JP4514400B2 - Member joining method and joining member obtained by the method - Google Patents

Member joining method and joining member obtained by the method Download PDF

Info

Publication number
JP4514400B2
JP4514400B2 JP2002275923A JP2002275923A JP4514400B2 JP 4514400 B2 JP4514400 B2 JP 4514400B2 JP 2002275923 A JP2002275923 A JP 2002275923A JP 2002275923 A JP2002275923 A JP 2002275923A JP 4514400 B2 JP4514400 B2 JP 4514400B2
Authority
JP
Japan
Prior art keywords
alloy
joining
members
layer
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002275923A
Other languages
Japanese (ja)
Other versions
JP2003200289A (en
Inventor
正人 坂田
雅之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2002275923A priority Critical patent/JP4514400B2/en
Publication of JP2003200289A publication Critical patent/JP2003200289A/en
Application granted granted Critical
Publication of JP4514400B2 publication Critical patent/JP4514400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Die Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は複数の部材をAu−Sn合金で接合する接合方法とその方法で得られた接合部材に関し、更に詳しくは、接合時に部材相互間で起こる遊動現象を防止するように管理されていて、とくに、半導体レーザモジュールの組み立て時に適用して有効な接合方法に関する。
【0002】
【従来の技術】
例えば、半導体レーザモジュールの場合、LDチップ、LDチップのヒートシンク、サーミスタ、ホトダイオード、レンズなどの各部材が所定の位置関係で配列されている1枚のベース(LDベース)を、金属製のパッケージの中に接合配置されたペルチェモジュールの上に接合して組み立てられている(例えば、特許文献1参照。)。
【0003】
そして、上記したLDベースにおいて、LDチップとそのヒートシンクとの間、更にはLDチップとヒートシンクを接合一体化して成る部材とLDベースとの間は、従来からAu−Sn合金を用いて接合されている。
一方、パッケージとペルチェモジュールの間、またペルチェモジュールとLDベースの間は通常、はんだを用いて接合されている。
【0004】
したがって、例えば、パッケージとペルチェモジュールとLDベースを相互に接合する場合には、融点が異なる2種類のはんだを用いて接合することが必要である。仮に接合すべき部材が4種類であれば、用いるはんだは3種類になる。
上記した3部材を相互に接合する場合、まず、パッケージとペルチェモジュールを例えばPb−40%Sn(融点183℃)を用いて接合し、ついで得られた接合部材におけるペルチェモジュールの上に、より融点が低い例えばIn−Pb−Ag(融点144℃)を用いてLDベースが接合されている。
【0005】
【特許文献1】
特開平8−122585号公報(第1図)
【0006】
【発明が解決しようとする課題】
ところで、LDチップとヒートシンクの間の接合、更には得られた部材とLDベースの間の接合に際しては、通常、ある組成のAu−Sn合金から成り、ある面積と厚みを有する箔をLDチップとヒートシンクの間に介装し、または、被接合部材のどちらか一方に、ある組織のAu−Sn合金層をスパッタ法や蒸着法などで形成した部材を用いて被接合部材を重ね合わせ、当該Au−Sn合金の共晶点以上の温度に加熱したのち冷却し、更に、得られた部材とLDベースの間に別のAu−Sn合金箔を介装し、または、被接合部材のどちらか一方に、ある組織のAu−Sn合金層をスパッタ法や蒸着法などで形成した部材を用いて被接合部材を重ね合わせ、同様の熱処理と冷却が実施される。
【0007】
しかしながら、後段の接合過程で、前段の接合によって形成されている接合部(冷却・固化したAu−Sn合金層)が再溶融して、LDチップがヒートシンクから遊動し、両者の位置関係がずれるという問題が発生する。
このような問題の発生は、LDチップの駆動時に発生する熱量をヒートシンクで吸収することによりLDチップの駆動安定性を確保するという問題にとって不都合である。
【0008】
一方、パッケージとペルチェモジュールとLDベースとのはんだ接合で組み立てられた部材の場合、その高温下での信頼性、例えば強度が確保されているか否かという問題は、組み立て時の最後に用いたはんだの融点で律せられることになる。前記した例でいえば、In−Pb−Ag(融点144℃)の高温強度で大きく影響を受けることになる。
【0009】
したがって、モジュールにおける高温信頼性を高めようとする場合には、上記したパッケージとペルチェモジュールとLDベースとの接合に際しては、Pbはんだに代えてより融点の高い接合材を用いることが好適である。
このような接合材の1つとして、前記したAu−Sn合金がある。この合金は、組成によっても異なるが、実使用されているものの融点は概ね、270〜380℃程度であり、高温強度も優れている。
【0010】
しかしながら、3種類の部材をAu−Sn合金で順次接合する場合には、LDチップとヒートシンク、これら両者の接合部材とLDベースの接合に関して説明したような問題が発生することが考えられるので、現在までのところ、パッケージとペルチェモジュールとLDベースとの接合にAu−Sn合金を用いる事例は知られていない。
【0011】
本発明は、複数の部材を全てAu−Sn合金で接合する際に危惧される上記した問題を解決した新規な接合方法とその方法で得られた接合部材の提供を目的とする。
【0012】
【課題を解決するための手段】
上記した目的を達成するために、本発明においては、複数の部材をAu−Sn合金で次々と接合する際に、前記Au−Sn合金と前記2個の部材のうち少なくとも一方の部材の表面に形成されたAu層とで前記2個の部材を接合することにより、接合後の接合部におけるAu−Sn合金の組成を、Snの質量分率が13質量%以下である組成にする部材の接合方法であって、前記Au層の前記Au−Sn合金への熱拡散により、前記接合後の接合部におけるAu−Sn合金の融点が、接合前の前記Au−Sn合金の融点よりも高くなる工程を順次反復することを特徴とする部材の接合方法が提供される。
【0013】
具体的には、表面にAu層が形成されている部材を、このAu層側にてAu−Sn合金を用いて他の部材と接合する。そして、その際に、前記Au層および前記Au−Sn合金に関しては、次式:
【0014】
【数2】
【0015】
(ただし、s1,t1,ρ1,fは、それぞれ、用いるAu−Sn合金の面積、厚み、比重、Snの質量分率(%)を表し、s2,t2,ρ2は、それぞれ、Au層の面積、厚み、比重を表す)
を選択し、かつ接合温度を前記Au−Sn合金の共晶温度以上380℃以下に設定する部材の接合方法が提供される。
【0016】
更に、本発明においては、少なくとも2個の部材が、Snの質量分率が13%以下である組成のAu−Sn合金で接合されていることを特徴とする接合部材が提供される。
【0017】
【発明の実施の形態】
本発明の接合方法は、以下に説明する技術思想を基礎とする。
(1)一般に部材間をAu−Sn合金で接合する場合、部材間の接合強度を適正化するために、少なくとも一方の部材の接合される側の表面にはAu層が形成されている。
【0018】
(2)加熱によるAu−Sn合金の溶融時には、上記したAu層のAu成分はAu−Sn合金に熱拡散するので、当該Au−Sn合金はAuリッチな組成に変化した状態で固化し、接合部を形成する。
(3)一方、接合に用いられる通常のAu−Sn合金は、Snの質量分率(f)が20〜30%の範囲内にある。そして、Au−Sn状態図によれば、Au−20%Sn合金の融点は約278℃、Au−30%Sn合金の融点は約380℃である。
【0019】
また、Au−Sn状態図によれば、Snの質量分率(f)が13%以下になると、そのAu−Sn合金は、融点が480℃と高温であるζ相が過半を占めた状態になる。
(4)したがって、例えばSnの質量分率(f)が20〜30%のAu−Snを用いて部材間を接合した場合、少なくとも一方の部材の表面Au層の熱拡散により、使用したAu−Sn合金におけるAu成分がリッチになる。逆にいえばSn成分がプアーになる。そして固化後のAu−Sn合金におけるSnの質量分率(f)が13%以下になれば、形成された接合部の過半はζ相で占められることになる。すなわち、形成された接合部の融点は、使用当初のAu−Sn合金の融点(高くても約380℃)よりも高くなっている。
【0020】
(5)したがって、得られた接合部材に、更に上記と同じAu−Sn合金を用いて他の部材の接合を行っても、そのときの接合温度は高くても約380℃であるため、既に形成されている接合部の再溶融は起こらない。
(6)この操作を順次反復することにより、接合に用いるAu−Sn合金は同じであっても、後述する点を管理すれば、前段の接合時に形成された接合部の再溶融を招くことなく、複数の部材を次々と接合することが可能になる。
【0021】
そこで、具体的な管理事項を以下に説明する。
まず、図1で示したように、部材1Aと部材1Bの間にAu−Sn合金箔を介装して接合する場合を考える。ここで、部材1Bの表面には、Au層3が形成されているものとする。
Au−Sn合金箔2におけるSnの質量分率をf(%)、合金箔の面積をs1,厚みをt1,比重をρ1とする。また、Au層3の面積をs2,厚みをt2,比重をρ2とする。このとき、Au−Sn合金箔2におけるSn量は、s1・t1・ρ1・fとなる。
【0022】
接合後にあっては、合金箔2とAu層は一体化して1個のAu−Sn合金に転化して接合部になるが、そのときの接合部全体の質量は、
1・t1・ρ1+s2・t2・ρ2となる。
この接合部におけるSn量は接合の前後では変わらず、その値はs1・t1・ρ1・fのままである。
【0023】
したがって、(1)式が成立していれば、接合部を形成するAu−Sn合金は、そのSnの質量分率(f)が13%以下となっていて、そこではζ相が過半を占めた状態になっている。
実際の接合に際しては、部材1Bに形成されているAu層3の厚みと面積、また使用するAu−Sn合金箔2の種類、厚み、面積のそれぞれを、(1)式を満足するような値に選定する。
【0024】
そして、Au−Sn合金箔2を介装した状態で両部材を重ね合わせ、加熱してAu−Sn合金箔を溶融する。
そのときの温度は、用いたAu−Sn合金箔におけるAu−Sn合金の組成に対応した共晶温度以上に設定される。そして、一般に、接合に用いるAu−Sn合金におけるSnの質量分率(f)の最大値は30%であり、そのときの共晶温度は約380℃であるため、結局、接合時の温度は共晶温度以上380℃以下に設定される。
【0025】
Au−Sn合金箔を溶融したのち冷却して接合部が形成される。このときの接合部は、(1)式の条件選定がなされているので、Snの質量分率(f)が13%以下で、融点480℃のζ相が過半を占めた組成のAu−Sn合金になっている。
このようにして得られた接合部材に、更にAu−Sn合金で他の部材を接合する場合、そのときの接合温度は用いるAu−Sn合金の共晶温度以上380℃以下であるため、ζ相が過半を占め、既に形成されている接合部の再溶融が起こることはない。
【0026】
【実施例】
実施例1
Ti,Pt,Au,Pt,Au−Sn合金の薄層が順次積層されている表面1aを有するAlNから成るキャリア部材1Aの最上層Au−Sn合金層は、面積(s1)9×104μm2、厚み(t1)2.5〜4.0μm、比重(ρ1)1.2、Snの質量分率(f)30%のAu−Sn合金組成とした(図2)。
【0027】
一方、LDチップ部材1Bの表面1bにTi,Ptの薄層を順次積層したのち、そこに、面積(s2)7.5×104μm2、厚み(t2)5〜6μm、比重(ρ2)19.3のAu層をめっき形成した。
Au−Sn合金層とAu層を重ね合わせたのち温度360℃に加熱して接合した。形成された接合部の合金組成は、Au−(7.5〜11.7)%Snになっていた。
【0028】
ついで、得られた接合部材のキャリア部材1Aと銅タングステン合金から成るLDベースとの間に、組成がAu−20%Snである合金箔を介装し、温度360℃まで加熱して両者を接合した。
この加熱過程で、LDチップ部材1Bとキャリア部材1Aの接合部が再溶融することなく、したがって、LDチップ部材1Bが遊動するという事態も起こらなかった。
【0029】
実施例2
図3で示した半導体レーザモジュールを組み立てるに当たり、パッケージとペルチェモジュールの接合、ペルチェモジュールとLDベースの接合をいずれもAu−Sn接合を用いて行った。
なお、ペルチェモジュールは、図4に例示したように、2枚の絶縁板と、これら絶縁板の間に介装された複数のペルチェ素子とからなる。
【0030】
ここで、パッケージの表面はNiめっき層と厚み4μmのAu層が順次形成されており、ペルチェモジュールの表面は縦10mm、幅80mmの大きさで、上面と下面には、いずれも2μmのAu層が形成されている。また、LDベースの表面は縦9mm、幅8mmの大きさで、上面と下面には、いずれも厚み2μmのAu層が形成されている。
【0031】
パッケージとペルチェモジュールの間に、縦8mm、幅4.5mm、厚み0.01mmのAu−20%Sn合金箔2Aを介装し、温度340℃で接合処理を行った。接合部の組成は、Au−11%Sn合金になった。
ついで、ペルチェモジュールとLDベースの間に、縦5mm、幅5mm、厚み0.01mmのAu−20%Sn合金箔を介装し、再び温度340℃で接合処理を行った。接合部の組成は、Au−12%Sn合金になった。
【0032】
LDベースの接合の過程で、既に接合されているペルチェモジュールとパッケージが互いに遊動するという現象は全く起こらなかった。
【0033】
【発明の効果】
以上の説明で明らかなように、Au−Sn合金を用いる本発明の部材間の接合方法は、用いるAu−Sn合金の組成と形状、接合対象の部材の表面におけるAu層の形状に関する各要素を(1)式が成立するように選定することにより、接合後の接合部におけるAu−Sn合金の組成を、そのSnの質量分率(f)が13%以下となるようにして高温のζ相を過半とする状態に管理する接合方法である。
【0034】
そのため、得られた接合部材に更に他の部材をAu−Sn合金で接合した場合であっても、既に形成されている接合部の再溶融は起こらず、部材間における遊動は起こらなくなる。
また、この接合方法で例えば半導体レーザモジュールを組み立てれば、Au−Sn合金の融点は最低でも約280℃程度であるため、組み立てられた半導体レーザモジュールはその高温信頼性が高いものになる。
【図面の簡単な説明】
【図1】本発明の接合方法の条件式(1)を説明するための模式図である。
【図2】実施例1の接合方法を説明するための模式図である。
【図3】実施例2の接合方法を説明するための模式図である。
【図4】ペルチェモジュールの模式図である。
【符号の説明】
1A,1B 接合対象の部材
1a 部材1Aの表面層
1b 部材1Bの表面層
2,2A,2B Au−Sn合金(箔)
3 Au層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joining method for joining a plurality of members with an Au-Sn alloy and a joining member obtained by the method. More specifically, the present invention is managed so as to prevent the floating phenomenon that occurs between members during joining. In particular, the present invention relates to a bonding method effective when applied in assembling a semiconductor laser module.
[0002]
[Prior art]
For example, in the case of a semiconductor laser module, an LD chip, a heat sink of the LD chip, a thermistor, a photodiode, a lens, and the like are arranged in a predetermined positional relationship with a single base (LD base) of a metal package. It is assembled by being joined onto a Peltier module joined inside (see, for example, Patent Document 1).
[0003]
In the above-described LD base, the LD base and the heat sink, and further, the member formed by joining and integrating the LD chip and the heat sink and the LD base are conventionally joined using an Au-Sn alloy. Yes.
On the other hand, between the package and the Peltier module, and between the Peltier module and the LD base are usually joined using solder.
[0004]
Therefore, for example, when a package, a Peltier module, and an LD base are bonded to each other, it is necessary to bond them using two types of solder having different melting points. If there are four types of members to be joined, three types of solder are used.
When bonding the above three members to each other, first, the package and the Peltier module are bonded using, for example, Pb-40% Sn (melting point 183 ° C.), and then the melting point is further increased on the Peltier module in the obtained bonding member. The LD base is bonded using, for example, In—Pb—Ag (melting point: 144 ° C.) having a low value.
[0005]
[Patent Document 1]
JP-A-8-122585 (FIG. 1)
[0006]
[Problems to be solved by the invention]
By the way, in joining between the LD chip and the heat sink, and further joining between the obtained member and the LD base, a foil made of an Au—Sn alloy having a certain composition and having a certain area and thickness is usually used as the LD chip. The member to be bonded is overlapped with a member formed by interposing between the heat sinks or a member in which an Au—Sn alloy layer of a certain structure is formed by sputtering or vapor deposition on one of the members to be bonded. -Heated to a temperature equal to or higher than the eutectic point of the Sn alloy and then cooled. Further, another Au-Sn alloy foil is interposed between the obtained member and the LD base, or either the member to be joined In addition, the members to be joined are overlapped using a member in which an Au—Sn alloy layer having a certain structure is formed by sputtering or vapor deposition, and the same heat treatment and cooling are performed.
[0007]
However, in the subsequent bonding process, the bonding portion (cooled and solidified Au—Sn alloy layer) formed by the previous bonding is remelted, and the LD chip is loosened from the heat sink, and the positional relationship between the two is shifted. A problem occurs.
The occurrence of such a problem is inconvenient for the problem of ensuring the driving stability of the LD chip by absorbing the amount of heat generated when the LD chip is driven by the heat sink.
[0008]
On the other hand, in the case of a member assembled by solder bonding of a package, a Peltier module, and an LD base, the problem of whether reliability at high temperatures, for example, strength is ensured, is the solder used at the end of assembly. It will be governed by the melting point. In the above example, it is greatly affected by the high temperature strength of In—Pb—Ag (melting point: 144 ° C.).
[0009]
Therefore, in order to increase the high temperature reliability of the module, it is preferable to use a bonding material having a higher melting point instead of Pb solder when bonding the package, the Peltier module, and the LD base.
One of such bonding materials is the Au—Sn alloy described above. Although this alloy differs depending on the composition, although it is actually used, the melting point is about 270 to 380 ° C., and the high temperature strength is also excellent.
[0010]
However, when three types of members are sequentially joined with an Au—Sn alloy, the problems described with respect to the joining of the LD chip and the heat sink, and the joining member of these both and the LD base may occur. Up to now, there is no known case where an Au—Sn alloy is used for joining the package, the Peltier module, and the LD base.
[0011]
An object of the present invention is to provide a novel joining method that solves the above-mentioned problems that are feared when joining a plurality of members with an Au-Sn alloy, and a joining member obtained by the method.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, when joining a plurality of members one after another with an Au—Sn alloy, the surface of at least one member of the two members is the Au—Sn alloy. By joining the two members with the formed Au layer, joining the members so that the composition of the Au—Sn alloy in the joined part after joining is a composition in which the mass fraction of Sn is 13% by mass or less. A method in which the melting point of the Au—Sn alloy in the joined portion after joining is higher than the melting point of the Au—Sn alloy before joining due to thermal diffusion of the Au layer to the Au—Sn alloy. Are sequentially repeated. A method for joining members is provided.
[0013]
Specifically, a member having an Au layer formed on the surface is joined to another member using an Au—Sn alloy on the Au layer side. At that time, with respect to the Au layer and the Au-Sn alloy, the following formula:
[0014]
[Expression 2]
[0015]
(Where, s 1 , t 1 , ρ 1 , f represent the area, thickness, specific gravity, and Sn mass fraction (%) of the Au—Sn alloy used, respectively, s 2 , t 2 , ρ 2 are (Represents the area, thickness, and specific gravity of the Au layer)
And a joining method for members in which the joining temperature is set to be not less than the eutectic temperature of the Au—Sn alloy and not more than 380 ° C. is provided.
[0016]
Furthermore, in the present invention, there is provided a joining member characterized in that at least two members are joined with an Au—Sn alloy having a composition having a Sn mass fraction of 13% or less.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The joining method of the present invention is based on the technical idea described below.
(1) Generally, when members are joined with an Au—Sn alloy, an Au layer is formed on the surface of at least one member to be joined in order to optimize the joining strength between the members.
[0018]
(2) When the Au—Sn alloy is melted by heating, the Au component of the Au layer is thermally diffused into the Au—Sn alloy, so that the Au—Sn alloy is solidified in a state of changing to an Au-rich composition and bonded. Forming part.
(3) On the other hand, the normal Au—Sn alloy used for bonding has a Sn mass fraction (f) in the range of 20 to 30%. According to the Au—Sn phase diagram, the melting point of the Au-20% Sn alloy is about 278 ° C., and the melting point of the Au-30% Sn alloy is about 380 ° C.
[0019]
Further, according to the Au-Sn phase diagram, when the mass fraction (f) of Sn is 13% or less, the Au-Sn alloy is in a state where the ζ phase having a melting point of 480 ° C. is the majority. Become.
(4) Therefore, for example, when the members are joined using Au—Sn having a mass fraction (f) of Sn of 20 to 30%, the Au— used is obtained by thermal diffusion of the surface Au layer of at least one member. The Au component in the Sn alloy becomes rich. Conversely, the Sn component becomes poor. And if the mass fraction (f) of Sn in the Au-Sn alloy after solidification becomes 13% or less, the majority of the formed joint will be occupied by the ζ phase. In other words, the melting point of the formed joint is higher than the melting point of the Au—Sn alloy at the beginning of use (about 380 ° C. at the highest).
[0020]
(5) Therefore, even when another member is bonded to the obtained bonding member using the same Au—Sn alloy as described above, the bonding temperature at that time is at most about 380 ° C. Remelting of the formed joint does not occur.
(6) By repeating this operation in sequence, even if the Au—Sn alloy used for the bonding is the same, if the points described later are managed, it does not cause remelting of the bonded portion formed during the previous bonding. It becomes possible to join a plurality of members one after another.
[0021]
Therefore, specific management items will be described below.
First, as shown in FIG. 1, consider a case in which an Au—Sn alloy foil is interposed between the member 1 </ b> A and the member 1 </ b> B. Here, it is assumed that the Au layer 3 is formed on the surface of the member 1B.
The mass fraction of Sn in the Au—Sn alloy foil 2 is f (%), the area of the alloy foil is s 1 , the thickness is t 1 , and the specific gravity is ρ 1 . The area of the Au layer 3 is s 2 , the thickness is t 2 , and the specific gravity is ρ 2 . At this time, the Sn amount in the Au—Sn alloy foil 2 is s 1 · t 1 · ρ 1 · f.
[0022]
After the bonding, the alloy foil 2 and the Au layer are integrated into one Au—Sn alloy to form a bonded portion. The mass of the entire bonded portion at that time is
s 1 · t 1 · ρ 1 + s 2 · t 2 · ρ 2
The amount of Sn in this junction does not change before and after the junction, and the value remains s 1 · t 1 · ρ 1 · f.
[0023]
Therefore, if the formula (1) is satisfied, the Au-Sn alloy forming the joint has a Sn mass fraction (f) of 13% or less, in which the ζ phase accounts for the majority. It is in the state.
In actual joining, the thickness and area of the Au layer 3 formed on the member 1B, and the type, thickness and area of the Au—Sn alloy foil 2 to be used are values that satisfy the expression (1). Select
[0024]
Then, both members are superposed with the Au—Sn alloy foil 2 interposed, and heated to melt the Au—Sn alloy foil.
The temperature at that time is set to be equal to or higher than the eutectic temperature corresponding to the composition of the Au—Sn alloy in the used Au—Sn alloy foil. In general, the maximum value of the Sn mass fraction (f) in the Au—Sn alloy used for bonding is 30%, and the eutectic temperature at that time is about 380 ° C. Therefore, the temperature at the time of bonding is as follows. The eutectic temperature is set to 380 ° C. or lower.
[0025]
The Au—Sn alloy foil is melted and then cooled to form a joint. At this time, the condition of the formula (1) is selected for the joint, so that the mass fraction (f) of Sn is 13% or less, and the Au—Sn composition has a composition in which the ζ phase having a melting point of 480 ° C. accounts for the majority. It is an alloy.
When another member is further bonded to the bonding member thus obtained with an Au—Sn alloy, the bonding temperature at that time is not less than the eutectic temperature of the Au—Sn alloy used and not more than 380 ° C. Occupies the majority, and remelting of the joints already formed does not occur.
[0026]
【Example】
Example 1
The uppermost Au—Sn alloy layer of the carrier member 1A made of AlN having the surface 1a on which the thin layers of Ti, Pt, Au, Pt, and Au—Sn alloy are sequentially laminated has an area (s 1 ) of 9 × 10 4. An Au—Sn alloy composition having a thickness of μm 2 , a thickness (t 1 ) of 2.5 to 4.0 μm, a specific gravity (ρ 1 ) of 1.2, and a mass fraction of Sn (f) of 30% was obtained (FIG. 2).
[0027]
On the other hand, after sequentially laminating a thin layer of Ti and Pt on the surface 1b of the LD chip member 1B, an area (s 2 ) of 7.5 × 10 4 μm 2 , a thickness (t 2 ) of 5 to 6 μm, and a specific gravity ( ρ 2 ) A 19.3 Au layer was formed by plating.
After superposing the Au—Sn alloy layer and the Au layer, they were joined by heating to a temperature of 360 ° C. The alloy composition of the formed joint was Au- (7.5-11.7)% Sn.
[0028]
Next, an alloy foil having a composition of Au-20% Sn is interposed between the carrier member 1A of the obtained joining member and the LD base made of a copper tungsten alloy, and the two are joined by heating to a temperature of 360 ° C. did.
During this heating process, the joining portion of the LD chip member 1B and the carrier member 1A did not melt again, and therefore the LD chip member 1B did not float.
[0029]
Example 2
In assembling the semiconductor laser module shown in FIG. 3, the bonding between the package and the Peltier module and the bonding between the Peltier module and the LD base were both performed using Au—Sn bonding.
As illustrated in FIG. 4, the Peltier module includes two insulating plates and a plurality of Peltier elements interposed between these insulating plates.
[0030]
Here, a Ni plating layer and a 4 μm thick Au layer are sequentially formed on the surface of the package, the surface of the Peltier module is 10 mm long and 80 mm wide, and both the upper and lower surfaces are 2 μm Au layers. Is formed. The surface of the LD base is 9 mm long and 8 mm wide, and an Au layer having a thickness of 2 μm is formed on the upper and lower surfaces.
[0031]
An Au-20% Sn alloy foil 2A having a length of 8 mm, a width of 4.5 mm, and a thickness of 0.01 mm was interposed between the package and the Peltier module, and a bonding process was performed at a temperature of 340 ° C. The composition of the joint was Au-11% Sn alloy.
Next, an Au-20% Sn alloy foil having a length of 5 mm, a width of 5 mm, and a thickness of 0.01 mm was interposed between the Peltier module and the LD base, and the joining process was again performed at a temperature of 340 ° C. The composition of the joint was Au-12% Sn alloy.
[0032]
In the process of LD-based bonding, the phenomenon that the already bonded Peltier module and the package move with each other did not occur at all.
[0033]
【The invention's effect】
As apparent from the above description, the joining method between the members of the present invention using the Au—Sn alloy includes the elements relating to the composition and shape of the Au—Sn alloy to be used and the shape of the Au layer on the surface of the member to be joined. By selecting so that the formula (1) is satisfied, the composition of the Au—Sn alloy in the bonded portion after bonding is set so that the mass fraction (f) of Sn becomes 13% or less and the high-temperature ζ phase This is a joining method that manages to a state where the majority is in the range.
[0034]
Therefore, even when another member is bonded to the obtained bonding member with an Au—Sn alloy, remelting of the already formed bonding portion does not occur, and no loose movement between the members occurs.
Further, for example, when a semiconductor laser module is assembled by this joining method, the melting point of the Au—Sn alloy is at least about 280 ° C., so that the assembled semiconductor laser module has high reliability at high temperatures.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining conditional expression (1) of a bonding method of the present invention.
2 is a schematic view for explaining a joining method of Example 1. FIG.
3 is a schematic diagram for explaining a joining method of Example 2. FIG.
FIG. 4 is a schematic diagram of a Peltier module.
[Explanation of symbols]
1A, 1B Joined member 1a Surface layer 1b of member 1A Surface layer 2, 2A, 2B of member 1B Au—Sn alloy (foil)
3 Au layer

Claims (3)

複数の部材をAu−Sn合金で次々と接合する際に、前記Au−Sn合金と2個の部材のうち少なくとも一方の部材の表面に形成されたAu層とで前記2個の部材を接合することにより、接合後の接合部におけるAu−Sn合金の組成を、Snの質量分率が13質量%以下である組成にする部材の接合方法であって、
前記Au層の前記Au−Sn合金への熱拡散により、前記接合後の接合部におけるAu−Sn合金の融点が、接合前の前記Au−Sn合金の融点よりも高くなる工程を順次反復することを特徴とする部材の接合方法。
When joining a plurality of members one after another with an Au—Sn alloy , the two members are joined with the Au—Sn alloy and an Au layer formed on the surface of at least one of the two members. By this, it is the joining method of the member which makes the composition of the Au-Sn alloy in the joined part after joining the composition whose mass fraction of Sn is 13 mass% or less,
Steps in which the melting point of the Au-Sn alloy in the bonded portion after the bonding becomes higher than the melting point of the Au-Sn alloy before the bonding due to thermal diffusion of the Au layer to the Au-Sn alloy are sequentially repeated. The joining method of the member characterized by this.
前記Au層および前記Au−Sn合金に関しては、次式:
(ただし、s1、t1、ρ1、fは、それぞれ、用いるAu−Sn合金の面積、厚み、比重、Snの質量分率(%)を表し、s2、t2、ρ2は、それぞれ、Au層の面積、厚み、比重を表す)を満たす条件を選択し、かつ接合温度を前記Au−Sn合金の共晶温度以上380℃以下に設定することを特徴とする請求項1に記載の部材の接合方法。
For the Au layer and the Au-Sn alloy, the following formula:
(Where s 1 , t 1 , ρ 1 , and f represent the area, thickness, specific gravity, and Sn mass fraction (%) of the Au—Sn alloy used, respectively, and s 2 , t 2 , and ρ 2 are The conditions satisfying (respectively representing the area, thickness, and specific gravity of the Au layer) are selected, and the bonding temperature is set to be not less than the eutectic temperature of the Au-Sn alloy and not more than 380 ° C. Method of joining the members.
前記複数の部材が、LDチップとヒートシンク、または前記LDチップとヒートシンクの接合部材とLDベースであることを特徴とする請求項1に記載の部材の接合方法。The method of joining members according to claim 1, wherein the plurality of members are an LD chip and a heat sink, or a joining member and an LD base of the LD chip and a heat sink.
JP2002275923A 2001-09-27 2002-09-20 Member joining method and joining member obtained by the method Expired - Lifetime JP4514400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275923A JP4514400B2 (en) 2001-09-27 2002-09-20 Member joining method and joining member obtained by the method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001297115 2001-09-27
JP2001-297115 2001-09-27
JP2002275923A JP4514400B2 (en) 2001-09-27 2002-09-20 Member joining method and joining member obtained by the method

Publications (2)

Publication Number Publication Date
JP2003200289A JP2003200289A (en) 2003-07-15
JP4514400B2 true JP4514400B2 (en) 2010-07-28

Family

ID=27666273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275923A Expired - Lifetime JP4514400B2 (en) 2001-09-27 2002-09-20 Member joining method and joining member obtained by the method

Country Status (1)

Country Link
JP (1) JP4514400B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004010061T2 (en) * 2004-03-09 2008-09-11 Infineon Technologies Ag High reliability, low cost and thermally enhanced semiconductor chip mounting technology with AuSn
EP1737029A4 (en) * 2004-03-24 2011-03-30 Tokuyama Corp Substrate for device bonding and method for manufacturing same
WO2005101612A1 (en) * 2004-04-12 2005-10-27 Mitsubishi Denki Kabushiki Kaisha Stator of dynamo-electric machine
JP2007053242A (en) 2005-08-18 2007-03-01 Fuji Xerox Co Ltd Semiconductor laser device and manufacturing method thereof
JP5023633B2 (en) * 2006-09-19 2012-09-12 ヤマハ株式会社 Optical communication apparatus and manufacturing method thereof
JP5426081B2 (en) * 2007-06-20 2014-02-26 スタンレー電気株式会社 Substrate bonding method and semiconductor device
US20090020876A1 (en) * 2007-07-20 2009-01-22 Hertel Thomas A High temperature packaging for semiconductor devices
JP5131438B2 (en) * 2007-08-27 2013-01-30 セイコーエプソン株式会社 Method for manufacturing piezoelectric device
JP5554900B2 (en) * 2008-04-24 2014-07-23 パナソニック株式会社 Chip mounting method
JP2009267068A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Method for mounting chip
JP5152012B2 (en) * 2009-01-27 2013-02-27 株式会社大真空 Piezoelectric vibration device and method for manufacturing piezoelectric vibration device
JP5534155B2 (en) * 2009-11-13 2014-06-25 日本電気株式会社 Device and device manufacturing method
JP5281122B2 (en) * 2011-06-16 2013-09-04 株式会社フジクラ Joining method and manufacturing method
JP6067982B2 (en) * 2012-03-19 2017-01-25 スタンレー電気株式会社 Manufacturing method of semiconductor device
JP5589112B2 (en) * 2013-03-18 2014-09-10 株式会社フジクラ Joining method
JP7117883B2 (en) * 2018-04-05 2022-08-15 三菱電機株式会社 Semiconductor module and manufacturing method thereof
JP7174242B2 (en) * 2018-06-15 2022-11-17 日亜化学工業株式会社 Semiconductor device manufacturing method
US10811581B2 (en) 2018-06-15 2020-10-20 Nichia Corporation Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2003200289A (en) 2003-07-15

Similar Documents

Publication Publication Date Title
JP4514400B2 (en) Member joining method and joining member obtained by the method
JP2837616B2 (en) How to join semiconductor components
CA2080931C (en) Bonding method using solder composed of multiple alternating gold and tin layers
JP5672324B2 (en) Manufacturing method of joined body and manufacturing method of power module substrate
JP5487190B2 (en) Power semiconductor module manufacturing method
JP6184582B2 (en) Joining partner joining method using isothermal solidification reaction to form IN-BI-AG joining layer and corresponding arrangement of plural joining partners
JP2010179336A (en) Joint product, semiconductor module, and method for manufacturing the joint product
JP5659663B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2000210767A (en) Method for joining two parts
JP6468028B2 (en) Power module board with heat sink
JP5092168B2 (en) Peltier element thermoelectric conversion module, manufacturing method of Peltier element thermoelectric conversion module, and optical communication module
JP7324665B2 (en) submount
JP5028217B2 (en) Optical device mounting method
JP4349552B2 (en) Peltier element thermoelectric conversion module, manufacturing method of Peltier element thermoelectric conversion module, and optical communication module
JP4951932B2 (en) Power module substrate manufacturing method
JP5904257B2 (en) Power module substrate manufacturing method
JP4013807B2 (en) Thermoelectric module manufacturing method
JP2002359425A (en) Sub-mount and semiconductor device
JP3783571B2 (en) Semiconductor laser module and manufacturing method thereof
KR102652471B1 (en) The double-sided cooling power module and method thereof
JP2008021716A (en) Power module substrate and method of manufacturing the same, and power module
JP2001217498A (en) Semiconductor laser
JP2004281930A (en) Method for producing thermoelectric conversion element
JP2014017417A (en) Semiconductor device
WO2020138278A1 (en) Method for bonding electronic component, and bonded structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050927

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R151 Written notification of patent or utility model registration

Ref document number: 4514400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

EXPY Cancellation because of completion of term