armature interception device that performs the interception operation; and among the plurality of semiconductor switching elements having the three-phase power conversion function described above to hold the remaining one-phase power conversion function A plurality of semiconductor switching elements are configured, and are inputted within a range where a second gate control signal is supplied from the outside. A regenerative current consuming device for switching operation; and a connection point between a plurality of semiconductor switching elements constituting the regenerative current consuming device and the N-side busbar; and in the regeneration mode of the DC motor, the regenerative current consuming device is used. The switching operation reduces the voltage generated between the aforementioned PN buses, and the regenerative current consumption resistor used to consume the regenerative current. 4 · -29-200531427 as described in any one of the scope of application patents 丨 to 3 (3) Power conversion device 'where: DC motor with substitution as load, suitable for AC motor, A plurality of semiconductor switching elements having the aforementioned three-phase power conversion function are used as three-phase converters, and the connection points of the plurality of semiconductor switching elements constituting each phase of the converter are connected to the DC The output line of the motor armature and excitation coil or regenerative current consumption resistor is directly connected to the AC motor. -30--30-
TW094101006A 2004-01-16 2005-01-13 Power conversion device TWI274467B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008890A JP4519471B2 (en) 2004-01-16 2004-01-16 Power converter

Publications (2)

Publication Number Publication Date
TW200531427A true TW200531427A (en) 2005-09-16
TWI274467B TWI274467B (en) 2007-02-21

Family

ID=34792251

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094101006A TWI274467B (en) 2004-01-16 2005-01-13 Power conversion device

Country Status (5)

Country Link
JP (1) JP4519471B2 (en)
CN (1) CN1910812A (en)
MY (1) MY148186A (en)
TW (1) TWI274467B (en)
WO (1) WO2005069476A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953907A (en) * 2014-03-24 2015-09-30 翌能科技股份有限公司 Method and device for switching number of turns of direct-current motor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100468947C (en) * 2007-03-16 2009-03-11 南京航空航天大学 AC motor matrix type controller with DC excitation function
JP5471152B2 (en) * 2009-08-18 2014-04-16 富士電機株式会社 Electric motor drive method
WO2012095946A1 (en) * 2011-01-11 2012-07-19 トヨタ自動車株式会社 Control device for motor-drive system
DE102011003759A1 (en) * 2011-02-08 2012-08-09 Robert Bosch Gmbh Energy storage device for a separately excited electrical machine
CN102394561B (en) * 2011-10-14 2014-07-30 杭州拜特电驱动技术有限公司 Control method and control system of separately excited motor
ITTO20130305A1 (en) * 2013-04-16 2014-10-17 Ansaldobreda Spa ELECTRIC TRACTION SYSTEM
CN105197756A (en) * 2015-09-11 2015-12-30 苏州市新瑞奇节电科技有限公司 Power-saving escalator
CN111204631B (en) * 2020-01-21 2021-06-08 日立楼宇技术(广州)有限公司 Elevator brake follow current control method, device, equipment and medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231390A (en) * 1985-07-31 1987-02-10 Mitsubishi Electric Corp Controller of motor
JPH08256497A (en) * 1995-03-16 1996-10-01 Fuji Electric Co Ltd Motor drive method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953907A (en) * 2014-03-24 2015-09-30 翌能科技股份有限公司 Method and device for switching number of turns of direct-current motor
CN104953907B (en) * 2014-03-24 2018-07-13 晶豪科技股份有限公司 D.c. motor the number of turns switching method and its device

Also Published As

Publication number Publication date
MY148186A (en) 2013-03-15
CN1910812A (en) 2007-02-07
JP4519471B2 (en) 2010-08-04
TWI274467B (en) 2007-02-21
WO2005069476A1 (en) 2005-07-28
JP2005204430A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
TW200531427A (en) Power conversion device
JP6256597B2 (en) Inverter control device
US9716455B2 (en) Power conversion device and method of controlling the same
US20120105072A1 (en) Methods And Apparatus For Motor Emulation
EP1626494A3 (en) Method of converting a DC voltage of a DC source, in particular of a photovoltaic DC source, in an AC voltage
Bist et al. A PFC-based BLDC motor drive using a canonical switching cell converter
CN101454966B (en) Permanent magnet generator control
US20050046398A1 (en) Control apparatus for a starter/generator system
JP2007037275A (en) Motor driving device also serving as charge control device
Singh et al. A PFC based BLDC motor drive using a Bridgeless Zeta converter
KR101012781B1 (en) A circuit for use with switched reluctance machines
JP2015198461A (en) Inverter controller
JP2003174790A (en) Synchronous motor device for vehicle
US20050127860A1 (en) Bridge for driving a direct-current or alternating current load
JP2010207010A (en) Coil switching device of three-phase ac motor drive system
KR101654755B1 (en) Elective control of an alternating current motor or direct current motor
JP5571987B2 (en) Braking method for brushless DC motor
US6906490B2 (en) Starting of switched reluctance generators
US6697273B1 (en) Control unit for controlling a direct-current load
Nayak et al. Performance Analysis of Grid Powered Asymmetrical Bridge Converter Driven SRM
JP3412387B2 (en) Elevator blackout operation device
Singh et al. Evaluation of sparse PWM converter for switched reluctance generator
JP4146716B2 (en) Lifting magnet device power supply mechanism
Hu et al. Comparative evaluation of a six-phase switched reluctance motor with double phase excitation based on two power converters
JP7471527B2 (en) Train drive unit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees