JP4512247B2 - Ultrasonic level gauge - Google Patents

Ultrasonic level gauge Download PDF

Info

Publication number
JP4512247B2
JP4512247B2 JP2000279243A JP2000279243A JP4512247B2 JP 4512247 B2 JP4512247 B2 JP 4512247B2 JP 2000279243 A JP2000279243 A JP 2000279243A JP 2000279243 A JP2000279243 A JP 2000279243A JP 4512247 B2 JP4512247 B2 JP 4512247B2
Authority
JP
Japan
Prior art keywords
pulse width
ultrasonic
impurity
distance
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000279243A
Other languages
Japanese (ja)
Other versions
JP2002090210A (en
Inventor
森本博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2000279243A priority Critical patent/JP4512247B2/en
Publication of JP2002090210A publication Critical patent/JP2002090210A/en
Application granted granted Critical
Publication of JP4512247B2 publication Critical patent/JP4512247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パルス状の超音波信号を送出し、送出された超音波信号の液面での反射信号を受信して、液面までの距離を算出する超音波液面計に関する。
【0002】
【従来の技術】
従来の超音波液面計はパルス状の超音波信号を送出し、送出された超音波信号の液面での反射信号を受信して、反射してくる時間のみに注目し、液面までの距離を算出している。
【0003】
【発明が解決しようとする課題】
従来の超音波液面計では液面の測定のみで、水等の不純物層を検出することができなかった。しかし不純物がたまるとタンク内の液体を供給して利用している機器に不純物が回り悪影響を与えるため、定期的にドレインで水等の不純物を抜いてやる必要があるが、その時期を知らせる手段が無く、求められていた。
【0004】
本発明は、上記した実情に鑑みてなされたものであり、タンク内に水等の不純物がたまったことを知らせることができる超音波液面計を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、請求項1の発明は、パルス状の超音波信号である送信信号を液面に向けて送信し、当該送信信号の反射信号を受信するまでの時間により前記液面までの距離を計測する超音波液面計であって、さらに、受信した信号のパルス幅を受信パルス幅として検出する受信パルス幅検出手段と、検出された受信パルス幅を所定の不純物検出パルス幅と比較して不純物層を検出する不純物検出手段と、を備える。
また、請求項2の発明は、請求項1に記載の超音波液面計であって、前記不純物検出手段が、液体中の不純物層を検出すべき前記液面までの所定距離である不純物検出距離を記憶する距離記憶手段と、不純物層がない状態における前記液面までの距離が前記不純物検出距離であるときの受信パルス幅を前記不純物検出パルス幅として記憶するパルス幅記憶手段と、計測された液面までの距離が前記不純物検出距離とほぼ等しい場合に、前記検出された受信パルス幅と前記不純物検出パルス幅との差が所定以上ある場合に不純物層があると判定するパルス幅比較手段と、を備える。
【0006】
【発明の実施の形態】
以下に、本発明に係わる超音波液面計の実施形態について、図に基づいて詳細に説明する。
【0007】
図1は、本発明の一実施形態に係わる超音波液面計の装置構成を表した図であり、図2は本発明を具体的に説明するために、タンク内の測定液体を灯油とし、タンク内にたまった不純物を水とした場合の超音波信号波形を模擬的に図示したものである。
【0008】
図1で、タンク底面に不純物が溜まっていない時、本発明の受信パルス幅記憶手段及び不純物検出手段に相当するCPU5より出力された超音波送出タイミング信号は、送信回路2へと送られ、送信回路2は一定のパルス幅で超音波振動子1を駆動する為の駆動信号を出力する。この信号はタンク102の底面に貼り付けられた超音波振動子1により超音波振動に変換されタンク102の底面より液体103中へ放出される。そして液面101により反射され、反射波は超音波振動子1により受信され、受信された超音波振動は超音波振動子1により電気信号に変換され、受信回路3により、増幅、検波され、この信号がコンパレータ4の閾値を超えた信号の幅と等しい幅のパルスがコンパレータ4より、CPU5に入力される。CPU5は超音波送出から、コンパレータ4のパルス出力が入力されるまでの時間と、パルスの幅の時間を計測することにより、まずタンク底面から液面までの距離を算出することができ、次にCPU5はこのときの距離とパルスの幅をそれぞれ不純物検出距離、および不純物検出パルス幅として記憶しておく。 次に、タンク102の底に水等の不純物がたまってきた場合、超音波振動子1から送出された超音波信号はまず水等の不純物104の層を通過し当然密度の違う測定液体103との境界で一部が反射し一部が測定液体103中へ通過する。このとき不純物104の層は測定液体103の層に比較して非常に薄い層である為、反射した超音波は短時間でタンク102の底面より再び反射して境界面105に達し、このとき反射しないで通過した一部の超音波は最初に通過した超音波に少し遅れて重なり、測定液体103の液面101へ達する。測定液体103の液面101に達した超音波は液体と空気の密度の差でほとんど反射して再び不純物104との境界面105に達する。ここでもまた反射する成分と通過する成分に分かれ、反射した成分は通過してタンク102の底で再び反射した2次反射成分より少し時間が早く重なり、液面101へと向かっていく。このようなことをくりかえし、1次反射、2次反射、3次反射となるにつれて超音波パルスの幅も広がっていく。また、当然不純物の層が厚くなれば、超音波パルスの幅の広がりも厚さに比例して大きくなっていく。
そこで、その後の液面101までの距離の計測時には、CPU5は、常にその距離の計測結果を記憶していた不純物検出距離と比較し、両者がほぼ等しいと判定された場合、具体的にはそれら距離の差が所定の閾値内である場合には、さらに以下の判定を行う。すなわち、受信パルスの幅を検出し、記憶していた不純物パルス幅とを比較し、その差が設定した閾値を超えたとき、不純物層があると判定し、警報出力6によりドレインを抜くべき旨の警報を出力させる。
【0009】
具体例として、タンク102内の液体103を灯油、タンク102内に溜まる不純物104を水とし、灯油のタンク102の底から液面101までの距離が10cm、不純物104の水が1cm溜まったとき上記超音波送出波形がどのように変化するか図2に基づき説明する。このとき灯油内の音速は1300m/sec、水内の音速は1550m/secとし、超音波受信パルスの幅は、50μsecとする。
【0010】
不純物水が溜まっていない時、タンク102底面の超音波振動子1から発信される超音波パルス送出から約154μsec後にパルス幅50μsecで灯油液面101からの液面1次反射201が得られる。液面1次反射波201は再度タンク102底面で反射して底面1次反射波202となり、その後灯油液面101で再度反射してタンク102底面へ向かう液面2次反射波202が観測されることとなる。図2(a)を参照本出願が注目するのは、このときの液面1次反射波201のパルスの幅50μsecをCPU5は記憶しておくことにある
この状態で不純物である水がタンク102底面に1cm溜まると、タンク102底面の超音波振動子1から送出された超音波信号の1部は、最初に水と灯油の境界面105でタンク102底面方向へ反射し、次にタンク102底面で再度反射し、再度境界面105方向へ向かい、そこでまた反射して再度タンク102底面方向へ向かうという事象を繰り返す成分と、境界面105を反射せずに直進通過して灯油液面方向に向かう通過成分205に分かれるが、境界面105で反射してタンク102底面方向へ向かう成分は、タンク102底面での反射後に再度境界面105方向へ向かい、ここでまた境界面105を直進通過する成分とタンク102底面方向へ反射する成分へと分かれるが、灯油液面101方向へ向かう通過成分であろうが、タンク102底面と境界面105の間で反射を繰り返す成分であろうが、何れの反射成分も境界面反射の都度、反射せずに直進する成分の20%の音圧成分となることから、無視できるほど微弱な信号となり、本出願の注目する計測に影響を及ぼさないものとなる。結果、境界面105を直進通過した成分205はさきほど境界面105で反射しないで直進通過し灯油液面101方向へ向かっ直進通過成分203より13μsec遅れて灯油液面で反射し、その後タンク102底面方向へ向かう液面1次反射波205となり、境界面105を反射することなくタンク102底面方向へ直進通過し、タンク102底面の超音波振動子1にて液面1次反射波203との比較で幅の広がった合成波208として受信される。この208の信号幅が不純物のないときの信号幅に比較して広くなっていることを検出することで水を検出することができる。
以上が、液面1次反射波203および液面1次反射波205のみを用いて計測する場合の説明であり、本出願が最も注目する範囲である。
以下はタンク102底面における1次反射より後に起こる事象ついての補足説明である。
灯油液面101で反射した液面1次反射波203の1部はタンク102底面の超音波振動子1で受信される前に水と灯油の境界面105で再度灯油液面101方向に境界面1次反射波206として反射されその一方、境界面105で反射せずタンク102底面へ向かい、タンク102底面で再度反射して底面1次反射波204となる成分よりも、境界面1次反射波206は13μsec早く灯油液面101方向に向かい、灯油液面101で反射され液面2次反射波206となりタンク102底面方向へ向かい、再度水と灯油の境界面105で直進通過成分と反射成分に分かれる。この時灯油と水の境界面105灯油液面101方向へ反射する境界面2次反射波は微弱なものとなり、無視することができる。一方、境界面105で反射せずにタンク102底面方向へ向かう液面2次反射波206は、液面2次反射波204よりも13μsec早くタンク102底面の超音波振動子1にて計測される。同様に、液面1次反射波205のうち境界面105で反射せずにタンク102底面へ向かい、タンク底面で再度反射して境界面105へ向かい、境界面105を反射することなく直進通過して灯油液面101へ向かう成分は、灯油液面101で反射され再度境界面105方向へ向かい、境界面105で反射する成分と反射せずに、境界面105を直進通過し、タンク102底面へ向かう成分へ分かれるが、このとき境界面105を直進通過する成分は、液面2次反射204が境界面105を通過してタンク102底面の超音波振動子1が受信するときも13μsec遅れてタンク102底面の超音波振動子1に到達する液面2次反射波207となり、信号幅76μsecの合成波209となる。
【0011】
上記よりCPU5は超音波送出から1次反射受信までの時間151μsecを、不純物水の影響で3μsec早くなるが、ほぼ正確に測定することが出来、受信したパルス幅201と208を比較し13μsec以上の差が発生したとき警報出力6が警報を出力するよう設定しておけば、不純物水が1cm以上存在することを検知することが出来る。また今回は1次反射の比較を示したが2次反射202、209の比較でも可能である。又図3に実際の測定波形を示す。
以上、この実施の形態では、予め不純物層の無い状態における受信パルス幅を不純物パルス幅として記憶し、不純物検出距離において、受信パルス幅と不純物パルス幅とを比較して不純物層を検出するものとしたが、この発明はこれに限られず、例えば、不純物層検出の精度がさほど要求されない場合には、予め設定されている送信パルス幅を不純物パルス幅として用いてもよい。その場合には不純物検出距離以外の距離においても不純物層の検出が行える。
【0012】
【発明の効果】
請求項1および請求項2に記載の超音波液面計は、液面までの距離を計測するだけでなく、不純物の存在も検知することが出来、タンクの液体を利用する機器へ不純物が入り機器に重大なダメージを与えるのを回避することができるようになる。
また、請求項2に記載の超音波液面計は、不純物検出パルス幅を記憶する時の液面までの距離を同時に不純物検出距離として記憶し、ほぼ同じ距離の条件での受信パルス幅を比較することで、距離による超音波信号の減衰によるパルス幅の変動をキャンセルし、より正確に不純物層の厚さを測定することができる
【図面の簡単な説明】
【図1】本発明の実施形態に係わる超音波液面計の装置構成図である。
【図2】本発明の実施形態に係わる超音波液面計での超音波受信信号の模擬図である。
【図3】本発明の実施形態に係わる超音波液面計での超音波受信信号の測定波形を示す図である。
【符号の説明】
1 超音波振動子
2 送信回路
3 受信回路
4 コンパレータ
5 CPU
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic liquid level gauge that transmits a pulsed ultrasonic signal, receives a reflection signal of the transmitted ultrasonic signal on the liquid level, and calculates a distance to the liquid level.
[0002]
[Prior art]
A conventional ultrasonic liquid level gauge sends a pulsed ultrasonic signal, receives a reflected signal at the liquid level of the transmitted ultrasonic signal, pays attention only to the reflected time, and reaches the liquid level. The distance is calculated.
[0003]
[Problems to be solved by the invention]
Conventional ultrasonic liquid level gauges cannot detect an impurity layer such as water only by measuring the liquid level. However, if impurities accumulate, the impurities in the tank that are used by supplying the liquid in the tank will be adversely affected, so it is necessary to drain water and other impurities regularly at the drain. There was no need.
[0004]
This invention is made | formed in view of the above-mentioned actual condition, and makes it a subject to provide the ultrasonic level gauge which can notify that impurities, such as water, accumulated in the tank.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that a transmission signal which is a pulsed ultrasonic signal is transmitted toward the liquid surface, and the liquid surface is measured depending on a time until a reflection signal of the transmission signal is received. An ultrasonic liquid level gauge for measuring the distance to the received pulse width detecting means for detecting the pulse width of the received signal as a received pulse width, and the detected received pulse width as a predetermined impurity detection pulse width. And an impurity detection means for detecting the impurity layer.
The invention according to claim 2 is the ultrasonic liquid level meter according to claim 1, wherein the impurity detection means is a predetermined distance to the liquid level where the impurity layer in the liquid is to be detected. A distance storage means for storing the distance, a pulse width storage means for storing a reception pulse width when the distance to the liquid surface in the state where there is no impurity layer is the impurity detection distance, as the impurity detection pulse width, and Pulse width comparing means for determining that there is an impurity layer when the difference between the detected reception pulse width and the impurity detection pulse width is greater than or equal to a predetermined distance when the distance to the liquid surface is substantially equal to the impurity detection distance And comprising.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of an ultrasonic liquid level gauge according to the present invention will be described in detail with reference to the drawings.
[0007]
FIG. 1 is a diagram showing an apparatus configuration of an ultrasonic liquid level gauge according to an embodiment of the present invention, and FIG. 2 is a kerosene measurement liquid in a tank for specifically explaining the present invention. FIG. 2 schematically illustrates an ultrasonic signal waveform when water is used as impurities accumulated in a tank.
[0008]
In FIG. 1, when no impurities are accumulated on the bottom surface of the tank, the ultrasonic wave transmission timing signal output from the CPU 5 corresponding to the reception pulse width storage means and the impurity detection means of the present invention is sent to the transmission circuit 2 for transmission. The circuit 2 outputs a drive signal for driving the ultrasonic transducer 1 with a constant pulse width. This signal is converted into ultrasonic vibration by the ultrasonic vibrator 1 attached to the bottom surface of the tank 102, and emitted from the bottom surface of the tank 102 into the liquid 103. Then, it is reflected by the liquid surface 101, the reflected wave is received by the ultrasonic vibrator 1, the received ultrasonic vibration is converted into an electric signal by the ultrasonic vibrator 1, amplified and detected by the receiving circuit 3, A pulse having a width equal to the width of the signal whose signal exceeds the threshold value of the comparator 4 is input from the comparator 4 to the CPU 5. The CPU 5 can first calculate the distance from the tank bottom surface to the liquid surface by measuring the time from the ultrasonic transmission until the pulse output of the comparator 4 is input and the time of the pulse width. The CPU 5 stores the distance and the pulse width at this time as the impurity detection distance and the impurity detection pulse width, respectively. Next, when impurities such as water accumulate on the bottom of the tank 102, the ultrasonic signal sent from the ultrasonic transducer 1 first passes through the layer of impurities 104 such as water and naturally has a different density from the measuring liquid 103. A part of the light is reflected at the boundary and a part of the light passes through the measurement liquid 103. At this time, since the layer of the impurity 104 is very thin compared to the layer of the measurement liquid 103, the reflected ultrasonic wave is reflected again from the bottom surface of the tank 102 in a short time and reaches the boundary surface 105. Some of the ultrasonic waves that have passed without being overlapped with the first ultrasonic wave that has passed through a little later, and reach the liquid surface 101 of the measurement liquid 103. The ultrasonic wave reaching the liquid surface 101 of the measurement liquid 103 is almost reflected by the difference in density between the liquid and air and reaches the boundary surface 105 with the impurity 104 again. Again, the component is divided into a component to be reflected and a component to be transmitted. The reflected component passes through the secondary reflection component reflected again at the bottom of the tank 102 and overlaps with the time slightly before moving toward the liquid surface 101. This is repeated, and the width of the ultrasonic pulse increases as primary reflection, secondary reflection, and tertiary reflection occur. Naturally, as the impurity layer becomes thicker, the width of the ultrasonic pulse increases in proportion to the thickness.
Therefore, when measuring the distance to the liquid level 101 thereafter, the CPU 5 always compares the result of measuring the distance with the impurity detection distance, and if both are determined to be substantially equal, When the difference in distance is within a predetermined threshold, the following determination is further performed. That is, the width of the received pulse is detected, compared with the stored impurity pulse width, and when the difference exceeds a set threshold value, it is determined that there is an impurity layer, and the drain should be pulled out by the alarm output 6 Alarm is output.
[0009]
As a specific example, when the liquid 103 in the tank 102 is kerosene, the impurity 104 accumulated in the tank 102 is water, the distance from the bottom of the tank 102 of kerosene to the liquid level 101 is 10 cm, and the water of the impurity 104 is accumulated 1 cm. How the ultrasonic transmission waveform changes will be described with reference to FIG. At this time, the speed of sound in kerosene is 1300 m / sec, the speed of sound in water is 1550 m / sec, and the width of the ultrasonic reception pulse is 50 μsec.
[0010]
When the water impurities are not accumulated, the liquid level primary reflected wave 201 from kerosene liquid surface 101 is that obtained by pulse width 50μsec after approximately 154μsec from ultrasonic pulses transmitted is transmitted from the ultrasonic transducer 1 of the tank 102 bottom . The liquid surface primary reflected wave 201 is reflected again on the bottom surface of the tank 102 to become the bottom surface primary reflected wave 202, and then the liquid surface secondary reflected wave 202 is reflected again on the kerosene liquid surface 101 and directed toward the bottom surface of the tank 102. It will be. See FIG. 2 (a). The present application is noted that the pulse width 50μsec of the liquid level first order reflection wave 201 at this time CPU5 is to store.
When water accumulates 1cm in tank 102 the bottom, which is an impurity in this state, a portion of the ultrasonic signal transmitted from the ultrasonic transducer 1 of the tank 102 bottom, the tank 102 bottom first in the boundary surface 105 of the water and kerosene And then re-reflecting at the bottom surface of the tank 102 and again toward the boundary surface 105, where it is reflected again and again toward the bottom surface of the tank 102 , and without reflecting the boundary surface 105. A component that passes straight and travels toward the kerosene liquid level is divided into components 205, but the component reflected by the boundary surface 105 and directed toward the bottom surface of the tank 102 is directed again toward the boundary surface 105 after being reflected from the bottom surface of the tank 102. Moreover, although it is divided into a component that passes straight through the boundary surface 105 and a component that reflects toward the bottom surface of the tank 102, it may be a component that passes toward the kerosene liquid surface 101, As will be component repeatedly reflected between the tank 102 bottom surface and the boundary surface 105, one of the reflected components also each of the boundary surface reflection, since it is 20% of the sound pressure component of the components to be straight without being reflected, ignoring weak signals enough to the do Ri, and shall not affect the measurement of interest of the present application. Results, the boundary surface 105 straight passes ingredients 205 straight passes to a delay 13μsec than straight passage component 203 toward the kerosene liquid surface 101 direction not just reflected at the boundary surface 105 is reflected by the kerosene liquid surface, then the tank 102 bottom The liquid surface primary reflected wave 205 is directed toward the direction, passes straightly toward the bottom surface of the tank 102 without reflecting the boundary surface 105, and is compared with the liquid surface primary reflected wave 203 by the ultrasonic transducer 1 on the bottom surface of the tank 102. Is received as a combined wave 208 having a wider width . Water can be detected by detecting that the signal width of 208 is wider than the signal width when there is no impurity.
The above is an explanation of measurement using only the liquid surface primary reflected wave 203 and the liquid surface primary reflected wave 205, and is the most noticeable range of the present application.
The following is a supplementary explanation of an event that occurs after the primary reflection at the bottom surface of the tank 102.
A portion of the liquid surface primary reflected wave 203 reflected by the kerosene liquid surface 101 is again a boundary surface in the direction of the kerosene liquid surface 101 at the boundary surface 105 between water and kerosene before being received by the ultrasonic vibrator 1 on the bottom surface of the tank 102. Ru is reflected as a primary reflected wave 206. On the other hand, the boundary primary reflected wave 206 is 13 μsec earlier than the component that does not reflect at the boundary surface 105 but travels toward the bottom surface of the tank 102 and is reflected again at the bottom surface of the tank 102 and becomes the bottom surface primary reflected wave 204. have unsuitable direction, toward the to-liquid surface secondary reflection wave 206 becomes tank 102 bottom direction reflected by kerosene liquid surface 101, split into reflected component and the rectilinear passage components at the interface 105 of the water again and kerosene. In this case, the interface secondary reflection wave reflected to the kerosene liquid surface 101 direction at the boundary surface 105 of the kerosene and the water becomes as weak, can be ignored. On the other hand, the liquid surface secondary reflected wave 206 directed toward the bottom surface of the tank 102 without being reflected by the boundary surface 105 is measured by the ultrasonic transducer 1 on the bottom surface of the tank 102 13 μsec earlier than the liquid surface secondary reflected wave 204. . Similarly, the liquid surface primary reflected wave 205 is not reflected by the boundary surface 105 but is directed to the bottom surface of the tank 102, is reflected again by the tank bottom surface and is directed to the boundary surface 105, and passes straight without reflecting the boundary surface 105. The component directed toward the kerosene liquid surface 101 is reflected by the kerosene liquid surface 101 and travels again toward the boundary surface 105, and does not reflect the component reflected by the boundary surface 105, but passes straight through the boundary surface 105 to the bottom surface of the tank 102. At this time, the component that passes straight through the boundary surface 105 is delayed by 13 μsec when the liquid surface secondary reflected wave 204 passes through the boundary surface 105 and is received by the ultrasonic transducer 1 at the bottom of the tank 102. The liquid surface secondary reflected wave 207 reaches the ultrasonic transducer 1 on the bottom surface of the tank 102 and becomes a combined wave 209 having a signal width of 76 μsec.
[0011]
From the above, the CPU 5 can measure the time 151 μsec from the ultrasonic transmission to the primary reflection reception 3 μsec faster due to the influence of the impurity water, but it can be measured almost accurately. If the alarm output 6 is set to output an alarm when a difference occurs, the presence of 1 cm or more of impurity water can be detected. In addition, the comparison of the primary reflection is shown this time, but the comparison of the secondary reflections 202 and 209 is also possible. FIG. 3 shows an actual measurement waveform.
As described above, in this embodiment, the reception pulse width in the absence of the impurity layer is stored in advance as the impurity pulse width, and the impurity layer is detected by comparing the reception pulse width with the impurity pulse width at the impurity detection distance. However, the present invention is not limited to this. For example, when the accuracy of the impurity layer detection is not so required, a preset transmission pulse width may be used as the impurity pulse width. In that case, the impurity layer can be detected at a distance other than the impurity detection distance.
[0012]
【The invention's effect】
The ultrasonic liquid level meter according to claim 1 and 2 can not only measure the distance to the liquid level but also detect the presence of impurities, and impurities enter the equipment using the liquid in the tank. It will be possible to avoid serious damage to the equipment.
The ultrasonic liquid level meter according to claim 2 stores the distance to the liquid level when storing the impurity detection pulse width as an impurity detection distance at the same time, and compares the received pulse widths under substantially the same distance conditions. By doing so, the fluctuation of the pulse width due to the attenuation of the ultrasonic signal due to the distance can be canceled, and the thickness of the impurity layer can be measured more accurately [Brief description of the drawings]
FIG. 1 is an apparatus configuration diagram of an ultrasonic liquid level gauge according to an embodiment of the present invention.
FIG. 2 is a simulation diagram of an ultrasonic reception signal in the ultrasonic liquid level meter according to the embodiment of the present invention.
FIG. 3 is a diagram showing a measurement waveform of an ultrasonic reception signal in the ultrasonic liquid level gauge according to the embodiment of the present invention.
[Explanation of symbols]
1 Ultrasonic vibrator 2 Transmission circuit 3 Reception circuit 4 Comparator 5 CPU

Claims (2)

パルス状の超音波信号である送信信号を液面に向けて送信し、当該送信信号の反射信号を受信するまでの時間により前記液面までの距離を計測する超音波液面計において、さらに、
受信した信号のパルス幅を受信パルス幅として検出する受信パルス幅検出手段と、
検出された受信パルス幅を所定の不純物検出パルス幅と比較して不純物層を検出する不純物検出手段と、
を備えることを特徴とする超音波液面計。
In an ultrasonic liquid level meter that transmits a transmission signal that is a pulsed ultrasonic signal toward the liquid surface and measures the distance to the liquid surface according to the time until the reflected signal of the transmission signal is received,
A reception pulse width detection means for detecting the pulse width of the received signal as a reception pulse width;
Impurity detection means for detecting the impurity layer by comparing the detected reception pulse width with a predetermined impurity detection pulse width;
An ultrasonic liquid level gauge comprising:
請求項1に記載の超音波液面計であって、
前記不純物検出手段が、
液体中の不純物層を検出すべき前記液面までの所定距離である不純物検出距離を記憶する距離記憶手段と、
不純物層がない状態における前記液面までの距離が前記不純物検出距離であるときの受信パルス幅を前記不純物検出パルス幅として記憶するパルス幅記憶手段と、
計測された液面までの距離が前記不純物検出距離とほぼ等しい場合に、前記検出された受信パルス幅と前記不純物検出パルス幅との差が所定以上ある場合に不純物層があると判定するパルス幅比較手段と、
を備えることを特徴とする超音波液面計。
The ultrasonic liquid level meter according to claim 1,
The impurity detection means is
A distance storage means for storing an impurity detection distance which is a predetermined distance to the liquid surface where the impurity layer in the liquid is to be detected;
Pulse width storage means for storing, as the impurity detection pulse width, a reception pulse width when the distance to the liquid surface in the state where there is no impurity layer is the impurity detection distance;
When the measured distance to the liquid level is substantially equal to the impurity detection distance, the pulse width for determining that there is an impurity layer when the difference between the detected reception pulse width and the impurity detection pulse width is greater than or equal to a predetermined value A comparison means;
An ultrasonic liquid level gauge comprising:
JP2000279243A 2000-09-14 2000-09-14 Ultrasonic level gauge Expired - Fee Related JP4512247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279243A JP4512247B2 (en) 2000-09-14 2000-09-14 Ultrasonic level gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279243A JP4512247B2 (en) 2000-09-14 2000-09-14 Ultrasonic level gauge

Publications (2)

Publication Number Publication Date
JP2002090210A JP2002090210A (en) 2002-03-27
JP4512247B2 true JP4512247B2 (en) 2010-07-28

Family

ID=18764276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279243A Expired - Fee Related JP4512247B2 (en) 2000-09-14 2000-09-14 Ultrasonic level gauge

Country Status (1)

Country Link
JP (1) JP4512247B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015085309A (en) * 2013-11-01 2015-05-07 株式会社神鋼環境ソリューション Method of estimating deposition state of deposit in methane fermentation tank, and methane fermentation apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313720A (en) * 1988-06-13 1989-12-19 Naoyuki Omatoi Liquid level measuring method by ultrasonic echo and flow velocity measuring method and thickness measuring method for liquid layer, and ultrasonic transducer used for these methods
JPH0814990A (en) * 1994-06-27 1996-01-19 Kansai Tec:Kk Method and instrument for measuring levels of multilayer liquids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313720A (en) * 1988-06-13 1989-12-19 Naoyuki Omatoi Liquid level measuring method by ultrasonic echo and flow velocity measuring method and thickness measuring method for liquid layer, and ultrasonic transducer used for these methods
JPH0814990A (en) * 1994-06-27 1996-01-19 Kansai Tec:Kk Method and instrument for measuring levels of multilayer liquids

Also Published As

Publication number Publication date
JP2002090210A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
US5856953A (en) Processing echoes in ultrasonic liquid gauging systems
EP0807261A2 (en) Improvements relating to pulse echo distance measurement
GB2298277A (en) Delay line for an ultrasonic probe with an interface allowing inbuilt calibration
JPS6156450B2 (en)
JPS5856085B2 (en) Method and device for measuring thickness or depth of abnormal area using ultrasonic pulses
JP4512247B2 (en) Ultrasonic level gauge
NL8003086A (en) METHOD AND APPARATUS FOR LOCATING A LIGHT OR FLASH ARC IN A WAVE PIPE
JP2002055088A (en) Apparatus and method for diagnosing tunnel
JPH1048009A (en) Ultrasound temperature current meter
JP3169534B2 (en) Inundation detection method
US20210333137A1 (en) Ultrasonic measurement method taking account of the quantity of gas bubbles
JP2001242000A (en) Ultrasonic level meter
JP2002090452A (en) Ultrasonic range finder
JPH05180810A (en) Ultrasonic transmitter-receiver for liquid concentration meter
JPS60257333A (en) Stress measuring method
EP3543688A1 (en) Inspection method
JPH08271322A (en) Ultrasonic liquid level measuring method
KR102179231B1 (en) Ultrasonic wave apparatus for measure of distance
JP3417932B2 (en) Ultrasonic thickness gauge
JP2000329597A5 (en)
JP4143527B2 (en) Thin plate ultrasonic flaw detector
JPH10325870A (en) Ultrasonic range finder
JPS61210947A (en) Ultrasonic defectscope
JP2001201388A (en) Instrument and method for measuring liquid level in piping
JPH02116745A (en) Ultrasonic solution density measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4512247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees