JP4511881B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP4511881B2
JP4511881B2 JP2004182925A JP2004182925A JP4511881B2 JP 4511881 B2 JP4511881 B2 JP 4511881B2 JP 2004182925 A JP2004182925 A JP 2004182925A JP 2004182925 A JP2004182925 A JP 2004182925A JP 4511881 B2 JP4511881 B2 JP 4511881B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen peroxide
activated carbon
water
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004182925A
Other languages
Japanese (ja)
Other versions
JP2006000827A (en
Inventor
和也 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2004182925A priority Critical patent/JP4511881B2/en
Publication of JP2006000827A publication Critical patent/JP2006000827A/en
Application granted granted Critical
Publication of JP4511881B2 publication Critical patent/JP4511881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Catalysts (AREA)

Description

本発明は、半導体製造排水、食品容器洗浄排水等の各種過酸化水素含有排水の処理方法に関し、特に、触媒を用いて排水中に含まれる過酸化水素を分解する、過酸化水素含有排水の処理方法に関する。   The present invention relates to a method for treating various hydrogen peroxide-containing wastewater such as semiconductor manufacturing wastewater and food container washing wastewater, and in particular, treatment of hydrogen peroxide-containing wastewater that decomposes hydrogen peroxide contained in wastewater using a catalyst. Regarding the method.

過酸化水素は、洗浄、殺菌効果に優れ、かつ反応後は酸素と水に分解するクリーンな薬品であるため、広く製造工程における洗浄剤、殺菌剤として使用されている。例えば、半導体装置の製造工場では様々な工程でウエハの洗浄に用いられている。   Hydrogen peroxide is an excellent cleaning and sterilizing effect, and is a clean chemical that decomposes into oxygen and water after the reaction. Therefore, it is widely used as a cleaning agent and sterilizing agent in the manufacturing process. For example, a semiconductor device manufacturing factory is used for cleaning wafers in various processes.

洗浄、殺菌に用いられた過酸化水素は、製造工程から廃液(過酸化水素含有排水)として排出される。この廃液は殺菌力を持つことと、COD(Chemical Oxygen Demand)の原因物質になることから、直接公共用水域に放流することは好ましくない。   Hydrogen peroxide used for cleaning and sterilization is discharged from the manufacturing process as waste liquid (hydrogen peroxide-containing waste water). Since this waste liquid has a sterilizing power and becomes a causative substance of COD (Chemical Oxygen Demand), it is not preferable to discharge it directly into public water areas.

従来、過酸化水素含有排水の処理方法としては、亜硫酸ナトリウムなどの還元剤やペルオキシダーゼなどの酵素剤を用いた処理が行われてきたが、薬品使用量が多く、ランニングコストが高いことなどが問題であった。   Conventionally, as a treatment method for hydrogen peroxide-containing wastewater, treatment using a reducing agent such as sodium sulfite and an enzyme agent such as peroxidase has been performed, but there are problems such as a large amount of chemicals used and high running costs. Met.

一方、活性炭、マンガン担持触媒、白金担持触媒などの触媒を用いて過酸化水素を水と酸素とに分解する手法が知られている。これら触媒による処理手法を用いることにより、過酸化水素含有排水の処理に要するランニングコストを安く抑えることができる。特に活性炭は市場価格が安く、有害物質の溶出などの危険性も低いので過酸化水素含有排水処理に用いる触媒としては好適である。   On the other hand, a technique is known in which hydrogen peroxide is decomposed into water and oxygen using a catalyst such as activated carbon, a manganese-supported catalyst, or a platinum-supported catalyst. By using these catalyst treatment methods, the running cost required for treatment of hydrogen peroxide-containing wastewater can be reduced. In particular, activated carbon is suitable as a catalyst used for the treatment of wastewater containing hydrogen peroxide because it has a low market price and low risk of elution of harmful substances.

活性炭を触媒として用いた過酸化水素含有排水の処理は、前述した利点を有するものであるが、過酸化水素の分解によって発生する酸素ガスが触媒充填層に溜ることにより、排水と触媒との接触が妨害され、結果として過酸化水素の分解率が低下するという問題があった。   Treatment of hydrogen peroxide-containing wastewater using activated carbon as a catalyst has the above-mentioned advantages, but the oxygen gas generated by the decomposition of hydrogen peroxide accumulates in the catalyst packed bed, so that contact between the wastewater and the catalyst occurs. As a result, there was a problem that the decomposition rate of hydrogen peroxide decreased.

上記問題点を解決する方法として、例えば特公平6−61541号公報(特許文献1)では、原水pHを10以上に調整した上で、活性炭触媒の上部から下向流で通液することにより、触媒上部でほとんどの過酸化水素が分解されるため、結果として触媒内部でのガス発生を抑制することができるとしている。   As a method for solving the above-mentioned problem, for example, in Japanese Patent Publication No. 6-61541 (Patent Document 1), after adjusting the raw water pH to 10 or more, by passing the liquid downward from the upper part of the activated carbon catalyst, Most hydrogen peroxide is decomposed at the upper part of the catalyst, and as a result, gas generation inside the catalyst can be suppressed.

また、特公平1−203094号公報(特許文献2)では、通水方式として上向流を用い、かつ活性炭層を流動させることにより、活性炭層での酸素ガスの溜りを防止する方法が提案されている。   Japanese Patent Publication No. 1-203094 (Patent Document 2) proposes a method for preventing oxygen gas from accumulating in the activated carbon layer by using an upward flow as a water flow method and flowing the activated carbon layer. ing.

特公平6−61541号公報Japanese Examined Patent Publication No. 6-61541 特公平1−203094号公報Japanese Patent Publication No. 1-203094

しかし、特許文献1の方法では、排水のpHを10以上に調整するために大量のpH調整剤が必要となり、結果としてランニングコストの増大につながる。   However, in the method of Patent Document 1, a large amount of pH adjusting agent is required to adjust the pH of the waste water to 10 or more, resulting in an increase in running cost.

また、特許文献2の方法では、活性炭層を流動させると活性炭触媒が流出し易く、処理水質の悪化につながりやすい。また活性炭触媒が流出することにより活性炭触媒の補充が必要となり、結果としてランニングコストの増大につながる。   Moreover, in the method of patent document 2, when an activated carbon layer is made to flow, an activated carbon catalyst will flow out easily and it will be easy to lead to the deterioration of treated water quality. Moreover, since the activated carbon catalyst flows out, it is necessary to replenish the activated carbon catalyst, resulting in an increase in running cost.

本発明は、触媒層での酸素ガスの溜りを防止しつつ、かつpH調整剤添加や触媒補充等によるランニングコストの増大を抑制することができる、過酸化水素含有排水と触媒とを接触させて排水中の過酸化水素を分解する排水処理方法である。   In the present invention, hydrogen peroxide-containing wastewater and a catalyst are brought into contact with each other, while preventing accumulation of oxygen gas in the catalyst layer and suppressing an increase in running cost due to addition of a pH adjuster or catalyst replenishment. This is a wastewater treatment method for decomposing hydrogen peroxide in wastewater.

本発明は、過酸化水素含有排水と触媒とを接触させて、排水中の過酸化水素を分解する排水の処理方法であって、前記触媒は、均等係数が1.4以下であり、円形度の平均が0.95〜1.0の範囲である球状活性炭である。
The present invention is a wastewater treatment method in which hydrogen peroxide-containing wastewater is brought into contact with a catalyst to decompose hydrogen peroxide in the wastewater, wherein the catalyst has an equality factor of 1.4 or less and has a circularity. Is a spherical activated carbon having an average of 0.95 to 1.0 .

また、前記排水処理方法において、前記排水を、触媒を充填した触媒層の下部から上向流によって通水することにより、前記触媒の流動層を形成させた状態で前記排水と前記触媒とを接触させることが好ましい。   Further, in the wastewater treatment method, the wastewater is brought into contact with the catalyst in a state where a fluidized bed of the catalyst is formed by passing the wastewater from above the catalyst layer filled with the catalyst by an upward flow. It is preferable to make it.

また、前記排水処理方法において、前記触媒で処理した水を前記触媒層の下部に循環することにより、前記触媒が流動するに足る水流速を触媒層に与えることが好ましい。   Further, in the wastewater treatment method, it is preferable that the water treated with the catalyst is circulated to the lower part of the catalyst layer to give the catalyst layer a water flow rate sufficient for the catalyst to flow.

本発明において、過酸化水素含有排水と触媒とを接触させて排水中の過酸化水素を分解する際に、触媒として均一粒径の球状活性炭を使用することにより、触媒層での酸素ガスの溜りを防止しつつ、かつランニングコストの増大を抑制することができる。   In the present invention, when hydrogen peroxide containing wastewater and a catalyst are brought into contact with each other to decompose hydrogen peroxide in the wastewater, a spherical activated carbon having a uniform particle diameter is used as a catalyst, so that oxygen gas is accumulated in the catalyst layer. In addition, an increase in running cost can be suppressed.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本発明の実施形態に係る、過酸化水素含有排水と触媒とを接触させて排水中の過酸化水素を分解する排水処理方法において、触媒として均一粒径の球状活性炭を使用する。   In a wastewater treatment method according to an embodiment of the present invention, in which a hydrogen peroxide-containing wastewater and a catalyst are brought into contact with each other to decompose hydrogen peroxide in the wastewater, spherical activated carbon having a uniform particle diameter is used as the catalyst.

活性炭は触媒としてだけではなく優れた吸着剤として広く用いられているが、一般に用いられている粒状活性炭は粒径、粒子形状ともに不均一で、粒子形状としては扁平であるものが多い。このような活性炭を過酸化水素含有排水の処理に触媒として用いると、粒子間の空隙が不均一であるがゆえに、発生した酸素ガスの溜りが形成されやすい。また粒子形状が扁平であると、発生した酸素ガス気泡の上昇を妨げやすく、ガス溜りの発生を誘引する。したがって、触媒として均一粒径の球状活性炭を用いることにより、粒子間の空隙が均一になり、かつ酸素ガス気泡の上昇もスムーズになるので、結果としてガス溜りの発生を抑制することができる。   Activated carbon is widely used not only as a catalyst but also as an excellent adsorbent, and generally used granular activated carbon has a non-uniform particle size and particle shape, and many particle shapes are flat. When such activated carbon is used as a catalyst for the treatment of hydrogen peroxide-containing wastewater, the voids between the particles are non-uniform, so that a pool of generated oxygen gas is easily formed. Further, when the particle shape is flat, it is easy to prevent the generated oxygen gas bubbles from rising and induce the generation of gas pools. Therefore, by using spherical activated carbon with a uniform particle size as the catalyst, the voids between the particles become uniform and the oxygen gas bubbles rise smoothly, and as a result, the occurrence of gas accumulation can be suppressed.

本実施形態に係る排水処理方法において使用する球状活性炭の原料としては、安価で成形が容易な石炭であることが好ましいが、ヤシ殻等その他の原料によるものも使用することができる。   As a raw material of the spherical activated carbon used in the wastewater treatment method according to the present embodiment, it is preferable to use coal that is inexpensive and easy to form, but other raw materials such as coconut shells can also be used.

球状活性炭の平均粒径は、任意に選択することができるが、0.2mm〜5mmの範囲であることが好ましく、0.5mm〜2mmの範囲であることがより好ましい。0.2mmより小さい粒径であると充填密度が高くなり、球状を用いたことによるガス抜け促進効果が低減する場合がある。また5mmより大きい粒径であると充填密度が低くなり、接触効率が低下する場合がある。   The average particle diameter of the spherical activated carbon can be arbitrarily selected, but is preferably in the range of 0.2 mm to 5 mm, and more preferably in the range of 0.5 mm to 2 mm. When the particle diameter is smaller than 0.2 mm, the packing density increases, and the effect of promoting gas loss due to the use of a spherical shape may be reduced. Further, when the particle diameter is larger than 5 mm, the packing density is lowered, and the contact efficiency may be lowered.

ここで、球状活性炭の「粒径」とは、粒子を顕微鏡で観察した場合の顕微鏡画像上の粒子の長径(粒子の輪郭線上の任意の2点間の最大値)のことをいう。また、「平均粒径」は、まず顕微鏡画像上の30個の粒径を測定し、この結果から確率90%以上、精度5%となる測定回数を求めた上で、その測定個数の平均値とする。   Here, the “particle size” of the spherical activated carbon refers to the major axis of the particle on the microscope image (maximum value between any two points on the particle outline) when the particle is observed with a microscope. The “average particle size” is obtained by first measuring 30 particle sizes on a microscope image, and obtaining the number of measurements with a probability of 90% or more and an accuracy of 5% from the results, and then calculating the average value of the measured numbers. And

また、「球状」とは、以下の方法により求められる円形度Fによって表される。円形度Fは、粒子を顕微鏡で観察した場合の顕微鏡画像上の粒子の投影断面積に等しい円の周長Lを、粒子の投影輪郭長Kで割った値(F=L/K)として定義され、真球の場合にはF=1となり、扁平状になると1より小さい値となる。本実施形態における球状活性炭は、円形度Fの平均が0.8〜1.0の範囲のものであることが好ましく、0.9〜1.0の範囲のものであることがより好ましく、0.95〜1.0の範囲のものであることがさらに好ましい。この円形度Fは、顕微鏡画像に基づき画像解析等により求めることができる。   Further, “spherical” is represented by a circularity F obtained by the following method. The circularity F is defined as a value (F = L / K) obtained by dividing the circumference L of a circle equal to the projected sectional area of the particle on the microscope image when the particle is observed with a microscope by the projected contour length K of the particle. In the case of a true sphere, F = 1, and when the shape is flat, the value is smaller than 1. The spherical activated carbon in this embodiment preferably has an average circularity F in the range of 0.8 to 1.0, more preferably in the range of 0.9 to 1.0. More preferably, it is in the range of 95 to 1.0. The circularity F can be obtained by image analysis or the like based on a microscope image.

また、「均一粒径」とは、JIS−K1474に示される均等係数で表される。粒子をJIS−K1474に規定されるふるいによりふるい分け、その10%が通過したときのふるいの目開きm(mm)、粒子の60%が通過したときのふるいの目開きn(mm)を求め、均等係数U=n/mとする。均等係数Uが小さいほど、粒子の粒径が均一であることを示す。均等係数Uは、2.0以下であることが好ましく、1.4以下であることがより好ましい。   Further, the “uniform particle size” is represented by a uniformity coefficient shown in JIS-K1474. The particles are sieved by a sieve specified in JIS-K1474, and the sieve opening m (mm) when 10% of the particles have passed, and the sieve opening n (mm) when 60% of the particles have passed, The uniformity coefficient U = n / m. It shows that the particle size of particle | grains is uniform, so that the uniformity coefficient U is small. The uniformity coefficient U is preferably 2.0 or less, and more preferably 1.4 or less.

本発明の実施形態に係る排水処理方法において使用する排水処理装置1の一例を図1に示す。上部が解放した槽10内に、触媒(粒状活性炭)を充填した触媒(粒状活性炭)層12を形成する。ポンプ14により、処理を行う原水を槽10の下部より、触媒は流動させずに上向流により通水する。触媒である球状活性炭により処理されて過酸化水素が除去された処理水は、槽10の上部から流出する。   An example of the waste water treatment apparatus 1 used in the waste water treatment method according to the embodiment of the present invention is shown in FIG. A catalyst (granular activated carbon) layer 12 filled with a catalyst (granular activated carbon) is formed in the tank 10 opened at the top. The pump 14 feeds raw water to be treated from the lower part of the tank 10 by an upward flow without causing the catalyst to flow. The treated water that has been treated with the spherical activated carbon that is the catalyst and from which hydrogen peroxide has been removed flows out from the upper part of the tank 10.

また、図2,図3のように下向流により通水してもよい。この場合は原水流の入口を触媒層12の上部にするだけでよい。なお、下向流により通水する場合、図2のように槽10を密閉にしてガス抜け機構16を設けるか、図3のように槽10の上部を解放にして水頭差によって通水を行えばよい。いずれの場合も、処理水は、槽10の下部から流出する。   Further, water may be passed by a downward flow as shown in FIGS. In this case, it is only necessary that the inlet of the raw water flow is located above the catalyst layer 12. In addition, when water is passed by downward flow, the tank 10 is sealed as shown in FIG. 2 to provide a gas escape mechanism 16, or the upper part of the tank 10 is opened as shown in FIG. Just do it. In either case, the treated water flows out from the lower part of the tank 10.

活性炭による過酸化水素分解においては、原水中の過酸化水素濃度、反応pH、通水速度(単位時間あたりの流量)、通水線速度(単位時間あたりの流量を触媒層底面積で除した値)、活性炭層高、等が処理効率に対する影響因子となる。この点は本実施形態においても同様であるが、これらの因子はいずれも装置設計者が被処理水水質、処理目標、使用する担体の性状(粒径、比重、反応効率)等を勘案して任意に計画できるものであり、本実施形態においては特に限定を必要とするものではない。但し上向流を用いる場合、通水線速度については流動の有無によらず活性炭が流出しない範囲で設計することが好ましい。この際、通水線速度が同一であっても、原水過酸化水素濃度が高くなるほど過酸化水素分解時に発生する酸素ガスのエアリフト効果によって触媒層の揺動が激しくなり、触媒の流出を招く等の処理障害が生じるので、通水線速度は原水過酸化水素濃度も勘案して設計することが好ましい。   In hydrogen peroxide decomposition using activated carbon, the concentration of hydrogen peroxide in raw water, reaction pH, water flow rate (flow rate per unit time), water flow rate (flow rate per unit time divided by the catalyst bed bottom area) ), Activated carbon layer height, etc. are influential factors on the processing efficiency. Although this point is the same in this embodiment, all these factors are taken into consideration by the apparatus designer considering the quality of the water to be treated, the treatment target, the properties of the carrier to be used (particle size, specific gravity, reaction efficiency), etc. It can be arbitrarily planned, and is not particularly limited in this embodiment. However, when the upward flow is used, it is preferable to design the water line speed within a range in which the activated carbon does not flow out regardless of the flow. At this time, even if the water passage speed is the same, the higher the concentration of hydrogen peroxide in the raw water, the more the catalyst layer swings due to the air lift effect of the oxygen gas generated during hydrogen peroxide decomposition, leading to the outflow of the catalyst, etc. Therefore, it is preferable to design the water passage speed in consideration of the concentration of hydrogen peroxide in the raw water.

このように、触媒を流動させない場合は、排水の触媒への通水形態として、上向流式、下向流式のいずれの方式でも用いることができるが、触媒層12での酸素ガスの溜りを防止しつつ、触媒の処理水への流出を抑制するために、触媒として均一粒径の球状活性炭を用いた上で、排水を触媒層12の下部から上向流によって通水することにより、触媒が流動層を形成した状態で排水と触媒とを接触させることが好ましい。   As described above, when the catalyst is not flowed, any of an upward flow type and a downward flow type can be used as a flow form of the drainage to the catalyst, but the oxygen gas pool in the catalyst layer 12 can be used. In order to suppress the outflow of the catalyst into the treated water, while using spherical activated carbon with a uniform particle size as the catalyst, the waste water is passed upward from the bottom of the catalyst layer 12, It is preferable to contact the waste water and the catalyst in a state where the catalyst forms a fluidized bed.

図4に触媒を流動させる場合の排水処理装置1の一例を示す。上部が解放した槽10内に、触媒(粒状活性炭)を充填し、ポンプ14により、処理を行う原水を槽10の下部より、上向流により通水して触媒を流動させて触媒(粒状活性炭)流動層18を形成する。触媒である球状活性炭により処理されて過酸化水素が除去された処理水は、槽10の上部から処理液回収槽に流出する。   FIG. 4 shows an example of the waste water treatment apparatus 1 when the catalyst is flowed. The tank 10 with the upper part opened is filled with a catalyst (granular activated carbon), and the pump 14 supplies raw water to be treated from the lower part of the tank 10 in an upward flow to cause the catalyst to flow, thereby the catalyst (granular activated carbon). ) The fluidized bed 18 is formed. The treated water that has been treated with the spherical activated carbon as the catalyst and from which hydrogen peroxide has been removed flows out from the upper part of the tank 10 into the treatment liquid recovery tank.

触媒層12でのガス溜り発生をより確実に抑制する方法としては流動層を用いることが有効である。しかし、使用する触媒の粒径、粒子形状が不均一であると、各粒子の流動状態にばらつきが生じる。また粒子形状が扁平であれば個々の粒子においても粒子の向きによって流動の仕方にばらつきが生じる。このことにより結果として触媒粒子の流出を生じやすくなる。しかし、本実施形態のように、均一粒径の球状触媒を用いれば上記理由による流動状態のばらつきを防止することができるので、触媒層でのガス溜りの発生をほぼ完全に抑制し、かつ触媒の流出を減少させることができる。   It is effective to use a fluidized bed as a method for more reliably suppressing the occurrence of gas accumulation in the catalyst layer 12. However, if the particle size and particle shape of the catalyst used are not uniform, the flow state of each particle varies. Further, if the particle shape is flat, even in the individual particles, the flow method varies depending on the direction of the particles. As a result, the catalyst particles are likely to flow out. However, if a spherical catalyst having a uniform particle diameter is used as in this embodiment, the variation in the flow state due to the above reason can be prevented, so that the occurrence of gas accumulation in the catalyst layer is almost completely suppressed, and the catalyst Can reduce spillage.

また触媒を流動させる方策として、触媒により処理した触媒処理水を触媒層の下部に循環することにより、触媒が流動するに足る水流速を触媒層に与えることがさらに好ましい。   Further, as a measure for causing the catalyst to flow, it is more preferable to provide the catalyst layer with a water flow rate sufficient to cause the catalyst to flow by circulating the catalyst-treated water treated with the catalyst to the lower part of the catalyst layer.

図5に処理水を循環させ、触媒の流動層を形成する場合の排水処理装置1の一例を示す。上部が解放した槽10内に、触媒(粒状活性炭)を充填し、ポンプ14により、処理を行う原水を槽10の下部より、上向流により通水して触媒を流動させて触媒(粒状活性炭)流動層18を形成する。触媒である球状活性炭により処理されて過酸化水素が除去された処理水は、槽10の上部から処理液回収槽20に流出する。その後、処理水をポンプ22により循環させ、槽10の下部より再度流入させる。処理水循環を行わない場合は、同等の通水線速度が得られるよう、原水流入速度を増加させればよい。   FIG. 5 shows an example of the waste water treatment apparatus 1 when the treated water is circulated to form a fluidized bed of the catalyst. The tank 10 with the upper part opened is filled with a catalyst (granular activated carbon), and the pump 14 supplies raw water to be treated from the lower part of the tank 10 in an upward flow to cause the catalyst to flow, thereby the catalyst (granular activated carbon). ) The fluidized bed 18 is formed. The treated water that has been treated with the spherical activated carbon as the catalyst and from which hydrogen peroxide has been removed flows out from the upper part of the tank 10 into the treatment liquid recovery tank 20. Thereafter, the treated water is circulated by the pump 22 and flows again from the lower part of the tank 10. When the treated water is not circulated, the raw water inflow rate may be increased so that an equivalent water passage speed can be obtained.

触媒を流動させるためには触媒層12への通水線速度(単位時間あたりの流量を触媒層底面積で除した値)を一定値以上に設定すればよいが、過酸化水素含有排水を触媒と接触させる処理においては、通水線速度を一定にしても排水中の過酸化水素濃度が増加すると、触媒層の単位体積における単位時間あたりの酸素ガス発生量も増加するので、触媒の流動状態を一定にすることができず、場合によっては触媒の流出を招く。よって、本実施形態の処理方法においては、触媒層12の単位面積における単位時間あたりの過酸化水素流入量を一定値以下に保つことが肝要となる。即ち、設定した通水線速度における流入過酸化水素濃度が一定値以下になるよう希釈すれば、上記事象は解決し得る。この際、過酸化水素濃度の希釈に用いる希釈水として過酸化水素を実質的に含有しない触媒処理水を循環して用いれば、新たに希釈水を導入することによるランニングコストの増加を回避することができる。   In order to make the catalyst flow, the water flow rate to the catalyst layer 12 (the value obtained by dividing the flow rate per unit time by the catalyst layer bottom area) should be set to a certain value or more. When the hydrogen peroxide concentration in the wastewater increases even if the water flow speed is constant, the amount of oxygen gas generated per unit time in the unit volume of the catalyst layer also increases. Cannot be made constant, and in some cases, the catalyst flows out. Therefore, in the treatment method of the present embodiment, it is important to keep the hydrogen peroxide inflow per unit time in the unit area of the catalyst layer 12 below a certain value. That is, the above-described event can be solved by diluting the inflow hydrogen peroxide concentration at a set water passage speed so as to be a certain value or less. At this time, if the catalyst-treated water that does not substantially contain hydrogen peroxide is circulated as the dilution water used for diluting the hydrogen peroxide concentration, the increase in running cost due to the introduction of the dilution water can be avoided. Can do.

なお、従来技術である非球状活性炭を用いた処理において、本実施形態のように処理水循環による触媒層での流速確保を実施すると、処理水中に流出した活性炭が原水側、即ち反応槽下部に流入しやすく、反応槽下部での閉塞等の処理障害が発生するおそれがある。つまり本法は、均一粒径の球状活性炭を用いた場合において、より有効な、処理障害の恐れが少ない処理方法となる。   In addition, in the treatment using the non-spherical activated carbon which is the prior art, when the flow rate is secured in the catalyst layer by circulating the treated water as in this embodiment, the activated carbon that has flowed into the treated water flows into the raw water side, that is, the lower part of the reaction tank. There is a risk that processing troubles such as blockage at the bottom of the reaction tank may occur. That is, this method is a more effective treatment method with less risk of treatment failure when spherical activated carbon having a uniform particle diameter is used.

このように本実施形態に係る排水処理方法によって、触媒層での酸素ガスの溜りを防止しつつ、かつpH調整剤添加や触媒補充等によるランニングコストの増大を抑制することができる。また、ガス溜りによる処理効率の低下を防止することができるため、また、ガス溜りの発生を抑制することができるために、高分解率を長期間維持することができる。さらに、従来の方法に比べて、過酸化水素の濃度が高い排水の処理を行うことが可能となり、排水処理装置の大きさをコンパクトにすることも可能である。   As described above, the wastewater treatment method according to the present embodiment can prevent the accumulation of oxygen gas in the catalyst layer and suppress an increase in running cost due to the addition of a pH adjuster or the replenishment of the catalyst. In addition, since it is possible to prevent a reduction in processing efficiency due to gas accumulation, and it is possible to suppress the occurrence of gas accumulation, it is possible to maintain a high decomposition rate for a long period of time. Furthermore, compared with the conventional method, it becomes possible to treat wastewater having a high concentration of hydrogen peroxide, and the size of the wastewater treatment apparatus can be made compact.

本実施形態に係る排水処理方法は、半導体製造排水、食品容器洗浄排水等の各種過酸化水素含有排水の処理に好適に使用することができる。   The wastewater treatment method according to this embodiment can be suitably used for the treatment of various hydrogen peroxide-containing wastewater such as semiconductor manufacturing wastewater and food container washing wastewater.

以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail more specifically, this invention is not limited to a following example, unless the summary is exceeded.

(実施例1)
図1に示した装置を使用して、活性炭を流動させず、上向流で通水した場合の実施例を示す。通水条件は表1のように設定した。粒状活性炭は、平均粒径1mm、平均円形度0.96、均等係数1.2の石炭系活性炭を使用した。過酸化水素分解率の経日変化を図6に示す。
Example 1
An embodiment in the case of using the apparatus shown in FIG. 1 and flowing water in an upward flow without flowing activated carbon will be described. The water flow conditions were set as shown in Table 1. As the granular activated carbon, coal-based activated carbon having an average particle diameter of 1 mm, an average circularity of 0.96, and a uniformity coefficient of 1.2 was used. FIG. 6 shows changes with time in the hydrogen peroxide decomposition rate.

ここで、過酸化水素分解率は、次のようにして求めた。原水及び処理水を定期的に所定量採取し、それぞれの過酸化水素濃度を、過マンガン酸カリウム溶液を用いた滴定法(JIS K8230)によって定量した。測定した原水及び処理水の過酸化水素濃度から下式により過酸化水素分解率を求めた。
過酸化水素分解率(%)=(1−(処理水過酸化水素濃度/原水過酸化水素濃度))×100
Here, the hydrogen peroxide decomposition rate was determined as follows. A predetermined amount of raw water and treated water were collected periodically, and the respective hydrogen peroxide concentrations were quantified by a titration method (JIS K8230) using a potassium permanganate solution. The hydrogen peroxide decomposition rate was calculated from the measured raw water and treated water hydrogen peroxide concentrations according to the following equation.
Hydrogen peroxide decomposition rate (%) = (1− (treatment water hydrogen peroxide concentration / raw water hydrogen peroxide concentration)) × 100

Figure 0004511881
Figure 0004511881

(比較例)
非球状活性炭として、平均粒径1mm、平均円形度0.67、均等係数1.5の石炭系活性炭を用いた以外は、実施例1と同一条件で処理を行った。過酸化水素分解率の経日変化を図6に示す。
(Comparative example)
The treatment was performed under the same conditions as in Example 1 except that coal-based activated carbon having an average particle diameter of 1 mm, an average circularity of 0.67, and a uniformity coefficient of 1.5 was used as the non-spherical activated carbon. FIG. 6 shows changes with time in the hydrogen peroxide decomposition rate.

図6に示すとおり、非球状活性炭を用いた場合においては過酸化水素分解率が安定せず、かつ通水日数30日以降に分解率が顕著に低下した。この後、非球状活性炭の系のみ通水を停止するとともに、活性炭層に介在するガス溜りをタッピング(カラム側面を叩く操作)によって排除した上で通水を再開したところ、一時的ではあるが過酸化水素分解率が回復した。即ち、活性炭層に介在するガス溜りが過酸化水素分解を阻害していることが確認できた。なお、非球状活性炭において、30日という通水後長時間経た後で上記ガス溜りの影響が顕著になった理由としては、過酸化水素分解によって微粉化した活性炭が通常粒径の活性炭の粒子間を埋めるようになり、結果として通水30日程度でガスが溜りやすい活性炭層が形成されたこと、などが考えられる。   As shown in FIG. 6, when non-spherical activated carbon was used, the hydrogen peroxide decomposition rate was not stable, and the decomposition rate decreased significantly after 30 days of water flow. After that, the water flow was stopped only for the non-spherical activated carbon system, and the water flow was resumed after removing the gas reservoir intervening in the activated carbon layer by tapping (operation to tap the side of the column). The hydrogen oxide decomposition rate recovered. That is, it was confirmed that the gas reservoir intervening in the activated carbon layer inhibited the decomposition of hydrogen peroxide. In addition, in non-spherical activated carbon, the reason why the effect of the gas accumulation became remarkable after 30 days of water passage was long is that activated carbon pulverized by hydrogen peroxide decomposition is between the particles of activated carbon having a normal particle size. As a result, it can be considered that an activated carbon layer in which gas tends to accumulate is formed in about 30 days of water flow.

(実施例2)
図5に示した装置を用いて、処理水循環により活性炭を流動させた。通水条件は表2のように設定した。この際、原水水質については表1と同一条件とした。結果を図7に示す。処理結果を先に示した流動を行わない実施例1と比較すると、通水線速度の上昇により過酸化水素分解率は若干低下しているが、高分解率が長期間維持されていることがわかる。
(Example 2)
Using the apparatus shown in FIG. 5, activated carbon was caused to flow by circulating the treated water. The water flow conditions were set as shown in Table 2. At this time, the raw water quality was the same as in Table 1. The results are shown in FIG. Compared with Example 1 in which the flow of the treatment results shown above is not performed, the hydrogen peroxide decomposition rate is slightly reduced due to the increase in the water passage speed, but the high decomposition rate is maintained for a long time. Recognize.

Figure 0004511881
Figure 0004511881

なお、活性炭を流動させない場合において通水45日後に分解率が低下した理由としては、過酸化水素分解によって微粉化した活性炭が通常の粒径の活性炭の粒子の間を埋めるようになり、被処理水が均一に分散しなくなるいわゆるショートパスが生じたこと、先の非球形活性炭の場合と同様にガスが溜りやすい活性炭層が形成されたこと、などが考えられる。   In addition, in the case where the activated carbon is not flowed, the reason why the decomposition rate decreased after 45 days of water flow is that the activated carbon pulverized by hydrogen peroxide decomposition fills the space between the activated carbon particles of the normal particle size. It is conceivable that a so-called short path in which water does not disperse uniformly occurs, and that an activated carbon layer in which gas easily accumulates is formed as in the case of the non-spherical activated carbon.

このように、本実施例に示したように、過酸化水素含有排水の活性炭による処理において、触媒として均一粒径の球状活性炭を使用することにより、過酸化水素分解の際に発生する酸素ガスを速やかに系外へ排出することができ、結果としてガス溜りによる処理効率の低下を防止することができる。実施例においては、非流動の場合、従来方式に比べ高分解率維持期間が約1.5倍に延長できた。流動方式の場合、非流動の場合の1.5倍以上、従来方式の2倍以上の高分解率保持期間が確認された。   Thus, as shown in this example, in the treatment of hydrogen peroxide-containing wastewater with activated carbon, the use of spherical activated carbon with a uniform particle size as a catalyst allows oxygen gas generated during hydrogen peroxide decomposition to be reduced. As a result, the processing efficiency can be prevented from being lowered due to gas accumulation. In the examples, in the case of non-flowing, the high decomposition rate maintaining period could be extended by about 1.5 times compared to the conventional method. In the case of the flow method, a high decomposition rate retention period of 1.5 times or more of the non-flow method and twice or more of the conventional method was confirmed.

本発明の実施形態に係る排水処理装置の一例を示す図である。It is a figure which shows an example of the waste water treatment equipment which concerns on embodiment of this invention. 本発明の実施形態に係る排水処理装置の別の例を示す図である。It is a figure which shows another example of the waste water treatment equipment which concerns on embodiment of this invention. 本発明の実施形態に係る排水処理装置の別の例を示す図である。It is a figure which shows another example of the waste water treatment equipment which concerns on embodiment of this invention. 本発明の実施形態に係る排水処理装置の別の例を示す図である。It is a figure which shows another example of the waste water treatment equipment which concerns on embodiment of this invention. 本発明の実施形態に係る排水処理装置の別の例を示す図である。It is a figure which shows another example of the waste water treatment equipment which concerns on embodiment of this invention. 本発明の実施例1,比較例における処理の経過日数と過酸化水素分解率との関係を示す図である。It is a figure which shows the relationship between the elapsed days of the process in Example 1 and a comparative example of this invention, and a hydrogen peroxide decomposition rate. 本発明の実施例1,実施例2における処理の経過日数と過酸化水素分解率との関係を示す図である。It is a figure which shows the relationship between the elapsed days of the process in Example 1 and Example 2 of this invention, and a hydrogen peroxide decomposition rate.

符号の説明Explanation of symbols

10 槽、12 触媒(粒状活性炭)層、14,22 ポンプ、16 ガス抜け機構、18 触媒(粒状活性炭)流動層、20 処理液回収槽。   10 tanks, 12 catalyst (granular activated carbon) layer, 14, 22 pump, 16 gas escape mechanism, 18 catalyst (granular activated carbon) fluidized bed, 20 treatment liquid recovery tank.

Claims (3)

過酸化水素含有排水と触媒とを接触させて、排水中の過酸化水素を分解する排水の処理方法であって、
前記触媒は、均等係数が1.4以下であり、円形度の平均が0.95〜1.0の範囲である球状活性炭であることを特徴とする排水処理方法。
A wastewater treatment method for contacting hydrogen peroxide-containing wastewater with a catalyst to decompose hydrogen peroxide in wastewater,
The waste water treatment method according to claim 1, wherein the catalyst is a spherical activated carbon having a uniformity coefficient of 1.4 or less and an average circularity in a range of 0.95 to 1.0 .
請求項1に記載の排水処理方法であって、
前記排水を、触媒を充填した触媒層の下部から上向流によって通水することにより、前記触媒の流動層を形成させた状態で前記排水と前記触媒とを接触させることを特徴とする排水処理方法。
A wastewater treatment method according to claim 1,
Waste water treatment, wherein the waste water and the catalyst are brought into contact with each other in a state where a fluidized bed of the catalyst is formed by passing the waste water through an upward flow from a lower part of the catalyst layer filled with the catalyst. Method.
請求項2に記載の排水処理方法であって、
前記触媒で処理した水を前記触媒層の下部に循環することにより、前記触媒が流動するに足る水流速を触媒層に与えることを特徴とする排水処理方法。
A wastewater treatment method according to claim 2,
A wastewater treatment method characterized in that a water flow rate sufficient to allow the catalyst to flow is provided to the catalyst layer by circulating water treated with the catalyst to a lower portion of the catalyst layer.
JP2004182925A 2004-06-21 2004-06-21 Wastewater treatment method Expired - Lifetime JP4511881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182925A JP4511881B2 (en) 2004-06-21 2004-06-21 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182925A JP4511881B2 (en) 2004-06-21 2004-06-21 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2006000827A JP2006000827A (en) 2006-01-05
JP4511881B2 true JP4511881B2 (en) 2010-07-28

Family

ID=35769658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182925A Expired - Lifetime JP4511881B2 (en) 2004-06-21 2004-06-21 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4511881B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021629A (en) * 2006-07-11 2008-01-31 Samsung Sdi Co Ltd Organic electroluminescence display
JP4913718B2 (en) * 2007-12-27 2012-04-11 荏原実業株式会社 Residual oxidant removal apparatus, residual oxidant removal method, and water sterilization system
JP4860008B1 (en) * 2011-06-02 2012-01-25 株式会社アサカ理研 Hydrogen peroxide decomposition apparatus and hydrogen peroxide decomposition method
JP2013163150A (en) * 2012-02-10 2013-08-22 Kurita Water Ind Ltd Method for treating wastewater containing organic compound
JP6035109B2 (en) * 2012-10-24 2016-11-30 三菱レイヨンアクア・ソリューションズ株式会社 To-be-treated water treatment apparatus and to-be-treated water treatment method
KR102379199B1 (en) * 2021-07-16 2022-03-25 주식회사 퓨어스피어 Filter for water treatment comprising spherical activated carbon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135492A (en) * 1998-10-30 2000-05-16 Asahi Eng Co Ltd Decomposition treatment of hydrogen peroxide
JP2004016896A (en) * 2002-06-14 2004-01-22 Toray Ind Inc Water making method and water making apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135492A (en) * 1998-10-30 2000-05-16 Asahi Eng Co Ltd Decomposition treatment of hydrogen peroxide
JP2004016896A (en) * 2002-06-14 2004-01-22 Toray Ind Inc Water making method and water making apparatus

Also Published As

Publication number Publication date
JP2006000827A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US7713426B2 (en) Water treatment
US9533895B2 (en) Device for treating fluorine-containing water
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
JP4511881B2 (en) Wastewater treatment method
US20220274851A1 (en) Systems and Methods for Removing Volatile Compounds from Water-Storage Tanks
JP3233558B2 (en) Hydrogen peroxide removal equipment
JP2007083108A (en) Method and apparatus for treating liquid
WO2012164948A1 (en) Hydrogen peroxide decomposition device and decomposition method for hydrogen peroxide
JP5797985B2 (en) Manganese oxidation equipment
WO2013084855A1 (en) Method for treating water containing hydrogen peroxide
JP3920531B2 (en) Method for treating waste water containing ammonia and hydrogen peroxide
JP5085574B2 (en) Detoxification device and detoxification method for fluorine-containing waste liquid
JPH02267288A (en) Etching liquid regenerator
JP4199394B2 (en) Control method of absorbent concentration in thiosulfate denitration method
JP5995678B2 (en) Oxidant treatment method and oxidant treatment apparatus
JP2000135492A (en) Decomposition treatment of hydrogen peroxide
JP5980652B2 (en) Persulfate treatment apparatus, persulfate treatment method, oxidation-reduction potential measurement apparatus, and oxidation-reduction potential measurement method
JP5611127B2 (en) Defoaming apparatus and method for used discharged seawater, discharged seawater discharging system
JP3880190B2 (en) Method and apparatus for treating manganese-containing water
JP3175283B2 (en) Fluorine-containing water treatment method
JP2000202236A (en) METHOD FOR DENITRATING WASTE GAS WITH NOx CONCENTRATION VARIABLE
JP2017006854A (en) Wastewater treatment method and wastewater treatment apparatus
JP3773640B2 (en) Removal method of hydrogen sulfide
JPH10151451A (en) Method for removing hydrogen peroxide by photocatalyst and light irradiation
WO2020012786A1 (en) Water treatment device and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4511881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250