JP4512944B2 - Solid oxide fuel cell separator - Google Patents

Solid oxide fuel cell separator Download PDF

Info

Publication number
JP4512944B2
JP4512944B2 JP2004142477A JP2004142477A JP4512944B2 JP 4512944 B2 JP4512944 B2 JP 4512944B2 JP 2004142477 A JP2004142477 A JP 2004142477A JP 2004142477 A JP2004142477 A JP 2004142477A JP 4512944 B2 JP4512944 B2 JP 4512944B2
Authority
JP
Japan
Prior art keywords
separator
fuel cell
resistance
stainless steel
cell separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004142477A
Other languages
Japanese (ja)
Other versions
JP2005327499A (en
Inventor
孝二 星野
順 秋草
紀一 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004142477A priority Critical patent/JP4512944B2/en
Publication of JP2005327499A publication Critical patent/JP2005327499A/en
Application granted granted Critical
Publication of JP4512944B2 publication Critical patent/JP4512944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

この発明は、電気伝導性に優れかつ使用寿命の長い固体電解質型燃料電池用セパレータに関するものである。   The present invention relates to a separator for a solid oxide fuel cell having excellent electrical conductivity and a long service life.

従来の技術Conventional technology

一般に、固体電解質型燃料電池は、固体電解質の片面に空気極を積層させ、固体電解質の他方の片面に燃料極を積層させてセルを構成し、このセルの空気極に接して空気極集電体を積層させ、このセルの燃料極に接して燃料極集電体を積層させ、さらに空気極集電体の外側に空気が通る溝を有するセパレータを積層させ、さらに燃料極集電体の外側に水素が通る溝を有するセパレータを積層させた構造を有しており、かかる構造を有する積層体をさらに複数積層させて起電力を高めることにより実用に供している。   In general, a solid oxide fuel cell has a cell formed by laminating an air electrode on one side of a solid electrolyte and laminating a fuel electrode on the other side of the solid electrolyte, and is in contact with the air electrode of this cell. And a separator having a groove through which air passes on the outside of the air electrode current collector, and further on the outside of the fuel electrode current collector. A separator having a groove through which hydrogen passes is laminated, and a plurality of laminates having such a structure are further laminated to increase the electromotive force for practical use.

前記固体電解質は一般にイットリアで安定化したジルコニア(以下、YSZという)で構成されているが、近年、Ln1-xxGa1-y-z123(但し、Ln=La、Ce、Pr、Nd、Smの1種または2種以上、A=Sr、Ca、Baの1種または2種以上、B1=Mg、Al、Inの1種または2種以上、B2=Co、Fe、Ni、Cuの1種または2種以上、x=0.05〜0.3、y=0〜0.29、z=0.01〜0.3、y+z=0.025〜0.3)で示される酸化物なども使用されている。
空気極は(Sm、Sr)CoO3、(La、Sr)MnO3などのセラミックスで構成されており、燃料極はNi/YSZサーメット、Ni/(Ce、Sm)O2サーメットなどで構成されている。そして空気極集電体は白金メッシュで構成されており、燃料極集電体はNiメッシュまたは発泡Niで構成されている。
さらにセパレータには、一般に、ステンレス鋼、Ni基耐熱合金、Co基耐熱合金が使用されるが、コスト的に見てステンレス鋼が広く使用されている。ステンレス鋼として、SUS430(成分組成:Cr:16〜18%、Mn:1%以下、残部:Feおよび不可避不純物)で代表されるフェライト系ステンレス鋼、SUS303(成分組成:Cr:17〜19%、Ni:8〜10%、Mn:2%以下、Si:1%以下、残部:Feおよび不可避不純物)で代表されるオーステナイト系ステンレス鋼、SUS403(成分組成:Cr:11.5〜13%、Mn:1%以下、残部:Feおよび不可避不純物)で代表されるマルテンサイト系ステンレス鋼があることが知られており、これらステンレス鋼の表面には極めて薄いCr系酸化物(例えば、Cr23)からなる受動態被膜が形成されており、このCr系酸化物が高温耐食性に寄与している。
The solid electrolyte is generally composed of yttria-stabilized zirconia (hereinafter referred to as YSZ). Recently, Ln 1-x A x Ga 1-yz B 1 B 2 O 3 (where Ln = La, Ce , Pr, Nd, or Sm, one or more of A = Sr, Ca, or Ba, B 1 = Mg, Al, or one or more of In, B 2 = Co, One or more of Fe, Ni and Cu, x = 0.05 to 0.3, y = 0 to 0.29, z = 0.01 to 0.3, y + z = 0.025 to 0.3 ) And the like are also used.
The air electrode is composed of ceramics such as (Sm, Sr) CoO 3 , (La, Sr) MnO 3 , and the fuel electrode is composed of Ni / YSZ cermet, Ni / (Ce, Sm) O 2 cermet, etc. Yes. The air electrode current collector is made of platinum mesh, and the fuel electrode current collector is made of Ni mesh or foamed Ni.
Further, stainless steel, Ni-base heat-resistant alloy, and Co-base heat-resistant alloy are generally used for the separator, but stainless steel is widely used in terms of cost. As stainless steel, ferritic stainless steel represented by SUS430 (component composition: Cr: 16 to 18%, Mn: 1% or less, balance: Fe and inevitable impurities), SUS303 (component composition: Cr: 17 to 19%, Austenitic stainless steel represented by Ni: 8 to 10%, Mn: 2% or less, Si: 1% or less, balance: Fe and inevitable impurities), SUS403 (component composition: Cr: 11.5 to 13%, Mn It is known that there is a martensitic stainless steel represented by 1% or less, the balance: Fe and inevitable impurities), and the surface of these stainless steels has an extremely thin Cr-based oxide (for example, Cr 2 O 3 ) Is formed, and this Cr-based oxide contributes to high-temperature corrosion resistance.

しかし、このセパレータを構成するステンレス鋼の表面に形成されているCr23膜は絶縁膜であるところから電気伝導性が極めて悪く、そのためにセパレータが相互に接触する部分における抵抗が大きくなり、セパレータ相互の接触部分における抵抗により起電力が大きく消耗し、それによって発電効率が大幅に低下する。 However, since the Cr 2 O 3 film formed on the surface of the stainless steel constituting this separator is an insulating film, the electrical conductivity is extremely poor, and therefore the resistance at the part where the separators contact each other increases. The electromotive force is greatly consumed due to the resistance at the contact portion between the separators, thereby greatly reducing the power generation efficiency.

これを改善するために、ステンレス鋼からなるセパレータの表面にCr23膜よりも酸素の少ない電気伝導性が格段に優れているCr23-x(ただし、x=0.05〜1)からなる組成のクロム酸化物層を形成し、このCr23-x(ただし、x=0.05〜1)からなる組成のクロム酸化物層の上に銀メッキ層を形成してなる電気伝導性に優れかつ使用寿命の長い固体電解質型燃料電池用セパレータが提供されている(特許文献1参照)。
特開2002−289215号公報
In order to improve this, Cr 2 O 3−x (where x = 0.05 to 1) has excellent electrical conductivity with less oxygen than the Cr 2 O 3 film on the surface of the separator made of stainless steel. And a silver plating layer is formed on the chromium oxide layer having the composition of Cr 2 O 3-x (where x = 0.05 to 1). A solid oxide fuel cell separator having excellent electrical conductivity and a long service life has been provided (see Patent Document 1).
JP 2002-289215 A

しかし、従来のステンレス鋼からなる母材の表面にCr23-x(ただし、x=0.05〜1)からなる組成のクロム酸化物層を介して銀メッキ層が形成されている固体電解質型燃料電池用セパレータは、1000時間程度使用しても電気抵抗は大幅に加熱することは無いが、さらに一層長期間使用すると、セパレータの電気抵抗が上昇し、そのために従来のセパレータが相互に接触する部分における抵抗が大きくなり、セパレータ相互の接触部分における抵抗により起電力が大きく消耗し、それによって発電効率が大幅に低下するようになって交換を余儀なくされる。したがって、一層長期間使用しても電気抵抗の上昇することが少ないセパレータが求められていた。 However, a solid is formed by forming a silver plating layer on the surface of a base material made of conventional stainless steel with a chromium oxide layer having a composition made of Cr 2 O 3-x (where x = 0.05 to 1). The separator for an electrolyte fuel cell does not heat up significantly even after being used for about 1000 hours. However, if it is used for a longer period of time, the electrical resistance of the separator increases. The resistance at the contact portion is increased, and the electromotive force is greatly consumed due to the resistance at the contact portion between the separators, so that the power generation efficiency is greatly reduced and the replacement is unavoidable. Therefore, there has been a demand for a separator that does not increase in electrical resistance even when used for a longer period of time.

そこで、本発明者等は、上述のような観点から、電気伝導性に優れかつ一層使用寿命の長い高温耐食性に優れたセパレータを得るべく研究を行った。その結果、FeおよびFe以外の金属成分(以下、この金属成分をMという。但し、Mは、CrおよびMn、あるいは、Cr、MnおよびNiである。)からなるステンレス鋼を水蒸気中、温度:450〜700℃、1〜50時間保持するとステンレス鋼母材の表面にFeOFe2およびMOFe2からなるスピネル型構造を有する酸化物層が形成され、このスピネル型構造を有する酸化物層の上に銀メッキ層が形成したのち熱処理して得られた固体電解質型燃料電池用セパレータは、(i)ステンレス鋼の表面にCr3−x(ただし、x=0.05〜1)からなる組成のクロム酸化物層を形成し、その上に銀メッキ層を形成したのち熱処理して得られた従来の固体電解質型燃料電池用セパレータに比べて電気抵抗値が低い、
(ii)前記従来の固体電解質型燃料電池用セパレータに比べて一層長期間使用しても電気抵抗の上昇が少なく、したがって、使用寿命が一層向上する、という研究結果が得られたのである。
In view of the above, the present inventors have studied to obtain a separator having excellent electrical conductivity and a long service life and excellent high-temperature corrosion resistance. As a result, stainless steel made of metal components other than Fe and Fe (hereinafter, this metal component is referred to as M, where M is Cr and Mn, or Cr, Mn and Ni ) in water vapor, temperature: When held at 450 to 700 ° C. for 1 to 50 hours, an oxide layer having a spinel structure composed of FeOFe 2 O 3 and MOFe 2 O 3 is formed on the surface of the stainless steel base material, and the oxide layer having this spinel structure The solid oxide fuel cell separator obtained by heat treatment after the silver plating layer was formed on (i) Cr 2 O 3-x (where x = 0.05 to 1) on the surface of stainless steel An electric resistance value is lower than that of a conventional solid oxide fuel cell separator obtained by forming a chromium oxide layer having a composition of ,
(ii) As a result of the research, it has been found that the electrical resistance does not increase much even when used for a longer period of time than the conventional solid oxide fuel cell separator, and therefore the service life is further improved.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)FeおよびFe以外の金属成分(以下、Mという。但し、Mは、CrおよびMn、あるいは、Cr、MnおよびNiである。)からなる鉄基耐熱合金の母材の表面に形成された酸化物層の上に銀メッキ層が形成されてなる固体電解質型燃料電池用セパレータにおいて、
前記酸化物層は、FeOFe2およびMOFe2からなるスピネル型構造を有する酸化物層である固体電解質型燃料電池用セパレータ、に特徴を有するものである。
The present invention has been made based on the results of such research,
(1) Fe and metal components other than Fe (hereinafter referred to as M, where M is Cr and Mn or Cr, Mn and Ni ) . In a solid oxide fuel cell separator in which a silver plating layer is formed on the oxide layer,
The oxide layer has a characteristic FeOFe 2 O 3 and MOFe oxide layer der Ru solid body electrolyte fuel cell separator having a spinel structure consisting of 2 O 3, the.

この発明は、安価なステンレス鋼などの鉄基耐熱合金をセパレータの母材とする電気伝導性に優れかつ使用寿命の一層長いセパレータを提供することができるので、複数の積層体からなる固体電解質型燃料電池の発電効率を高めて一層長期間稼動させることができ、実用化のために優れた効果を発揮するものである。   The present invention can provide a separator having an excellent electrical conductivity and a longer service life using an iron-based heat-resistant alloy such as inexpensive stainless steel as a base material of the separator, and therefore, a solid electrolyte type comprising a plurality of laminates The power generation efficiency of the fuel cell can be increased and the fuel cell can be operated for a longer period of time, and exhibits excellent effects for practical use.

実施例1
SUS430(成分組成:Mn:0.5%、Cr:17%、残部:Feおよび不可避不純物)からなり縦:70mm、横:25mm、厚さ:5mm(面積;17.5cm)の寸法を有するフェライト系ステンレス鋼板を水蒸気中、温度:500℃、30時間保持することにより、表面にFeOFe2、CrOFe2、MnOFe2からなるスピネル型構造を有する酸化物層を形成し、このスピネル型構造を有する酸化物層の上に厚さ:5μmの電気Agメッキ層を形成し、次いで、これらAgメッキを施したSUS430板を温度:700℃、1時間保持することにより熱処理を施し、本発明セパレータ1を作製した。
さらに、比較のために、先に用意した厚さ:5mmを有するSUS430板を母材とし、その表面に厚さ:2μmの無電解Niメッキ層を形成し、さらにその上に厚さ:5μmの電気Agメッキ層を形成し、次いで、これらメッキを施したSUS430フェライト系ステンレス鋼板を大気中、温度:750℃、20時間保持の熱処理を施すことにより、Cr2.53のCr酸化物層を介してAgメッキ層を形成した従来セパレータ1を作製した。
このようにして得られた本発明セパレータ1および従来セパレータ1における表裏両面に抵抗測定用電極を接触させ、厚さ方向に500mA/cm、すなわち、8.75Aを流した時の抵抗値Rを△E=2IR(ただし、△Eはセパレータの電圧降下、係数:2はセパレータの両面を考慮した係数)の式より求め、本発明セパレータ1および従来セパレータ1における表裏両面被膜の抵抗値の合計を「全抵抗」として表1に示した。この場合、セパレータ母材の厚さ方向の抵抗値は、十分小さいので無視して算出した。
さらに前記本発明セパレータ1および従来セパレータ1の全抵抗を2で割って片面の被膜の抵抗値とし、この値にセパレータ片面の測定面積(面積;17.5cm)を乗じた値を「単位面積当りの表面抵抗」として求め、その結果を表1に示した。
Example 1
It consists of SUS430 (component composition: Mn: 0.5%, Cr: 17%, balance: Fe and inevitable impurities) and has dimensions of length: 70 mm, width: 25 mm, thickness: 5 mm (area: 17.5 cm 2 ). By holding the ferritic stainless steel plate in water vapor at a temperature of 500 ° C. for 30 hours, an oxide layer having a spinel structure composed of FeOFe 2 O 3 , CrOFe 2 O 3 , MnOFe 2 O 3 is formed on the surface, An electric Ag plating layer having a thickness of 5 μm is formed on the oxide layer having the spinel structure, and then a heat treatment is performed by holding the Ag-plated SUS430 plate at a temperature of 700 ° C. for 1 hour. The separator 1 of the present invention was produced.
Further, for comparison, a SUS430 plate having a thickness of 5 mm prepared in advance is used as a base material, an electroless Ni plating layer having a thickness of 2 μm is formed on the surface, and a thickness of 5 μm is further formed thereon. A Cr 2 O 2.53 Cr oxide layer is formed by forming an electric Ag plating layer and then subjecting the plated SUS430 ferritic stainless steel sheet to a heat treatment in the atmosphere at a temperature of 750 ° C. for 20 hours. A conventional separator 1 in which an Ag plating layer was formed via a was prepared.
The resistance measurement electrode R is obtained when 500 mA / cm 2 , that is, 8.75 A is flowed in the thickness direction by bringing resistance measuring electrodes into contact with both front and back surfaces of the separator 1 of the present invention and the conventional separator 1 thus obtained. ΔE = 2IR (where ΔE is the voltage drop of the separator, coefficient: 2 is a coefficient considering both sides of the separator), and the sum of the resistance values of the front and back double-sided coatings in the separator 1 of the present invention and the conventional separator 1 is obtained. The total resistance is shown in Table 1. In this case, the resistance value in the thickness direction of the separator base material was sufficiently small and thus ignored.
Further, the total resistance of the separator 1 of the present invention and the conventional separator 1 is divided by 2 to obtain the resistance value of the coating on one side, and this value is multiplied by the measured area (area: 17.5 cm 2 ) on one side of the separator. The surface resistance per hit ”is shown in Table 1.

Figure 0004512944
Figure 0004512944

表1に示される結果から、加熱試験前と加熱試験後の全抵抗および単位面積当りの表面抵抗を比較すると、本発明セパレータ1は、従来セパレータ1に比べて加熱試験前の全抵抗および単位面積当りの表面抵抗の値が小さく、さらに加熱試験後の全抵抗および単位面積当りの表面抵抗の上昇が小さいところから、本発明セパレータ1は、従来セパレータ1に比べて電気伝導性に優れかつ本発明セパレータ1は従来セパレータ1に比べて一層長期間使用することができることが分かる。   From the results shown in Table 1, when comparing the total resistance and the surface resistance per unit area before and after the heating test, the separator 1 of the present invention compared to the conventional separator 1 with the total resistance and unit area before the heating test. Since the value of the surface resistance per unit is small, and the increase in the total resistance after the heating test and the surface resistance per unit area is small, the separator 1 of the present invention is superior in electrical conductivity and has a higher electrical conductivity than the conventional separator 1. It can be seen that the separator 1 can be used for a longer period of time than the conventional separator 1.

実施例2
SUS403(成分組成:Mn:0.5%、Cr:13%、残部:Feおよび不可避不純物)からなる厚さ:5mmのマルテンサイト系ステンレス鋼板を水蒸気中、温度:500℃、30時間保持することにより、表面にFeOFe2、CrOFe2、MnOFe2からなるスピネル型構造を有する酸化物層を形成し、このスピネル型構造を有する酸化物層の上に厚さ:5μmの電気Agメッキ層を形成し、次いで、これらAgメッキを施したSUS403板を温度:700℃、1時間保持することにより熱処理を施すことにより本発明セパレータ2を作製した。
さらに、比較のために、先に用意した厚さ:5mmを有するSUS403板を母材とし、その表面に厚さ:2μmの無電解Niメッキ層を形成し、さらにその上に厚さ:5μmの電気Agメッキ層を形成し、次いで、これらメッキを施したSUS403マルテンサイト系ステンレス鋼板を大気中、温度:750℃、20時間保持の熱処理を施すことにより、Cr2.53のCr酸化物層を介してAgメッキ層を形成した従来セパレータ2を作製した。
このようにして得られた本発明セパレータ2および従来セパレータ2の加熱試験前後の「全抵抗」および「単位面積当りの表面抵抗」を実施例1と同様にして測定し、その結果を表2に示した。
Example 2
Maintaining a martensitic stainless steel plate having a thickness of 5 mm made of SUS403 (component composition: Mn: 0.5%, Cr: 13%, balance: Fe and inevitable impurities) in steam at a temperature of 500 ° C. for 30 hours. Then, an oxide layer having a spinel structure composed of FeOFe 2 O 3 , CrOFe 2 O 3 , and MnOFe 2 O 3 is formed on the surface, and an electric layer having a thickness of 5 μm is formed on the oxide layer having the spinel structure. The present invention separator 2 was produced by forming an Ag plating layer and then subjecting the Ag-plated SUS403 plate to a heat treatment by maintaining the temperature at 700 ° C. for 1 hour.
Furthermore, for comparison, a SUS403 plate having a thickness of 5 mm prepared in advance is used as a base material, an electroless Ni plating layer having a thickness of 2 μm is formed on the surface, and a thickness of 5 μm is further formed thereon. By forming an electric Ag plating layer and then subjecting these plated SUS403 martensitic stainless steel plates to heat treatment in the atmosphere at a temperature of 750 ° C. for 20 hours, Cr 2 O 2.53 Cr oxide A conventional separator 2 in which an Ag plating layer was formed through the layers was produced.
The “total resistance” and “surface resistance per unit area” before and after the heating test of the separator 2 of the present invention and the conventional separator 2 thus obtained were measured in the same manner as in Example 1, and the results are shown in Table 2. Indicated.

Figure 0004512944
Figure 0004512944

表2に示される結果から、加熱試験前と加熱試験後の全抵抗および単位面積当りの表面抵抗を比較すると、本発明セパレータ2は、従来セパレータ2に比べて加熱試験前の全抵抗および単位面積当りの表面抵抗の値が小さく、さらに加熱試験後の全抵抗および単位面積当りの表面抵抗の上昇が小さいところから、本発明セパレータ2は、従来セパレータ2に比べて電気伝導性に優れかつ本発明セパレータ2は従来セパレータ2に比べて一層長期間使用することができることが分かる。   From the results shown in Table 2, when comparing the total resistance before and after the heating test and the surface resistance per unit area, the separator 2 of the present invention compared to the conventional separator 2 with the total resistance and unit area before the heating test. Since the value of the surface resistance per contact is small, and the increase in the total resistance after the heating test and the surface resistance per unit area is small, the separator 2 of the present invention is superior in electrical conductivity compared to the conventional separator 2 and the present invention. It can be seen that the separator 2 can be used for a longer period of time than the conventional separator 2.

実施例3
SUS303(成分組成:Si:0.5%、Mn:1%、Ni:9%、Cr:18%、残部:Feおよび不可避不純物)からなる厚さ:5mmのオーステナイト系ステンレス鋼板を水蒸気中、温度:500℃、30時間保持することにより、表面にFeOFe2、CrOFe2、NiOFe2、SiOFe2、MnOFe2からなるスピネル型構造を有する酸化物層を形成し、このスピネル型構造を有する酸化物層の上に厚さ:5μmの電気Agメッキ層を形成し、次いで、これらAgメッキを施したSUS303板を温度:700℃、1時間保持することにより熱処理を施すことにより本発明セパレータ材3を作製した。
さらに、比較のために、先に用意した厚さ:5mmを有するSUS303板を母材とし、その表面に厚さ:2μmの無電解Niメッキ層を形成し、さらにその上に厚さ:5μmの電気Agメッキ層を形成し、次いで、これらメッキを施したSUS303マルテンサイト系ステンレス鋼板を大気中、温度:750℃、20時間保持の熱処理を施すことにより、Cr2.53のCr酸化物層を介してAgメッキ層を形成した従来セパレータ材3を作製した。
このようにして得られた本発明セパレータ3および従来セパレータ3の加熱試験前後の「全抵抗」および「単位面積当りの表面抵抗」を実施例1と同様にして測定し、その結果を表3に示した。
Example 3
Thickness: 5 mm austenitic stainless steel plate made of SUS303 (component composition: Si: 0.5%, Mn: 1%, Ni: 9%, Cr: 18%, balance: Fe and inevitable impurities) in steam at a temperature : An oxide layer having a spinel structure composed of FeOFe 2 O 3 , CrOFe 2 O 3 , NiOFe 2 O 3 , SiOFe 2 O 3 , and MnOFe 2 O 3 is formed on the surface by holding at 500 ° C. for 30 hours. Then, an electric Ag plating layer having a thickness of 5 μm is formed on the oxide layer having the spinel structure, and then the SUS303 plate subjected to the Ag plating is kept at a temperature of 700 ° C. for 1 hour to perform heat treatment. The separator material 3 of the present invention was produced by applying.
Further, for comparison, a SUS303 plate having a thickness of 5 mm prepared in advance is used as a base material, an electroless Ni plating layer having a thickness of 2 μm is formed on the surface, and a thickness of 5 μm is further formed thereon. By forming an electric Ag plating layer and then subjecting these plated SUS303 martensitic stainless steel plates to heat treatment in the atmosphere at a temperature of 750 ° C. for 20 hours, Cr 2 O 2.53 Cr oxide A conventional separator material 3 in which an Ag plating layer was formed through the layers was produced.
The “total resistance” and “surface resistance per unit area” before and after the heating test of the separator 3 of the present invention and the conventional separator 3 thus obtained were measured in the same manner as in Example 1, and the results are shown in Table 3. Indicated.

Figure 0004512944
Figure 0004512944

表3に示される結果から、加熱試験前と加熱試験後の全抵抗および単位面積当りの表面抵抗を比較すると、本発明セパレータ3は、従来セパレータ3に比べて加熱試験前の全抵抗および単位面積当りの表面抵抗の値が小さく、さらに加熱試験後の全抵抗および単位面積当りの表面抵抗の上昇が小さいところから、本発明セパレータ3は、従来セパレータ3に比べて電気伝導性に優れかつ本発明セパレータ3は従来セパレータ3に比べて一層長期間使用することができることが分かる。   From the results shown in Table 3, when comparing the total resistance before and after the heating test and the surface resistance per unit area, the separator 3 of the present invention has a total resistance and unit area before the heating test as compared with the conventional separator 3. Since the value of the surface resistance per unit is small, and the increase in the total resistance after the heating test and the surface resistance per unit area is small, the separator 3 of the present invention is superior in electrical conductivity and has a higher electrical conductivity than the conventional separator 3. It can be seen that the separator 3 can be used for a longer period of time than the conventional separator 3.

Claims (2)

FeおよびFe以外の金属成分(以下、Mという。但し、Mは、CrおよびMn、あるいは、Cr、MnおよびNiである。)からなる鉄基耐熱合金の母材の表面に形成された酸化物層の上に銀メッキ層が形成されてなる固体電解質型燃料電池用セパレータにおいて、
前記酸化物層は、FeOFe2およびMOFe2からなるスピネル型構造を有する酸化物層であることを特徴とする固体電解質型燃料電池用セパレータ。
An oxide formed on the surface of a base material of an iron-based heat-resistant alloy made of Fe and a metal component other than Fe (hereinafter referred to as M, where M is Cr and Mn, or Cr, Mn and Ni ) In the solid oxide fuel cell separator in which a silver plating layer is formed on the layer,
The oxide layer, FeOFe 2 O 3 and MOFe solid body electrolyte fuel cell separator you characterized in that an oxide layer having a spinel structure consisting of 2 O 3.
前記鉄基耐熱合金は、ステンレス鋼であることを特徴とする請求項1記載の固体電解質型燃料電池用セパレータ。 The iron-based heat resistant alloy, the solid body electrolyte fuel cell separator according to claim 1, wherein the stainless steel.
JP2004142477A 2004-05-12 2004-05-12 Solid oxide fuel cell separator Expired - Fee Related JP4512944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004142477A JP4512944B2 (en) 2004-05-12 2004-05-12 Solid oxide fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004142477A JP4512944B2 (en) 2004-05-12 2004-05-12 Solid oxide fuel cell separator

Publications (2)

Publication Number Publication Date
JP2005327499A JP2005327499A (en) 2005-11-24
JP4512944B2 true JP4512944B2 (en) 2010-07-28

Family

ID=35473687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004142477A Expired - Fee Related JP4512944B2 (en) 2004-05-12 2004-05-12 Solid oxide fuel cell separator

Country Status (1)

Country Link
JP (1) JP4512944B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170815B2 (en) * 2006-07-04 2013-03-27 日産自動車株式会社 Solid oxide fuel cell unit and stack
JP5283323B2 (en) * 2006-09-20 2013-09-04 住友精密工業株式会社 Fuel cell interconnector and cell stack
US8507145B2 (en) 2007-08-13 2013-08-13 Honda Motor Co., Ltd. Fuel cell and method of producing the fuel cell
JP2010238517A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp Solid polymer fuel cell using porous metal gas diffusion sheet performing outstanding contact surface conductivity for long period of time as structural member
JP2013054954A (en) * 2011-09-05 2013-03-21 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell stack and interconnector
JP2013118178A (en) * 2011-10-31 2013-06-13 Osaka Gas Co Ltd Solid oxide fuel cell
JP2013118177A (en) * 2011-10-31 2013-06-13 Osaka Gas Co Ltd Solid oxide fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501764A (en) * 1995-03-15 1999-02-09 セラミック・フューエル・セルズ・リミテッド Fuel cell interconnect device
JP2001196077A (en) * 2000-01-13 2001-07-19 Tokyo Gas Co Ltd Separator for solid electrolyte fuel cell
JP2002289215A (en) * 2001-03-23 2002-10-04 Mitsubishi Materials Corp Separator for solid electrolyte fuel cell with excellent conductivity
WO2003026052A1 (en) * 2001-09-18 2003-03-27 Furuya Metal Co., Ltd. Bipolar plate for fuel cell and method for production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501764A (en) * 1995-03-15 1999-02-09 セラミック・フューエル・セルズ・リミテッド Fuel cell interconnect device
JP2001196077A (en) * 2000-01-13 2001-07-19 Tokyo Gas Co Ltd Separator for solid electrolyte fuel cell
JP2002289215A (en) * 2001-03-23 2002-10-04 Mitsubishi Materials Corp Separator for solid electrolyte fuel cell with excellent conductivity
WO2003026052A1 (en) * 2001-09-18 2003-03-27 Furuya Metal Co., Ltd. Bipolar plate for fuel cell and method for production thereof

Also Published As

Publication number Publication date
JP2005327499A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US6326096B1 (en) Solid oxide fuel cell interconnector
JP5460101B2 (en) High temperature conductive member
EP2369668B1 (en) Metal separator for fuel cell and method of manufacturing the same
JP4402630B2 (en) Separator for polymer electrolyte fuel cell and fuel cell
JP5236294B2 (en) Interconnector for high-temperature fuel cells
JP6289170B2 (en) Inter-cell connecting member joining structure and inter-cell connecting member joining method
JP3723515B2 (en) Separator for polymer electrolyte fuel cell and fuel cell
JP4512944B2 (en) Solid oxide fuel cell separator
JP5170815B2 (en) Solid oxide fuel cell unit and stack
JP3980150B2 (en) Low temperature fuel cell separator
JP5573039B2 (en) Stainless steel for polymer electrolyte fuel cell separator and method for producing the same
JP6584097B2 (en) Inter-cell connecting member joining method and method for producing solid oxide fuel cell
JP2012119126A (en) Solid oxide fuel battery
JP4352447B2 (en) Solid oxide fuel cell separator with excellent conductivity
JP5306631B2 (en) Ferritic steel for solid oxide fuel cells and other high temperature applications
JP2013118177A (en) Solid oxide fuel cell
JP5699624B2 (en) Metal plate for polymer electrolyte fuel cell separator and method for producing the same
JP6358921B2 (en) Method for producing solid oxide fuel cell and method for joining cells
JP2015122303A (en) Metal member for solid oxide type fuel battery
JP6188372B2 (en) Solid oxide fuel cell and inter-cell connecting member for fuel cell
JP5880799B1 (en) Metal material and current-carrying parts using this metal material
KR101242794B1 (en) Bipolar plates for fuel cell having good resistance to chromium poisoning and method for manufacturing the same
KR100832402B1 (en) Metallic interconnects in solid oxide fuel cell and manufacturing method thereof
JP5625902B2 (en) Stainless steel for polymer electrolyte fuel cell separator and method for producing the same
JP2022061933A (en) Separator for fuel cell and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

R150 Certificate of patent or registration of utility model

Ref document number: 4512944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees