WO2020012786A1 - Water treatment device and water treatment method - Google Patents

Water treatment device and water treatment method Download PDF

Info

Publication number
WO2020012786A1
WO2020012786A1 PCT/JP2019/020573 JP2019020573W WO2020012786A1 WO 2020012786 A1 WO2020012786 A1 WO 2020012786A1 JP 2019020573 W JP2019020573 W JP 2019020573W WO 2020012786 A1 WO2020012786 A1 WO 2020012786A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
peroxide
membrane filtration
water tank
membrane
Prior art date
Application number
PCT/JP2019/020573
Other languages
French (fr)
Japanese (ja)
Inventor
明広 高田
圭一郎 福水
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018129965A external-priority patent/JP7202796B2/en
Priority claimed from JP2018164380A external-priority patent/JP7212478B2/en
Priority claimed from JP2018164379A external-priority patent/JP7188942B2/en
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Publication of WO2020012786A1 publication Critical patent/WO2020012786A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Definitions

  • the present invention provides a water treatment apparatus and a water treatment method for treating polymer organic substance-containing water containing polymer organic substances such as proteins, or removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen.
  • the present invention relates to a water treatment device and a water treatment method.
  • a phenomenon occurs in which the surface of the membrane is contaminated and pores of the membrane are blocked.
  • a method of suppressing this fouling or a method of cleaning the film a method of backflowing an aqueous solution of sodium hypochlorite from the secondary side to the primary side of the film is generally used.
  • a method for further improving the cleaning property of the membrane a method of cleaning the membrane by flowing back water containing chlorine from the secondary side of the membrane and holding the water for a predetermined time (see Patent Document 1), And a method using microbubbles of nanobubbles (see Patent Document 2).
  • the above method does not sufficiently suppress the fouling.
  • the high-molecular-weight organic matter such as protein may promote fouling. is there.
  • ⁇ ⁇ Fouling may also occur due to the proliferation of bacteria that inhabit the seawater and organic matter in the seawater, even when attempting to remove suspended substances in the seawater using an ultrafiltration membrane or a microfiltration membrane.
  • nitrogen may become a nutrient source for bacteria and promote fouling.
  • peroxidation is performed by treating the halide ion-containing water with ozone.
  • There is a method of filtering a peroxide-containing water that has generated a substance and generated a peroxide using an ultrafiltration membrane or a microfiltration membrane see Patent Document 3).
  • JP-A-10-015365 JP 2010-253457 A Japanese Patent No. 6251095
  • An object of the present invention is to provide a water treatment apparatus and a water treatment method for treating high-molecular-organic-content-containing water, which can suppress fouling of the membrane and can operate stably.
  • An object of the present invention is to provide a water treatment apparatus and a water treatment method capable of performing stable membrane treatment of halide ion-containing water containing halide ions and ammonium nitrogen.
  • Another object of the present invention is to provide a water treatment apparatus and a water treatment method capable of performing stable treatment of ammonia nitrogen with respect to halide ion-containing water containing halide ions and ammonia nitrogen.
  • the present invention relates to a water treatment apparatus for treating high-molecular organic substance-containing water containing high-molecular organic substances, and a water tank for storing the high-molecular organic substance-containing water, and a raw water tank for storing the high-molecular organic substance-containing water from the water tank.
  • a peroxide adding means for adding a peroxide while circulating the water in the raw water tank, a membrane filtration means for performing a membrane filtration treatment on the water in the raw water tank, and a membrane filtration treatment by the membrane filtration means.
  • a concentrated water returning means for returning at least a part of the concentrated water to the raw water tank; a peroxide decomposing means for decomposing a peroxide of the membrane filtration water obtained by the membrane filtration treatment by the membrane filtration means; A treated water returning means for returning at least a part of the treated water decomposed by the oxide decomposing means to the water tank.
  • the present invention relates to a water treatment apparatus for treating high-molecular organic substance-containing water containing high-molecular organic substances, and a water tank for storing the high-molecular organic substance-containing water, and a raw water tank for storing the high-molecular organic substance-containing water from the water tank.
  • membrane filtration means for performing membrane filtration of water in the raw water tank, peroxide addition means for adding peroxide to concentrated water obtained by membrane filtration treatment by the membrane filtration means, and the peroxide addition means
  • a peroxide-containing water returning means for returning at least a part of the peroxide-containing water obtained by the above to the raw water tank, and decomposing the peroxide of the membrane filtration water obtained by the membrane filtration treatment by the membrane filtration means.
  • a water treatment apparatus comprising: a peroxide decomposing means; and a treated water returning means for returning at least a part of the treated water decomposed by the peroxide decomposing means to the water tank.
  • the peroxide adding unit is a unit using ozone.
  • the present invention relates to a water treatment apparatus for removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen, and a peroxide generating means for generating peroxide in the halide ion-containing water.
  • a membrane filtration means for filtering the peroxide-containing water having generated the peroxide using an ultrafiltration membrane or a microfiltration membrane, and a peroxide for decomposing the peroxide at a stage subsequent to the membrane filtration means.
  • the water treatment apparatus further includes a control unit that monitors the transmembrane pressure difference and controls the generation amount of the peroxide.
  • the present invention relates to a water treatment apparatus for removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen, and a peroxide generating means for generating peroxide in the halide ion-containing water.
  • a membrane filtration means for filtering the peroxide-containing water having generated the peroxide using an ultrafiltration membrane or a microfiltration membrane, and a peroxide for decomposing the peroxide at a stage subsequent to the membrane filtration means.
  • An oxide decomposing means a return means for returning at least a part of the treated water decomposed by the peroxide decomposing means and adding the treated water to the halogen compound ion-containing water;
  • An oxide concentration measuring means and controlling the amount of the peroxide generated by the peroxide generating means based on the measurement value of the residual oxide concentration measuring means, Performing a breakpoint processing of the serial ammonia nitrogen, a water treatment device.
  • the residual oxide concentration measuring means can measure the total halogen amount and the free halogen amount, respectively.
  • the peroxide generation means may adjust the difference between the total halogen amount and the free halogen amount measured by the residual oxide concentration measuring means to be within 20% of the total halogen amount. It is preferable to control the amount of oxide generated.
  • the peroxide generating means is an ozone generating means.
  • the present invention is a water treatment method for treating high-molecular organic substance-containing water containing high-molecular organic substances, wherein the high-molecular organic substance-containing water sent from the water tank to the raw water tank is circulated to the raw water tank to remove peroxide.
  • a return step a peroxide decomposition step of decomposing the peroxide of the membrane filtration water obtained by the membrane filtration treatment in the membrane filtration step, and at least a part of the treated water decomposed by the peroxide decomposition step.
  • the present invention is a water treatment method for treating high-molecular-weight organic-containing water containing high-molecular-weight organic matter, and a membrane-filtration step of membrane-filtering high-molecular-weight organic-containing water sent from a water tank to a raw water tank; and A peroxide addition step of adding peroxide to the concentrated water obtained by the membrane filtration treatment by the filtration step, and at least a part of the peroxide-containing water obtained by the peroxide addition step is returned to the raw water tank.
  • a peroxide-containing water returning step a peroxide decomposition step of decomposing the peroxide of the membrane filtration water obtained by the membrane filtration treatment in the membrane filtration step, and treated water decomposed by the peroxide decomposition step A process of returning at least a part of the water to the water tank.
  • the peroxide adding step is a step using ozone.
  • the present invention is a water treatment method for removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen, wherein the peroxide is generated in the halide ion-containing water.
  • the transmembrane pressure difference is monitored to control the generation amount of the peroxide.
  • the present invention is a water treatment method for removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen, wherein the peroxide is generated in the halide ion-containing water.
  • a generating step a membrane filtration step of filtering the peroxide-containing water that has generated the peroxide using an ultrafiltration membrane or a microfiltration membrane, and a decomposition treatment of the peroxide at a later stage of the membrane filtration step.
  • a peroxide decomposing step a returning step of returning at least a part of the treated water decomposed in the peroxide decomposing step and adding the treated water to the halogen compound ion-containing water, and a step preceding the peroxide decomposing step.
  • a residual oxide concentration measuring step and based on the measured value of the residual oxide concentration measuring step, controlling the amount of the peroxide generated in the peroxide generating step, Performing a breakpoint processing of the ammonia nitrogen by oxides, water treatment process.
  • the peroxide in the peroxide generation step may be such that a difference between the total halogen amount and the free halogen amount measured in the residual oxide concentration measuring step is within 20% of the total halogen amount. It is preferable to control the amount of oxide generated.
  • the peroxide generation step is preferably an ozone generation step.
  • the present invention it is possible to provide a water treatment apparatus and a water treatment method for treating high-molecular-organic-content-containing water, which can suppress fouling of the membrane and can operate stably.
  • stable membrane treatment can be performed on halide ion-containing water containing halide ions and ammonium nitrogen.
  • stable treatment of ammonia nitrogen can be performed on halide ion-containing water containing halide ions and ammonia nitrogen.
  • Example 4 is a graph showing the transmembrane pressure with respect to the elapsed days in Example 1 and Comparative Example 1.
  • 9 is a graph showing the transmembrane pressure with respect to the elapsed days in Example 2 and Comparative Example 2.
  • 11 is a graph showing the transmembrane pressure when the amount of injected ozone in Example 3 is changed. It is a graph which shows the break point of ammonia.
  • FIG. 1 An outline of an example of a water treatment apparatus according to an embodiment of the present invention is shown in FIG. 1 and its configuration will be described.
  • the water treatment apparatus 1 adds a peroxide while circulating the water in the raw water tank 12, a water tank 10 for storing the high molecular organic substance-containing water, a raw water tank 12 for storing the high molecular organic substance-containing water from the water tank 10.
  • An ozone treatment device 22 having an ozone generator 24 is provided as a peroxide addition device, and a membrane filtration device 14 is provided as a membrane filtration device for performing membrane filtration of water in the raw water tank 12.
  • An activated carbon treatment device 18 is provided as a peroxide decomposition means for decomposing the peroxide of the membrane filtration water to be obtained.
  • the water treatment device 1 may include a membrane filtration tank 16 and a treatment tank 20.
  • the outlet of the water tank 10 and the raw water inlet of the raw water tank 12 are connected by a pipe 40 via a pump 26 and a strainer 38, and the outlet of the raw water tank 12 and the inlet of the membrane filtration device 14 are connected.
  • the outlet of the membrane filtration device 14 and the inlet of the membrane filtration water tank 16 are connected by a pipe 44, and the outlet of the membrane filtration water tank 16 and the outlet of the activated carbon treatment device 18 are connected by a pipe 42 via a pump 28.
  • the activated carbon treatment device 18 and the inlet of the treated water tank 20 are connected by a pipe 48, and the treated water outlet of the treated water tank 20 and the water tank 10 are connected to the pump 32. It is connected by a treated water return pipe 50 via the same.
  • the backwash water outlet of the treatment water tank 20 and the backwash water inlet on the secondary side of the membrane filtration device 14 are connected by a pipe 58 via the pump 34.
  • a concentrated water outlet on the primary side of the membrane filtration device 14 and a concentrated water inlet of the raw water tank 12 are connected by a concentrated water return pipe 56.
  • a pipe 66 is connected to a concentrated water outlet of the membrane filtration device 14.
  • the circulating water outlet of the raw water tank 12 and the circulating water inlet of the ozone treatment device 22 are connected by a circulation pipe 52, and the circulating water outlet of the ozone treatment device 22 and the circulating water inlet of the raw water tank 12 are connected by a circulation pipe 54.
  • the ozone generator 24 is connected to the lower part of the ozone treatment device 22 by a pipe 60.
  • Underwater creatures such as fish are raised in the aquarium 10 in the breeding water.
  • the breeding water usually contains high-molecular-weight organic substances such as proteins, suspended substances, and the like accompanying breeding of aquatic organisms.
  • the breeding water in the water tank 10, that is, water containing high molecular organic matter including high molecular organic matter and the like is sent to the raw water tank 12 through the pipe 40 by the pump 26.
  • a strainer 38 may be provided in the middle of the pipe 40 to remove relatively large solids in the high-molecular-weight-organic-material-containing water.
  • a part of the high-molecular-organic-content-containing water in the raw water tank 12 is sent to the ozone treatment device 22 through the circulation pipe 52.
  • Ozone generated by the ozone generator 24 is supplied to the ozone treatment device 22 through a pipe 60.
  • a circulation process here, mainly a decomposition process of the organic substance
  • the concentrated suspended substance and the like are separated into solid and liquid by pressurized levitation using ozone.
  • the ozone-treated water subjected to the organic matter treatment is circulated to the raw water tank 12 through the circulation pipe 54.
  • peroxide is added while circulating the high-molecular-organic-content-containing water sent from the water tank 10 to the raw water tank 12 to the raw water tank 12 (peroxide adding step).
  • the exhausted ozone may be exhausted through the pipe 62 and processed by an ozone removing device. Scum and the like generated in the ozone treatment device 22 may be discharged through the pipe 64.
  • the raw water in the raw water tank 12 is sent to the membrane filtration device 14 through the pipe 42 by the pump 28.
  • the membrane filtration device 14 the remaining suspended substances and the like in the raw water are removed by filtration using a membrane (membrane filtration step).
  • At least a part of the concentrated water obtained in the membrane filtration step is returned to the raw water tank 12 through the concentrated water return pipe 56 (a concentrated water return step).
  • the concentrated water return pipe 56 and the like function as concentrated water returning means for returning at least a part of the concentrated water to the raw water tank 12.
  • the membrane filtered water that has been subjected to membrane filtration is stored in the membrane filtration tank 16 as necessary through the pipe 44, and then supplied to the activated carbon treatment device 18 through the pipe 46 by the pump 30.
  • the activated carbon treatment device 18 peroxide such as residual ozone in the membrane filtration water is decomposed by activated carbon (peroxide decomposition step).
  • the treated water in which peroxides such as residual ozone are decomposed is stored in a treated water tank 20 as necessary through a pipe 48, and then at least a part of the treated water is passed through a treated water return pipe 50 by a pump 32 through a water tank 10. And may be reused, for example, as breeding water (processed water return step).
  • the pump 32 and the treated water return pipe 50 function as treated water returning means for returning at least a part of the treated water to the water tank 10. By returning the treated water to the water tank 10 for reuse, it is possible to reduce the cost for makeup water and drainage.
  • the membrane filtration device 14 When the membrane filtration device 14 needs to be washed, a part of the treated water is back-flushed from the treated water tank 20 through the pipe 58 by the pump 34 from the secondary side of the membrane filtration device 14 to the primary side as backwash water. Alternatively, the membrane may be washed (backwash step). The backwash drainage is discharged through a pipe 66. The membrane filtration water in the membrane filtration tank 16 may be used as the backwash water.
  • the high-molecular-weight-organic-material-containing water is stored in the raw water tank 12, the water in the raw water tank 12 is circulated to perform organic matter treatment, and the water in the raw water tank 12 is subjected to membrane filtration. Further, it is possible to suppress the fouling of the membrane due to a high molecular organic substance, a living organism, or the like, and to perform a stable operation of the membrane filtration device 14. By circulating the water in the raw water tank and performing the organic matter treatment, the organic matter can be efficiently decomposed by the multi-stage treatment. During the backwashing step, the organic material may be circulated or stopped.
  • High molecular organic substances are organic substances having a weight average molecular weight in the range of 100,000 to 2,000,000.
  • the weight-average molecular weight can be determined by a wet oxidation method using LC-OCD (Liquid Chromatography-Organic Carbon Carbon Detection) device (manufactured by DOC-LABOR, mobile 12007) as a method for grasping the components of organic substances contained in the wastewater. HW50S).
  • LC-OCD is a method of dividing an organic substance for each molecular weight and measuring the organic substance concentration of each component.
  • FIG. 7 shows the results of analysis of the breeding water for flounder. The LC-OCD spectrum shown in FIG.
  • RT Retention time
  • the peak indicated is a high molecular weight organic substance such as a protein having a weight average molecular weight in the range of 100,000 to 2,000,000.
  • Ozone microbubbles are, for example, fine ozone-containing bubbles containing ozone having a diameter of about 10 ⁇ m to 100 ⁇ m.
  • An ozone treatment device using ozone microbubbles causes the suspended substance to be hydrophobically adsorbed and floated on the surface of ozone microbubbles, which are microbubbles containing ozone, with respect to water containing high molecular organic substances including high molecular organic substances and suspended substances.
  • the effect of oxidizing organic substances by the ozone microbubbles is obtained.
  • the ozone microbubbles can be held in the tank of the ozone treatment device 22 for a long time, so that the reaction time with organic substances increases, and the processing effect of organic substances increases dramatically. Conceivable.
  • the concentration of residual ozone in the membrane filtration water is high and it is feared that it will be returned to the water tank 10 and affect the breeding of living organisms, etc.
  • means are provided.
  • the peroxide decomposing means at the subsequent stage of the membrane filtration device 14 the effect of peroxides such as residual ozone on the breeding of living organisms can be reduced. For this reason, when the raw water is breeding water for aquaculture, aquariums, or the like, even if the treated water is returned to the aquarium 10, the effect on living organisms can be reduced.
  • all of the treated water is returned to the aquarium 10 and added to the breeding water.
  • at least a part of the treated water may be returned to the aquarium 10 and added to the breeding water. May be returned to the aquarium 10 and added to the breeding water, or all of the treated water may be returned to the aquarium 10 and added to the breeding water.
  • the circulation may be performed constantly or periodically. Normally, in order to maintain the water quality in the water tank 10 as much as possible, it is sufficient to circulate constantly.
  • FIG. 1 Another example of the water treatment apparatus according to the embodiment of the present invention is schematically shown in FIG.
  • the water treatment apparatus 3 includes a water tank 10 for storing high-molecular-weight organic-material-containing water, a raw water tank 12 for storing high-molecular-weight organic-material-containing water from the water tank 10, and membrane filtration means for performing membrane filtration of water in the raw water tank 12.
  • An activated carbon treatment device 18 is provided as a peroxide decomposing means for decomposing the peroxide of the membrane filtration water obtained by the membrane filtration process.
  • the water treatment apparatus 1 may include a membrane filtration water tank 16, a treatment water tank 20, and a concentrated water tank 68.
  • the outlet of the water tank 10 and the raw water inlet of the raw water tank 12 are connected by a pipe 74, and the raw water outlet of the raw water tank 12 and the inlet of the membrane filtration device 14 are connected via a pump 70 and a strainer 38.
  • the outlet of the membrane filtration device 14 and the inlet of the membrane filtration water tank 16 are connected by the pipe 44, and the outlet of the membrane filtration water tank 16 and the inlet of the activated carbon treatment device 18 are connected.
  • the outlet of the activated carbon treatment device 18 and the inlet of the treated water tank 20 are connected by a pipe 48 via a pipe 46 via a pump 30, and the treated water outlet of the treated water tank 20 and the water tank 10 are connected via a pump 32 to treated water It is connected by a return pipe 50.
  • the backwash water outlet of the treatment water tank 20 and the backwash water inlet on the secondary side of the membrane filtration device 14 are connected by a pipe 58 via the pump 34.
  • a concentrated water outlet of the membrane filtration device 14 and a concentrated water inlet of the concentrated water tank 68 are connected by a pipe 80, and a backwash drainage outlet of the membrane filtration device 14 and a backwashed drainage inlet of the concentrated water tank 68 are connected by a pipe 78,
  • the outlet of the concentrated water tank 68 and the inlet of the ozone treatment device 22 are connected by a pipe 82 via a pump 72, and the outlet of the ozone treatment device 22 and the inlet of the raw water tank 12 are connected by a peroxide-containing water return pipe 84.
  • the ozone generator 24 is connected to the lower part of the ozone treatment device 22 by a pipe 60.
  • the breeding water usually contains high-molecular-weight organic substances such as proteins, suspended substances, and the like accompanying breeding of aquatic organisms.
  • the breeding water in the water tank 10 that is, water containing high-molecular-weight organic matter including high-molecular-weight organic matter is sent to the raw water tank 12 through a pipe 74.
  • the high-molecular organic substance-containing water is mixed with a peroxide-containing water to which a peroxide described later is added in the raw water tank 12, and then sent as mixed water to the membrane filtration device 14 through the pipe 76 by the pump 70.
  • a strainer 38 may be provided in the middle of the pipe 76 to remove relatively large solids in the high-molecular-weight-organic-material-containing water.
  • the suspended substances and the like remaining in the raw water are removed by filtration using a membrane (membrane filtration step).
  • the membrane filtered water that has been subjected to membrane filtration is stored in the membrane filtration tank 16 as necessary through the pipe 44, and then supplied to the activated carbon treatment device 18 through the pipe 46 by the pump 30.
  • the activated carbon treatment device 18 peroxide such as residual ozone in the membrane filtration water is decomposed by activated carbon (peroxide decomposition step).
  • the treated water in which peroxides such as residual ozone are decomposed is stored in a treated water tank 20 as necessary through a pipe 48, and then at least a part of the treated water is passed through a treated water return pipe 50 by a pump 32 through a water tank 10. And may be reused, for example, as breeding water (processed water return step).
  • the pump 32 and the treated water return pipe 50 function as treated water returning means for returning at least a part of the treated water to the water tank 10. By returning the treated water to the water tank 10 for reuse, it is possible to reduce the cost for makeup water and drainage.
  • the membrane filtration device 14 When the membrane filtration device 14 needs to be washed, a part of the treated water is back-flushed from the treated water tank 20 through the pipe 58 by the pump 34 from the secondary side of the membrane filtration device 14 to the primary side as backwash water.
  • the membrane may be washed (backwash step).
  • the backwash wastewater is supplied to a concentrated water tank 68 through a pipe 78 and mixed with the concentrated water from the membrane filtration device 14.
  • the membrane filtration water in the membrane filtration tank 16 may be used as the backwash water.
  • the concentrated water of the membrane filtration device 14 is stored in a concentrated water tank 68 as necessary through a pipe 80, and then supplied to the ozone treatment device 22 through a pipe 82 by a pump 72.
  • the ozone generated by the ozone generator 24 is supplied to the ozone treatment device 22 through a pipe 60.
  • the treatment of the organic matter in the concentrated water (here, mainly the decomposition treatment of the organic matter) is performed by ozone.
  • the concentrated suspended substance and the like are separated into solid and liquid by pressurized levitation using ozone.
  • the ozone-treated water subjected to the organic matter treatment is returned to the raw water tank 12 through the peroxide-containing water return pipe 84.
  • peroxide is added to the concentrated water obtained by the membrane filtration process in the membrane filtration step (peroxide addition step), and at least a part of the peroxide-containing water obtained by the peroxide addition step is converted into the raw water tank 12.
  • the peroxide-containing water return pipe 84 and the like function as a peroxide-containing water return means for returning at least a part of the peroxide-containing water to the raw water tank 12.
  • the exhausted ozone may be exhausted through the pipe 62 and processed by an ozone removing device. Scum and the like generated in the ozone treatment device 22 may be discharged through the pipe 64.
  • the high-molecular-weight-organic-containing water is stored in the raw water tank 12, the water in the raw water tank 12 is subjected to membrane filtration, and the concentrated water obtained by the membrane filtration is subjected to organic matter treatment.
  • the membrane filtration device 14 By returning the water to the water tank 12, fouling of the membrane due to high molecular organic matter, living organisms, or the like is suppressed, and the stable operation of the membrane filtration device 14 becomes possible.
  • the suspended substance is concentrated by the membrane of the membrane filtration device 14, and the efficiency of pressurized flotation in the ozone treatment device 22 can be increased.
  • the water treatment apparatuses 1 and 3 and the water treatment method according to the present embodiment are applied to treatment of breeding water used for breeding underwater organisms such as aquariums and aquaculture, and the breeding water may be seawater. Or fresh water.
  • the present invention is suitably applied to the treatment of water containing high-molecular organic matter, including high-molecular organic matter such as proteins, generated in the process of breeding underwater organisms such as aquariums and aquaculture.
  • the organic matter concentration in the breeding water varies depending on factors such as feeding (for example, ⁇ 0.5 to 10 mg / L).
  • the water treatment apparatuses 1 and 3 according to the present embodiment can be suitably used as a production apparatus or a treatment apparatus for breeding water for aquatic organisms.
  • the concentration of the high molecular organic substance in the water containing the high molecular organic substance is, for example, in the range of 0.1 to 5 mg / L.
  • the concentration of the suspended substance in the water containing the high molecular organic substance is, for example, in the range of 10 to 100 mg / L.
  • Examples of the peroxide addition means in the water treatment apparatuses 1 and 3 include an ultraviolet oxidation treatment apparatus and the like in addition to an ozone treatment apparatus having an ozone generator. From the viewpoint of processing performance and the like, an ozone treatment device including an ozone generator is preferable.
  • the peroxide adding means is preferably an ozone treatment device using ozone, and more preferably an ozone treatment device using ozone microbubbles.
  • FIG. 3 Another example of the water treatment apparatus according to the embodiment of the present invention is schematically shown in FIG. 3 and its configuration will be described.
  • the water treatment device 4 includes an ozone treatment device 22 having an ozone generator 24 as a peroxide generation means, a membrane filtration device 14 having an ultrafiltration membrane or a microfiltration membrane as a membrane filtration means, and a peroxide.
  • An activated carbon treatment device 18 is provided as peroxide decomposition means for performing decomposition treatment.
  • the water treatment apparatus 4 may include a water tank 10, a raw water tank (also referred to as a peroxide-containing water tank) 12, a membrane filtration water tank 16, a treated water tank 20, and a concentrated water tank 68.
  • the outlet of the water tank 10 and the inlet of the raw water tank (peroxide-containing water tank) 12 are connected by a pipe 85, and the outlet of the raw water tank (peroxide-containing water tank) 12 is connected to the membrane filtration device.
  • a permeate outlet of the membrane filtration device 14 and an inlet of the membrane filtration tank 16 are connected by a pipe 88, and an outlet of the membrane filtration tank 16 is
  • the inlet of the treatment device 18 is connected by a pipe 90 via a pump 142, the outlet of the activated carbon treatment device 18 and the inlet of the treatment water tank 20 are connected by a pipe 92, and the outlet of the treatment water tank 20 and the water tank 10 are connected by a pump 144.
  • a return pipe 94 are connected by a return pipe 94.
  • the concentrated water outlet of the membrane filtration device 14 and the concentrated water inlet of the concentrated water tank 68 are connected by a pipe 96, and the outlet of the concentrated water tank 68 and the inlet of the ozone treatment device 22 are connected by a pipe 98 via a pump 146.
  • the outlet of the treatment device 22 and the inlet of the raw water tank (peroxide-containing water tank) 12 are connected by a pipe 100.
  • An ozone generator 24 is connected to the lower part of the ozone treatment device 22 by a pipe 110 via a valve 178.
  • a flow meter 172 for measuring the flow rate of ozone is provided downstream of the valve 178 in the pipe 110.
  • a pipe 106 for discharging exhausted ozone is connected to an exhausted ozone outlet at the upper part of the ozone treatment device 22, and a pipe 108 branched from an upstream side of a valve 178 in the pipe 110 is connected to the pipe 106 via a valve 176. .
  • a pipe 104 for discharging generated scum or the like is connected to an upper side surface of the ozone treatment device 22.
  • the lower part of the treated water tank 20 and the secondary side of the membrane filtration device 14 are connected by a pipe 102 via a pump 148.
  • a pressure gauge 160 is installed downstream of the strainer 38 in the pipe 86, a pressure gauge 162 is installed in the pipe 88, and a pressure gauge 164 is installed in the pipe 96.
  • Halogen ion-containing water containing a suspended substance and containing halide ions and ammonium nitrogen stored in the water tank 10 is stored in a raw water tank (peroxide-containing water tank) 12 as necessary.
  • the halide ion-containing water is mixed in a raw water tank (peroxide-containing water tank) 12 with a peroxide-containing water that has generated a peroxide, which will be described later. It is supplied to the device 14.
  • a strainer 38 may be provided in the middle of the pipe 86 to remove relatively large solids in the halide ion-containing water.
  • suspended substances in the mixed water that is, suspended substances contained in the halide ion-containing water as raw water are removed by filtration using an ultrafiltration membrane or a microfiltration membrane (membrane). Filtration step).
  • the membrane filtered water (permeated water) that has been subjected to membrane filtration is stored in the membrane filtered water tank 16 as necessary through a pipe 88, and then supplied to the activated carbon treatment device 18 through a pipe 90 by a pump 142.
  • the halogen oxo acid which is a peroxide in the membrane filtered water, is decomposed by activated carbon to form halide ions (peroxide decomposition step).
  • the peroxide is decomposed, and the treated water containing halide ions is stored in the treated water tank 20 as necessary through the pipe 92, and then returned to the water tank 10 through the return pipe 94 by the pump 144, and contains the halide ions. It is added to water (return step).
  • the pump 144 and the return pipe 94 function as return means for returning at least a part of the treated water decomposed by the peroxide decomposing means and adding the treated water to the halogen compound ion-containing water.
  • the concentrated water in the membrane filtration device 14 is stored in the concentrated water tank 68 as necessary through a pipe 96, and then supplied to the ozone treatment device 22 through a pipe 98 by a pump 146.
  • the ozone generated by the ozone generator 24 is supplied to the ozone treatment device 22 through a pipe 110.
  • a halogen oxo acid such as hypohalous acid (HXO), which is a peroxide
  • HXO hypohalous acid
  • a peroxide is generated by the reaction between the halide ion contained in the concentrated water and ozone ( Peroxide generation step).
  • Halogen oxo acids such as hypohalous acid have oxidizing power and are effective in oxidizing and sterilizing organic substances.
  • the discharged ozone is discharged through a pipe 106, and scum generated in the ozone treatment device 22 is discharged through a pipe 104.
  • the portion of the ozone generated by the ozone generator 24 that is not supplied to the ozone treatment device 22 is discharged through the pipes 110, 108, and 106. That is, the amount of ozone supplied to the ozone treatment device 22 is adjusted by the degree of opening and closing of the valves 176 and 178.
  • a halogen oxo acid such as hypochlorous acid (HClO), which is a peroxide, is formed by a reaction between chloride ion contained in the concentrated water and ozone as shown in the following formula 2.
  • halogen oxo acid such as hypobromous acid (HBrO), which is a peroxide
  • HBrO hypobromous acid
  • the peroxide-containing water that has generated peroxide is supplied to a raw water tank (peroxide-containing water tank) 12 through a pipe 100 and mixed with the halide ion-containing water from the water tank 10.
  • the membrane filtration device 14 When the membrane filtration device 14 needs to be washed, a part of the treated water is back-flushed from the treated water tank 20 to the primary side from the secondary side of the membrane filtration device 14 through the pipe 102 by the pump 148 as the backwash water.
  • the membrane may be washed (backwash step).
  • the backwash wastewater is supplied to the concentrated water tank 68 through the pipe 96 and mixed with the concentrated water from the membrane filtration device 14.
  • the membrane filtration water in the membrane filtration tank 16 may be used as the backwash water.
  • a peroxide containing halogen oxoacid having an oxidizing and sterilizing power such as hypobromous acid or bromic acid generated from a peroxide generation apparatus such as the ozone treatment apparatus 22 including the ozone generation apparatus 24 is used.
  • a peroxide containing halogen oxoacid having an oxidizing and sterilizing power such as hypobromous acid or bromic acid generated from a peroxide generation apparatus such as the ozone treatment apparatus 22 including the ozone generation apparatus 24 is used.
  • the amount of peroxide generated in the ozone treatment device 22 is adjusted (adjustment). Process). Thereby, stable membrane treatment can be performed on the halide ion-containing water containing halide ions and ammonium nitrogen. That is, the transmembrane pressure difference can be controlled by the amount of generated peroxide while continuing the membrane filtration operation.
  • the amount of ozone injected from the ozone generator 24 in the ozone treatment device 22 may be increased (for example, About 10%).
  • the ozone injection amount may be reduced or the ozone injection amount may be maintained as it is.
  • the ozone generator 24 may function as an adjusting means for adjusting the amount of peroxide generated based on the behavior of the transmembrane pressure of the membrane filtration device 14, or the flow at the outlet of the ozone generator 24 may be used.
  • the valve 176 and the valve 178 whose opening degree is adjusted according to the value of the meter 172 may function.
  • a control device (not shown) is connected to the pressure gauge 160, the pressure gauge 162, the pressure gauge 164, and the ozone generator 24, or the flow meter 172, the valve 176, and the valve 178 are electrically connected to each other. Then, the transmembrane pressure may be monitored, and the amount of peroxide generated in the ozone treatment device 22 may be controlled based on the behavior of the transmembrane pressure.
  • the generated halogen oxoacid such as hypohalous acid causes a denitrification reaction of the ammonia nitrogen contained in the halide ion-containing water, as shown in the following equation (4). Because of the denitrification step), both turbidity by the membrane and nitrogen removal of the halide ion-containing water can be achieved.
  • the generated hypobromous acid easily causes the denitrification of ammonia nitrogen contained in the halide ion-containing water as shown in the following formula 5.
  • a peroxide decomposing means such as an activated carbon treatment unit 18 is provided downstream of the membrane filtration unit 14.
  • a peroxide decomposing means such as an activated carbon treatment unit 18 is provided downstream of the membrane filtration unit 14.
  • all of the treated water is returned to the water tank 10 and added to the halide ion-containing water, but at least a portion of the treated water is returned to the water tank 10 and added to the halide ion-containing water. Just do it. From the viewpoint of reducing the amount of water used, it is preferable that all of the treated water be returned to the water tank 10. By using a closed circulation system in which all of the treated water is returned to the water tank 10, there is an advantage that the amount of water used can be reduced.
  • FIG. 4 An outline of another example of the water treatment apparatus according to the embodiment of the present invention is shown in FIG. 4 and its configuration will be described.
  • the water treatment device 5 includes an ozone treatment device 22 having an ozone generator 24 as a peroxide generation means, a membrane filtration device 14 having an ultrafiltration membrane or a microfiltration membrane as a membrane filtration means, and a peroxide.
  • An activated carbon treatment device 18 is provided as peroxide decomposition means for performing decomposition treatment.
  • the water treatment apparatus 5 may include the water tank 10, a raw water tank (peroxide-containing water tank) 160, a membrane filtration water tank 16, and a treated water tank 20.
  • the outlet of the water tank 10 and the inlet of the ozone treatment device 22 are connected by the pipe 112 via the pump 150 and the strainer 38, and the exit of the ozone treatment device 22 is connected to the raw water tank (containing peroxide).
  • the inlet of a water tank (160) is connected by a pipe (114), the outlet of a raw water tank (peroxide-containing water tank) 160 and the inlet of the membrane filter (14) are connected by a pipe (116) via a pump (152), and the The permeated water outlet and the inlet of the membrane filtration water tank 16 are connected by a pipe 118, and the outlet of the membrane filtration water tank 16 and the inlet of the activated carbon treatment device 18 are connected by a pipe 120 via a pump 154, and the outlet of the activated carbon treatment device 18 And the inlet of the treated water tank 20 are connected by a pipe 122, and the outlet of the treated water tank 20 and the water tank 10 are connected by a return pipe 124 via a pump 156.
  • the ozone generator 24 is connected to the lower part of the ozone treatment device 22 via a pipe 132 via a valve 182.
  • a flow meter 174 for measuring the flow rate of ozone is installed downstream of the valve 182 in the pipe 132.
  • a pipe 136 for discharging the discharged ozone is connected to a discharge ozone outlet at an upper portion of the ozone treatment device 22, and a pipe 138 branched from an upstream side of the valve 182 in the pipe 132 is connected to the pipe 136 via the valve 180.
  • a pipe 134 for discharging generated scum and the like is connected to an upper side surface of the ozone treatment device 22.
  • the lower part of the treatment water tank 20 and the secondary side of the membrane filtration device 14 are connected by a pipe 126 via a pump 158.
  • a pressure gauge 166 is installed downstream of the pump 152 in the pipe 116
  • a pressure gauge 168 is installed in the pipe 118
  • a pressure gauge 170 is installed in the pipe 130.
  • the halide ion-containing water containing the suspended substance and containing the halide ions and the ammonium nitrogen stored in the water tank 10 is supplied to the ozone treatment device 22 through the pipe 112 by the pump 150. If necessary, a strainer 38 may be provided in the middle of the pipe 112 to remove relatively large solids in the halide ion-containing water.
  • the ozone generated by the ozone generator 24 is supplied to the ozone treatment device 22 through a pipe 132.
  • halogen oxo acids such as hypohalous acid (HXO), which is a peroxide, are converted. Occurs (peroxide generation step).
  • Halogen oxo acids such as hypohalous acid have oxidizing power and are effective in oxidizing and sterilizing organic substances.
  • the discharged ozone is discharged through a pipe 136, and scum generated in the ozone treatment device 22 is discharged through a pipe 134.
  • the portion of the ozone generated by the ozone generator 24 that is not supplied to the ozone treatment device 22 is discharged through the pipes 132, 138, and 136. That is, the amount of ozone supplied to the ozone treatment device 22 is adjusted by the degree of opening and closing of the valves 180 and 182.
  • halide ion-containing water When X - is a bromide ion, a reaction between bromide ion contained in the halide ion-containing water and ozone causes halogen such as hypobromite (HBrO), which is a peroxide, as shown in the above formula 3. Oxo acids are generated.
  • halogen such as hypobromite (HBrO)
  • HBrO hypobromite
  • the peroxide-containing water that has generated peroxide is stored in a raw water tank (peroxide-containing water tank) 160 as required through a pipe 114, and then supplied to the membrane filtration device 14 through a pipe 116 by a pump 152.
  • a raw water tank peroxide-containing water tank
  • the membrane filtration device 14 suspended substances in the peroxide-containing water, that is, suspended substances contained in the halide ion-containing water as raw water are removed by filtration using an ultrafiltration membrane or a microfiltration membrane. (Membrane filtration step).
  • the permeated water (membrane filtered water) that has been subjected to membrane filtration is stored in the membrane filtration water tank 16 as necessary through a pipe 118, and then supplied to the activated carbon treatment device 18 through a pipe 120 by a pump 154.
  • the activated carbon treatment device 18 the halogen oxo acid, which is a peroxide in the membrane filtered water, is decomposed by activated carbon to form halide ions (peroxide decomposition step).
  • the concentrated water of the membrane filtration device 14 is discharged through a pipe 130.
  • the peroxide is decomposed, and the treated water containing halide ions is stored in the treated water tank 20 as needed through the pipe 122, and then returned to the water tank 10 through the return pipe 124 by the pump 156, and contains the halide ions. It is added to water (return step).
  • the pump 156 and the return pipe 124 function as return means for returning at least a part of the treated water decomposed by the peroxide decomposition means and adding the treated water to the halogen compound ion-containing water.
  • the membrane filtration device 14 When the membrane filtration device 14 needs to be washed, a part of the treated water is returned as backwash water from the treated water tank 20 to the primary side of the membrane filtration device 14 from the secondary side through the pipe 126 by the pump 158. Alternatively, the membrane may be washed (backwash step). The backwash drainage is discharged through a pipe 128. The membrane filtration water in the membrane filtration tank 16 may be used as the backwash water.
  • the halogen containing a halogen oxo acid having an oxidizing and sterilizing power such as hypobromous acid or bromic acid generated from a peroxide generator such as the ozone treatment apparatus 22 including the ozone generator 24.
  • a peroxide generator such as the ozone treatment apparatus 22 including the ozone generator 24.
  • the amount of peroxide generated in the ozone treatment device 22 is adjusted (adjustment). Process). Thereby, stable membrane treatment can be performed on the halide ion-containing water containing halide ions and ammonium nitrogen.
  • the transmembrane pressure of the membrane filtration device 14 is based on, for example, the inlet pressure measured by the pressure gauge 166, the outlet pressure (permeate water pressure) measured by the pressure gauge 168, and the concentrated water pressure measured by the pressure gauge 170. It is determined by the above equation.
  • the amount of ozone injected from the ozone generator 24 in the ozone treatment device 22 may be increased (for example, About 10%).
  • the ozone injection amount may be reduced or the ozone injection amount may be maintained as it is.
  • the ozone generator 24 may function as an adjusting means for adjusting the amount of peroxide generated based on the behavior of the transmembrane pressure of the membrane filtration device 14, or the flow at the outlet of the ozone generator 24 may be used.
  • the valve 180 and the valve 182 whose opening degree is adjusted according to the value of the meter 174 may function.
  • a control device (not shown) is connected to the pressure gauge 166, the pressure gauge 168, the pressure gauge 170, and the ozone generator 24, or the flow meter 174, the valve 180, and the valve 182 are electrically connected to each other. Then, the transmembrane pressure may be monitored, and the amount of peroxide generated in the ozone treatment device 22 may be controlled based on the behavior of the transmembrane pressure.
  • the generated halogen oxo acid such as hypohalous acid causes a denitrification reaction of the ammonia nitrogen contained in the halide ion-containing water, as shown in the above formula (4). Because of the denitrification step), both turbidity by the membrane and nitrogen removal of the halide ion-containing water can be achieved.
  • the generated hypobromous acid easily causes the denitrification of ammonia nitrogen contained in the halide ion-containing water as shown in the above formula 5.
  • a peroxide decomposing means such as an activated carbon treatment unit 18 is provided downstream of the membrane filtration unit 14.
  • a peroxide decomposing means such as an activated carbon treatment unit 18 is provided downstream of the membrane filtration unit 14.
  • all of the treated water is returned to the water tank 10 and added to the halide ion-containing water, but at least a portion of the treated water is returned to the water tank 10 and added to the halide ion-containing water. Just do it. From the viewpoint of reducing the amount of water used, it is preferable that all of the treated water be returned to the water tank 10. By using a closed circulation system in which all of the treated water is returned to the water tank 10, there is an advantage that the amount of water used can be reduced.
  • FIG. 5 schematically shows another example of the water treatment apparatus according to the embodiment of the present invention, and the configuration will be described.
  • the water treatment device 6 includes an ozone treatment device 22 having an ozone generator 24 as a peroxide generation means, a membrane filtration device 14 having an ultrafiltration membrane or a microfiltration membrane as a membrane filtration means, and a peroxide.
  • An activated carbon treatment device 18 is provided as peroxide decomposition means for performing decomposition treatment.
  • the water treatment device 6 may include a water tank 10, a raw water tank (peroxide-containing water tank) 12, a membrane filtration water tank 16, a treated water tank 20, and a concentrated water tank 68.
  • the outlet of the water tank 10 and the inlet of the raw water tank (peroxide-containing water tank) 12 are connected by a pipe 85, and the outlet of the raw water tank (peroxide-containing water tank) 12 is connected to the membrane filtration device.
  • a permeate outlet of the membrane filtration device 14 and an inlet of the membrane filtration tank 16 are connected by a pipe 88, and an outlet of the membrane filtration tank 16 is
  • the inlet of the treatment device 18 is connected by a pipe 90 via a pump 142, the outlet of the activated carbon treatment device 18 and the inlet of the treatment water tank 20 are connected by a pipe 92, and the outlet of the treatment water tank 20 and the water tank 10 are connected by a pump 144.
  • a return pipe 94 are connected by a return pipe 94.
  • the concentrated water outlet of the membrane filtration device 14 and the concentrated water inlet of the concentrated water tank 68 are connected by a pipe 96, and the outlet of the concentrated water tank 68 and the inlet of the ozone treatment device 22 are connected by a pipe 98 via a pump 146.
  • An outlet of the treatment device 22 and an inlet of the raw water tank (peroxide-containing water tank) 12 are connected by a pipe 100.
  • An ozone generator 24 is connected to the lower part of the ozone treatment device 22 by a pipe 110 via a valve 178.
  • a flow meter 172 for measuring the flow rate of ozone is provided downstream of the valve 178 in the pipe 110.
  • a pipe 106 for discharging exhausted ozone is connected to an exhausted ozone outlet at the upper part of the ozone treatment device 22, and a pipe 108 branched from an upstream side of a valve 178 in the pipe 110 is connected to the pipe 106 via a valve 176. .
  • a pipe 104 for discharging generated scum or the like is connected to an upper side surface of the ozone treatment device 22.
  • the lower part of the treated water tank 20 and the secondary side of the membrane filtration device 14 are connected by a pipe 102 via a pump 148.
  • a residual chlorine measuring device 184 is provided in the pipe 100 as a residual oxide concentration measuring means.
  • Halogen ion-containing water containing a suspended substance and containing halide ions and ammonium nitrogen stored in the water tank 10 is stored in a raw water tank (peroxide-containing water tank) 12 as necessary.
  • the halide ion-containing water is mixed in a raw water tank (peroxide-containing water tank) 12 with a peroxide-containing water that has generated a peroxide, which will be described later, and a breakpoint treatment of ammonia nitrogen by the peroxide is performed. After that, the mixed water is supplied to the membrane filtration device 14 through the pipe 86 by the pump 140. If necessary, a strainer 38 may be provided in the middle of the pipe 86 to remove relatively large solids in the halide ion-containing water.
  • suspended substances in the mixed water that is, suspended substances contained in the halide ion-containing water as raw water are removed by filtration using an ultrafiltration membrane or a microfiltration membrane (membrane). Filtration step).
  • the membrane filtered water (permeated water) that has been subjected to membrane filtration is stored in the membrane filtered water tank 16 as necessary through a pipe 88, and then supplied to the activated carbon treatment device 18 through a pipe 90 by a pump 142.
  • the halogen oxo acid which is a peroxide in the membrane filtered water, is decomposed by activated carbon to form halide ions (peroxide decomposition step).
  • the peroxide is decomposed, and the treated water containing halide ions is stored in the treated water tank 20 as necessary through the pipe 92, and then returned to the water tank 10 through the return pipe 94 by the pump 144, and contains the halide ions. It is added to water (return step).
  • the pump 144 and the return pipe 94 function as return means for returning at least a part of the treated water decomposed by the peroxide decomposing means and adding the treated water to the halogen compound ion-containing water.
  • the concentrated water in the membrane filtration device 14 is stored in the concentrated water tank 68 as necessary through a pipe 96, and then supplied to the ozone treatment device 22 through a pipe 98 by a pump 146.
  • the ozone generated by the ozone generator 24 is supplied to the ozone treatment device 22 through a pipe 110.
  • a reaction between the halide ions contained in the concentrated water and ozone generates halogen oxo acids such as hypohalous acid (HXO) which is a peroxide ( Peroxide generation step).
  • Halogen oxo acids such as hypohalous acid have oxidizing power and are effective in oxidizing and sterilizing organic substances.
  • the discharged ozone is discharged through a pipe 106, and scum generated in the ozone treatment device 22 is discharged through a pipe 104.
  • the portion of the ozone generated by the ozone generator 24 that is not supplied to the ozone treatment device 22 is discharged through the pipes 110, 108, and 106. That is, the amount of ozone supplied to the ozone treatment device 22 is adjusted by the degree of opening and closing of the valves 176 and 178.
  • a halogen oxo acid such as hypochlorous acid (HClO), which is a peroxide, is formed by the reaction between the chloride ion contained in the concentrated water and ozone as shown in the above formula 2.
  • halogen oxo acid such as hypobromite (HBrO), which is a peroxide
  • HBrO hypobromite
  • the peroxide-containing water that has generated the peroxide is supplied to a raw water tank (peroxide-containing water tank) 12 through a pipe 100, mixed with the halide ion-containing water from the water tank 10, and, as described above, is mixed with the peroxide.
  • a breakpoint treatment of ammonia nitrogen by the substance is performed.
  • the membrane filtration device 14 When the membrane filtration device 14 needs to be washed, a part of the treated water is back-flushed from the treated water tank 20 to the primary side from the secondary side of the membrane filtration device 14 through the pipe 102 by the pump 148 as the backwash water.
  • the membrane may be washed (backwash step).
  • the backwash wastewater is supplied to the concentrated water tank 68 through the pipe 96 and mixed with the concentrated water from the membrane filtration device 14.
  • the membrane filtration water in the membrane filtration tank 16 may be used as the backwash water.
  • the generated halogen oxo acid such as hypohalous acid causes a denitrification reaction of the ammonia nitrogen contained in the halide ion-containing water ( Because of the denitrification step), both turbidity by the membrane and nitrogen removal of the halide ion-containing water can be achieved.
  • the generated hypobromous acid easily causes the denitrification of ammonia nitrogen contained in the halide ion-containing water as shown in the above formula 5.
  • the peroxide containing halogen oxoacid having oxidizing and sterilizing power such as hypobromous acid or bromic acid, generated from a peroxide generator such as the ozone treatment apparatus 22 including the ozone generator 24 is used.
  • a peroxide generator such as the ozone treatment apparatus 22 including the ozone generator 24.
  • ammonia nitrogen is sufficiently treated by measuring the residual oxide concentration by the residual chlorine measuring apparatus 184 at a stage prior to the activated carbon treatment apparatus 18 (peroxide decomposition step). You can be sure that. Therefore, it is possible to stably treat the ammonium ion-containing water containing the halide ions and the ammonia nitrogen, and to sufficiently remove the ammonia nitrogen even if the water quality changes.
  • the amount of halogen oxo acid generated in the peroxide generating means such as an ozone treatment device is lower than the amount required by the break point method described below. Since residual halogen in peroxide-containing water exists in the form of bound halogen, the residual halogen concentration is calculated by measurement of total chlorine, and even if it is detected as residual halogen, the removal of ammonia nitrogen is insufficient. It is thought to be.
  • the residual oxide concentration is measured by a residual chlorine measuring device 184 which is a residual oxide concentration measuring means installed before the activated carbon treatment device 18 which is a peroxide decomposing means.
  • the amount of peroxide generated in the ozone treatment device 22 is controlled based on the measurement value of the residual oxide concentration measuring means (control step).
  • control step By controlling the amount of peroxide generated and performing a breakpoint treatment of ammonia nitrogen, it is possible to sufficiently remove ammonia nitrogen from halide ion-containing water containing halide ions and ammonium nitrogen. A stable film processing can be performed.
  • Break point treatment is a method of decomposing and removing ammonia nitrogen by adding an oxidizing agent (peroxide) larger than the theoretical value with respect to the concentration of ammonia nitrogen in the water to be treated.
  • the graph of FIG. 11 shows the free chlorine and the total chlorine with respect to the added hypochlorous acid concentration (mg / L) when hypochlorous acid was added as a halogen-based oxidizing agent to ammonia-containing water containing ammonia, respectively. It is a graph which shows the measured residual chlorine concentration (mg / L).
  • the residual oxide concentration measuring means is not particularly limited as long as it can measure the residual oxide amount, and is not particularly limited. At least one of the total halogen amount (free halogen amount + bonded halogen amount) and the free halogen amount Is preferable, and it is more preferable that the total amount of halogen and the amount of free halogen can be measured respectively.
  • the residual oxide concentration measuring means is, for example, a residual chlorine measuring means and may be any one capable of measuring the residual chlorine amount, and is not particularly limited, but the total chlorine amount (free chlorine amount + bound chlorine amount). It is preferable to be able to measure at least one of the free chlorine amount and the free chlorine amount, and it is more preferable that the total chlorine amount and the free chlorine amount can be measured.
  • the residual oxide concentration measuring means a measuring device capable of measuring both the total halogen amount and the free halogen amount, for example, both the total chlorine amount and the free chlorine amount, or the total halogen amount, for example, the total chlorine amount may be used. And a measuring device that can measure the amount of free halogen, for example, the amount of free chlorine.
  • the total amount of halogen and the amount of free halogen are measured by the residual oxide concentration measuring means, respectively, and the amount of peroxide generation is set so that the difference between the measured total amount of halogen and the amount of free halogen is within 20% of the total amount of halogen. It is preferable to control the amount of peroxide generated by the means.
  • the residual oxide concentration measuring means the total halogen amount and the free halogen amount are respectively measured, and the amount of the free halogen exceeds a predetermined value in a state where the amount of the bound halogen calculated based on the measured value is not detected.
  • the amount of peroxide generated by the peroxide generating means For example, the total chlorine amount and the free chlorine amount are respectively measured by the residual chlorine measuring means, and based on the measured values, in a state where the combined chlorine amount calculated as (total chlorine amount ⁇ free chlorine amount) is not detected, It is preferable to control the amount of peroxide generated by the peroxide generating means so that the amount of free chlorine is equal to or more than a predetermined value.
  • the “state where no bound halogen amount (bound chlorine amount) is detected” means that the difference between the total halogen amount and the free halogen amount is within 20% of the total halogen amount. It means that the difference in chlorine concentration is within ⁇ 20%.
  • the installation position of the residual chlorine measurement device 184 may be any position as long as it is in front of the peroxide decomposing means, and may be the pipe 100, or may be installed in the raw water tank (peroxide-containing water tank) 12 or the membrane filtration water tank 16. Alternatively, they may be installed in the pipes 86, 88, 90.
  • the break point As a method of judging that the break point has been exceeded based on the measurement by the residual chlorine measuring means, for example, total chlorine is continuously measured (monitored) together with the addition of ozone, and the break point is determined by observing the minimum point. It may be judged that it has exceeded, or the free chlorine may be continuously measured with the addition of ozone, and it may be judged that the break point has been exceeded by observing the rise of the free chlorine, or with the addition of ozone. Both total chlorine and free chlorine are continuously measured, and it may be judged that the break point has been exceeded by observing the minimum point of total chlorine and observing the rise of free chlorine, or when there is a certain amount of ozone added. When both total chlorine and free chlorine are measured at the same time, there is almost no difference between the total chlorine amount and the free chlorine amount (for example, the difference between the measured values is 20% If it is the inner), it may be determined to exceed the break point.
  • the amount of ozone injected from the ozone generator 24 in the ozone treatment device 22 may be increased (for example, about 10%).
  • the ozone injection amount may be reduced or the ozone injection amount may be maintained as it is.
  • the ozone generator 24 may function as control means for controlling the amount of peroxide generated based on the measurement value of the residual chlorine measuring device 184, or the flow meter 172 at the outlet of the ozone generator 24
  • the valve 176 and the valve 178 whose opening degree is adjusted according to the value may function.
  • a control device (not shown) and a residual chlorine measuring device 184 and an ozone generating device 24, or a flow meter 172, a valve 176, and a valve 178 are connected to each other by an electrical connection or the like.
  • the measurement value of 184 may be monitored to control the amount of peroxide generated in the ozone treatment device 22.
  • a peroxide decomposing means such as an activated carbon treatment unit 18 is provided downstream of the membrane filtration unit 14.
  • a peroxide decomposing means such as an activated carbon treatment unit 18 is provided downstream of the membrane filtration unit 14.
  • all of the treated water is returned to the water tank 10 and added to the halide ion-containing water, but at least a portion of the treated water is returned to the water tank 10 and added to the halide ion-containing water. Just do it. From the viewpoint of reducing the amount of water used, it is preferable that all of the treated water be returned to the water tank 10. By using a closed circulation system in which all of the treated water is returned to the water tank 10, there is an advantage that the amount of water used can be reduced.
  • FIG. 6 schematically shows another example of the water treatment apparatus according to the embodiment of the present invention, and its configuration will be described.
  • the water treatment device 7 includes an ozone treatment device 22 having an ozone generator 24 as a peroxide generation means, a membrane filtration device 14 having an ultrafiltration membrane or a microfiltration membrane as a membrane filtration means, and a peroxide.
  • An activated carbon treatment device 18 is provided as peroxide decomposition means for performing decomposition treatment.
  • the water treatment device 7 may include the water tank 10, a raw water tank (peroxide-containing water tank) 160, a membrane filtration water tank 16, and a treated water tank 20.
  • the outlet of the water tank 10 and the inlet of the ozone treatment device 22 are connected by the pipe 112 via the pump 150 and the strainer 38, and the exit of the ozone treatment device 22 is connected to the raw water tank (containing peroxide).
  • the inlet of the water tank 160 is connected by a pipe 114, the outlet of the peroxide-containing water tank 160 and the inlet of the membrane filtration device 14 are connected by a pipe 116 via a pump 152, and the permeated water outlet of the membrane filtration device 14
  • the inlet of the membrane filtration water tank 16 is connected by a pipe 118, the outlet of the membrane filtration water tank 16 is connected to the inlet of the activated carbon treatment device 18 by a pipe 120 via a pump 154, and the outlet of the activated carbon treatment device 18 is connected to the treatment water tank 20.
  • Is connected by a pipe 122, and the outlet of the treated water tank 20 and the water tank 10 are connected by a return pipe 124 via a pump 156. .
  • the ozone generator 24 is connected to the lower part of the ozone treatment device 22 by a pipe 132 via a valve 182.
  • a flow meter 174 for measuring the flow rate of ozone is installed downstream of the valve 182 in the pipe 132.
  • a pipe 136 for discharging the discharged ozone is connected to a discharge ozone outlet at an upper portion of the ozone treatment device 22, and a pipe 138 branched from an upstream side of the valve 182 in the pipe 132 is connected to the pipe 136 via the valve 180. .
  • a pipe 134 for discharging generated scum and the like is connected to an upper side surface of the ozone treatment device 22.
  • the lower part of the treatment water tank 20 and the secondary side of the membrane filtration device 14 are connected by a pipe 126 via a pump 158.
  • a residual oxide concentration measuring means a residual chlorine measuring device 186 is installed in the pipe 114.
  • the halide ion-containing water containing the suspended substance and containing the halide ions and the ammonium nitrogen stored in the water tank 10 is supplied to the ozone treatment device 22 through the pipe 112 by the pump 150. If necessary, a strainer 38 may be provided in the middle of the pipe 112 to remove relatively large solids in the halide ion-containing water.
  • the ozone generated by the ozone generator 24 is supplied to the ozone treatment device 22 through a pipe 132.
  • halogen oxo acids such as hypohalous acid (HXO), which is a peroxide, are converted.
  • Occurs peroxide generation step.
  • a breakpoint treatment of ammonia nitrogen is performed by the generated peroxide.
  • Halogen oxo acids such as hypohalous acid have oxidizing power and are effective in oxidizing and sterilizing organic substances.
  • the discharged ozone is discharged through a pipe 136, and scum generated in the ozone treatment device 22 is discharged through a pipe 134.
  • the portion of the ozone generated by the ozone generator 24 that is not supplied to the ozone treatment device 22 is discharged through the pipes 132, 138, and 136. That is, the amount of ozone supplied to the ozone treatment device 22 is adjusted by the degree of opening and closing of the valves 180 and 182.
  • halide ion-containing water When X - is a bromide ion, a reaction between bromide ion contained in the halide ion-containing water and ozone causes halogen such as hypobromite (HBrO), which is a peroxide, as shown in the above formula 3. Oxo acids are generated.
  • halogen such as hypobromite (HBrO)
  • HBrO hypobromite
  • the peroxide-containing water that has generated peroxide is stored in a peroxide-containing water tank 160 as needed through a pipe 114, and then supplied to the membrane filtration device 14 through a pipe 116 by a pump 152.
  • the membrane filtration device 14 suspended substances in the peroxide-containing water, that is, suspended substances contained in the halide ion-containing water as raw water are removed by filtration using an ultrafiltration membrane or a microfiltration membrane. (Membrane filtration step).
  • the permeated water (membrane filtered water) that has been subjected to membrane filtration is stored in the membrane filtration water tank 16 as necessary through a pipe 118, and then supplied to the activated carbon treatment device 18 through a pipe 120 by a pump 154.
  • the activated carbon treatment device 18 the halogen oxo acid, which is a peroxide in the membrane filtered water, is decomposed by activated carbon to form halide ions (peroxide decomposition step).
  • the concentrated water of the membrane filtration device 14 is discharged through a pipe 130.
  • the peroxide is decomposed, and the treated water containing halide ions is stored in the treated water tank 20 as needed through the pipe 122, and then returned to the water tank 10 through the return pipe 124 by the pump 156, and contains the halide ions. It is added to water (return step).
  • the pump 156 and the return pipe 124 function as return means for returning at least a part of the treated water decomposed by the peroxide decomposition means and adding the treated water to the halogen compound ion-containing water.
  • the membrane filtration device 14 When the membrane filtration device 14 needs to be washed, a part of the treated water is returned as backwash water from the treated water tank 20 to the primary side of the membrane filtration device 14 from the secondary side through the pipe 126 by the pump 158. Alternatively, the membrane may be washed (backwash step). The backwash drainage is discharged through a pipe 128. The membrane filtration water in the membrane filtration tank 16 may be used as the backwash water.
  • the generated halogen oxoacid such as hypohalous acid causes a denitrification reaction of the ammonia nitrogen contained in the halide ion-containing water, as shown in the above formula (4). Because of the denitrification step), both turbidity by the membrane and nitrogen removal of the halide ion-containing water can be achieved.
  • the generated hypobromous acid easily causes the denitrification of ammonia nitrogen contained in the halide ion-containing water as shown in the above formula 5.
  • the halogen containing a halogen oxoacid having an oxidizing and sterilizing power such as hypobromous acid or bromic acid generated from a peroxide generator such as the ozone treatment apparatus 22 including the ozone generator 24.
  • a peroxide generator such as the ozone treatment apparatus 22 including the ozone generator 24.
  • ammonia nitrogen is sufficiently treated by measuring the residual oxide concentration by the residual chlorine measuring device 186 before the activated carbon treatment device 18 (peroxide decomposition step). You can be sure that. Therefore, it is possible to stably treat the ammonium ion-containing water containing the halide ions and the ammonia nitrogen, and to sufficiently remove the ammonia nitrogen even if the water quality changes.
  • the residual oxide concentration is measured by the residual chlorine measuring device 186 that is the residual oxide concentration measuring device installed in front of the activated carbon treatment device 18 that is a peroxide decomposition device.
  • the amount of peroxide generated in the ozone treatment device 22 is controlled based on the measurement value of the residual oxide concentration measuring means (control step).
  • the installation position of the residual chlorine measuring device 186 may be any position before the peroxide decomposition means, and may be the piping 114, or may be installed in the raw water tank (peroxide-containing water tank) 160 or the membrane filtration water tank 16. Alternatively, it may be installed in the piping 116, 118, 120.
  • the amount of ozone injected from the ozone generator 24 in the ozone treatment device 22 may be increased (for example, about 10%).
  • the ozone injection amount may be reduced or the ozone injection amount may be maintained as it is.
  • the ozone generator 24 may function as control means for controlling the amount of peroxide generated based on the measurement value of the residual chlorine measurement device 186, or the flow meter 174 at the outlet of the ozone generator 24 may serve as a control means.
  • the valve 180 and the valve 182 whose opening degree is adjusted according to the value may function.
  • a control device (not shown) and the residual chlorine measuring device 186 and the ozone generating device 24, or the flow meter 174, the valve 180, and the valve 182 are connected to each other by an electrical connection or the like.
  • the measurement value of the measurement device 186 may be monitored to control the amount of peroxide generated in the ozone treatment device 22.
  • a peroxide decomposing means such as an activated carbon treatment unit 18 is provided downstream of the membrane filtration unit 14.
  • a peroxide decomposing means such as an activated carbon treatment unit 18 is provided downstream of the membrane filtration unit 14.
  • all of the treated water is returned to the water tank 10 and added to the halide ion-containing water, but at least a portion of the treated water is returned to the water tank 10 and added to the halide ion-containing water. Just do it. From the viewpoint of reducing the amount of water used, it is preferable that all of the treated water be returned to the water tank 10. By using a closed circulation system in which all of the treated water is returned to the water tank 10, there is an advantage that the amount of water used can be reduced.
  • a UV oxidation device having a UV irradiation device and the like can be given. From the viewpoint of processing performance and the like, an ozone treatment device including an ozone generator is preferable.
  • the membrane filtration device 14 is not particularly limited as long as it has a filtration membrane such as an ultrafiltration membrane (UF membrane) or a microfiltration membrane (MF membrane).
  • UF membrane ultrafiltration membrane
  • MF membrane microfiltration membrane
  • the peroxide decomposing means in addition to an activated carbon treatment apparatus such as an activated carbon packed tower filled with activated carbon, a packed tower filled with a peroxide decomposition catalyst such as a Pd-supported carrier, titanium oxide, and platinum, and the like, are included.
  • a peroxide decomposition catalyst such as a Pd-supported carrier, titanium oxide, and platinum, and the like.
  • an activated carbon treatment device such as an activated carbon packed tower is preferable.
  • the direction of water flow to the packed tower filled with the peroxide decomposition catalyst may be either a downward flow or an upward flow, but a downward flow is preferable in order to increase the decomposition rate of the peroxide.
  • the water treatment apparatuses 4, 5, 6, 7 and the water treatment method according to the present embodiment are applied to the removal of suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen, and are used for removing halide ion-containing water.
  • it is suitable for treating seawater containing ammonia nitrogen, and is more suitable for closed-system circulation treatment used for cultivation of aquatic organisms such as fish and breeding water for aquatic organisms such as fish in an aquarium.
  • the water treatment devices 4, 5, 6, and 7 according to the present embodiment can be suitably used as a device for producing or treating underwater breeding water.
  • Seawater usually contains bromide ions, and ammonia-based nitrogen is usually emitted from aquatic organisms such as fish.
  • nitrifying and denitrifying ammonia nitrogen it is necessary to first convert ammonia nitrogen to nitric acid by aerobic biological treatment and then reduce nitric acid to nitrogen gas by anaerobic biological treatment to remove nitrogen from water. Was normal.
  • a large installation space is required because a nitrification tank under aerobic conditions and a denitrification tank under anaerobic conditions are required.
  • nitrification and denitrification can be performed by one apparatus (the ozone treatment apparatus 22), so that space can be saved.
  • the concentration ratio of the halide ion is 5 to 50 times and the injection ratio of ozone is 2 to 20 times the concentration (ppm) of the ammonia nitrogen in the halide ion-containing water.
  • the injection amount of at least one of the halide salt and ozone is adjusted, and the halogen ion concentration is adjusted so that the halide ion concentration is 5 to 25 times and the ozone injection rate is 2 to 10 times. More preferably, the injection amount of at least one of the chloride salt and ozone is adjusted.
  • Ozone injection rate [mg-O 3 / L] Ozone concentration at outlet of ozone generator [mg-O 3 / NL] ⁇ (ozone flow rate [NL / h] / raw water flow rate [L / h])
  • the treatment can be performed by increasing the ozone injection rate and adding a halide salt such as a bromide salt to the halide ion-containing water.
  • a halide salt such as a bromide salt
  • halide salts examples include chloride salts such as sodium chloride, and bromide salts such as sodium bromide.
  • the concentration of ammonia nitrogen in the breeding water of seawater is usually 1 ppm or less, the concentration of bromide ion is usually about 50 to 60 ppm, and the concentration of chloride ion is usually about 18,000 to 22,000 ppm.
  • the water treatment apparatuses 4, 5, 6, 7 and the water treatment method according to the present embodiment treat the halide ion-containing water having an ammonia nitrogen concentration of about 10 ppm or less and a bromide ion concentration of about 50 ppm to 60 ppm. Can be suitably applied.
  • Example 1 the transmembrane pressure difference was measured for fish breeding water using the water treatment apparatus 1 shown in FIG.
  • Comparative Example 1 the transmembrane pressure difference was measured using an ozone treatment device and a water treatment device excluding the ozone generation device.
  • Table 1 shows the experimental conditions of Example 1
  • Table 2 shows the experimental conditions of Comparative Example 1.
  • FIG. 8 shows the results.
  • Example 2 the transmembrane pressure difference was measured for fish breeding water using the water treatment device 3 shown in FIG.
  • Comparative Example 2 the transmembrane pressure was measured using an ozone treatment device and a water treatment device excluding the ozone generation device.
  • Table 3 shows the experimental conditions of Example 2
  • Table 4 shows the experimental conditions of Comparative Example 2.
  • FIG. 9 shows the results.
  • Example 4 Using the water treatment apparatus 6 shown in FIG. 5, the ozone injection amount was changed for fish breeding water (ammonia nitrogen concentration: 0.1 to 0.5 ppm, bromide ion concentration: 60 to 65 ppm) (Example 4).
  • Ammonia nitrogen (NH 3 —N): ozone (O 3 ) 1: 1.5 (molar ratio), Example 5; 1: 3, Example 6; 1: 4.5, Comparative Example 3; : 0.6, Comparative Example 4; 1: 1), the free chlorine concentration, the total chlorine concentration, and the ammonia nitrogen concentration were measured.
  • the free chlorine concentration and the total chlorine concentration were measured by a DPD (diethyl-p-phenylenediamine) method using a multi-item water quality analyzer DR / 4000 manufactured by HACH.
  • the ammonia nitrogen concentration was measured using a portable absorptiometer (DR1900, manufactured by HACH). Table 5 shows the experimental results.
  • 1,3,4,5,6,7 water treatment equipment 10 water tank, 12,160 raw water tank (peroxide-containing water tank), 14 membrane filtration equipment, 16 membrane filtration water tank, 18 activated carbon treatment equipment, 20 treatment water tank, 22 ° ozonator, 24 ° ozone generator, 26, 28, 30, 32, 34, 70, 72, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158 ° pump, 38 ° strainer, 40, 42, 44, 46, 48, 58, 60, 62, 64, 66, 74, 76, 78, 80, 82, 84, 85, 86, 88, 90, 92, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 126, 128, 130, 132, 134, 136, 138 pipe, 50 treated water Transmission pipe, 52, 54 circulation pipe, 56 concentrated water return pipe, 68 concentrated water tank, 84 per

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

Provided are a water treatment device and a water treatment method for treating polymeric-organic-matter-containing water, the device and method being capable of suppressing fouling of a membrane and being capable of operating in a stable manner. A water treatment device 1 for treating polymeric-organic-matter-containing water that contains polymeric organic matter, wherein the water treatment device 1 comprises: a water tank 10 for retaining the polymeric-organic-matter-containing water; a raw water tank 12 for retaining the polymeric-organic-matter-containing water from the water tank 10; an ozone treatment device 22, which is a peroxide-adding means for adding peroxide while circulating water in the raw water tank 12; a membrane filtration device 14 for performing a membrane filtration treatment on the water in the raw water tank 12; a concentrated-water-returning means for returning at least some of concentrated water obtained in the membrane filtration treatment to the raw water tank 12; an activated carbon treatment device 18, which is a peroxide-decomposing means for performing a decomposition treatment on peroxide in membrane-filtered water obtained in the membrane filtration treatment; and a treated-water-returning means for returning at least some of treated water that was subjected to the decomposition treatment by the activated carbon treatment device 18 to the water tank 10.

Description

水処理装置および水処理方法Water treatment device and water treatment method
 本発明は、タンパク質等の高分子有機物を含む高分子有機物含有水を処理する水処理装置および水処理方法、またはハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水中の懸濁物質を除去する水処理装置および水処理方法に関する。 The present invention provides a water treatment apparatus and a water treatment method for treating polymer organic substance-containing water containing polymer organic substances such as proteins, or removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen. The present invention relates to a water treatment device and a water treatment method.
 膜ろ過を連続運転していくと、膜の表面が汚染され、膜の細孔が塞がれてしまう現象(ファウリング)が生じる。このファウリングを抑制する方法あるいは膜を洗浄する方法として、一般的には次亜塩素酸ナトリウム水溶液を膜の2次側から1次側に逆流させる方法が用いられる。さらに膜の洗浄性を高める方法として、塩素を含む水を膜の2次側から逆流させた後、その水を所定時間保持することで膜を洗浄する方法(特許文献1参照)や、マイクロバブルやナノバブルの微細気泡を用いた方法(特許文献2参照)がある。 連 続 When the membrane filtration is continuously operated, a phenomenon (fouling) occurs in which the surface of the membrane is contaminated and pores of the membrane are blocked. As a method of suppressing this fouling or a method of cleaning the film, a method of backflowing an aqueous solution of sodium hypochlorite from the secondary side to the primary side of the film is generally used. As a method for further improving the cleaning property of the membrane, a method of cleaning the membrane by flowing back water containing chlorine from the secondary side of the membrane and holding the water for a predetermined time (see Patent Document 1), And a method using microbubbles of nanobubbles (see Patent Document 2).
 しかし、上記方法ではファウリングの抑制が不十分な場合がある。特に、養殖や水族館の飼育水のようなタンパク質等の高分子有機物を含む高分子有機物含有水を膜ろ過処理しようとする場合、タンパク質等の高分子有機物がファウリングを助長してしまう可能性がある。 However, there is a case where the above method does not sufficiently suppress the fouling. In particular, when attempting to perform membrane filtration of water containing high-molecular organic matter such as protein, such as cultivation water for aquaculture and aquariums, the high-molecular-weight organic matter such as protein may promote fouling. is there.
 海水中の懸濁物質を限外ろ過膜や精密ろ過膜で除去しようとする場合にも、海水中に生息する細菌の繁殖や、海水中の有機物等により、ファウリングが生じる場合がある。 に も Fouling may also occur due to the proliferation of bacteria that inhabit the seawater and organic matter in the seawater, even when attempting to remove suspended substances in the seawater using an ultrafiltration membrane or a microfiltration membrane.
 特に、養殖や水族館のようなアンモニア等の窒素化合物が含まれる海水を処理しようとする場合、窒素が細菌の栄養源となり、ファウリングを助長してしまう可能性がある。 窒 素 Especially, when trying to treat seawater containing nitrogen compounds such as ammonia, such as in aquaculture or aquariums, nitrogen may become a nutrient source for bacteria and promote fouling.
 また、養殖や水族館のようなアンモニア等の窒素化合物が含まれる海水中の懸濁物質を限外ろ過膜や精密ろ過膜で除去しようとする場合、海水中のアンモニア濃度が高くなると、それ自体が魚等に毒性を示すため、アンモニア態窒素も除去することが望ましい。その対策として、一般的に生物処理を用いるが、システム全体が大規模になり、広い設置スペースが必要となってしまう。 Also, when trying to remove suspended matter in seawater containing nitrogen compounds such as ammonia such as in aquaculture or aquariums using ultrafiltration membranes or microfiltration membranes, if the concentration of ammonia in seawater increases, the water itself will Since it is toxic to fish and the like, it is desirable to remove ammonia nitrogen. As a countermeasure, biological treatment is generally used, but the entire system becomes large-scale and a large installation space is required.
 ファウリングが起きた場合、膜モジュール内の圧力が急激に上昇し、安定した膜処理ができなくなる可能性がある。さらに、一度ファウリングを起こしてしまった膜は、酸やアルカリ等を用いた薬品洗浄を行う必要があり、洗浄にかかるメンテナンス費用や、装置停止を見込んだ予備系列の設置等、コスト、設備面積が膨らむ要因となる。 When fouling occurs, the pressure inside the membrane module rises rapidly, and there is a possibility that stable membrane processing cannot be performed. Furthermore, once a membrane has been fouled, it is necessary to perform chemical cleaning using an acid or alkali, and the cost and equipment area, such as maintenance costs for cleaning and installation of a spare line in anticipation of equipment shutdown, etc. Causes swelling.
 特許文献1の方法では、膜のファウリングを抑制するために、次亜塩素酸ナトリウム水溶液を用いているが、膜の洗浄に必要な薬品コストや薬品補充の手間がかかる。また、逆流工程や浸漬工程を必要とするため、膜ろ過工程を停止する必要がある。 方法 In the method of Patent Document 1, an aqueous solution of sodium hypochlorite is used to suppress fouling of the film. However, the cost of chemicals required for cleaning the film and the trouble of replenishing chemicals are required. In addition, since a backflow step and an immersion step are required, it is necessary to stop the membrane filtration step.
 また、膜のファウリングを抑制しつつ、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水中の懸濁物質およびアンモニア態窒素を除去する方法として、ハロゲン化物イオン含有水中にオゾン処理により過酸化物を発生させ、過酸化物を発生させた過酸化物含有水を限外ろ過膜または精密ろ過膜を用いてろ過する方法(特許文献3参照)がある。 As a method for removing suspended substances and ammonia nitrogen in halide ion-containing water containing halide ions and ammonia nitrogen while suppressing fouling of the film, peroxidation is performed by treating the halide ion-containing water with ozone. There is a method of filtering a peroxide-containing water that has generated a substance and generated a peroxide using an ultrafiltration membrane or a microfiltration membrane (see Patent Document 3).
 特許文献3の方法では、過酸化物の発生量が少ないと膜のファウリングが発生し、安定した膜処理ができなくなる場合がある。また、一度ファウリングが発生した膜に対し、過酸化物の注入量を調整することで、膜が回復することについて記載されていない。 で は In the method of Patent Document 3, if the amount of generated peroxide is small, fouling of the film occurs, and stable film processing may not be performed. Further, there is no description that the film is recovered by adjusting the amount of peroxide injected to the film in which fouling has once occurred.
 また、特許文献3の方法では、アンモニア態窒素が十分に除去できていることを確認する手段がなく、例えば原水水質が変動した場合、アンモニア態窒素の除去が不十分になり、安定したアンモニア態窒素の処理を行うことができない。 In the method of Patent Document 3, there is no means for confirming that ammonia nitrogen has been sufficiently removed. For example, when the quality of raw water changes, the removal of ammonia nitrogen becomes insufficient and a stable ammonia Nitrogen treatment cannot be performed.
特開平10-015365号公報JP-A-10-015365 特開2010-253457号公報JP 2010-253457 A 特許第6251095号公報Japanese Patent No. 6251095
 本発明の目的は、膜のファウリングを抑制し、安定した運転が可能な、高分子有機物含有水を処理する水処理装置および水処理方法を提供することにある。 目的 An object of the present invention is to provide a water treatment apparatus and a water treatment method for treating high-molecular-organic-content-containing water, which can suppress fouling of the membrane and can operate stably.
 本発明の目的は、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水について安定した膜処理を行うことができる水処理装置および水処理方法を提供することにある。 の An object of the present invention is to provide a water treatment apparatus and a water treatment method capable of performing stable membrane treatment of halide ion-containing water containing halide ions and ammonium nitrogen.
 また、本発明の目的は、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水について、安定したアンモニア態窒素の処理を行うことができる水処理装置および水処理方法を提供することにある。 Another object of the present invention is to provide a water treatment apparatus and a water treatment method capable of performing stable treatment of ammonia nitrogen with respect to halide ion-containing water containing halide ions and ammonia nitrogen.
 本発明は、高分子有機物を含む高分子有機物含有水を処理する水処理装置であって、高分子有機物含有水を貯留する水槽と、前記水槽からの前記高分子有機物含有水を貯留する原水槽と、前記原水槽の水を循環しながら過酸化物を添加する過酸化物添加手段と、前記原水槽の水を膜ろ過処理する膜ろ過手段と、前記膜ろ過手段による膜ろ過処理で得られる濃縮水の少なくとも一部を前記原水槽に返送する濃縮水返送手段と、前記膜ろ過手段による膜ろ過処理で得られる膜ろ過水の過酸化物を分解処理する過酸化物分解手段と、前記過酸化物分解手段により分解処理した処理水の少なくとも一部を前記水槽に返送する処理水返送手段と、を備える、水処理装置である。 The present invention relates to a water treatment apparatus for treating high-molecular organic substance-containing water containing high-molecular organic substances, and a water tank for storing the high-molecular organic substance-containing water, and a raw water tank for storing the high-molecular organic substance-containing water from the water tank. A peroxide adding means for adding a peroxide while circulating the water in the raw water tank, a membrane filtration means for performing a membrane filtration treatment on the water in the raw water tank, and a membrane filtration treatment by the membrane filtration means. A concentrated water returning means for returning at least a part of the concentrated water to the raw water tank; a peroxide decomposing means for decomposing a peroxide of the membrane filtration water obtained by the membrane filtration treatment by the membrane filtration means; A treated water returning means for returning at least a part of the treated water decomposed by the oxide decomposing means to the water tank.
 本発明は、高分子有機物を含む高分子有機物含有水を処理する水処理装置であって、高分子有機物含有水を貯留する水槽と、前記水槽からの前記高分子有機物含有水を貯留する原水槽と、前記原水槽の水を膜ろ過処理する膜ろ過手段と、前記膜ろ過手段による膜ろ過処理で得られる濃縮水に過酸化物を添加する過酸化物添加手段と、前記過酸化物添加手段により得られる過酸化物含有水の少なくとも一部を前記原水槽に返送する過酸化物含有水返送手段と、前記膜ろ過手段による膜ろ過処理で得られる膜ろ過水の過酸化物を分解処理する過酸化物分解手段と、前記過酸化物分解手段により分解処理した処理水の少なくとも一部を前記水槽に返送する処理水返送手段と、を備える、水処理装置である。 The present invention relates to a water treatment apparatus for treating high-molecular organic substance-containing water containing high-molecular organic substances, and a water tank for storing the high-molecular organic substance-containing water, and a raw water tank for storing the high-molecular organic substance-containing water from the water tank. And membrane filtration means for performing membrane filtration of water in the raw water tank, peroxide addition means for adding peroxide to concentrated water obtained by membrane filtration treatment by the membrane filtration means, and the peroxide addition means A peroxide-containing water returning means for returning at least a part of the peroxide-containing water obtained by the above to the raw water tank, and decomposing the peroxide of the membrane filtration water obtained by the membrane filtration treatment by the membrane filtration means. A water treatment apparatus comprising: a peroxide decomposing means; and a treated water returning means for returning at least a part of the treated water decomposed by the peroxide decomposing means to the water tank.
 前記水処理装置において、前記過酸化物添加手段が、オゾンを用いる手段であることが好ましい。 に お い て In the water treatment apparatus, it is preferable that the peroxide adding unit is a unit using ozone.
 本発明は、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水中の懸濁物質を除去する水処理装置であって、前記ハロゲン化物イオン含有水中に過酸化物を発生させる過酸化物発生手段と、前記過酸化物を発生させた過酸化物含有水を限外ろ過膜または精密ろ過膜を用いてろ過する膜ろ過手段と、前記膜ろ過手段の後段の、過酸化物を分解処理する過酸化物分解手段と、前記過酸化物分解手段により分解処理した処理水の少なくとも一部を返送して前記ハロゲン化合物イオン含有水に添加する返送手段と、を備え、前記限外ろ過膜または前記精密ろ過膜の膜間差圧の挙動に基づいて、前記過酸化物の発生量を調整する、水処理装置である。 The present invention relates to a water treatment apparatus for removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen, and a peroxide generating means for generating peroxide in the halide ion-containing water. A membrane filtration means for filtering the peroxide-containing water having generated the peroxide using an ultrafiltration membrane or a microfiltration membrane, and a peroxide for decomposing the peroxide at a stage subsequent to the membrane filtration means. An oxide decomposition means, and a return means for returning at least a part of the treated water decomposed by the peroxide decomposition means and adding the treated water to the halogen compound ion-containing water, wherein the ultrafiltration membrane or the precision A water treatment apparatus for adjusting an amount of generation of the peroxide based on a behavior of a transmembrane pressure difference of a filtration membrane.
 前記水処理装置において、前記膜間差圧をモニタリングし、前記過酸化物の前記発生量を制御する制御手段をさらに備えることが好ましい。 It is preferable that the water treatment apparatus further includes a control unit that monitors the transmembrane pressure difference and controls the generation amount of the peroxide.
 本発明は、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水中の懸濁物質を除去する水処理装置であって、前記ハロゲン化物イオン含有水中に過酸化物を発生させる過酸化物発生手段と、前記過酸化物を発生させた過酸化物含有水を限外ろ過膜または精密ろ過膜を用いてろ過する膜ろ過手段と、前記膜ろ過手段の後段の、過酸化物を分解処理する過酸化物分解手段と、前記過酸化物分解手段により分解処理した処理水の少なくとも一部を返送して前記ハロゲン化合物イオン含有水に添加する返送手段と、前記過酸化物分解手段の前段の、残留酸化物濃度測定手段と、を備え、前記残留酸化物濃度測定手段の測定値に基づいて、前記過酸化物発生手段による前記過酸化物の発生量を制御して、前記過酸化物による前記アンモニア態窒素のブレークポイント処理を行う、水処理装置である。 The present invention relates to a water treatment apparatus for removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen, and a peroxide generating means for generating peroxide in the halide ion-containing water. A membrane filtration means for filtering the peroxide-containing water having generated the peroxide using an ultrafiltration membrane or a microfiltration membrane, and a peroxide for decomposing the peroxide at a stage subsequent to the membrane filtration means. An oxide decomposing means, a return means for returning at least a part of the treated water decomposed by the peroxide decomposing means and adding the treated water to the halogen compound ion-containing water; An oxide concentration measuring means, and controlling the amount of the peroxide generated by the peroxide generating means based on the measurement value of the residual oxide concentration measuring means, Performing a breakpoint processing of the serial ammonia nitrogen, a water treatment device.
 前記水処理装置において、前記残留酸化物濃度測定手段は、全ハロゲン量と遊離ハロゲン量とをそれぞれ測定可能であることが好ましい。 に お い て In the water treatment apparatus, it is preferable that the residual oxide concentration measuring means can measure the total halogen amount and the free halogen amount, respectively.
 前記水処理装置において、前記残留酸化物濃度測定手段で測定した前記全ハロゲン量と前記遊離ハロゲン量との差が全ハロゲン量の20%以内になるように、前記過酸化物発生手段による前記過酸化物の発生量を制御することが好ましい。 In the water treatment apparatus, the peroxide generation means may adjust the difference between the total halogen amount and the free halogen amount measured by the residual oxide concentration measuring means to be within 20% of the total halogen amount. It is preferable to control the amount of oxide generated.
 前記水処理装置において、前記過酸化物発生手段がオゾン発生手段であることが好ましい。 に お い て In the water treatment apparatus, it is preferable that the peroxide generating means is an ozone generating means.
 本発明は、高分子有機物を含む高分子有機物含有水を処理する水処理方法であって、水槽から原水槽へ送液された高分子有機物含有水を前記原水槽へ循環しながら過酸化物を添加する過酸化物添加工程と、前記原水槽の水を膜ろ過処理する膜ろ過工程と、前記膜ろ過工程による膜ろ過処理で得られる濃縮水の少なくとも一部を前記原水槽に返送する濃縮水返送工程と、前記膜ろ過工程による膜ろ過処理で得られる膜ろ過水の過酸化物を分解処理する過酸化物分解工程と、前記過酸化物分解工程により分解処理した処理水の少なくとも一部を前記水槽に返送する処理水返送工程と、を含む、水処理方法である。 The present invention is a water treatment method for treating high-molecular organic substance-containing water containing high-molecular organic substances, wherein the high-molecular organic substance-containing water sent from the water tank to the raw water tank is circulated to the raw water tank to remove peroxide. A peroxide addition step to be added, a membrane filtration step of performing membrane filtration of water in the raw water tank, and a concentrated water returning at least a part of the concentrated water obtained by the membrane filtration processing in the membrane filtration step to the raw water tank. A return step, a peroxide decomposition step of decomposing the peroxide of the membrane filtration water obtained by the membrane filtration treatment in the membrane filtration step, and at least a part of the treated water decomposed by the peroxide decomposition step. A process of returning treated water to the water tank.
 本発明は、高分子有機物を含む高分子有機物含有水を処理する水処理方法であって、水槽から原水槽へ送液された高分子有機物含有水を膜ろ過処理する膜ろ過工程と、前記膜ろ過工程による膜ろ過処理で得られる濃縮水に過酸化物を添加する過酸化物添加工程と、前記過酸化物添加工程により得られる過酸化物含有水の少なくとも一部を前記原水槽に返送する過酸化物含有水返送工程と、前記膜ろ過工程による膜ろ過処理で得られる膜ろ過水の過酸化物を分解処理する過酸化物分解工程と、前記過酸化物分解工程により分解処理した処理水の少なくとも一部を前記水槽に返送する処理水返送工程と、を含む、水処理方法である。 The present invention is a water treatment method for treating high-molecular-weight organic-containing water containing high-molecular-weight organic matter, and a membrane-filtration step of membrane-filtering high-molecular-weight organic-containing water sent from a water tank to a raw water tank; and A peroxide addition step of adding peroxide to the concentrated water obtained by the membrane filtration treatment by the filtration step, and at least a part of the peroxide-containing water obtained by the peroxide addition step is returned to the raw water tank. A peroxide-containing water returning step, a peroxide decomposition step of decomposing the peroxide of the membrane filtration water obtained by the membrane filtration treatment in the membrane filtration step, and treated water decomposed by the peroxide decomposition step A process of returning at least a part of the water to the water tank.
 前記水処理方法において、前記過酸化物添加工程が、オゾンを用いる工程であることが好ましい。 に お い て In the water treatment method, it is preferable that the peroxide adding step is a step using ozone.
 また、本発明は、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水中の懸濁物質を除去する水処理方法であって、前記ハロゲン化物イオン含有水中に過酸化物を発生させる過酸化物発生工程と、前記過酸化物を発生させた過酸化物含有水を限外ろ過膜または精密ろ過膜を用いてろ過する膜ろ過工程と、前記膜ろ過工程の後段の、過酸化物を分解処理する過酸化物分解工程と、前記過酸化物分解工程において分解処理した処理水の少なくとも一部を返送して前記ハロゲン化合物イオン含有水に添加する返送工程と、を含み、前記限外ろ過膜または前記精密ろ過膜の膜間差圧の挙動に基づいて、前記過酸化物の発生量を調整する、水処理方法である。 Further, the present invention is a water treatment method for removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen, wherein the peroxide is generated in the halide ion-containing water. A generating step, a membrane filtration step of filtering the peroxide-containing water that has generated the peroxide using an ultrafiltration membrane or a microfiltration membrane, and a decomposition treatment of the peroxide at a later stage of the membrane filtration step. A peroxide decomposition step, and a return step of returning at least a part of the treated water decomposed in the peroxide decomposition step and adding it to the halogen compound ion-containing water, the ultrafiltration membrane or A water treatment method, wherein the amount of generated peroxide is adjusted based on the behavior of the transmembrane pressure difference of the microfiltration membrane.
 前記水処理方法において、前記膜間差圧をモニタリングし、前記過酸化物の前記発生量を制御することが好ましい。 に お い て In the water treatment method, it is preferable that the transmembrane pressure difference is monitored to control the generation amount of the peroxide.
 また、本発明は、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水中の懸濁物質を除去する水処理方法であって、前記ハロゲン化物イオン含有水中に過酸化物を発生させる過酸化物発生工程と、前記過酸化物を発生させた過酸化物含有水を限外ろ過膜または精密ろ過膜を用いてろ過する膜ろ過工程と、前記膜ろ過工程の後段の、過酸化物を分解処理する過酸化物分解工程と、前記過酸化物分解工程において分解処理した処理水の少なくとも一部を返送して前記ハロゲン化合物イオン含有水に添加する返送工程と、前記過酸化物分解工程の前段における残留酸化物濃度測定工程と、を含み、前記残留酸化物濃度測定工程の測定値に基づいて、前記過酸化物発生工程における前記過酸化物の発生量を制御して、前記過酸化物による前記アンモニア態窒素のブレークポイント処理を行う、水処理方法である。 Further, the present invention is a water treatment method for removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen, wherein the peroxide is generated in the halide ion-containing water. A generating step, a membrane filtration step of filtering the peroxide-containing water that has generated the peroxide using an ultrafiltration membrane or a microfiltration membrane, and a decomposition treatment of the peroxide at a later stage of the membrane filtration step. A peroxide decomposing step, a returning step of returning at least a part of the treated water decomposed in the peroxide decomposing step and adding the treated water to the halogen compound ion-containing water, and a step preceding the peroxide decomposing step. A residual oxide concentration measuring step, and based on the measured value of the residual oxide concentration measuring step, controlling the amount of the peroxide generated in the peroxide generating step, Performing a breakpoint processing of the ammonia nitrogen by oxides, water treatment process.
 前記水処理方法において、前記残留酸化物濃度測定工程において、全ハロゲン量と遊離ハロゲン量とをそれぞれ測定することが好ましい。 In the water treatment method, it is preferable to measure the total halogen amount and the free halogen amount in the residual oxide concentration measuring step.
 前記水処理方法において、前記残留酸化物濃度測定工程において測定した前記全ハロゲン量と前記遊離ハロゲン量との差が全ハロゲン量の20%以内になるように、前記過酸化物発生工程における前記過酸化物の発生量を制御することが好ましい。 In the water treatment method, the peroxide in the peroxide generation step may be such that a difference between the total halogen amount and the free halogen amount measured in the residual oxide concentration measuring step is within 20% of the total halogen amount. It is preferable to control the amount of oxide generated.
 前記水処理方法において、前記過酸化物発生工程がオゾン発生工程であることが好ましい。 に お い て In the water treatment method, the peroxide generation step is preferably an ozone generation step.
 本発明により、膜のファウリングを抑制し、安定した運転が可能な、高分子有機物含有水を処理する水処理装置および水処理方法を提供することができる。 According to the present invention, it is possible to provide a water treatment apparatus and a water treatment method for treating high-molecular-organic-content-containing water, which can suppress fouling of the membrane and can operate stably.
 本発明により、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水について安定した膜処理を行うことができる。 According to the present invention, stable membrane treatment can be performed on halide ion-containing water containing halide ions and ammonium nitrogen.
 本発明により、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水について、安定したアンモニア態窒素の処理を行うことができる。 According to the present invention, stable treatment of ammonia nitrogen can be performed on halide ion-containing water containing halide ions and ammonia nitrogen.
本発明の実施形態に係る水処理装置の一例を示す概略構成図である。It is a schematic structure figure showing an example of a water treatment device concerning an embodiment of the present invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic structure figure showing other examples of a water treatment device concerning an embodiment of the present invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic structure figure showing other examples of a water treatment device concerning an embodiment of the present invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic structure figure showing other examples of a water treatment device concerning an embodiment of the present invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic structure figure showing other examples of a water treatment device concerning an embodiment of the present invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic structure figure showing other examples of a water treatment device concerning an embodiment of the present invention. ヒラメを飼育した飼育水のLC-OCD測定結果を示す図である。It is a figure which shows the LC-OCD measurement result of the breeding water which raised the flounder. 実施例1および比較例1における、経過日数に対する膜間差圧を示すグラフである。4 is a graph showing the transmembrane pressure with respect to the elapsed days in Example 1 and Comparative Example 1. 実施例2および比較例2における、経過日数に対する膜間差圧を示すグラフである。9 is a graph showing the transmembrane pressure with respect to the elapsed days in Example 2 and Comparative Example 2. 実施例3におけるオゾンの注入量を変えたときの膜間差圧を示すグラフである。11 is a graph showing the transmembrane pressure when the amount of injected ozone in Example 3 is changed. アンモニアのブレークポイントを示すグラフである。It is a graph which shows the break point of ammonia.
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 (4) An embodiment of the present invention will be described below. The present embodiment is an example for implementing the present invention, and the present invention is not limited to the present embodiment.
 本発明の実施形態に係る水処理装置の一例の概略を図1に示し、その構成について説明する。 概略 An outline of an example of a water treatment apparatus according to an embodiment of the present invention is shown in FIG. 1 and its configuration will be described.
 水処理装置1は、高分子有機物含有水を貯留する水槽10と、水槽10からの高分子有機物含有水を貯留する原水槽12と、原水槽12の水を循環しながら過酸化物を添加する過酸化物添加手段として、オゾン発生装置24を備えるオゾン処理装置22と、原水槽12の水を膜ろ過処理する膜ろ過手段として、膜ろ過装置14と、膜ろ過装置14による膜ろ過処理で得られる膜ろ過水の過酸化物を分解処理する過酸化物分解手段として、活性炭処理装置18とを備える。水処理装置1は、膜ろ過水槽16と、処理水槽20とを備えてもよい。 The water treatment apparatus 1 adds a peroxide while circulating the water in the raw water tank 12, a water tank 10 for storing the high molecular organic substance-containing water, a raw water tank 12 for storing the high molecular organic substance-containing water from the water tank 10. An ozone treatment device 22 having an ozone generator 24 is provided as a peroxide addition device, and a membrane filtration device 14 is provided as a membrane filtration device for performing membrane filtration of water in the raw water tank 12. An activated carbon treatment device 18 is provided as a peroxide decomposition means for decomposing the peroxide of the membrane filtration water to be obtained. The water treatment device 1 may include a membrane filtration tank 16 and a treatment tank 20.
 図1の水処理装置1において、水槽10の出口と原水槽12の原水入口とがポンプ26およびストレーナ38を介して配管40により接続され、原水槽12の出口と膜ろ過装置14の入口とがポンプ28を介して配管42により接続され、膜ろ過装置14の透過水(膜ろ過水)出口と膜ろ過水槽16の入口とが配管44により接続され、膜ろ過水槽16の出口と活性炭処理装置18の入口とがポンプ30を介して配管46により接続され、活性炭処理装置18の出口と処理水槽20の入口とが配管48により接続され、処理水槽20の処理水出口と水槽10とがポンプ32を介して処理水返送配管50により接続されている。処理水槽20の逆洗水出口と膜ろ過装置14の2次側の逆洗水入口とはポンプ34を介して配管58により接続されている。膜ろ過装置14の1次側の濃縮水出口と原水槽12の濃縮水入口とが濃縮水返送配管56により接続されている。膜ろ過装置14の濃縮水出口には、配管66が接続されている。 1, the outlet of the water tank 10 and the raw water inlet of the raw water tank 12 are connected by a pipe 40 via a pump 26 and a strainer 38, and the outlet of the raw water tank 12 and the inlet of the membrane filtration device 14 are connected. The outlet of the membrane filtration device 14 and the inlet of the membrane filtration water tank 16 are connected by a pipe 44, and the outlet of the membrane filtration water tank 16 and the outlet of the activated carbon treatment device 18 are connected by a pipe 42 via a pump 28. Of the activated carbon treatment device 18 and the inlet of the treated water tank 20 are connected by a pipe 48, and the treated water outlet of the treated water tank 20 and the water tank 10 are connected to the pump 32. It is connected by a treated water return pipe 50 via the same. The backwash water outlet of the treatment water tank 20 and the backwash water inlet on the secondary side of the membrane filtration device 14 are connected by a pipe 58 via the pump 34. A concentrated water outlet on the primary side of the membrane filtration device 14 and a concentrated water inlet of the raw water tank 12 are connected by a concentrated water return pipe 56. A pipe 66 is connected to a concentrated water outlet of the membrane filtration device 14.
 原水槽12の循環水出口とオゾン処理装置22の循環水入口とが循環配管52により接続され、オゾン処理装置22の循環水出口と原水槽12の循環水入口とが循環配管54により接続されている。オゾン処理装置22の下部にはオゾン発生装置24が配管60により接続されている。 The circulating water outlet of the raw water tank 12 and the circulating water inlet of the ozone treatment device 22 are connected by a circulation pipe 52, and the circulating water outlet of the ozone treatment device 22 and the circulating water inlet of the raw water tank 12 are connected by a circulation pipe 54. I have. The ozone generator 24 is connected to the lower part of the ozone treatment device 22 by a pipe 60.
 本実施形態に係る水処理方法および水処理装置1の動作について説明する。 動作 The operation of the water treatment method and the water treatment device 1 according to the present embodiment will be described.
 水槽10において例えば魚類等の水中生物が飼育水中で飼育されている。飼育水には、水中生物の飼育に伴い、通常、タンパク質等の高分子有機物、懸濁物質等が含まれる。水槽10内の飼育水、すなわち高分子有機物等を含む高分子有機物含有水は、ポンプ26により配管40を通して原水槽12へ送液される。必要に応じて配管40の途中にストレーナ38を設置し、高分子有機物含有水中の比較的大きめの固形物が除去されてもよい。 水中 Underwater creatures such as fish are raised in the aquarium 10 in the breeding water. The breeding water usually contains high-molecular-weight organic substances such as proteins, suspended substances, and the like accompanying breeding of aquatic organisms. The breeding water in the water tank 10, that is, water containing high molecular organic matter including high molecular organic matter and the like is sent to the raw water tank 12 through the pipe 40 by the pump 26. If necessary, a strainer 38 may be provided in the middle of the pipe 40 to remove relatively large solids in the high-molecular-weight-organic-material-containing water.
 原水槽12の高分子有機物含有水の一部は、循環配管52を通してオゾン処理装置22へ送液される。オゾン処理装置22には、オゾン発生装置24で発生させたオゾンが配管60を通して供給される。オゾン処理装置22において、オゾンにより、高分子有機物含有水中の有機物の循環処理(ここでは主に有機物の分解処理)が行われる。また、オゾン処理装置22において、オゾンを用いた加圧浮上により、濃縮された懸濁物質等が固液分離される。有機物処理が行われたオゾン処理水は、循環配管54を通して原水槽12に循環される。すなわち、水槽10から原水槽12へ送液された高分子有機物含有水を原水槽12へ循環しながら過酸化物を添加する(過酸化物添加工程)。排オゾンは、配管62を通して排出され、オゾン除去装置により処理されてもよい。オゾン処理装置22において発生したスカム等は、配管64を通して排出されてもよい。 一部 A part of the high-molecular-organic-content-containing water in the raw water tank 12 is sent to the ozone treatment device 22 through the circulation pipe 52. Ozone generated by the ozone generator 24 is supplied to the ozone treatment device 22 through a pipe 60. In the ozone treatment device 22, a circulation process (here, mainly a decomposition process of the organic substance) of the organic substance in the high-molecular organic substance-containing water is performed by the ozone. Further, in the ozone treatment apparatus 22, the concentrated suspended substance and the like are separated into solid and liquid by pressurized levitation using ozone. The ozone-treated water subjected to the organic matter treatment is circulated to the raw water tank 12 through the circulation pipe 54. That is, peroxide is added while circulating the high-molecular-organic-content-containing water sent from the water tank 10 to the raw water tank 12 to the raw water tank 12 (peroxide adding step). The exhausted ozone may be exhausted through the pipe 62 and processed by an ozone removing device. Scum and the like generated in the ozone treatment device 22 may be discharged through the pipe 64.
 一方で、原水槽12中の原水は、ポンプ28により配管42を通して膜ろ過装置14に送液される。膜ろ過装置14において、原水中の残存した懸濁物質等が膜を用いてろ過されて除去される(膜ろ過工程)。膜ろ過工程で得られた濃縮水の少なくとも一部は、濃縮水返送配管56を通して、原水槽12に返送される(濃縮水返送工程)。濃縮水返送配管56等が、濃縮水の少なくとも一部を原水槽12に返送する濃縮水返送手段として機能する。濃縮水を原水槽12に返送することで、懸濁物質の濃度が高くなり、オゾン処理装置22における加圧浮上の効率を上げることができる。 On the other hand, the raw water in the raw water tank 12 is sent to the membrane filtration device 14 through the pipe 42 by the pump 28. In the membrane filtration device 14, the remaining suspended substances and the like in the raw water are removed by filtration using a membrane (membrane filtration step). At least a part of the concentrated water obtained in the membrane filtration step is returned to the raw water tank 12 through the concentrated water return pipe 56 (a concentrated water return step). The concentrated water return pipe 56 and the like function as concentrated water returning means for returning at least a part of the concentrated water to the raw water tank 12. By returning the concentrated water to the raw water tank 12, the concentration of the suspended solids increases, and the efficiency of pressurized floating in the ozone treatment device 22 can be increased.
 膜ろ過された膜ろ過水は、配管44を通して必要に応じて膜ろ過水槽16に貯留された後、ポンプ30により配管46を通して活性炭処理装置18に供給される。活性炭処理装置18において、膜ろ過水中の残オゾン等の過酸化物が活性炭により分解処理される(過酸化物分解工程)。 膜 The membrane filtered water that has been subjected to membrane filtration is stored in the membrane filtration tank 16 as necessary through the pipe 44, and then supplied to the activated carbon treatment device 18 through the pipe 46 by the pump 30. In the activated carbon treatment device 18, peroxide such as residual ozone in the membrane filtration water is decomposed by activated carbon (peroxide decomposition step).
 残オゾン等の過酸化物が分解処理された処理水は、配管48を通して必要に応じて処理水槽20に貯留された後、処理水の少なくとも一部はポンプ32により処理水返送配管50を通して水槽10に返送され、例えば飼育水として再利用されてもよい(処理水返送工程)。ポンプ32および処理水返送配管50等が、処理水の少なくとも一部を水槽10に返送する処理水返送手段として機能する。処理水を水槽10に返送して再利用することで、補給水や排水にかかるコストを削減することができる。 The treated water in which peroxides such as residual ozone are decomposed is stored in a treated water tank 20 as necessary through a pipe 48, and then at least a part of the treated water is passed through a treated water return pipe 50 by a pump 32 through a water tank 10. And may be reused, for example, as breeding water (processed water return step). The pump 32 and the treated water return pipe 50 function as treated water returning means for returning at least a part of the treated water to the water tank 10. By returning the treated water to the water tank 10 for reuse, it is possible to reduce the cost for makeup water and drainage.
 膜ろ過装置14の洗浄が必要になった場合は、処理水の一部が逆洗水として処理水槽20からポンプ34により配管58を通して膜ろ過装置14の2次側から1次側に逆流されて、膜が洗浄されてもよい(逆洗工程)。逆洗排水は、配管66を通して排出される。膜ろ過水槽16の膜ろ過水が逆洗水として用いられてもよい。 When the membrane filtration device 14 needs to be washed, a part of the treated water is back-flushed from the treated water tank 20 through the pipe 58 by the pump 34 from the secondary side of the membrane filtration device 14 to the primary side as backwash water. Alternatively, the membrane may be washed (backwash step). The backwash drainage is discharged through a pipe 66. The membrane filtration water in the membrane filtration tank 16 may be used as the backwash water.
 本実施形態に係る水処理装置1において、高分子有機物含有水を原水槽12に貯留し、原水槽12の水を循環して有機物処理を行い、原水槽12の水を膜ろ過処理することにより、高分子有機物や生物等による膜のファウリングを抑制し、膜ろ過装置14の安定した運転が可能となる。原水槽の水を循環して有機物処理を行うことによって、多段処理により有機物の効率的な分解が可能となる。逆洗工程中には、有機物の循環処理を行ってもよいし、停止してもよい。 In the water treatment apparatus 1 according to the present embodiment, the high-molecular-weight-organic-material-containing water is stored in the raw water tank 12, the water in the raw water tank 12 is circulated to perform organic matter treatment, and the water in the raw water tank 12 is subjected to membrane filtration. Further, it is possible to suppress the fouling of the membrane due to a high molecular organic substance, a living organism, or the like, and to perform a stable operation of the membrane filtration device 14. By circulating the water in the raw water tank and performing the organic matter treatment, the organic matter can be efficiently decomposed by the multi-stage treatment. During the backwashing step, the organic material may be circulated or stopped.
 高分子有機物とは、重量平均分子量が10万~200万の範囲の有機物である。重量平均分子量は、排水中に含まれる有機物の成分を把握する方法として、LC-OCD(Liquid Chromatography-Organic Carbon Detection)装置(DOC-LABOR社製、mobel12007)を用いて、湿式酸化法(カラム:HW50S)で測定することができる。LC-OCDとは、有機物を分子量毎に分け、それぞれの成分の有機物濃度を測定する方法である。LC-OCDの測定例として、ヒラメを飼育した飼育水の分析結果を図7に示す。図7に示すLC-OCDスペクトルは、横軸の保持時間(RT:Retention Time)[min]が短いほど、有機物の分子量が大きいことを示すが、保持時間(RT)が26~34min付近に検出されているピークが、重量平均分子量が10万~200万の範囲のタンパク質等の高分子有機物である。 High molecular organic substances are organic substances having a weight average molecular weight in the range of 100,000 to 2,000,000. The weight-average molecular weight can be determined by a wet oxidation method using LC-OCD (Liquid Chromatography-Organic Carbon Carbon Detection) device (manufactured by DOC-LABOR, mobile 12007) as a method for grasping the components of organic substances contained in the wastewater. HW50S). LC-OCD is a method of dividing an organic substance for each molecular weight and measuring the organic substance concentration of each component. As an example of the measurement of LC-OCD, FIG. 7 shows the results of analysis of the breeding water for flounder. The LC-OCD spectrum shown in FIG. 7 indicates that the shorter the retention time (RT: Retention time) [min] on the horizontal axis, the larger the molecular weight of the organic substance is, but the retention time (RT) is detected around 26 to 34 min. The peak indicated is a high molecular weight organic substance such as a protein having a weight average molecular weight in the range of 100,000 to 2,000,000.
 オゾンマイクロバブルは、例えば、直径が10μm~100μm程度の、オゾンを含む微細なオゾン含有気泡である。オゾンマイクロバブルを用いるオゾン処理装置により、高分子有機物および懸濁物質を含む高分子有機物含有水に対して、オゾンを含む微細気泡であるオゾンマイクロバブルの表面に懸濁物質を疎水性吸着させ浮上分離させて除去するとともに、オゾンマイクロバブルによる有機物酸化効果が得られる。また、オゾンをマイクロバブルとして用いることで、オゾン処理装置22の槽内にオゾンマイクロバブルを長時間保持することができるため、有機物との反応時間が増え、有機物の処理効果が飛躍的に向上すると考えられる。 Ozone microbubbles are, for example, fine ozone-containing bubbles containing ozone having a diameter of about 10 μm to 100 μm. An ozone treatment device using ozone microbubbles causes the suspended substance to be hydrophobically adsorbed and floated on the surface of ozone microbubbles, which are microbubbles containing ozone, with respect to water containing high molecular organic substances including high molecular organic substances and suspended substances. In addition to the separation and removal, the effect of oxidizing organic substances by the ozone microbubbles is obtained. In addition, by using ozone as microbubbles, the ozone microbubbles can be held in the tank of the ozone treatment device 22 for a long time, so that the reaction time with organic substances increases, and the processing effect of organic substances increases dramatically. Conceivable.
 膜ろ過水中の残オゾンの濃度が高く、水槽10に返送されて生物の飼育等に影響を及ぼすことが懸念される場合は、膜ろ過装置14の後段に活性炭処理装置18等の過酸化物分解手段を設けることが好ましい。膜ろ過装置14の後段に過酸化物分解手段を備えることにより、残オゾン等の過酸化物による生物の飼育等への影響を低減することができる。このため、原水が養殖や水族館等の飼育水等である場合に、処理水を水槽10へ返送しても、生物への影響を低減することができる。 If the concentration of residual ozone in the membrane filtration water is high and it is feared that it will be returned to the water tank 10 and affect the breeding of living organisms, etc. Preferably, means are provided. By providing the peroxide decomposing means at the subsequent stage of the membrane filtration device 14, the effect of peroxides such as residual ozone on the breeding of living organisms can be reduced. For this reason, when the raw water is breeding water for aquaculture, aquariums, or the like, even if the treated water is returned to the aquarium 10, the effect on living organisms can be reduced.
 図1の例では、処理水の全てが水槽10に返送されて飼育水に添加されているが、処理水の少なくとも一部が水槽10に返送されて飼育水に添加されればよく、処理水の一部が水槽10に返送されて飼育水に添加されてもよいし、処理水の全てが水槽10に返送されて飼育水に添加されてもよい。使用する水量を低減する等の観点から、処理水の一部が水槽10に返送されることが好ましく、処理水の全てが水槽10に返送されることがより好ましい。処理水の全てが水槽10に返送される閉鎖循環系とすることにより、使用する水量を低減することができる等の利点がある。また、循環は、常時循環してもよいし、定期的に循環してもよい。通常は、水槽10中の水質をできるだけ保つために、常時循環すればよい。 In the example of FIG. 1, all of the treated water is returned to the aquarium 10 and added to the breeding water. However, at least a part of the treated water may be returned to the aquarium 10 and added to the breeding water. May be returned to the aquarium 10 and added to the breeding water, or all of the treated water may be returned to the aquarium 10 and added to the breeding water. From the viewpoint of reducing the amount of water used, it is preferable that a part of the treated water be returned to the water tank 10, and it is more preferable that all of the treated water be returned to the water tank 10. By using a closed circulation system in which all of the treated water is returned to the water tank 10, there is an advantage that the amount of water used can be reduced. In addition, the circulation may be performed constantly or periodically. Normally, in order to maintain the water quality in the water tank 10 as much as possible, it is sufficient to circulate constantly.
 本発明の実施形態に係る水処理装置の他の例の概略を図2に示し、その構成について説明する。 (2) Another example of the water treatment apparatus according to the embodiment of the present invention is schematically shown in FIG.
 水処理装置3は、高分子有機物含有水を貯留する水槽10と、水槽10からの高分子有機物含有水を貯留する原水槽12と、原水槽12の水を膜ろ過処理する膜ろ過手段として、膜ろ過装置14と、膜ろ過装置14による膜ろ過処理で得られる濃縮水に過酸化物を添加する過酸化物添加手段として、オゾン発生装置24を備えるオゾン処理装置22と、膜ろ過装置14による膜ろ過処理で得られる膜ろ過水の過酸化物を分解処理する過酸化物分解手段として、活性炭処理装置18とを備える。水処理装置1は、膜ろ過水槽16と、処理水槽20と、濃縮水槽68とを備えてもよい。 The water treatment apparatus 3 includes a water tank 10 for storing high-molecular-weight organic-material-containing water, a raw water tank 12 for storing high-molecular-weight organic-material-containing water from the water tank 10, and membrane filtration means for performing membrane filtration of water in the raw water tank 12. A membrane filtration device 14; an ozone treatment device 22 including an ozone generator 24 as a peroxide addition unit for adding peroxide to the concentrated water obtained by the membrane filtration treatment by the membrane filtration device 14; An activated carbon treatment device 18 is provided as a peroxide decomposing means for decomposing the peroxide of the membrane filtration water obtained by the membrane filtration process. The water treatment apparatus 1 may include a membrane filtration water tank 16, a treatment water tank 20, and a concentrated water tank 68.
 図2の水処理装置3において、水槽10の出口と原水槽12の原水入口とが配管74により接続され、原水槽12の原水出口と膜ろ過装置14の入口とがポンプ70およびストレーナ38を介して配管76により接続され、膜ろ過装置14の透過水(膜ろ過水)出口と膜ろ過水槽16の入口とが配管44により接続され、膜ろ過水槽16の出口と活性炭処理装置18の入口とがポンプ30を介して配管46により接続され、活性炭処理装置18の出口と処理水槽20の入口とが配管48により接続され、処理水槽20の処理水出口と水槽10とがポンプ32を介して処理水返送配管50により接続されている。処理水槽20の逆洗水出口と膜ろ過装置14の2次側の逆洗水入口とはポンプ34を介して配管58により接続されている。 2, the outlet of the water tank 10 and the raw water inlet of the raw water tank 12 are connected by a pipe 74, and the raw water outlet of the raw water tank 12 and the inlet of the membrane filtration device 14 are connected via a pump 70 and a strainer 38. And the outlet of the membrane filtration device 14 and the inlet of the membrane filtration water tank 16 are connected by the pipe 44, and the outlet of the membrane filtration water tank 16 and the inlet of the activated carbon treatment device 18 are connected. The outlet of the activated carbon treatment device 18 and the inlet of the treated water tank 20 are connected by a pipe 48 via a pipe 46 via a pump 30, and the treated water outlet of the treated water tank 20 and the water tank 10 are connected via a pump 32 to treated water It is connected by a return pipe 50. The backwash water outlet of the treatment water tank 20 and the backwash water inlet on the secondary side of the membrane filtration device 14 are connected by a pipe 58 via the pump 34.
 膜ろ過装置14の濃縮水出口と濃縮水槽68の濃縮水入口とが配管80により接続され、膜ろ過装置14の逆洗排水出口と濃縮水槽68の逆洗排水入口とが配管78により接続され、濃縮水槽68の出口とオゾン処理装置22の入口とがポンプ72を介して配管82により接続され、オゾン処理装置22の出口と原水槽12の入口とが過酸化物含有水返送配管84により接続されている。オゾン処理装置22の下部にはオゾン発生装置24が配管60により接続されている。 A concentrated water outlet of the membrane filtration device 14 and a concentrated water inlet of the concentrated water tank 68 are connected by a pipe 80, and a backwash drainage outlet of the membrane filtration device 14 and a backwashed drainage inlet of the concentrated water tank 68 are connected by a pipe 78, The outlet of the concentrated water tank 68 and the inlet of the ozone treatment device 22 are connected by a pipe 82 via a pump 72, and the outlet of the ozone treatment device 22 and the inlet of the raw water tank 12 are connected by a peroxide-containing water return pipe 84. ing. The ozone generator 24 is connected to the lower part of the ozone treatment device 22 by a pipe 60.
 本実施形態に係る水処理方法および水処理装置3の動作について説明する。 動作 The operation of the water treatment method and the water treatment device 3 according to the present embodiment will be described.
 水槽10において例えば魚類等の水中生物が飼育水中で飼育されている。飼育水には、水中生物の飼育に伴い、通常、タンパク質等の高分子有機物、懸濁物質等が含まれる。水槽10内の飼育水、すなわち高分子有機物等を含む高分子有機物含有水は、配管74を通して原水槽12へ送液される。高分子有機物含有水は、原水槽12において、後述する過酸化物を添加した過酸化物含有水と混合された後、混合水としてポンプ70により配管76を通して膜ろ過装置14に送液される。必要に応じて配管76の途中にストレーナ38を設置し、高分子有機物含有水中の比較的大きめの固形物が除去されてもよい。 水中 Underwater creatures such as fish are raised in the aquarium 10 in the breeding water. The breeding water usually contains high-molecular-weight organic substances such as proteins, suspended substances, and the like accompanying breeding of aquatic organisms. The breeding water in the water tank 10, that is, water containing high-molecular-weight organic matter including high-molecular-weight organic matter is sent to the raw water tank 12 through a pipe 74. The high-molecular organic substance-containing water is mixed with a peroxide-containing water to which a peroxide described later is added in the raw water tank 12, and then sent as mixed water to the membrane filtration device 14 through the pipe 76 by the pump 70. If necessary, a strainer 38 may be provided in the middle of the pipe 76 to remove relatively large solids in the high-molecular-weight-organic-material-containing water.
 膜ろ過装置14において、原水中の残存した懸濁物質等が膜を用いてろ過されて除去される(膜ろ過工程)。 に お い て In the membrane filtration device 14, the suspended substances and the like remaining in the raw water are removed by filtration using a membrane (membrane filtration step).
 膜ろ過された膜ろ過水は、配管44を通して必要に応じて膜ろ過水槽16に貯留された後、ポンプ30により配管46を通して活性炭処理装置18に供給される。活性炭処理装置18において、膜ろ過水中の残オゾン等の過酸化物が活性炭により分解処理される(過酸化物分解工程)。 膜 The membrane filtered water that has been subjected to membrane filtration is stored in the membrane filtration tank 16 as necessary through the pipe 44, and then supplied to the activated carbon treatment device 18 through the pipe 46 by the pump 30. In the activated carbon treatment device 18, peroxide such as residual ozone in the membrane filtration water is decomposed by activated carbon (peroxide decomposition step).
 残オゾン等の過酸化物が分解処理された処理水は、配管48を通して必要に応じて処理水槽20に貯留された後、処理水の少なくとも一部はポンプ32により処理水返送配管50を通して水槽10に返送され、例えば飼育水として再利用されてもよい(処理水返送工程)。ポンプ32および処理水返送配管50等が、処理水の少なくとも一部を水槽10に返送する処理水返送手段として機能する。処理水を水槽10に返送して再利用することで、補給水や排水にかかるコストを削減することができる。 The treated water in which peroxides such as residual ozone are decomposed is stored in a treated water tank 20 as necessary through a pipe 48, and then at least a part of the treated water is passed through a treated water return pipe 50 by a pump 32 through a water tank 10. And may be reused, for example, as breeding water (processed water return step). The pump 32 and the treated water return pipe 50 function as treated water returning means for returning at least a part of the treated water to the water tank 10. By returning the treated water to the water tank 10 for reuse, it is possible to reduce the cost for makeup water and drainage.
 膜ろ過装置14の洗浄が必要になった場合は、処理水の一部が逆洗水として処理水槽20からポンプ34により配管58を通して膜ろ過装置14の2次側から1次側に逆流されて、膜が洗浄されてもよい(逆洗工程)。逆洗排水は、配管78を通して濃縮水槽68に供給され、膜ろ過装置14からの濃縮水と混合される。膜ろ過水槽16の膜ろ過水が逆洗水として用いられてもよい。 When the membrane filtration device 14 needs to be washed, a part of the treated water is back-flushed from the treated water tank 20 through the pipe 58 by the pump 34 from the secondary side of the membrane filtration device 14 to the primary side as backwash water. Alternatively, the membrane may be washed (backwash step). The backwash wastewater is supplied to a concentrated water tank 68 through a pipe 78 and mixed with the concentrated water from the membrane filtration device 14. The membrane filtration water in the membrane filtration tank 16 may be used as the backwash water.
 膜ろ過装置14の濃縮水は、配管80を通して必要に応じて濃縮水槽68に貯留された後、ポンプ72により配管82を通してオゾン処理装置22に供給される。 The concentrated water of the membrane filtration device 14 is stored in a concentrated water tank 68 as necessary through a pipe 80, and then supplied to the ozone treatment device 22 through a pipe 82 by a pump 72.
 オゾン処理装置22には、一方で、オゾン発生装置24で発生させたオゾンが配管60を通して供給される。オゾン処理装置22において、オゾンにより、濃縮水中の有機物の処理(ここでは主に有機物の分解処理)が行われる。また、オゾン処理装置22において、オゾンを用いた加圧浮上により、濃縮された懸濁物質等が固液分離される。有機物処理が行われたオゾン処理水は、過酸化物含有水返送配管84を通して原水槽12に返送される。すなわち、膜ろ過工程による膜ろ過処理で得られる濃縮水に過酸化物が添加され(過酸化物添加工程)、過酸化物添加工程により得られる過酸化物含有水の少なくとも一部が原水槽12に返送される(過酸化物含有水返送工程)。過酸化物含有水返送配管84等が、過酸化物含有水の少なくとも一部を原水槽12に返送する過酸化物含有水返送手段として機能する。過酸化物含有水を原水槽12に返送することで、膜ろ過装置14の膜に過酸化物含有水が接触し、ファウリングを抑制することができる。排オゾンは、配管62を通して排出され、オゾン除去装置により処理されてもよい。オゾン処理装置22において発生したスカム等は、配管64を通して排出されてもよい。 一方 で On the other hand, the ozone generated by the ozone generator 24 is supplied to the ozone treatment device 22 through a pipe 60. In the ozone treatment device 22, the treatment of the organic matter in the concentrated water (here, mainly the decomposition treatment of the organic matter) is performed by ozone. Further, in the ozone treatment apparatus 22, the concentrated suspended substance and the like are separated into solid and liquid by pressurized levitation using ozone. The ozone-treated water subjected to the organic matter treatment is returned to the raw water tank 12 through the peroxide-containing water return pipe 84. That is, peroxide is added to the concentrated water obtained by the membrane filtration process in the membrane filtration step (peroxide addition step), and at least a part of the peroxide-containing water obtained by the peroxide addition step is converted into the raw water tank 12. (Peroxide-containing water return step). The peroxide-containing water return pipe 84 and the like function as a peroxide-containing water return means for returning at least a part of the peroxide-containing water to the raw water tank 12. By returning the peroxide-containing water to the raw water tank 12, the peroxide-containing water comes into contact with the membrane of the membrane filtration device 14, and fouling can be suppressed. The exhausted ozone may be exhausted through the pipe 62 and processed by an ozone removing device. Scum and the like generated in the ozone treatment device 22 may be discharged through the pipe 64.
 本実施形態に係る水処理装置3において、高分子有機物含有水を原水槽12に貯留し、原水槽12の水を膜ろ過処理し、膜ろ過処理で得られる濃縮水について有機物処理を行い、原水槽12に返送することにより、高分子有機物や生物等による膜のファウリングを抑制し、膜ろ過装置14の安定した運転が可能となる。また、膜ろ過装置14の膜によって懸濁物質が濃縮され、オゾン処理装置22における加圧浮上の効率を上げることができる。 In the water treatment apparatus 3 according to the present embodiment, the high-molecular-weight-organic-containing water is stored in the raw water tank 12, the water in the raw water tank 12 is subjected to membrane filtration, and the concentrated water obtained by the membrane filtration is subjected to organic matter treatment. By returning the water to the water tank 12, fouling of the membrane due to high molecular organic matter, living organisms, or the like is suppressed, and the stable operation of the membrane filtration device 14 becomes possible. Further, the suspended substance is concentrated by the membrane of the membrane filtration device 14, and the efficiency of pressurized flotation in the ozone treatment device 22 can be increased.
 本実施形態に係る水処理装置1,3および水処理方法は、例えば、水族館や養殖等、水中生物を飼育する際に用いられる飼育水等の処理に適用され、飼育水は海水であっても、淡水であってもよい。水族館や養殖のような水中生物を飼育する過程で生じる、タンパク質等の高分子有機物を含む高分子有機物含有水の処理に好適に適用される。生物を飼育する場合、給餌等の要因により飼育水中の有機物濃度が変動する(例えば、±0.5~10mg/L)特徴がある。特に、水族館や養殖のような水中生物を飼育する過程で生じる、タンパク質等の高分子有機物を含む海水の処理に適しており、魚類等の水中生物の養殖や水族館等の魚類等の水中生物の飼育水処理に用いられる閉鎖系循環処理により適している。すなわち、本実施形態に係る水処理装置1,3は、水中生物の飼育水の製造装置または処理装置として、好適に用いることができる。 The water treatment apparatuses 1 and 3 and the water treatment method according to the present embodiment are applied to treatment of breeding water used for breeding underwater organisms such as aquariums and aquaculture, and the breeding water may be seawater. Or fresh water. The present invention is suitably applied to the treatment of water containing high-molecular organic matter, including high-molecular organic matter such as proteins, generated in the process of breeding underwater organisms such as aquariums and aquaculture. When breeding an organism, the organic matter concentration in the breeding water varies depending on factors such as feeding (for example, ± 0.5 to 10 mg / L). In particular, it is suitable for the treatment of seawater containing high molecular organic matter such as proteins generated in the process of breeding underwater organisms such as aquariums and aquaculture, and for the cultivation of underwater organisms such as fish and the underwater organism such as fish in aquariums. It is more suitable for closed circulation treatment used for breeding water treatment. That is, the water treatment apparatuses 1 and 3 according to the present embodiment can be suitably used as a production apparatus or a treatment apparatus for breeding water for aquatic organisms.
 高分子有機物含有水中の高分子有機物の濃度は、例えば、0.1~5mg/Lの範囲である。高分子有機物含有水中の懸濁物質の濃度は、例えば、10~100mg/Lの範囲である。 濃度 The concentration of the high molecular organic substance in the water containing the high molecular organic substance is, for example, in the range of 0.1 to 5 mg / L. The concentration of the suspended substance in the water containing the high molecular organic substance is, for example, in the range of 10 to 100 mg / L.
 水処理装置1,3における過酸化物添加手段としては、オゾン発生装置を備えるオゾン処理装置の他に、紫外線酸化処理装置等が挙げられる。処理性能等の観点から、オゾン発生装置を備えるオゾン処理装置が好ましい。過酸化物添加手段としては、オゾンを用いるオゾン処理装置であることが好ましく、オゾンマイクロバブルを用いるオゾン処理装置であることがより好ましい。 Examples of the peroxide addition means in the water treatment apparatuses 1 and 3 include an ultraviolet oxidation treatment apparatus and the like in addition to an ozone treatment apparatus having an ozone generator. From the viewpoint of processing performance and the like, an ozone treatment device including an ozone generator is preferable. The peroxide adding means is preferably an ozone treatment device using ozone, and more preferably an ozone treatment device using ozone microbubbles.
 本発明の実施形態に係る水処理装置の他の例の概略を図3に示し、その構成について説明する。 (3) Another example of the water treatment apparatus according to the embodiment of the present invention is schematically shown in FIG. 3 and its configuration will be described.
 水処理装置4は、過酸化物発生手段として、オゾン発生装置24を備えるオゾン処理装置22と、膜ろ過手段として、限外ろ過膜または精密ろ過膜を有する膜ろ過装置14と、過酸化物を分解処理する過酸化物分解手段として、活性炭処理装置18とを備える。水処理装置4は、水槽10と、原水槽(過酸化物含有水槽とも呼ぶ)12と、膜ろ過水槽16と、処理水槽20と、濃縮水槽68とを備えてもよい。 The water treatment device 4 includes an ozone treatment device 22 having an ozone generator 24 as a peroxide generation means, a membrane filtration device 14 having an ultrafiltration membrane or a microfiltration membrane as a membrane filtration means, and a peroxide. An activated carbon treatment device 18 is provided as peroxide decomposition means for performing decomposition treatment. The water treatment apparatus 4 may include a water tank 10, a raw water tank (also referred to as a peroxide-containing water tank) 12, a membrane filtration water tank 16, a treated water tank 20, and a concentrated water tank 68.
 図3の水処理装置4において、水槽10の出口と原水槽(過酸化物含有水槽)12の入口とが配管85により接続され、原水槽(過酸化物含有水槽)12の出口と膜ろ過装置14の入口とがポンプ140およびストレーナ38を介して配管86により接続され、膜ろ過装置14の透過水出口と膜ろ過水槽16の入口とが配管88より接続され、膜ろ過水槽16の出口と活性炭処理装置18の入口とがポンプ142を介して配管90により接続され、活性炭処理装置18の出口と処理水槽20の入口とが配管92より接続され、処理水槽20の出口と水槽10とがポンプ144を介して返送配管94により接続されている。 In the water treatment apparatus 4 of FIG. 3, the outlet of the water tank 10 and the inlet of the raw water tank (peroxide-containing water tank) 12 are connected by a pipe 85, and the outlet of the raw water tank (peroxide-containing water tank) 12 is connected to the membrane filtration device. 14 is connected by a pipe 86 via a pump 140 and a strainer 38, a permeate outlet of the membrane filtration device 14 and an inlet of the membrane filtration tank 16 are connected by a pipe 88, and an outlet of the membrane filtration tank 16 is The inlet of the treatment device 18 is connected by a pipe 90 via a pump 142, the outlet of the activated carbon treatment device 18 and the inlet of the treatment water tank 20 are connected by a pipe 92, and the outlet of the treatment water tank 20 and the water tank 10 are connected by a pump 144. Are connected by a return pipe 94.
 膜ろ過装置14の濃縮水出口と濃縮水槽68の濃縮水入口とが配管96により接続され、濃縮水槽68の出口とオゾン処理装置22の入口とがポンプ146を介して配管98により接続され、オゾン処理装置22の出口と原水槽(過酸化物含有水槽)12の入口とが配管100により接続されている。オゾン処理装置22の下部にはオゾン発生装置24がバルブ178を介して配管110により接続されている。配管110におけるバルブ178の下流側にはオゾンの流量を測定するフローメータ172が設置されている。オゾン処理装置22の上部の排オゾン出口には、排オゾンを排出する配管106が接続され、配管110におけるバルブ178の上流側から分岐した配管108がバルブ176を介して配管106に接続されている。オゾン処理装置22の上部側面には発生したスカム等を排出する配管104が接続されている。処理水槽20の下部と膜ろ過装置14の2次側とはポンプ148を介して配管102により接続されている。圧力測定手段として、配管86のストレーナ38の下流側には、圧力計160が設置され、配管88には、圧力計162が設置され、配管96には、圧力計164が設置されている。 The concentrated water outlet of the membrane filtration device 14 and the concentrated water inlet of the concentrated water tank 68 are connected by a pipe 96, and the outlet of the concentrated water tank 68 and the inlet of the ozone treatment device 22 are connected by a pipe 98 via a pump 146. The outlet of the treatment device 22 and the inlet of the raw water tank (peroxide-containing water tank) 12 are connected by a pipe 100. An ozone generator 24 is connected to the lower part of the ozone treatment device 22 by a pipe 110 via a valve 178. A flow meter 172 for measuring the flow rate of ozone is provided downstream of the valve 178 in the pipe 110. A pipe 106 for discharging exhausted ozone is connected to an exhausted ozone outlet at the upper part of the ozone treatment device 22, and a pipe 108 branched from an upstream side of a valve 178 in the pipe 110 is connected to the pipe 106 via a valve 176. . A pipe 104 for discharging generated scum or the like is connected to an upper side surface of the ozone treatment device 22. The lower part of the treated water tank 20 and the secondary side of the membrane filtration device 14 are connected by a pipe 102 via a pump 148. As a pressure measuring means, a pressure gauge 160 is installed downstream of the strainer 38 in the pipe 86, a pressure gauge 162 is installed in the pipe 88, and a pressure gauge 164 is installed in the pipe 96.
 本実施形態に係る水処理方法および水処理装置4の動作について説明する。 動作 The operation of the water treatment method and the water treatment device 4 according to the present embodiment will be described.
 水槽10に貯留された、懸濁物質を含み、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水は、必要に応じて原水槽(過酸化物含有水槽)12に貯留される。ハロゲン化物イオン含有水は、原水槽(過酸化物含有水槽)12において、後述する過酸化物を発生させた過酸化物含有水と混合された後、混合水としてポンプ140により配管86を通して膜ろ過装置14に供給される。必要に応じて配管86の途中にストレーナ38を設置し、ハロゲン化物イオン含有水中の比較的大きめの固形物が除去されてもよい。 水 Halogen ion-containing water containing a suspended substance and containing halide ions and ammonium nitrogen stored in the water tank 10 is stored in a raw water tank (peroxide-containing water tank) 12 as necessary. The halide ion-containing water is mixed in a raw water tank (peroxide-containing water tank) 12 with a peroxide-containing water that has generated a peroxide, which will be described later. It is supplied to the device 14. If necessary, a strainer 38 may be provided in the middle of the pipe 86 to remove relatively large solids in the halide ion-containing water.
 膜ろ過装置14において、混合水中の懸濁物質、すなわち原水であるハロゲン化物イオン含有水に含まれていた懸濁物質が限外ろ過膜または精密ろ過膜を用いてろ過されて除去される(膜ろ過工程)。 In the membrane filtration device 14, suspended substances in the mixed water, that is, suspended substances contained in the halide ion-containing water as raw water are removed by filtration using an ultrafiltration membrane or a microfiltration membrane (membrane). Filtration step).
 膜ろ過された膜ろ過水(透過水)は、配管88を通して必要に応じて膜ろ過水槽16に貯留された後、ポンプ142により配管90を通して活性炭処理装置18に供給される。活性炭処理装置18において、膜ろ過水中の過酸化物であるハロゲンオキソ酸が活性炭により分解処理され、ハロゲン化物イオンとなる(過酸化物分解工程)。 膜 The membrane filtered water (permeated water) that has been subjected to membrane filtration is stored in the membrane filtered water tank 16 as necessary through a pipe 88, and then supplied to the activated carbon treatment device 18 through a pipe 90 by a pump 142. In the activated carbon treatment device 18, the halogen oxo acid, which is a peroxide in the membrane filtered water, is decomposed by activated carbon to form halide ions (peroxide decomposition step).
 過酸化物が分解処理され、ハロゲン化物イオンを含む処理水は、配管92を通して必要に応じて処理水槽20に貯留された後、ポンプ144により返送配管94を通して水槽10に返送され、ハロゲン化物イオン含有水に添加される(返送工程)。過酸化物分解手段により分解処理した処理水の少なくとも一部を返送してハロゲン化合物イオン含有水に添加する返送手段として、ポンプ144および返送配管94が機能する。 The peroxide is decomposed, and the treated water containing halide ions is stored in the treated water tank 20 as necessary through the pipe 92, and then returned to the water tank 10 through the return pipe 94 by the pump 144, and contains the halide ions. It is added to water (return step). The pump 144 and the return pipe 94 function as return means for returning at least a part of the treated water decomposed by the peroxide decomposing means and adding the treated water to the halogen compound ion-containing water.
 膜ろ過装置14の濃縮水は、配管96を通して必要に応じて濃縮水槽68に貯留された後、ポンプ146により配管98を通してオゾン処理装置22に供給される。 The concentrated water in the membrane filtration device 14 is stored in the concentrated water tank 68 as necessary through a pipe 96, and then supplied to the ozone treatment device 22 through a pipe 98 by a pump 146.
 オゾン処理装置22には、一方で、オゾン発生装置24で発生させたオゾンが配管110を通して供給される。オゾン処理装置22において、下記式1に示すように、濃縮水に含まれるハロゲン化物イオンとオゾンとの反応により、過酸化物である次亜ハロゲン酸(HXO)等のハロゲンオキソ酸が発生する(過酸化物発生工程)。次亜ハロゲン酸等のハロゲンオキソ酸は酸化力を有し、有機物の酸化や殺菌等に効果がある。なお、排オゾンは、配管106を通して排出され、オゾン処理装置22において発生したスカム等は、配管104を通して排出される。オゾン発生装置24で発生させたオゾンのうちオゾン処理装置22に供給されない分は、配管110,108,106を通して排出される。すなわち、オゾン処理装置22に供給されるオゾンの量は、バルブ176,178の開閉度によって調整される。 一方 で On the other hand, the ozone generated by the ozone generator 24 is supplied to the ozone treatment device 22 through a pipe 110. In the ozone treatment device 22, as shown in the following formula 1, a halogen oxo acid such as hypohalous acid (HXO), which is a peroxide, is generated by the reaction between the halide ion contained in the concentrated water and ozone ( Peroxide generation step). Halogen oxo acids such as hypohalous acid have oxidizing power and are effective in oxidizing and sterilizing organic substances. The discharged ozone is discharged through a pipe 106, and scum generated in the ozone treatment device 22 is discharged through a pipe 104. The portion of the ozone generated by the ozone generator 24 that is not supplied to the ozone treatment device 22 is discharged through the pipes 110, 108, and 106. That is, the amount of ozone supplied to the ozone treatment device 22 is adjusted by the degree of opening and closing of the valves 176 and 178.
 [式1]
  X + O → O + OX  
  OX + HO → HXO + OH
(ここで、Xは、塩化物イオン(Cl)、臭化物イオン(Br)、ヨウ化物イオン(I)等のハロゲン化物イオンであり、Xは、Cl,Br,I等のハロゲンである。)
[Equation 1]
X + O 3 → O 2 + OX
OX + H 2 O → HXO + OH
(Where X is a halide ion such as chloride ion (Cl ), bromide ion (Br ) and iodide ion (I ), and X is a halogen such as Cl, Br and I. is there.)
 Xが塩化物イオンの場合、下記式2に示すように、濃縮水に含まれる塩化物イオンとオゾンとの反応により、過酸化物である次亜塩素酸(HClO)等のハロゲンオキソ酸が発生する。 When X is a chloride ion, a halogen oxo acid such as hypochlorous acid (HClO), which is a peroxide, is formed by a reaction between chloride ion contained in the concentrated water and ozone as shown in the following formula 2. appear.
 [式2]
  Cl + O → O + OCl  
  OCl + HO → HClO + OH
[Equation 2]
Cl + O 3 → O 2 + OCl
OCl + H 2 O → HClO + OH
 また、Xが臭化物イオンの場合、下記式3に示すように、濃縮水に含まれる臭化物イオンとオゾンとの反応により、過酸化物である次亜臭素酸(HBrO)等のハロゲンオキソ酸が発生する。 When X - is a bromide ion, a halogen oxo acid such as hypobromous acid (HBrO), which is a peroxide, is formed by a reaction between the bromide ion contained in the concentrated water and ozone as shown in the following formula 3. appear.
 [式3]
  Br + O → O + OBr  
  OBr + HO → HBrO + OH
[Equation 3]
Br + O 3 → O 2 + OBr
OBr + H 2 O → HBrO + OH
 過酸化物を発生させた過酸化物含有水は、配管100を通して原水槽(過酸化物含有水槽)12に供給され、水槽10からのハロゲン化物イオン含有水と混合される。 The peroxide-containing water that has generated peroxide is supplied to a raw water tank (peroxide-containing water tank) 12 through a pipe 100 and mixed with the halide ion-containing water from the water tank 10.
 膜ろ過装置14の洗浄が必要になった場合は、処理水の一部が逆洗水として処理水槽20からポンプ148により配管102を通して膜ろ過装置14の2次側から1次側に逆流されて、膜が洗浄されてもよい(逆洗工程)。逆洗排水は、配管96を通して濃縮水槽68に供給され、膜ろ過装置14からの濃縮水と混合される。膜ろ過水槽16の膜ろ過水が逆洗水として用いられてもよい。 When the membrane filtration device 14 needs to be washed, a part of the treated water is back-flushed from the treated water tank 20 to the primary side from the secondary side of the membrane filtration device 14 through the pipe 102 by the pump 148 as the backwash water. Alternatively, the membrane may be washed (backwash step). The backwash wastewater is supplied to the concentrated water tank 68 through the pipe 96 and mixed with the concentrated water from the membrane filtration device 14. The membrane filtration water in the membrane filtration tank 16 may be used as the backwash water.
 本実施形態に係る水処理装置4において、オゾン発生装置24を備えるオゾン処理装置22等の過酸化物発生装置より生じる次亜臭素酸や臭素酸等の酸化殺菌力を有するハロゲンオキソ酸を含む過酸化物含有水とハロゲン化物イオン含有水との混合水を膜ろ過装置14の膜に供給することによって、有機物や生物等による膜のファウリングを抑制することができる。膜のファウリングを抑制するための次亜塩素酸ナトリウム等の薬品は用いなくてもよい。そして、圧力計160、圧力計162および圧力計164により測定された、膜ろ過装置14の膜間差圧の挙動に基づいて、オゾン処理装置22における過酸化物の発生量が調整される(調整工程)。これにより、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水について安定した膜処理を行うことができる。すなわち、過酸化物の発生量によって、膜ろ過運転を継続しながら、膜間差圧を制御できる。 In the water treatment apparatus 4 according to the present embodiment, a peroxide containing halogen oxoacid having an oxidizing and sterilizing power such as hypobromous acid or bromic acid generated from a peroxide generation apparatus such as the ozone treatment apparatus 22 including the ozone generation apparatus 24 is used. By supplying the mixed water of the oxide-containing water and the halide ion-containing water to the membrane of the membrane filtration device 14, fouling of the membrane due to organic substances, organisms, and the like can be suppressed. A chemical such as sodium hypochlorite for suppressing fouling of the film may not be used. Then, based on the behavior of the transmembrane pressure of the membrane filtration device 14 measured by the pressure gauge 160, the pressure gauge 162, and the pressure gauge 164, the amount of peroxide generated in the ozone treatment device 22 is adjusted (adjustment). Process). Thereby, stable membrane treatment can be performed on the halide ion-containing water containing halide ions and ammonium nitrogen. That is, the transmembrane pressure difference can be controlled by the amount of generated peroxide while continuing the membrane filtration operation.
 膜ろ過装置14の膜間差圧は、例えば、圧力計160により測定された入口圧、圧力計162により測定された出口圧(透過水圧)および圧力計164により測定された濃縮水圧に基づいて、下記式により求められる。
  膜間差圧=出口圧-[(入口圧+濃縮水圧)/2]
The transmembrane pressure of the membrane filtration device 14 is based on, for example, the inlet pressure measured by the pressure gauge 160, the outlet pressure (permeate water pressure) measured by the pressure gauge 162, and the concentrated water pressure measured by the pressure gauge 164. It is obtained by the following equation.
Transmembrane pressure = outlet pressure-[(inlet pressure + concentrated water pressure) / 2]
 例えば、膜間差圧が上昇して、予め定めた基準圧に到達したら、または予め定めた上昇量に到達したら、オゾン処理装置22におけるオゾン発生装置24からのオゾン注入量を増やせばよい(例えば10%程度)。膜間差圧が基準圧より下がったら、オゾン注入量を減らしてもよいし、そのままオゾン注入量を維持してもよい。この場合、膜ろ過装置14の膜間差圧の挙動に基づいて過酸化物の発生量を調整する調整手段として、オゾン発生装置24が機能してもよいし、オゾン発生装置24の出口のフローメータ172の値に応じて開閉度が調整されるバルブ176およびバルブ178等が機能してもよい。 For example, when the transmembrane pressure increases and reaches a predetermined reference pressure or reaches a predetermined increase, the amount of ozone injected from the ozone generator 24 in the ozone treatment device 22 may be increased (for example, About 10%). When the transmembrane pressure falls below the reference pressure, the ozone injection amount may be reduced or the ozone injection amount may be maintained as it is. In this case, the ozone generator 24 may function as an adjusting means for adjusting the amount of peroxide generated based on the behavior of the transmembrane pressure of the membrane filtration device 14, or the flow at the outlet of the ozone generator 24 may be used. The valve 176 and the valve 178 whose opening degree is adjusted according to the value of the meter 172 may function.
 例えば、図示しない制御手段である制御装置と、圧力計160、圧力計162、圧力計164、オゾン発生装置24とを、またはフローメータ172、バルブ176、バルブ178とをそれぞれ電気的接続等により接続し、膜間差圧をモニタリングし、膜間差圧の挙動に基づいて、オゾン処理装置22における過酸化物の発生量を制御してもよい。 For example, a control device (not shown) is connected to the pressure gauge 160, the pressure gauge 162, the pressure gauge 164, and the ozone generator 24, or the flow meter 172, the valve 176, and the valve 178 are electrically connected to each other. Then, the transmembrane pressure may be monitored, and the amount of peroxide generated in the ozone treatment device 22 may be controlled based on the behavior of the transmembrane pressure.
 本実施形態に係る水処理装置4では、下記式4に示すように、発生させた次亜ハロゲン酸等のハロゲンオキソ酸がハロゲン化物イオン含有水に含まれるアンモニア態窒素の脱窒反応を起こす(脱窒工程)ため、膜による除濁とハロゲン化物イオン含有水の窒素除去がともに可能となる。 In the water treatment apparatus 4 according to the present embodiment, the generated halogen oxoacid such as hypohalous acid causes a denitrification reaction of the ammonia nitrogen contained in the halide ion-containing water, as shown in the following equation (4). Because of the denitrification step), both turbidity by the membrane and nitrogen removal of the halide ion-containing water can be achieved.
 [式4]
  HXO + NH → NHX + H
  3HXO + 2NH → 2N + 3HX + 3H
(ここで、Xは、Cl,Br,I等のハロゲンである。)
[Equation 4]
HXO + NH 3 → NH 2 X + H 2 O
3HXO + 2NH 3 → 2N 2 + 3HX + 3H 2 O
(Where X is a halogen such as Cl, Br, I, etc.)
 特に、XがBrの場合、下記式5に示すような、発生させた次亜臭素酸がハロゲン化物イオン含有水に含まれるアンモニア態窒素の脱窒反応を起こしやすい。 Especially, when X is Br, the generated hypobromous acid easily causes the denitrification of ammonia nitrogen contained in the halide ion-containing water as shown in the following formula 5.
 [式5]
  HBrO + NH → NHBr + H
  3HBrO + 2NH → 2N + 3HBr + 3H
[Equation 5]
HBrO + NH 3 → NH 2 Br + H 2 O
3HBrO + 2NH 3 → 2N 2 + 3HBr + 3H 2 O
 膜ろ過水中の次亜臭素酸等のハロゲンオキソ酸の濃度が高く、生態等に影響を及ぼすことが懸念されるため、膜ろ過装置14の後段に活性炭処理装置18等の過酸化物分解手段を設ける。膜ろ過装置14の後段に過酸化物分解手段を備えることにより、次亜臭素酸等のハロゲンオキソ酸による生態等への影響を低減することができる。このため、原水が養殖や水族館等の飼育水等である場合に、処理水を水槽10へ返送しても、生物への影響を低減することができる。 Since the concentration of halogen oxoacids such as hypobromite in the membrane filtration water is high and it is feared that it will affect the ecology and the like, a peroxide decomposing means such as an activated carbon treatment unit 18 is provided downstream of the membrane filtration unit 14. Provide. By providing a peroxide decomposing means at the subsequent stage of the membrane filtration device 14, it is possible to reduce the influence on the ecology and the like by the halogen oxo acid such as hypobromous acid. For this reason, when the raw water is breeding water for aquaculture, aquariums, or the like, even if the treated water is returned to the aquarium 10, the effect on living organisms can be reduced.
 図3の例では、処理水の全てが水槽10に返送されてハロゲン化物イオン含有水に添加されているが、処理水の少なくとも一部が水槽10に返送されてハロゲン化物イオン含有水に添加されればよい。使用する水量を低減する等の観点から、処理水の全てが水槽10に返送されることが好ましい。処理水の全てが水槽10に返送される閉鎖循環系とすることにより、使用する水量を低減することができる等の利点がある。 In the example of FIG. 3, all of the treated water is returned to the water tank 10 and added to the halide ion-containing water, but at least a portion of the treated water is returned to the water tank 10 and added to the halide ion-containing water. Just do it. From the viewpoint of reducing the amount of water used, it is preferable that all of the treated water be returned to the water tank 10. By using a closed circulation system in which all of the treated water is returned to the water tank 10, there is an advantage that the amount of water used can be reduced.
 本発明の実施形態に係る水処理装置の他の例の概略を図4に示し、その構成について説明する。 概略 An outline of another example of the water treatment apparatus according to the embodiment of the present invention is shown in FIG. 4 and its configuration will be described.
 水処理装置5は、過酸化物発生手段として、オゾン発生装置24を備えるオゾン処理装置22と、膜ろ過手段として、限外ろ過膜または精密ろ過膜を有する膜ろ過装置14と、過酸化物を分解処理する過酸化物分解手段として、活性炭処理装置18とを備える。水処理装置5は、水槽10と、原水槽(過酸化物含有水槽)160と、膜ろ過水槽16と、処理水槽20とを備えてもよい。 The water treatment device 5 includes an ozone treatment device 22 having an ozone generator 24 as a peroxide generation means, a membrane filtration device 14 having an ultrafiltration membrane or a microfiltration membrane as a membrane filtration means, and a peroxide. An activated carbon treatment device 18 is provided as peroxide decomposition means for performing decomposition treatment. The water treatment apparatus 5 may include the water tank 10, a raw water tank (peroxide-containing water tank) 160, a membrane filtration water tank 16, and a treated water tank 20.
 図4の水処理装置5において、水槽10の出口とオゾン処理装置22の入口とがポンプ150およびストレーナ38を介して配管112により接続され、オゾン処理装置22の出口と原水槽(過酸化物含有水槽)160の入口とが配管114により接続され、原水槽(過酸化物含有水槽)160の出口と膜ろ過装置14の入口とがポンプ152を介して配管116により接続され、膜ろ過装置14の透過水出口と膜ろ過水槽16の入口とが配管118により接続され、膜ろ過水槽16の出口と活性炭処理装置18の入口とがポンプ154を介して配管120により接続され、活性炭処理装置18の出口と処理水槽20の入口とが配管122により接続され、処理水槽20の出口と水槽10とがポンプ156を介して返送配管124により接続されている。オゾン処理装置22の下部にはバルブ182を介してオゾン発生装置24が配管132により接続されている。配管132におけるバルブ182の下流側にはオゾンの流量を測定するフローメータ174が設置されている。オゾン処理装置22の上部の排オゾン出口には、排オゾンを排出する配管136が接続され、配管132におけるバルブ182の上流側から分岐した配管138がバルブ180を介して配管136に接続されている。オゾン処理装置22の上部側面には発生したスカム等を排出する配管134が接続されている。処理水槽20の下部と膜ろ過装置14の2次側とはポンプ158を介して配管126により接続されている。圧力測定手段として、配管116のポンプ152の下流側には、圧力計166が設置され、配管118には、圧力計168が設置され、配管130には、圧力計170が設置されている。 In the water treatment device 5 of FIG. 4, the outlet of the water tank 10 and the inlet of the ozone treatment device 22 are connected by the pipe 112 via the pump 150 and the strainer 38, and the exit of the ozone treatment device 22 is connected to the raw water tank (containing peroxide). The inlet of a water tank (160) is connected by a pipe (114), the outlet of a raw water tank (peroxide-containing water tank) 160 and the inlet of the membrane filter (14) are connected by a pipe (116) via a pump (152), and the The permeated water outlet and the inlet of the membrane filtration water tank 16 are connected by a pipe 118, and the outlet of the membrane filtration water tank 16 and the inlet of the activated carbon treatment device 18 are connected by a pipe 120 via a pump 154, and the outlet of the activated carbon treatment device 18 And the inlet of the treated water tank 20 are connected by a pipe 122, and the outlet of the treated water tank 20 and the water tank 10 are connected by a return pipe 124 via a pump 156. It is. The ozone generator 24 is connected to the lower part of the ozone treatment device 22 via a pipe 132 via a valve 182. A flow meter 174 for measuring the flow rate of ozone is installed downstream of the valve 182 in the pipe 132. A pipe 136 for discharging the discharged ozone is connected to a discharge ozone outlet at an upper portion of the ozone treatment device 22, and a pipe 138 branched from an upstream side of the valve 182 in the pipe 132 is connected to the pipe 136 via the valve 180. . A pipe 134 for discharging generated scum and the like is connected to an upper side surface of the ozone treatment device 22. The lower part of the treatment water tank 20 and the secondary side of the membrane filtration device 14 are connected by a pipe 126 via a pump 158. As a pressure measuring means, a pressure gauge 166 is installed downstream of the pump 152 in the pipe 116, a pressure gauge 168 is installed in the pipe 118, and a pressure gauge 170 is installed in the pipe 130.
 本実施形態に係る水処理方法および水処理装置5の動作について説明する。 動作 The operation of the water treatment method and the water treatment device 5 according to the present embodiment will be described.
 水槽10に貯留された、懸濁物質を含み、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水は、ポンプ150により配管112を通してオゾン処理装置22に供給される。必要に応じて配管112の途中にストレーナ38を設置し、ハロゲン化物イオン含有水中の比較的大きめの固形物が除去されてもよい。 水 The halide ion-containing water containing the suspended substance and containing the halide ions and the ammonium nitrogen stored in the water tank 10 is supplied to the ozone treatment device 22 through the pipe 112 by the pump 150. If necessary, a strainer 38 may be provided in the middle of the pipe 112 to remove relatively large solids in the halide ion-containing water.
 オゾン処理装置22には、一方で、オゾン発生装置24で発生させたオゾンが配管132を通して供給される。オゾン処理装置22において、上記式1に示すように、ハロゲン化物イオン含有水に含まれるハロゲン化物イオンとオゾンとの反応により、過酸化物である次亜ハロゲン酸(HXO)等のハロゲンオキソ酸が発生する(過酸化物発生工程)。次亜ハロゲン酸等のハロゲンオキソ酸は酸化力を有し、有機物の酸化や殺菌等に効果がある。なお、排オゾンは、配管136を通して排出され、オゾン処理装置22において発生したスカム等は、配管134を通して排出される。オゾン発生装置24で発生させたオゾンのうちオゾン処理装置22に供給されない分は、配管132,138,136を通して排出される。すなわち、オゾン処理装置22に供給されるオゾンの量は、バルブ180,182の開閉度によって調整される。 一方 で On the other hand, the ozone generated by the ozone generator 24 is supplied to the ozone treatment device 22 through a pipe 132. In the ozone treatment device 22, as shown in the above formula 1, by the reaction between the halide ions contained in the halide ion-containing water and ozone, halogen oxo acids such as hypohalous acid (HXO), which is a peroxide, are converted. Occurs (peroxide generation step). Halogen oxo acids such as hypohalous acid have oxidizing power and are effective in oxidizing and sterilizing organic substances. The discharged ozone is discharged through a pipe 136, and scum generated in the ozone treatment device 22 is discharged through a pipe 134. The portion of the ozone generated by the ozone generator 24 that is not supplied to the ozone treatment device 22 is discharged through the pipes 132, 138, and 136. That is, the amount of ozone supplied to the ozone treatment device 22 is adjusted by the degree of opening and closing of the valves 180 and 182.
 Xが塩化物イオンの場合、上記式2に示すように、ハロゲン化物イオン含有水に含まれる塩化物イオンとオゾンとの反応により、過酸化物である次亜塩素酸(HClO)等のハロゲンオキソ酸が発生する。 In the case where X is a chloride ion, as shown in the above formula 2, the reaction between chloride ion contained in the halide ion-containing water and ozone causes halogen such as hypochlorous acid (HClO) which is a peroxide. Oxo acids are generated.
 また、Xが臭化物イオンの場合、上記式3に示すように、ハロゲン化物イオン含有水に含まれる臭化物イオンとオゾンとの反応により、過酸化物である次亜臭素酸(HBrO)等のハロゲンオキソ酸が発生する。 When X - is a bromide ion, a reaction between bromide ion contained in the halide ion-containing water and ozone causes halogen such as hypobromite (HBrO), which is a peroxide, as shown in the above formula 3. Oxo acids are generated.
 過酸化物を発生させた過酸化物含有水は、配管114を通して必要に応じて原水槽(過酸化物含有水槽)160に貯留された後、ポンプ152により配管116を通して膜ろ過装置14に供給される。膜ろ過装置14において、過酸化物含有水中の懸濁物質、すなわち原水であるハロゲン化物イオン含有水に含まれていた懸濁物質が限外ろ過膜または精密ろ過膜を用いてろ過されて除去される(膜ろ過工程)。 The peroxide-containing water that has generated peroxide is stored in a raw water tank (peroxide-containing water tank) 160 as required through a pipe 114, and then supplied to the membrane filtration device 14 through a pipe 116 by a pump 152. You. In the membrane filtration device 14, suspended substances in the peroxide-containing water, that is, suspended substances contained in the halide ion-containing water as raw water are removed by filtration using an ultrafiltration membrane or a microfiltration membrane. (Membrane filtration step).
 膜ろ過された透過水(膜ろ過水)は、配管118を通して必要に応じて膜ろ過水槽16に貯留された後、ポンプ154により配管120を通して活性炭処理装置18に供給される。活性炭処理装置18において、膜ろ過水中の過酸化物であるハロゲンオキソ酸が活性炭により分解処理され、ハロゲン化物イオンとなる(過酸化物分解工程)。膜ろ過装置14の濃縮水は、配管130を通して排出される。 透過 The permeated water (membrane filtered water) that has been subjected to membrane filtration is stored in the membrane filtration water tank 16 as necessary through a pipe 118, and then supplied to the activated carbon treatment device 18 through a pipe 120 by a pump 154. In the activated carbon treatment device 18, the halogen oxo acid, which is a peroxide in the membrane filtered water, is decomposed by activated carbon to form halide ions (peroxide decomposition step). The concentrated water of the membrane filtration device 14 is discharged through a pipe 130.
 過酸化物が分解処理され、ハロゲン化物イオンを含む処理水は、配管122を通して必要に応じて処理水槽20に貯留された後、ポンプ156により返送配管124を通して水槽10に返送され、ハロゲン化物イオン含有水に添加される(返送工程)。過酸化物分解手段により分解処理した処理水の少なくとも一部を返送してハロゲン化合物イオン含有水に添加する返送手段として、ポンプ156および返送配管124が機能する。 The peroxide is decomposed, and the treated water containing halide ions is stored in the treated water tank 20 as needed through the pipe 122, and then returned to the water tank 10 through the return pipe 124 by the pump 156, and contains the halide ions. It is added to water (return step). The pump 156 and the return pipe 124 function as return means for returning at least a part of the treated water decomposed by the peroxide decomposition means and adding the treated water to the halogen compound ion-containing water.
 膜ろ過装置14の洗浄が必要になった場合は、処理水の一部が逆洗水として処理水槽20からポンプ158により配管126を通して膜ろ過装置14の2次側から1次側に逆流されて、膜が洗浄されてもよい(逆洗工程)。逆洗排水は、配管128を通して排出される。膜ろ過水槽16の膜ろ過水が逆洗水として用いられてもよい。 When the membrane filtration device 14 needs to be washed, a part of the treated water is returned as backwash water from the treated water tank 20 to the primary side of the membrane filtration device 14 from the secondary side through the pipe 126 by the pump 158. Alternatively, the membrane may be washed (backwash step). The backwash drainage is discharged through a pipe 128. The membrane filtration water in the membrane filtration tank 16 may be used as the backwash water.
 本実施形態に係る水処理装置5において、オゾン発生装置24を備えるオゾン処理装置22等の過酸化物発生装置より生じる次亜臭素酸や臭素酸等の酸化殺菌力を有するハロゲンオキソ酸を含むハロゲン化物イオン含有水を膜ろ過装置14の膜に供給することによって、有機物や生物等による膜のファウリングを抑制することができる。膜のファウリングを抑制するための次亜塩素酸ナトリウム等の薬品は用いなくてもよい。そして、圧力計166、圧力計168および圧力計170により測定された、膜ろ過装置14の膜間差圧の挙動に基づいて、オゾン処理装置22における過酸化物の発生量が調整される(調整工程)。これにより、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水について安定した膜処理を行うことができる。 In the water treatment apparatus 5 according to the present embodiment, the halogen containing a halogen oxo acid having an oxidizing and sterilizing power such as hypobromous acid or bromic acid generated from a peroxide generator such as the ozone treatment apparatus 22 including the ozone generator 24. By supplying the fluoride ion-containing water to the membrane of the membrane filtration device 14, fouling of the membrane due to organic substances, organisms, and the like can be suppressed. A chemical such as sodium hypochlorite for suppressing fouling of the film may not be used. Then, based on the behavior of the transmembrane pressure of the membrane filtration device 14 measured by the pressure gauge 166, the pressure gauge 168, and the pressure gauge 170, the amount of peroxide generated in the ozone treatment device 22 is adjusted (adjustment). Process). Thereby, stable membrane treatment can be performed on the halide ion-containing water containing halide ions and ammonium nitrogen.
 膜ろ過装置14の膜間差圧は、例えば、圧力計166により測定された入口圧、圧力計168により測定された出口圧(透過水圧)および圧力計170により測定された濃縮水圧に基づいて、上記式により求められる。 The transmembrane pressure of the membrane filtration device 14 is based on, for example, the inlet pressure measured by the pressure gauge 166, the outlet pressure (permeate water pressure) measured by the pressure gauge 168, and the concentrated water pressure measured by the pressure gauge 170. It is determined by the above equation.
 例えば、膜間差圧が上昇して、予め定めた基準圧に到達したら、または予め定めた上昇量に到達したら、オゾン処理装置22におけるオゾン発生装置24からのオゾン注入量を増やせばよい(例えば10%程度)。膜間差圧が基準圧より下がったら、オゾン注入量を減らしてもよいし、そのままオゾン注入量を維持してもよい。この場合、膜ろ過装置14の膜間差圧の挙動に基づいて過酸化物の発生量を調整する調整手段として、オゾン発生装置24が機能してもよいし、オゾン発生装置24の出口のフローメータ174の値に応じて開閉度が調整されるバルブ180およびバルブ182等が機能してもよい。 For example, when the transmembrane pressure increases and reaches a predetermined reference pressure or reaches a predetermined increase, the amount of ozone injected from the ozone generator 24 in the ozone treatment device 22 may be increased (for example, About 10%). When the transmembrane pressure falls below the reference pressure, the ozone injection amount may be reduced or the ozone injection amount may be maintained as it is. In this case, the ozone generator 24 may function as an adjusting means for adjusting the amount of peroxide generated based on the behavior of the transmembrane pressure of the membrane filtration device 14, or the flow at the outlet of the ozone generator 24 may be used. The valve 180 and the valve 182 whose opening degree is adjusted according to the value of the meter 174 may function.
 例えば、図示しない制御手段である制御装置と、圧力計166、圧力計168、圧力計170、オゾン発生装置24とを、またはフローメータ174、バルブ180、バルブ182とをそれぞれ電気的接続等により接続し、膜間差圧をモニタリングし、膜間差圧の挙動に基づいて、オゾン処理装置22における過酸化物の発生量を制御してもよい。 For example, a control device (not shown) is connected to the pressure gauge 166, the pressure gauge 168, the pressure gauge 170, and the ozone generator 24, or the flow meter 174, the valve 180, and the valve 182 are electrically connected to each other. Then, the transmembrane pressure may be monitored, and the amount of peroxide generated in the ozone treatment device 22 may be controlled based on the behavior of the transmembrane pressure.
 本実施形態に係る水処理装置5では、上記式4に示すように、発生させた次亜ハロゲン酸等のハロゲンオキソ酸がハロゲン化物イオン含有水に含まれるアンモニア態窒素の脱窒反応を起こす(脱窒工程)ため、膜による除濁とハロゲン化物イオン含有水の窒素除去がともに可能となる。 In the water treatment apparatus 5 according to the present embodiment, the generated halogen oxo acid such as hypohalous acid causes a denitrification reaction of the ammonia nitrogen contained in the halide ion-containing water, as shown in the above formula (4). Because of the denitrification step), both turbidity by the membrane and nitrogen removal of the halide ion-containing water can be achieved.
 特に、XがBrの場合、上記式5に示すような、発生させた次亜臭素酸がハロゲン化物イオン含有水に含まれるアンモニア態窒素の脱窒反応を起こしやすい。 Especially, when X is Br, the generated hypobromous acid easily causes the denitrification of ammonia nitrogen contained in the halide ion-containing water as shown in the above formula 5.
 膜ろ過水中の次亜臭素酸等のハロゲンオキソ酸の濃度が高く、生態等に影響を及ぼすことが懸念されるため、膜ろ過装置14の後段に活性炭処理装置18等の過酸化物分解手段を設ける。膜ろ過装置14の後段に過酸化物分解手段を備えることにより、次亜臭素酸等のハロゲンオキソ酸による生態等への影響を低減することができる。このため、原水が養殖や水族館等の飼育水等である場合に、処理水を水槽10へ返送しても、生物への影響を低減することができる。 Since the concentration of halogen oxoacids such as hypobromite in the membrane filtration water is high and it is feared that it will affect the ecology and the like, a peroxide decomposing means such as an activated carbon treatment unit 18 is provided downstream of the membrane filtration unit 14. Provide. By providing a peroxide decomposing means at the subsequent stage of the membrane filtration device 14, it is possible to reduce the influence on the ecology and the like by the halogen oxo acid such as hypobromous acid. For this reason, when the raw water is breeding water for aquaculture, aquariums, or the like, even if the treated water is returned to the aquarium 10, the effect on living organisms can be reduced.
 図4の例では、処理水の全てが水槽10に返送されてハロゲン化物イオン含有水に添加されているが、処理水の少なくとも一部が水槽10に返送されてハロゲン化物イオン含有水に添加されればよい。使用する水量を低減する等の観点から、処理水の全てが水槽10に返送されることが好ましい。処理水の全てが水槽10に返送される閉鎖循環系とすることにより、使用する水量を低減することができる等の利点がある。 In the example of FIG. 4, all of the treated water is returned to the water tank 10 and added to the halide ion-containing water, but at least a portion of the treated water is returned to the water tank 10 and added to the halide ion-containing water. Just do it. From the viewpoint of reducing the amount of water used, it is preferable that all of the treated water be returned to the water tank 10. By using a closed circulation system in which all of the treated water is returned to the water tank 10, there is an advantage that the amount of water used can be reduced.
 本発明の実施形態に係る水処理装置の他の例の概略を図5に示し、その構成について説明する。 概略 FIG. 5 schematically shows another example of the water treatment apparatus according to the embodiment of the present invention, and the configuration will be described.
 水処理装置6は、過酸化物発生手段として、オゾン発生装置24を備えるオゾン処理装置22と、膜ろ過手段として、限外ろ過膜または精密ろ過膜を有する膜ろ過装置14と、過酸化物を分解処理する過酸化物分解手段として、活性炭処理装置18とを備える。水処理装置6は、水槽10と、原水槽(過酸化物含有水槽)12と、膜ろ過水槽16と、処理水槽20と、濃縮水槽68とを備えてもよい。 The water treatment device 6 includes an ozone treatment device 22 having an ozone generator 24 as a peroxide generation means, a membrane filtration device 14 having an ultrafiltration membrane or a microfiltration membrane as a membrane filtration means, and a peroxide. An activated carbon treatment device 18 is provided as peroxide decomposition means for performing decomposition treatment. The water treatment device 6 may include a water tank 10, a raw water tank (peroxide-containing water tank) 12, a membrane filtration water tank 16, a treated water tank 20, and a concentrated water tank 68.
 図5の水処理装置6において、水槽10の出口と原水槽(過酸化物含有水槽)12の入口とが配管85により接続され、原水槽(過酸化物含有水槽)12の出口と膜ろ過装置14の入口とがポンプ140およびストレーナ38を介して配管86により接続され、膜ろ過装置14の透過水出口と膜ろ過水槽16の入口とが配管88より接続され、膜ろ過水槽16の出口と活性炭処理装置18の入口とがポンプ142を介して配管90により接続され、活性炭処理装置18の出口と処理水槽20の入口とが配管92より接続され、処理水槽20の出口と水槽10とがポンプ144を介して返送配管94により接続されている。 In the water treatment device 6 of FIG. 5, the outlet of the water tank 10 and the inlet of the raw water tank (peroxide-containing water tank) 12 are connected by a pipe 85, and the outlet of the raw water tank (peroxide-containing water tank) 12 is connected to the membrane filtration device. 14 is connected by a pipe 86 via a pump 140 and a strainer 38, a permeate outlet of the membrane filtration device 14 and an inlet of the membrane filtration tank 16 are connected by a pipe 88, and an outlet of the membrane filtration tank 16 is The inlet of the treatment device 18 is connected by a pipe 90 via a pump 142, the outlet of the activated carbon treatment device 18 and the inlet of the treatment water tank 20 are connected by a pipe 92, and the outlet of the treatment water tank 20 and the water tank 10 are connected by a pump 144. Are connected by a return pipe 94.
 膜ろ過装置14の濃縮水出口と濃縮水槽68の濃縮水入口とが配管96により接続され、濃縮水槽68の出口とオゾン処理装置22の入口とがポンプ146を介して配管98により接続され、オゾン処理装置22の出口と原水槽(過酸化物含有水槽)12の入口とが配管100により接続されている。オゾン処理装置22の下部にはオゾン発生装置24がバルブ178を介して配管110により接続されている。配管110におけるバルブ178の下流側にはオゾンの流量を測定するフローメータ172が設置されている。オゾン処理装置22の上部の排オゾン出口には、排オゾンを排出する配管106が接続され、配管110におけるバルブ178の上流側から分岐した配管108がバルブ176を介して配管106に接続されている。オゾン処理装置22の上部側面には発生したスカム等を排出する配管104が接続されている。処理水槽20の下部と膜ろ過装置14の2次側とはポンプ148を介して配管102により接続されている。残留酸化物濃度測定手段として、配管100には残留塩素測定装置184が設置されている。 The concentrated water outlet of the membrane filtration device 14 and the concentrated water inlet of the concentrated water tank 68 are connected by a pipe 96, and the outlet of the concentrated water tank 68 and the inlet of the ozone treatment device 22 are connected by a pipe 98 via a pump 146. An outlet of the treatment device 22 and an inlet of the raw water tank (peroxide-containing water tank) 12 are connected by a pipe 100. An ozone generator 24 is connected to the lower part of the ozone treatment device 22 by a pipe 110 via a valve 178. A flow meter 172 for measuring the flow rate of ozone is provided downstream of the valve 178 in the pipe 110. A pipe 106 for discharging exhausted ozone is connected to an exhausted ozone outlet at the upper part of the ozone treatment device 22, and a pipe 108 branched from an upstream side of a valve 178 in the pipe 110 is connected to the pipe 106 via a valve 176. . A pipe 104 for discharging generated scum or the like is connected to an upper side surface of the ozone treatment device 22. The lower part of the treated water tank 20 and the secondary side of the membrane filtration device 14 are connected by a pipe 102 via a pump 148. A residual chlorine measuring device 184 is provided in the pipe 100 as a residual oxide concentration measuring means.
 本実施形態に係る水処理方法および水処理装置6の動作について説明する。 動作 The operation of the water treatment method and the water treatment device 6 according to the present embodiment will be described.
 水槽10に貯留された、懸濁物質を含み、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水は、必要に応じて原水槽(過酸化物含有水槽)12に貯留される。ハロゲン化物イオン含有水は、原水槽(過酸化物含有水槽)12において、後述する過酸化物を発生させた過酸化物含有水と混合されて、過酸化物によるアンモニア態窒素のブレークポイント処理が行われた後、混合水としてポンプ140により配管86を通して膜ろ過装置14に供給される。必要に応じて配管86の途中にストレーナ38を設置し、ハロゲン化物イオン含有水中の比較的大きめの固形物が除去されてもよい。 水 Halogen ion-containing water containing a suspended substance and containing halide ions and ammonium nitrogen stored in the water tank 10 is stored in a raw water tank (peroxide-containing water tank) 12 as necessary. The halide ion-containing water is mixed in a raw water tank (peroxide-containing water tank) 12 with a peroxide-containing water that has generated a peroxide, which will be described later, and a breakpoint treatment of ammonia nitrogen by the peroxide is performed. After that, the mixed water is supplied to the membrane filtration device 14 through the pipe 86 by the pump 140. If necessary, a strainer 38 may be provided in the middle of the pipe 86 to remove relatively large solids in the halide ion-containing water.
 膜ろ過装置14において、混合水中の懸濁物質、すなわち原水であるハロゲン化物イオン含有水に含まれていた懸濁物質が限外ろ過膜または精密ろ過膜を用いてろ過されて除去される(膜ろ過工程)。 In the membrane filtration device 14, suspended substances in the mixed water, that is, suspended substances contained in the halide ion-containing water as raw water are removed by filtration using an ultrafiltration membrane or a microfiltration membrane (membrane). Filtration step).
 膜ろ過された膜ろ過水(透過水)は、配管88を通して必要に応じて膜ろ過水槽16に貯留された後、ポンプ142により配管90を通して活性炭処理装置18に供給される。活性炭処理装置18において、膜ろ過水中の過酸化物であるハロゲンオキソ酸が活性炭により分解処理され、ハロゲン化物イオンとなる(過酸化物分解工程)。 膜 The membrane filtered water (permeated water) that has been subjected to membrane filtration is stored in the membrane filtered water tank 16 as necessary through a pipe 88, and then supplied to the activated carbon treatment device 18 through a pipe 90 by a pump 142. In the activated carbon treatment device 18, the halogen oxo acid, which is a peroxide in the membrane filtered water, is decomposed by activated carbon to form halide ions (peroxide decomposition step).
 過酸化物が分解処理され、ハロゲン化物イオンを含む処理水は、配管92を通して必要に応じて処理水槽20に貯留された後、ポンプ144により返送配管94を通して水槽10に返送され、ハロゲン化物イオン含有水に添加される(返送工程)。過酸化物分解手段により分解処理した処理水の少なくとも一部を返送してハロゲン化合物イオン含有水に添加する返送手段として、ポンプ144および返送配管94が機能する。 The peroxide is decomposed, and the treated water containing halide ions is stored in the treated water tank 20 as necessary through the pipe 92, and then returned to the water tank 10 through the return pipe 94 by the pump 144, and contains the halide ions. It is added to water (return step). The pump 144 and the return pipe 94 function as return means for returning at least a part of the treated water decomposed by the peroxide decomposing means and adding the treated water to the halogen compound ion-containing water.
 膜ろ過装置14の濃縮水は、配管96を通して必要に応じて濃縮水槽68に貯留された後、ポンプ146により配管98を通してオゾン処理装置22に供給される。 The concentrated water in the membrane filtration device 14 is stored in the concentrated water tank 68 as necessary through a pipe 96, and then supplied to the ozone treatment device 22 through a pipe 98 by a pump 146.
 オゾン処理装置22には、一方で、オゾン発生装置24で発生させたオゾンが配管110を通して供給される。オゾン処理装置22において、上記式1に示すように、濃縮水に含まれるハロゲン化物イオンとオゾンとの反応により、過酸化物である次亜ハロゲン酸(HXO)等のハロゲンオキソ酸が発生する(過酸化物発生工程)。次亜ハロゲン酸等のハロゲンオキソ酸は酸化力を有し、有機物の酸化や殺菌等に効果がある。なお、排オゾンは、配管106を通して排出され、オゾン処理装置22において発生したスカム等は、配管104を通して排出される。オゾン発生装置24で発生させたオゾンのうちオゾン処理装置22に供給されない分は、配管110,108,106を通して排出される。すなわち、オゾン処理装置22に供給されるオゾンの量は、バルブ176,178の開閉度によって調整される。 一方 で On the other hand, the ozone generated by the ozone generator 24 is supplied to the ozone treatment device 22 through a pipe 110. In the ozone treatment device 22, as shown in the above formula 1, a reaction between the halide ions contained in the concentrated water and ozone generates halogen oxo acids such as hypohalous acid (HXO) which is a peroxide ( Peroxide generation step). Halogen oxo acids such as hypohalous acid have oxidizing power and are effective in oxidizing and sterilizing organic substances. The discharged ozone is discharged through a pipe 106, and scum generated in the ozone treatment device 22 is discharged through a pipe 104. The portion of the ozone generated by the ozone generator 24 that is not supplied to the ozone treatment device 22 is discharged through the pipes 110, 108, and 106. That is, the amount of ozone supplied to the ozone treatment device 22 is adjusted by the degree of opening and closing of the valves 176 and 178.
 Xが塩化物イオンの場合、上記式2に示すように、濃縮水に含まれる塩化物イオンとオゾンとの反応により、過酸化物である次亜塩素酸(HClO)等のハロゲンオキソ酸が発生する。 When X is a chloride ion, a halogen oxo acid such as hypochlorous acid (HClO), which is a peroxide, is formed by the reaction between the chloride ion contained in the concentrated water and ozone as shown in the above formula 2. appear.
 また、Xが臭化物イオンの場合、上記式3に示すように、濃縮水に含まれる臭化物イオンとオゾンとの反応により、過酸化物である次亜臭素酸(HBrO)等のハロゲンオキソ酸が発生する。 When X - is a bromide ion, a halogen oxo acid such as hypobromite (HBrO), which is a peroxide, is formed by a reaction between the bromide ion contained in the concentrated water and ozone as shown in the above formula 3. appear.
 過酸化物を発生させた過酸化物含有水は、配管100を通して原水槽(過酸化物含有水槽)12に供給され、水槽10からのハロゲン化物イオン含有水と混合され、上記の通り、過酸化物によるアンモニア態窒素のブレークポイント処理が行われる。 The peroxide-containing water that has generated the peroxide is supplied to a raw water tank (peroxide-containing water tank) 12 through a pipe 100, mixed with the halide ion-containing water from the water tank 10, and, as described above, is mixed with the peroxide. A breakpoint treatment of ammonia nitrogen by the substance is performed.
 膜ろ過装置14の洗浄が必要になった場合は、処理水の一部が逆洗水として処理水槽20からポンプ148により配管102を通して膜ろ過装置14の2次側から1次側に逆流されて、膜が洗浄されてもよい(逆洗工程)。逆洗排水は、配管96を通して濃縮水槽68に供給され、膜ろ過装置14からの濃縮水と混合される。膜ろ過水槽16の膜ろ過水が逆洗水として用いられてもよい。 When the membrane filtration device 14 needs to be washed, a part of the treated water is back-flushed from the treated water tank 20 to the primary side from the secondary side of the membrane filtration device 14 through the pipe 102 by the pump 148 as the backwash water. Alternatively, the membrane may be washed (backwash step). The backwash wastewater is supplied to the concentrated water tank 68 through the pipe 96 and mixed with the concentrated water from the membrane filtration device 14. The membrane filtration water in the membrane filtration tank 16 may be used as the backwash water.
 本実施形態に係る水処理装置6では、上記式4に示すように、発生させた次亜ハロゲン酸等のハロゲンオキソ酸がハロゲン化物イオン含有水に含まれるアンモニア態窒素の脱窒反応を起こす(脱窒工程)ため、膜による除濁とハロゲン化物イオン含有水の窒素除去がともに可能となる。 In the water treatment apparatus 6 according to the present embodiment, as shown in the above formula 4, the generated halogen oxo acid such as hypohalous acid causes a denitrification reaction of the ammonia nitrogen contained in the halide ion-containing water ( Because of the denitrification step), both turbidity by the membrane and nitrogen removal of the halide ion-containing water can be achieved.
 特に、XがBrの場合、上記式5に示すような、発生させた次亜臭素酸がハロゲン化物イオン含有水に含まれるアンモニア態窒素の脱窒反応を起こしやすい。 Especially, when X is Br, the generated hypobromous acid easily causes the denitrification of ammonia nitrogen contained in the halide ion-containing water as shown in the above formula 5.
 本実施形態に係る水処理装置6において、オゾン発生装置24を備えるオゾン処理装置22等の過酸化物発生装置より生じる次亜臭素酸や臭素酸等の酸化殺菌力を有するハロゲンオキソ酸を含む過酸化物含有水とハロゲン化物イオン含有水との混合水を膜ろ過装置14の膜に供給することによって、有機物や生物等による膜のファウリングを抑制することができる。膜のファウリングを抑制するための次亜塩素酸ナトリウム等の薬品は用いなくてもよい。 In the water treatment apparatus 6 according to the present embodiment, the peroxide containing halogen oxoacid having oxidizing and sterilizing power, such as hypobromous acid or bromic acid, generated from a peroxide generator such as the ozone treatment apparatus 22 including the ozone generator 24 is used. By supplying the mixed water of the oxide-containing water and the halide ion-containing water to the membrane of the membrane filtration device 14, fouling of the membrane due to organic substances, organisms, and the like can be suppressed. A chemical such as sodium hypochlorite for suppressing fouling of the film may not be used.
 上記の通り、特許文献3の方法のような従来型の水処理装置および水処理方法では、アンモニア態窒素が十分に除去できていることを確認する手段がなく、例えば原水水質が変動した場合、アンモニア態窒素の除去が不十分になる可能性がある。 As described above, in the conventional water treatment apparatus and the water treatment method such as the method of Patent Document 3, there is no means for confirming that ammonia nitrogen has been sufficiently removed. For example, when the raw water quality fluctuates, The removal of ammonia nitrogen may be insufficient.
 本実施形態に係る水処理装置6では、活性炭処理装置18(過酸化物分解工程)の前段において残留塩素測定装置184により残留酸化物濃度を測定することにより、アンモニア態窒素が十分に処理されていることを確認することができる。よって、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水について、安定したアンモニア態窒素の処理を行うことができ、水質が変動してもアンモニア態窒素の除去を十分に行うことができる。 In the water treatment apparatus 6 according to the present embodiment, ammonia nitrogen is sufficiently treated by measuring the residual oxide concentration by the residual chlorine measuring apparatus 184 at a stage prior to the activated carbon treatment apparatus 18 (peroxide decomposition step). You can be sure that. Therefore, it is possible to stably treat the ammonium ion-containing water containing the halide ions and the ammonia nitrogen, and to sufficiently remove the ammonia nitrogen even if the water quality changes.
 ハロゲン化物イオン含有水にアンモニア態窒素が含まれる場合には、オゾン処理装置等の過酸化物発生手段におけるハロゲンオキソ酸の発生量が以下で説明するブレークポイント法で必要とされる量より低い場合には、過酸化物含有水における残留ハロゲンは結合ハロゲンの形態で存在するため、残留ハロゲン濃度を全塩素の測定により算出すると、仮に残留ハロゲンとして検出されても、アンモニア態窒素の除去が不十分になると考えられる。 When the ammonium ion is contained in the halide ion-containing water, the amount of halogen oxo acid generated in the peroxide generating means such as an ozone treatment device is lower than the amount required by the break point method described below. Since residual halogen in peroxide-containing water exists in the form of bound halogen, the residual halogen concentration is calculated by measurement of total chlorine, and even if it is detected as residual halogen, the removal of ammonia nitrogen is insufficient. It is thought to be.
 本実施形態に係る水処理装置6では、過酸化物分解手段である活性炭処理装置18の前段に設置された残留酸化物濃度測定手段である残留塩素測定装置184により残留酸化物濃度を測定して、残留酸化物濃度測定手段の測定値に基づいてオゾン処理装置22における過酸化物の発生量が制御される(制御工程)。過酸化物の発生量を制御してアンモニア態窒素のブレークポイント処理を行うことによって、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水について、アンモニア態窒素の除去を十分に行うことができ、安定した膜処理を行うことができる。 In the water treatment apparatus 6 according to the present embodiment, the residual oxide concentration is measured by a residual chlorine measuring device 184 which is a residual oxide concentration measuring means installed before the activated carbon treatment device 18 which is a peroxide decomposing means. The amount of peroxide generated in the ozone treatment device 22 is controlled based on the measurement value of the residual oxide concentration measuring means (control step). By controlling the amount of peroxide generated and performing a breakpoint treatment of ammonia nitrogen, it is possible to sufficiently remove ammonia nitrogen from halide ion-containing water containing halide ions and ammonium nitrogen. A stable film processing can be performed.
 ブレークポイント処理は、被処理水中のアンモニア態窒素の濃度に対して理論値より多めの酸化剤(過酸化物)を添加してアンモニア態窒素を分解、除去する方法である。図11のグラフは、アンモニアを含むアンモニア含有水にハロゲン系酸化剤として次亜塩素酸を添加していった場合の添加次亜塩素酸濃度(mg/L)に対する、遊離塩素と全塩素でそれぞれ測定した残留塩素濃度(mg/L)を示すグラフである。アンモニア含有水に次亜塩素酸を添加していくと、最初は結合塩素が形成されて次亜塩素酸の添加量に伴って残留塩素(全塩素)が増加するが、極大点までくると、残留塩素がクロラミン(結合塩素)の分解に使用されて減少し、極小点に達すると、再び次亜塩素酸の添加量に比例して残留塩素(遊離塩素)が増加する。この極小点はブレークポイントと呼ばれ、このブレークポイントでアンモニアがすべて消費されたことになる。したがって、ブレークポイントを超え、アンモニア態窒素の分解に必要な量の過酸化物を発生させることによって、アンモニア態窒素の除去を十分に行うことができる。残留酸化物濃度測定手段により測定された残留酸化物濃度に基づいて、オゾン処理装置22による過酸化物の発生量を制御することにより、ハロゲン化物イオン含有水の水質が変動してもアンモニア態窒素の除去を十分に行うことができる。 Break point treatment is a method of decomposing and removing ammonia nitrogen by adding an oxidizing agent (peroxide) larger than the theoretical value with respect to the concentration of ammonia nitrogen in the water to be treated. The graph of FIG. 11 shows the free chlorine and the total chlorine with respect to the added hypochlorous acid concentration (mg / L) when hypochlorous acid was added as a halogen-based oxidizing agent to ammonia-containing water containing ammonia, respectively. It is a graph which shows the measured residual chlorine concentration (mg / L). As hypochlorous acid is added to the ammonia-containing water, bound chlorine is initially formed and residual chlorine (total chlorine) increases with the amount of hypochlorous acid added, but when it reaches the maximum point, When residual chlorine is used to decompose chloramine (bound chlorine) and decreases and reaches a minimum point, residual chlorine (free chlorine) increases again in proportion to the amount of hypochlorous acid added. This minimum point is called a breakpoint, at which point all of the ammonia has been consumed. Therefore, the amount of peroxide required to decompose ammonia-nitrogen beyond the break point is generated, whereby ammonia-nitrogen can be sufficiently removed. By controlling the amount of peroxide generated by the ozone treatment device 22 based on the residual oxide concentration measured by the residual oxide concentration measuring means, even if the water quality of the halide ion-containing water fluctuates, the ammonia nitrogen Can be sufficiently removed.
 残留酸化物濃度測定手段は、残留酸化物量を測定することができるものであればよく、特に制限はないが、全ハロゲン量(遊離ハロゲン量+結合ハロゲン量)および遊離ハロゲン量のうち少なくとも1つを測定することができるものであることが好ましく、全ハロゲン量と遊離ハロゲン量とをそれぞれ測定可能であるものであることがより好ましい。残留酸化物濃度測定手段は、例えば、残留塩素測定手段であり、残留塩素量を測定することができるものであればよく、特に制限はないが、全塩素量(遊離塩素量+結合塩素量)および遊離塩素量のうち少なくとも1つを測定することができるものであることが好ましく、全塩素量と遊離塩素量とをそれぞれ測定可能であるものであることがより好ましい。残留酸化物濃度測定手段としては、全ハロゲン量と遊離ハロゲン量、例えば全塩素量と遊離塩素量の両方を測定することができる測定装置を用いてもよいし、全ハロゲン量、例えば全塩素量を測定することができる測定装置と、遊離ハロゲン量、例えば遊離塩素量を測定することができる測定装置とを用いてもよい。残留酸化物濃度測定手段により、全ハロゲン量と遊離ハロゲン量とをそれぞれ測定し、測定した全ハロゲン量と遊離ハロゲン量との差が全ハロゲン量の20%以内になるように、過酸化物発生手段による過酸化物の発生量を制御することが好ましい。また、残留酸化物濃度測定手段により、全ハロゲン量と遊離ハロゲン量とをそれぞれ測定し、その測定値に基づいて算出される結合ハロゲン量が検出されない状態で、遊離ハロゲン量が所定の値以上になるように、過酸化物発生手段による過酸化物の発生量を制御することが好ましい。例えば、残留塩素測定手段により、全塩素量と遊離塩素量とをそれぞれ測定し、その測定値に基づいて、(全塩素量-遊離塩素量)として算出される結合塩素量が検出されない状態で、遊離塩素量が所定の値以上になるように、過酸化物発生手段による過酸化物の発生量を制御することが好ましい。ここで、「結合ハロゲン量(結合塩素量)が検出されない状態」とは、全ハロゲン量と遊離ハロゲン量との差が全ハロゲン量の20%以内のことであり、例えば、全塩素濃度と遊離塩素濃度の差が±20%以内のことをいう。 The residual oxide concentration measuring means is not particularly limited as long as it can measure the residual oxide amount, and is not particularly limited. At least one of the total halogen amount (free halogen amount + bonded halogen amount) and the free halogen amount Is preferable, and it is more preferable that the total amount of halogen and the amount of free halogen can be measured respectively. The residual oxide concentration measuring means is, for example, a residual chlorine measuring means and may be any one capable of measuring the residual chlorine amount, and is not particularly limited, but the total chlorine amount (free chlorine amount + bound chlorine amount). It is preferable to be able to measure at least one of the free chlorine amount and the free chlorine amount, and it is more preferable that the total chlorine amount and the free chlorine amount can be measured. As the residual oxide concentration measuring means, a measuring device capable of measuring both the total halogen amount and the free halogen amount, for example, both the total chlorine amount and the free chlorine amount, or the total halogen amount, for example, the total chlorine amount may be used. And a measuring device that can measure the amount of free halogen, for example, the amount of free chlorine. The total amount of halogen and the amount of free halogen are measured by the residual oxide concentration measuring means, respectively, and the amount of peroxide generation is set so that the difference between the measured total amount of halogen and the amount of free halogen is within 20% of the total amount of halogen. It is preferable to control the amount of peroxide generated by the means. Further, by the residual oxide concentration measuring means, the total halogen amount and the free halogen amount are respectively measured, and the amount of the free halogen exceeds a predetermined value in a state where the amount of the bound halogen calculated based on the measured value is not detected. Thus, it is preferable to control the amount of peroxide generated by the peroxide generating means. For example, the total chlorine amount and the free chlorine amount are respectively measured by the residual chlorine measuring means, and based on the measured values, in a state where the combined chlorine amount calculated as (total chlorine amount−free chlorine amount) is not detected, It is preferable to control the amount of peroxide generated by the peroxide generating means so that the amount of free chlorine is equal to or more than a predetermined value. Here, the “state where no bound halogen amount (bound chlorine amount) is detected” means that the difference between the total halogen amount and the free halogen amount is within 20% of the total halogen amount. It means that the difference in chlorine concentration is within ± 20%.
 残留塩素測定装置184の設置位置は、過酸化物分解手段の前段であればよく、配管100でもよいし、原水槽(過酸化物含有水槽)12や膜ろ過水槽16に設置されていてもよいし、配管86,88,90に設置されていてもよい。 The installation position of the residual chlorine measurement device 184 may be any position as long as it is in front of the peroxide decomposing means, and may be the pipe 100, or may be installed in the raw water tank (peroxide-containing water tank) 12 or the membrane filtration water tank 16. Alternatively, they may be installed in the pipes 86, 88, 90.
 残留塩素測定手段による測定に基づいてブレークポイントを超えていると判断する方法としては、例えば、オゾンの添加とともに全塩素を継続的に測定(モニタリング)していき、極小点の観測によりブレークポイントを超えていると判断してもよいし、オゾンの添加とともに遊離塩素を継続的に測定して、遊離塩素の上昇の観測によりブレークポイントを超えていると判断してもよいし、オゾンの添加とともに全塩素および遊離塩素をともに継続的に測定して、全塩素の極小点の観測および遊離塩素の上昇の観測によりブレークポイントを超えていると判断してもよいし、オゾンのある添加量のときに全塩素および遊離塩素をともに測定して、全塩素量と遊離塩素量とにほとんど差が見られない場合(例えば、両者の測定値の差が20%以内である場合)に、ブレークポイントを超えていると判断してもよい。 As a method of judging that the break point has been exceeded based on the measurement by the residual chlorine measuring means, for example, total chlorine is continuously measured (monitored) together with the addition of ozone, and the break point is determined by observing the minimum point. It may be judged that it has exceeded, or the free chlorine may be continuously measured with the addition of ozone, and it may be judged that the break point has been exceeded by observing the rise of the free chlorine, or with the addition of ozone. Both total chlorine and free chlorine are continuously measured, and it may be judged that the break point has been exceeded by observing the minimum point of total chlorine and observing the rise of free chlorine, or when there is a certain amount of ozone added. When both total chlorine and free chlorine are measured at the same time, there is almost no difference between the total chlorine amount and the free chlorine amount (for example, the difference between the measured values is 20% If it is the inner), it may be determined to exceed the break point.
 例えば、全塩素量と遊離塩素量との差が20%を超えた場合、オゾン処理装置22におけるオゾン発生装置24からのオゾン注入量を増やせばよい(例えば10%程度)。全塩素量と遊離塩素量との差が20%以内になったら、オゾン注入量を減らしてもよいし、そのままオゾン注入量を維持してもよい。この場合、残留塩素測定装置184の測定値に基づいて過酸化物の発生量を制御する制御手段として、オゾン発生装置24が機能してもよいし、オゾン発生装置24の出口のフローメータ172の値に応じて開閉度が調整されるバルブ176およびバルブ178等が機能してもよい。 For example, when the difference between the total chlorine amount and the free chlorine amount exceeds 20%, the amount of ozone injected from the ozone generator 24 in the ozone treatment device 22 may be increased (for example, about 10%). When the difference between the total chlorine amount and the free chlorine amount is within 20%, the ozone injection amount may be reduced or the ozone injection amount may be maintained as it is. In this case, the ozone generator 24 may function as control means for controlling the amount of peroxide generated based on the measurement value of the residual chlorine measuring device 184, or the flow meter 172 at the outlet of the ozone generator 24 The valve 176 and the valve 178 whose opening degree is adjusted according to the value may function.
 例えば、図示しない制御手段である制御装置と、残留塩素測定装置184、オゾン発生装置24とを、またはフローメータ172、バルブ176、バルブ178とをそれぞれ電気的接続等により接続し、残留塩素測定装置184の測定値をモニタリングし、オゾン処理装置22における過酸化物の発生量を制御してもよい。 For example, a control device (not shown) and a residual chlorine measuring device 184 and an ozone generating device 24, or a flow meter 172, a valve 176, and a valve 178 are connected to each other by an electrical connection or the like. The measurement value of 184 may be monitored to control the amount of peroxide generated in the ozone treatment device 22.
 膜ろ過水中の次亜臭素酸等のハロゲンオキソ酸の濃度が高く、生態等に影響を及ぼすことが懸念されるため、膜ろ過装置14の後段に活性炭処理装置18等の過酸化物分解手段を設ける。膜ろ過装置14の後段に過酸化物分解手段を備えることにより、次亜臭素酸等のハロゲンオキソ酸による生態等への影響を低減することができる。このため、原水が養殖や水族館等の飼育水等である場合に、処理水を水槽10へ返送しても、生物への影響を低減することができる。 Since the concentration of halogen oxoacids such as hypobromite in the membrane filtration water is high and it is feared that it will affect the ecology and the like, a peroxide decomposing means such as an activated carbon treatment unit 18 is provided downstream of the membrane filtration unit 14. Provide. By providing a peroxide decomposing means at the subsequent stage of the membrane filtration device 14, it is possible to reduce the influence on the ecology and the like by the halogen oxo acid such as hypobromous acid. For this reason, when the raw water is breeding water for aquaculture, aquariums, or the like, even if the treated water is returned to the aquarium 10, the effect on living organisms can be reduced.
 図5の例では、処理水の全てが水槽10に返送されてハロゲン化物イオン含有水に添加されているが、処理水の少なくとも一部が水槽10に返送されてハロゲン化物イオン含有水に添加されればよい。使用する水量を低減する等の観点から、処理水の全てが水槽10に返送されることが好ましい。処理水の全てが水槽10に返送される閉鎖循環系とすることにより、使用する水量を低減することができる等の利点がある。 In the example of FIG. 5, all of the treated water is returned to the water tank 10 and added to the halide ion-containing water, but at least a portion of the treated water is returned to the water tank 10 and added to the halide ion-containing water. Just do it. From the viewpoint of reducing the amount of water used, it is preferable that all of the treated water be returned to the water tank 10. By using a closed circulation system in which all of the treated water is returned to the water tank 10, there is an advantage that the amount of water used can be reduced.
 本発明の実施形態に係る水処理装置の他の例の概略を図6に示し、その構成について説明する。 概略 FIG. 6 schematically shows another example of the water treatment apparatus according to the embodiment of the present invention, and its configuration will be described.
 水処理装置7は、過酸化物発生手段として、オゾン発生装置24を備えるオゾン処理装置22と、膜ろ過手段として、限外ろ過膜または精密ろ過膜を有する膜ろ過装置14と、過酸化物を分解処理する過酸化物分解手段として、活性炭処理装置18とを備える。水処理装置7は、水槽10と、原水槽(過酸化物含有水槽)160と、膜ろ過水槽16と、処理水槽20とを備えてもよい。 The water treatment device 7 includes an ozone treatment device 22 having an ozone generator 24 as a peroxide generation means, a membrane filtration device 14 having an ultrafiltration membrane or a microfiltration membrane as a membrane filtration means, and a peroxide. An activated carbon treatment device 18 is provided as peroxide decomposition means for performing decomposition treatment. The water treatment device 7 may include the water tank 10, a raw water tank (peroxide-containing water tank) 160, a membrane filtration water tank 16, and a treated water tank 20.
 図6の水処理装置7において、水槽10の出口とオゾン処理装置22の入口とがポンプ150およびストレーナ38を介して配管112により接続され、オゾン処理装置22の出口と原水槽(過酸化物含有水槽)160の入口とが配管114により接続され、過酸化物含有水槽160の出口と膜ろ過装置14の入口とがポンプ152を介して配管116により接続され、膜ろ過装置14の透過水出口と膜ろ過水槽16の入口とが配管118により接続され、膜ろ過水槽16の出口と活性炭処理装置18の入口とがポンプ154を介して配管120により接続され、活性炭処理装置18の出口と処理水槽20の入口とが配管122により接続され、処理水槽20の出口と水槽10とがポンプ156を介して返送配管124により接続されている。オゾン処理装置22の下部にはオゾン発生装置24がバルブ182を介して配管132により接続されている。配管132におけるバルブ182の下流側にはオゾンの流量を測定するフローメータ174が設置されている。オゾン処理装置22の上部の排オゾン出口には、排オゾンを排出する配管136が接続され、配管132におけるバルブ182の上流側から分岐した配管138がバルブ180を介して配管136に接続されている。オゾン処理装置22の上部側面には発生したスカム等を排出する配管134が接続されている。処理水槽20の下部と膜ろ過装置14の2次側とはポンプ158を介して配管126により接続されている。残留酸化物濃度測定手段として、配管114には残留塩素測定装置186が設置されている。 In the water treatment device 7 of FIG. 6, the outlet of the water tank 10 and the inlet of the ozone treatment device 22 are connected by the pipe 112 via the pump 150 and the strainer 38, and the exit of the ozone treatment device 22 is connected to the raw water tank (containing peroxide). The inlet of the water tank 160 is connected by a pipe 114, the outlet of the peroxide-containing water tank 160 and the inlet of the membrane filtration device 14 are connected by a pipe 116 via a pump 152, and the permeated water outlet of the membrane filtration device 14 The inlet of the membrane filtration water tank 16 is connected by a pipe 118, the outlet of the membrane filtration water tank 16 is connected to the inlet of the activated carbon treatment device 18 by a pipe 120 via a pump 154, and the outlet of the activated carbon treatment device 18 is connected to the treatment water tank 20. Is connected by a pipe 122, and the outlet of the treated water tank 20 and the water tank 10 are connected by a return pipe 124 via a pump 156. . The ozone generator 24 is connected to the lower part of the ozone treatment device 22 by a pipe 132 via a valve 182. A flow meter 174 for measuring the flow rate of ozone is installed downstream of the valve 182 in the pipe 132. A pipe 136 for discharging the discharged ozone is connected to a discharge ozone outlet at an upper portion of the ozone treatment device 22, and a pipe 138 branched from an upstream side of the valve 182 in the pipe 132 is connected to the pipe 136 via the valve 180. . A pipe 134 for discharging generated scum and the like is connected to an upper side surface of the ozone treatment device 22. The lower part of the treatment water tank 20 and the secondary side of the membrane filtration device 14 are connected by a pipe 126 via a pump 158. As a residual oxide concentration measuring means, a residual chlorine measuring device 186 is installed in the pipe 114.
 本実施形態に係る水処理方法および水処理装置7の動作について説明する。 動作 The operation of the water treatment method and the water treatment device 7 according to the present embodiment will be described.
 水槽10に貯留された、懸濁物質を含み、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水は、ポンプ150により配管112を通してオゾン処理装置22に供給される。必要に応じて配管112の途中にストレーナ38を設置し、ハロゲン化物イオン含有水中の比較的大きめの固形物が除去されてもよい。 水 The halide ion-containing water containing the suspended substance and containing the halide ions and the ammonium nitrogen stored in the water tank 10 is supplied to the ozone treatment device 22 through the pipe 112 by the pump 150. If necessary, a strainer 38 may be provided in the middle of the pipe 112 to remove relatively large solids in the halide ion-containing water.
 オゾン処理装置22には、一方で、オゾン発生装置24で発生させたオゾンが配管132を通して供給される。オゾン処理装置22において、上記式1に示すように、ハロゲン化物イオン含有水に含まれるハロゲン化物イオンとオゾンとの反応により、過酸化物である次亜ハロゲン酸(HXO)等のハロゲンオキソ酸が発生する(過酸化物発生工程)。発生した過酸化物により、アンモニア態窒素のブレークポイント処理が行われる。次亜ハロゲン酸等のハロゲンオキソ酸は酸化力を有し、有機物の酸化や殺菌等に効果がある。なお、排オゾンは、配管136を通して排出され、オゾン処理装置22において発生したスカム等は、配管134を通して排出される。オゾン発生装置24で発生させたオゾンのうちオゾン処理装置22に供給されない分は、配管132,138,136を通して排出される。すなわち、オゾン処理装置22に供給されるオゾンの量は、バルブ180,182の開閉度によって調整される。 一方 で On the other hand, the ozone generated by the ozone generator 24 is supplied to the ozone treatment device 22 through a pipe 132. In the ozone treatment device 22, as shown in the above formula 1, by the reaction between the halide ions contained in the halide ion-containing water and ozone, halogen oxo acids such as hypohalous acid (HXO), which is a peroxide, are converted. Occurs (peroxide generation step). A breakpoint treatment of ammonia nitrogen is performed by the generated peroxide. Halogen oxo acids such as hypohalous acid have oxidizing power and are effective in oxidizing and sterilizing organic substances. The discharged ozone is discharged through a pipe 136, and scum generated in the ozone treatment device 22 is discharged through a pipe 134. The portion of the ozone generated by the ozone generator 24 that is not supplied to the ozone treatment device 22 is discharged through the pipes 132, 138, and 136. That is, the amount of ozone supplied to the ozone treatment device 22 is adjusted by the degree of opening and closing of the valves 180 and 182.
 Xが塩化物イオンの場合、上記式2に示すように、ハロゲン化物イオン含有水に含まれる塩化物イオンとオゾンとの反応により、過酸化物である次亜塩素酸(HClO)等のハロゲンオキソ酸が発生する。 In the case where X is a chloride ion, as shown in the above formula 2, the reaction between chloride ion contained in the halide ion-containing water and ozone causes halogen such as hypochlorous acid (HClO) which is a peroxide. Oxo acids are generated.
 また、Xが臭化物イオンの場合、上記式3に示すように、ハロゲン化物イオン含有水に含まれる臭化物イオンとオゾンとの反応により、過酸化物である次亜臭素酸(HBrO)等のハロゲンオキソ酸が発生する。 When X - is a bromide ion, a reaction between bromide ion contained in the halide ion-containing water and ozone causes halogen such as hypobromite (HBrO), which is a peroxide, as shown in the above formula 3. Oxo acids are generated.
 過酸化物を発生させた過酸化物含有水は、配管114を通して必要に応じて過酸化物含有水槽160に貯留された後、ポンプ152により配管116を通して膜ろ過装置14に供給される。膜ろ過装置14において、過酸化物含有水中の懸濁物質、すなわち原水であるハロゲン化物イオン含有水に含まれていた懸濁物質が限外ろ過膜または精密ろ過膜を用いてろ過されて除去される(膜ろ過工程)。 (4) The peroxide-containing water that has generated peroxide is stored in a peroxide-containing water tank 160 as needed through a pipe 114, and then supplied to the membrane filtration device 14 through a pipe 116 by a pump 152. In the membrane filtration device 14, suspended substances in the peroxide-containing water, that is, suspended substances contained in the halide ion-containing water as raw water are removed by filtration using an ultrafiltration membrane or a microfiltration membrane. (Membrane filtration step).
 膜ろ過された透過水(膜ろ過水)は、配管118を通して必要に応じて膜ろ過水槽16に貯留された後、ポンプ154により配管120を通して活性炭処理装置18に供給される。活性炭処理装置18において、膜ろ過水中の過酸化物であるハロゲンオキソ酸が活性炭により分解処理され、ハロゲン化物イオンとなる(過酸化物分解工程)。膜ろ過装置14の濃縮水は、配管130を通して排出される。 透過 The permeated water (membrane filtered water) that has been subjected to membrane filtration is stored in the membrane filtration water tank 16 as necessary through a pipe 118, and then supplied to the activated carbon treatment device 18 through a pipe 120 by a pump 154. In the activated carbon treatment device 18, the halogen oxo acid, which is a peroxide in the membrane filtered water, is decomposed by activated carbon to form halide ions (peroxide decomposition step). The concentrated water of the membrane filtration device 14 is discharged through a pipe 130.
 過酸化物が分解処理され、ハロゲン化物イオンを含む処理水は、配管122を通して必要に応じて処理水槽20に貯留された後、ポンプ156により返送配管124を通して水槽10に返送され、ハロゲン化物イオン含有水に添加される(返送工程)。過酸化物分解手段により分解処理した処理水の少なくとも一部を返送してハロゲン化合物イオン含有水に添加する返送手段として、ポンプ156および返送配管124が機能する。 The peroxide is decomposed, and the treated water containing halide ions is stored in the treated water tank 20 as needed through the pipe 122, and then returned to the water tank 10 through the return pipe 124 by the pump 156, and contains the halide ions. It is added to water (return step). The pump 156 and the return pipe 124 function as return means for returning at least a part of the treated water decomposed by the peroxide decomposition means and adding the treated water to the halogen compound ion-containing water.
 膜ろ過装置14の洗浄が必要になった場合は、処理水の一部が逆洗水として処理水槽20からポンプ158により配管126を通して膜ろ過装置14の2次側から1次側に逆流されて、膜が洗浄されてもよい(逆洗工程)。逆洗排水は、配管128を通して排出される。膜ろ過水槽16の膜ろ過水が逆洗水として用いられてもよい。 When the membrane filtration device 14 needs to be washed, a part of the treated water is returned as backwash water from the treated water tank 20 to the primary side of the membrane filtration device 14 from the secondary side through the pipe 126 by the pump 158. Alternatively, the membrane may be washed (backwash step). The backwash drainage is discharged through a pipe 128. The membrane filtration water in the membrane filtration tank 16 may be used as the backwash water.
 本実施形態に係る水処理装置7では、上記式4に示すように、発生させた次亜ハロゲン酸等のハロゲンオキソ酸がハロゲン化物イオン含有水に含まれるアンモニア態窒素の脱窒反応を起こす(脱窒工程)ため、膜による除濁とハロゲン化物イオン含有水の窒素除去がともに可能となる。 In the water treatment apparatus 7 according to the present embodiment, the generated halogen oxoacid such as hypohalous acid causes a denitrification reaction of the ammonia nitrogen contained in the halide ion-containing water, as shown in the above formula (4). Because of the denitrification step), both turbidity by the membrane and nitrogen removal of the halide ion-containing water can be achieved.
 特に、XがBrの場合、上記式5に示すような、発生させた次亜臭素酸がハロゲン化物イオン含有水に含まれるアンモニア態窒素の脱窒反応を起こしやすい。 Especially, when X is Br, the generated hypobromous acid easily causes the denitrification of ammonia nitrogen contained in the halide ion-containing water as shown in the above formula 5.
 本実施形態に係る水処理装置7において、オゾン発生装置24を備えるオゾン処理装置22等の過酸化物発生装置より生じる次亜臭素酸や臭素酸等の酸化殺菌力を有するハロゲンオキソ酸を含むハロゲン化物イオン含有水を膜ろ過装置14の膜に供給することによって、有機物や生物等による膜のファウリングを抑制することができる。膜のファウリングを抑制するための次亜塩素酸ナトリウム等の薬品は用いなくてもよい。 In the water treatment apparatus 7 according to the present embodiment, the halogen containing a halogen oxoacid having an oxidizing and sterilizing power such as hypobromous acid or bromic acid generated from a peroxide generator such as the ozone treatment apparatus 22 including the ozone generator 24. By supplying the fluoride ion-containing water to the membrane of the membrane filtration device 14, fouling of the membrane due to organic substances, organisms, and the like can be suppressed. A chemical such as sodium hypochlorite for suppressing fouling of the film may not be used.
 本実施形態に係る水処理装置7では、活性炭処理装置18(過酸化物分解工程)の前段において残留塩素測定装置186により残留酸化物濃度を測定することにより、アンモニア態窒素が十分に処理されていることを確認することができる。よって、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水について、安定したアンモニア態窒素の処理を行うことができ、水質が変動してもアンモニア態窒素の除去を十分に行うことができる。 In the water treatment device 7 according to the present embodiment, ammonia nitrogen is sufficiently treated by measuring the residual oxide concentration by the residual chlorine measuring device 186 before the activated carbon treatment device 18 (peroxide decomposition step). You can be sure that. Therefore, it is possible to stably treat the ammonium ion-containing water containing the halide ions and the ammonia nitrogen, and to sufficiently remove the ammonia nitrogen even if the water quality changes.
 本実施形態に係る水処理装置7では、過酸化物分解手段である活性炭処理装置18の前段に設置された残留酸化物濃度測定手段である残留塩素測定装置186により残留酸化物濃度を測定して、残留酸化物濃度測定手段の測定値に基づいてオゾン処理装置22における過酸化物の発生量が制御される(制御工程)。過酸化物の発生量を制御してアンモニア態窒素のブレークポイント処理を行うことによって、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水について、アンモニア態窒素の除去を十分に行うことができ、安定した処理水質を確保することができる。 In the water treatment device 7 according to the present embodiment, the residual oxide concentration is measured by the residual chlorine measuring device 186 that is the residual oxide concentration measuring device installed in front of the activated carbon treatment device 18 that is a peroxide decomposition device. The amount of peroxide generated in the ozone treatment device 22 is controlled based on the measurement value of the residual oxide concentration measuring means (control step). By performing the ammonia nitrogen breakpoint treatment by controlling the amount of generated peroxide, ammonia nitrogen can be sufficiently removed from halide ion-containing water containing halide ions and ammonia nitrogen. , Stable treatment water quality can be ensured.
 残留塩素測定装置186の設置位置は、過酸化物分解手段の前段であればよく、配管114でもよいし、原水槽(過酸化物含有水槽)160や膜ろ過水槽16に設置されていてもよいし、配管116,118,120に設置されていてもよい。 The installation position of the residual chlorine measuring device 186 may be any position before the peroxide decomposition means, and may be the piping 114, or may be installed in the raw water tank (peroxide-containing water tank) 160 or the membrane filtration water tank 16. Alternatively, it may be installed in the piping 116, 118, 120.
 例えば、全塩素量と遊離塩素量との差が20%を超えた場合、オゾン処理装置22におけるオゾン発生装置24からのオゾン注入量を増やせばよい(例えば10%程度)。全塩素量と遊離塩素量との差が20%以内になったら、オゾン注入量を減らしてもよいし、そのままオゾン注入量を維持してもよい。この場合、残留塩素測定装置186の測定値に基づいて過酸化物の発生量を制御する制御手段として、オゾン発生装置24が機能してもよいし、オゾン発生装置24の出口のフローメータ174の値に応じて開閉度が調整されるバルブ180およびバルブ182等が機能してもよい。 For example, if the difference between the total chlorine amount and the free chlorine amount exceeds 20%, the amount of ozone injected from the ozone generator 24 in the ozone treatment device 22 may be increased (for example, about 10%). When the difference between the total chlorine amount and the free chlorine amount is within 20%, the ozone injection amount may be reduced or the ozone injection amount may be maintained as it is. In this case, the ozone generator 24 may function as control means for controlling the amount of peroxide generated based on the measurement value of the residual chlorine measurement device 186, or the flow meter 174 at the outlet of the ozone generator 24 may serve as a control means. The valve 180 and the valve 182 whose opening degree is adjusted according to the value may function.
 また、例えば、図示しない制御手段である制御装置と、残留塩素測定装置186、オゾン発生装置24とを、またはフローメータ174、バルブ180、バルブ182とをそれぞれ電気的接続等により接続し、残留塩素測定装置186の測定値をモニタリングし、オゾン処理装置22における過酸化物の発生量を制御してもよい。 Further, for example, a control device (not shown) and the residual chlorine measuring device 186 and the ozone generating device 24, or the flow meter 174, the valve 180, and the valve 182 are connected to each other by an electrical connection or the like. The measurement value of the measurement device 186 may be monitored to control the amount of peroxide generated in the ozone treatment device 22.
 膜ろ過水中の次亜臭素酸等のハロゲンオキソ酸の濃度が高く、生態等に影響を及ぼすことが懸念されるため、膜ろ過装置14の後段に活性炭処理装置18等の過酸化物分解手段を設ける。膜ろ過装置14の後段に過酸化物分解手段を備えることにより、次亜臭素酸等のハロゲンオキソ酸による生態等への影響を低減することができる。このため、原水が養殖や水族館等の飼育水等である場合に、処理水を水槽10へ返送しても、生物への影響を低減することができる。 Since the concentration of halogen oxoacids such as hypobromite in the membrane filtration water is high and it is feared that it will affect the ecology and the like, a peroxide decomposing means such as an activated carbon treatment unit 18 is provided downstream of the membrane filtration unit 14. Provide. By providing a peroxide decomposing means at the subsequent stage of the membrane filtration device 14, it is possible to reduce the influence on the ecology and the like by the halogen oxo acid such as hypobromous acid. For this reason, when the raw water is breeding water for aquaculture, aquariums, or the like, even if the treated water is returned to the aquarium 10, the effect on living organisms can be reduced.
 図6の例では、処理水の全てが水槽10に返送されてハロゲン化物イオン含有水に添加されているが、処理水の少なくとも一部が水槽10に返送されてハロゲン化物イオン含有水に添加されればよい。使用する水量を低減する等の観点から、処理水の全てが水槽10に返送されることが好ましい。処理水の全てが水槽10に返送される閉鎖循環系とすることにより、使用する水量を低減することができる等の利点がある。 In the example of FIG. 6, all of the treated water is returned to the water tank 10 and added to the halide ion-containing water, but at least a portion of the treated water is returned to the water tank 10 and added to the halide ion-containing water. Just do it. From the viewpoint of reducing the amount of water used, it is preferable that all of the treated water be returned to the water tank 10. By using a closed circulation system in which all of the treated water is returned to the water tank 10, there is an advantage that the amount of water used can be reduced.
 水処理装置4,5,6,7における過酸化物発生手段としては、オゾン発生装置を備えるオゾン処理装置の他に、UV照射装置を備えたUV酸化装置等が挙げられる。処理性能等の観点から、オゾン発生装置を備えるオゾン処理装置が好ましい。 As the peroxide generating means in the water treatment devices 4, 5, 6, and 7, in addition to an ozone treatment device having an ozone generation device, a UV oxidation device having a UV irradiation device and the like can be given. From the viewpoint of processing performance and the like, an ozone treatment device including an ozone generator is preferable.
 膜ろ過装置14としては、例えば、限外ろ過膜(UF膜)または精密ろ過膜(MF膜)等のろ過膜を有するものであればよく、特に制限はない。 The membrane filtration device 14 is not particularly limited as long as it has a filtration membrane such as an ultrafiltration membrane (UF membrane) or a microfiltration membrane (MF membrane).
 過酸化物分解手段としては、活性炭を充填した活性炭充填塔等の活性炭処理装置の他に、Pd担持担体、酸化チタン、白金等の過酸化物分解触媒を充填した充填塔等が挙げられ、コスト等の観点から活性炭充填塔等の活性炭処理装置が好ましい。また、過酸化物分解触媒を充填した充填塔への通水方向は、下向流と上向流のどちらでもよいが、過酸化物の分解率を高めるためには下向流が好ましい。 As the peroxide decomposing means, in addition to an activated carbon treatment apparatus such as an activated carbon packed tower filled with activated carbon, a packed tower filled with a peroxide decomposition catalyst such as a Pd-supported carrier, titanium oxide, and platinum, and the like, are included. In view of the above, an activated carbon treatment device such as an activated carbon packed tower is preferable. The direction of water flow to the packed tower filled with the peroxide decomposition catalyst may be either a downward flow or an upward flow, but a downward flow is preferable in order to increase the decomposition rate of the peroxide.
 本実施形態に係る水処理装置4,5,6,7および水処理方法は、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水中の懸濁物質の除去に適用され、ハロゲン化物イオン含有水は海水であっても、淡水であってもよい。特に、アンモニア態窒素を含む海水の処理に適しており、魚類等の水中生物の養殖や水族館等の魚類等の水中生物の飼育水処理に用いられる閉鎖系循環処理により適している。すなわち、本実施形態に係る水処理装置4,5,6,7は、水中生物の飼育水の製造装置または処理装置として、好適に用いることができる。海水には臭化物イオンが通常含まれ、魚類等の水中生物からはアンモニア態窒素が通常排出される。アンモニア態窒素を硝化および脱窒しようとする場合、まず、好気性生物処理によりアンモニア態窒素を硝酸にした後、嫌気性生物処理により硝酸を窒素ガスへ還元して水中から窒素を除去するのが通常であった。このような生物処理を用いる場合、好気条件の硝化槽と嫌気条件の脱窒槽を必要とするため、広い設置スペースが必要である。それに対して、本実施形態に係る水処理装置4,5,6,7では、硝化および脱窒を一つの装置(オゾン処理装置22)で行うことができるため、省スペース化が可能となる。 The water treatment apparatuses 4, 5, 6, 7 and the water treatment method according to the present embodiment are applied to the removal of suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen, and are used for removing halide ion-containing water. May be seawater or freshwater. In particular, it is suitable for treating seawater containing ammonia nitrogen, and is more suitable for closed-system circulation treatment used for cultivation of aquatic organisms such as fish and breeding water for aquatic organisms such as fish in an aquarium. In other words, the water treatment devices 4, 5, 6, and 7 according to the present embodiment can be suitably used as a device for producing or treating underwater breeding water. Seawater usually contains bromide ions, and ammonia-based nitrogen is usually emitted from aquatic organisms such as fish. When nitrifying and denitrifying ammonia nitrogen, it is necessary to first convert ammonia nitrogen to nitric acid by aerobic biological treatment and then reduce nitric acid to nitrogen gas by anaerobic biological treatment to remove nitrogen from water. Was normal. When such biological treatment is used, a large installation space is required because a nitrification tank under aerobic conditions and a denitrification tank under anaerobic conditions are required. In contrast, in the water treatment apparatuses 4, 5, 6, and 7 according to the present embodiment, nitrification and denitrification can be performed by one apparatus (the ozone treatment apparatus 22), so that space can be saved.
 オゾン処理装置22において、ハロゲン化物イオン含有水中のアンモニア態窒素の濃度(ppm)に対して、ハロゲン化物イオンの濃度が5~50倍、オゾンの注入率が2~20倍の濃度比となるように、ハロゲン化物塩およびオゾンのうち少なくとも1つの注入量を調整することが好ましく、ハロゲン化物イオンの濃度が5~25倍、オゾンの注入率が2~10倍の濃度比となるように、ハロゲン化物塩およびオゾンのうち少なくとも1つの注入量を調整することがより好ましい。これは、ハロゲン化物イオン含有水中のアンモニア態窒素の濃度に対して、次亜臭素酸等のハロゲンオキソ酸の量比を1.5モル以上とするために、処理に用いるオゾンの注入率を最適化するものである。オゾン注入率の算出式を下記式6に示す。 In the ozone treatment device 22, the concentration ratio of the halide ion is 5 to 50 times and the injection ratio of ozone is 2 to 20 times the concentration (ppm) of the ammonia nitrogen in the halide ion-containing water. Preferably, the injection amount of at least one of the halide salt and ozone is adjusted, and the halogen ion concentration is adjusted so that the halide ion concentration is 5 to 25 times and the ozone injection rate is 2 to 10 times. More preferably, the injection amount of at least one of the chloride salt and ozone is adjusted. This is to optimize the injection rate of ozone used in the treatment in order to make the ratio of the amount of halogen oxo acid such as hypobromite to 1.5 mol or more with respect to the concentration of ammonia nitrogen in the halide ion-containing water. It becomes something. Formula 6 for calculating the ozone injection rate is shown below.
 [式6]
  オゾン注入率[mg-O/L] =
  オゾン発生装置出口オゾン濃度[mg-O/NL]×(オゾン流量[NL/h]/原水流量[L/h])
[Equation 6]
Ozone injection rate [mg-O 3 / L] =
Ozone concentration at outlet of ozone generator [mg-O 3 / NL] × (ozone flow rate [NL / h] / raw water flow rate [L / h])
 オゾンの注入率が過剰になると、排オゾン量が多くなり、排オゾンの除去装置が大型化してしまう可能性がある。また、ハロゲン化物イオン含有水中のアンモニア態窒素濃度が上昇した場合は、オゾン注入率を上げるとともに、臭化物塩等のハロゲン化物塩等をハロゲン化物イオン含有水に添加することで処理することができる。ハロゲン化物イオン含有水中のアンモニア態窒素濃度が低下した場合は、オゾン注入率を下げればよい。 と If the injection rate of ozone becomes excessive, the amount of exhausted ozone increases, and the size of the device for removing exhausted ozone may become large. Further, when the concentration of ammonia nitrogen in the halide ion-containing water increases, the treatment can be performed by increasing the ozone injection rate and adding a halide salt such as a bromide salt to the halide ion-containing water. When the concentration of ammonia nitrogen in the halide ion-containing water decreases, the ozone injection rate may be reduced.
 ハロゲン化物塩としては、塩化ナトリウム等の塩化物塩、臭化ナトリウム等の臭化物塩等が挙げられる。 Examples of the halide salt include chloride salts such as sodium chloride, and bromide salts such as sodium bromide.
 海水の飼育水中のアンモニア態窒素の濃度は通常1ppm以下であり、臭化物イオンの濃度は通常50~60ppm程度、塩化物イオンの濃度は通常18,000~22,000ppm程度である。本実施形態に係る水処理装置4,5,6,7および水処理方法は、アンモニア態窒素の濃度が10ppm以下程度であり、臭化物イオンの濃度が50ppm~60ppm程度のハロゲン化物イオン含有水の処理に好適に適用することができる。 ア ン モ ニ ア The concentration of ammonia nitrogen in the breeding water of seawater is usually 1 ppm or less, the concentration of bromide ion is usually about 50 to 60 ppm, and the concentration of chloride ion is usually about 18,000 to 22,000 ppm. The water treatment apparatuses 4, 5, 6, 7 and the water treatment method according to the present embodiment treat the halide ion-containing water having an ammonia nitrogen concentration of about 10 ppm or less and a bromide ion concentration of about 50 ppm to 60 ppm. Can be suitably applied.
 以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
<実施例1、比較例1>
 実施例1では、図1に示す水処理装置1を用いて、魚の飼育水について、膜間差圧を測定した。比較例1では、オゾン処理装置およびオゾン発生装置を除いた水処理装置を用いて、膜間差圧を測定した。実施例1の実験条件を表1、比較例1の実験条件を表2に示す。結果を図8に示す。
<Example 1, Comparative Example 1>
In Example 1, the transmembrane pressure difference was measured for fish breeding water using the water treatment apparatus 1 shown in FIG. In Comparative Example 1, the transmembrane pressure difference was measured using an ozone treatment device and a water treatment device excluding the ozone generation device. Table 1 shows the experimental conditions of Example 1 and Table 2 shows the experimental conditions of Comparative Example 1. FIG. 8 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例2、比較例2>
 実施例2では、図2に示す水処理装置3を用いて、魚の飼育水について、膜間差圧を測定した。比較例2では、オゾン処理装置およびオゾン発生装置を除いた水処理装置を用いて、膜間差圧を測定した。実施例2の実験条件を表3、比較例2の実験条件を表4に示す。結果を図9に示す。
<Example 2, Comparative Example 2>
In Example 2, the transmembrane pressure difference was measured for fish breeding water using the water treatment device 3 shown in FIG. In Comparative Example 2, the transmembrane pressure was measured using an ozone treatment device and a water treatment device excluding the ozone generation device. Table 3 shows the experimental conditions of Example 2 and Table 4 shows the experimental conditions of Comparative Example 2. FIG. 9 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1,2では、魚の飼育水等の高分子有機物含有水を処理する水処理装置および水処理方法において、膜のファウリングを抑制し、安定した運転が可能となった。 In Examples 1 and 2, in a water treatment apparatus and a water treatment method for treating high-molecular organic matter-containing water such as fish breeding water, membrane fouling was suppressed, and stable operation became possible.
<実施例3>
 図3に示す水処理装置4を用いて、魚の飼育水(アンモニア態窒素濃度:0.1~0.5ppm、臭化物イオン濃度:60~65ppm)について、オゾン注入量を変化させて(アンモニア態窒素(NH-N):オゾン(O)=1:1.5(モル比)→1:0.6→1:1.5)、膜ろ過装置(膜:限外ろ過膜)の膜間差圧を測定した。実験結果を図10に示す。図10は、オゾンの注入量を変えたときの膜間差圧を示す。なお、飼育水中のアンモニア態窒素濃度および臭化物イオン濃度は、それぞれポータブル吸光光度計(HACH社製、DR1900)、イオンクロマトグラフィ装置(メトローム社製、761CompactIC型)を用いて測定した。
<Example 3>
Using the water treatment device 4 shown in FIG. 3, the ozone injection amount was changed for fish breeding water (ammonia nitrogen concentration: 0.1 to 0.5 ppm, bromide ion concentration: 60 to 65 ppm) (ammonia nitrogen (NH 3 —N): ozone (O 3 ) = 1: 1.5 (molar ratio) → 1: 0.6 → 1: 1.5), between membranes of a membrane filtration device (membrane: ultrafiltration membrane) The differential pressure was measured. The experimental results are shown in FIG. FIG. 10 shows the transmembrane pressure when the amount of injected ozone is changed. The ammonium nitrogen concentration and bromide ion concentration in the breeding water were measured using a portable absorptiometer (DR1900, manufactured by HACH) and an ion chromatography device (761, CompactIC, manufactured by Metrohm).
 図10からわかるように、オゾン注入量をアンモニア態窒素(NH-N):オゾン(O)=1:1.5(モル比)から1:0.6に変化させると膜間差圧が上昇し、1:1.5に戻すと膜間差圧が低下した。 As can be seen from FIG. 10, when the ozone injection amount is changed from ammonia nitrogen (NH 3 —N): ozone (O 3 ) = 1: 1.5 (molar ratio) to 1: 0.6, the transmembrane pressure difference is increased. Increased to 1: 1.5, and the transmembrane pressure decreased.
 このように、限外ろ過膜または精密ろ過膜の膜間差圧の挙動に基づいて過酸化物の発生量を調整することにより、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水について安定した膜処理を行うことができることがわかった。 Thus, by adjusting the amount of peroxide generation based on the behavior of the transmembrane pressure difference of the ultrafiltration membrane or the microfiltration membrane, it is possible to stabilize halide ion-containing water containing halide ions and ammonium nitrogen. It has been found that the film processing can be performed.
<実施例4~6、比較例3,4>
 図5に示す水処理装置6を用いて、魚の飼育水(アンモニア態窒素濃度:0.1~0.5ppm、臭化物イオン濃度:60~65ppm)について、オゾン注入量を変化させて(実施例4;アンモニア態窒素(NH-N):オゾン(O)=1:1.5(モル比)、実施例5;1:3、実施例6;1:4.5、比較例3;1:0.6、比較例4;1:1)、遊離塩素濃度、全塩素濃度、アンモニア態窒素濃度を測定した。なお、遊離塩素濃度、全塩素濃度は、HACH社の多項目水質分析計DR/4000を用いて、DPD(ジエチル-p-フェニレンジアミン)法により測定した。アンモニア態窒素濃度は、ポータブル吸光光度計(HACH社製、DR1900)を用いて測定した。実験結果を表5に示す。
<Examples 4 to 6, Comparative Examples 3 and 4>
Using the water treatment apparatus 6 shown in FIG. 5, the ozone injection amount was changed for fish breeding water (ammonia nitrogen concentration: 0.1 to 0.5 ppm, bromide ion concentration: 60 to 65 ppm) (Example 4). Ammonia nitrogen (NH 3 —N): ozone (O 3 ) = 1: 1.5 (molar ratio), Example 5; 1: 3, Example 6; 1: 4.5, Comparative Example 3; : 0.6, Comparative Example 4; 1: 1), the free chlorine concentration, the total chlorine concentration, and the ammonia nitrogen concentration were measured. The free chlorine concentration and the total chlorine concentration were measured by a DPD (diethyl-p-phenylenediamine) method using a multi-item water quality analyzer DR / 4000 manufactured by HACH. The ammonia nitrogen concentration was measured using a portable absorptiometer (DR1900, manufactured by HACH). Table 5 shows the experimental results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5からわかるように、全塩素量と遊離塩素量との差が全塩素量の20%以内になるようにオゾンを注入することにより、アンモニア態窒素が十分に処理されていた。 わ か る As can be seen from Table 5, ammonia nitrogen was sufficiently treated by injecting ozone so that the difference between the total chlorine amount and the free chlorine amount was within 20% of the total chlorine amount.
 このように、実施例4~6の方法により、ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水について、安定したアンモニア態窒素の処理を行うことができることがわかった。 Thus, it was found that by the methods of Examples 4 to 6, stable treatment of ammonia nitrogen can be performed on halide ion-containing water containing halide ions and ammonia nitrogen.
 1,3,4,5,6,7 水処理装置、10 水槽、12,160 原水槽(過酸化物含有水槽)、14 膜ろ過装置、16 膜ろ過水槽、18 活性炭処理装置、20 処理水槽、22 オゾン処理装置、24 オゾン発生装置、26,28,30,32,34,70,72,140,142,144,146,148,150,152,154,156,158 ポンプ、38 ストレーナ、40,42,44,46,48,58,60,62,64,66,74,76,78,80,82,84,85,86,88,90,92,96,98,100,102,104,106,108,110,112,114,116,118,120,122,126,128,130,132,134,136,138 配管、50 処理水返送配管、52,54 循環配管、56 濃縮水返送配管、68 濃縮水槽、84 過酸化物含有水返送配管、94,124 返送配管、160,162,164,166,168,170 圧力計、172,174 フローメータ、176,178,180,182 バルブ、184,186 残留塩素測定装置。 1,3,4,5,6,7 water treatment equipment, 10 water tank, 12,160 raw water tank (peroxide-containing water tank), 14 membrane filtration equipment, 16 membrane filtration water tank, 18 activated carbon treatment equipment, 20 treatment water tank, 22 ° ozonator, 24 ° ozone generator, 26, 28, 30, 32, 34, 70, 72, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158 ° pump, 38 ° strainer, 40, 42, 44, 46, 48, 58, 60, 62, 64, 66, 74, 76, 78, 80, 82, 84, 85, 86, 88, 90, 92, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 126, 128, 130, 132, 134, 136, 138 pipe, 50 treated water Transmission pipe, 52, 54 circulation pipe, 56 concentrated water return pipe, 68 concentrated water tank, 84 peroxide containing water return pipe, 94, 124 return pipe, 160, 162, 164, 166, 168, 170 pressure gauge, 172 174 flow meter, 176, 178, 180, 182 valve, 184, 186 residual chlorine measuring device.

Claims (18)

  1.  高分子有機物を含む高分子有機物含有水を処理する水処理装置であって、
     高分子有機物含有水を貯留する水槽と、
     前記水槽からの前記高分子有機物含有水を貯留する原水槽と、
     前記原水槽の水を循環しながら過酸化物を添加する過酸化物添加手段と、
     前記原水槽の水を膜ろ過処理する膜ろ過手段と、
     前記膜ろ過手段による膜ろ過処理で得られる濃縮水の少なくとも一部を前記原水槽に返送する濃縮水返送手段と、
     前記膜ろ過手段による膜ろ過処理で得られる膜ろ過水の過酸化物を分解処理する過酸化物分解手段と、
     前記過酸化物分解手段により分解処理した処理水の少なくとも一部を前記水槽に返送する処理水返送手段と、
     を備えることを特徴とする水処理装置。
    A water treatment apparatus for treating high-molecular-organic-material-containing water containing high-molecular-weight organic matter,
    A water tank for storing high-molecular organic matter-containing water,
    A raw water tank for storing the high-molecular organic matter-containing water from the water tank,
    Peroxide adding means for adding peroxide while circulating the water in the raw water tank,
    Membrane filtration means for performing membrane filtration of the water in the raw water tank,
    A concentrated water return means for returning at least a part of the concentrated water obtained by the membrane filtration treatment by the membrane filtration means to the raw water tank,
    Peroxide decomposition means for decomposing the peroxide of the membrane filtration water obtained by the membrane filtration treatment by the membrane filtration means,
    Treated water returning means for returning at least a part of the treated water decomposed by the peroxide decomposing means to the water tank,
    A water treatment apparatus comprising:
  2.  高分子有機物を含む高分子有機物含有水を処理する水処理装置であって、
     高分子有機物含有水を貯留する水槽と、
     前記水槽からの前記高分子有機物含有水を貯留する原水槽と、
     前記原水槽の水を膜ろ過処理する膜ろ過手段と、
     前記膜ろ過手段による膜ろ過処理で得られる濃縮水に過酸化物を添加する過酸化物添加手段と、
     前記過酸化物添加手段により得られる過酸化物含有水の少なくとも一部を前記原水槽に返送する過酸化物含有水返送手段と、
     前記膜ろ過手段による膜ろ過処理で得られる膜ろ過水の過酸化物を分解処理する過酸化物分解手段と、
     前記過酸化物分解手段により分解処理した処理水の少なくとも一部を前記水槽に返送する処理水返送手段と、
     を備えることを特徴とする水処理装置。
    A water treatment apparatus for treating high-molecular-organic-material-containing water containing high-molecular-weight organic matter,
    A water tank for storing high-molecular organic matter-containing water,
    A raw water tank for storing the high-molecular organic matter-containing water from the water tank,
    Membrane filtration means for performing membrane filtration of the water in the raw water tank,
    Peroxide addition means for adding peroxide to the concentrated water obtained by the membrane filtration treatment by the membrane filtration means,
    A peroxide-containing water return means for returning at least a part of the peroxide-containing water obtained by the peroxide addition means to the raw water tank,
    Peroxide decomposition means for decomposing the peroxide of the membrane filtration water obtained by the membrane filtration treatment by the membrane filtration means,
    Treated water returning means for returning at least a part of the treated water decomposed by the peroxide decomposing means to the water tank,
    A water treatment apparatus comprising:
  3.  請求項1または2に記載の水処理装置であって、
     前記過酸化物添加手段が、オゾンを用いる手段であることを特徴とする水処理装置。
    The water treatment device according to claim 1 or 2,
    The water treatment apparatus, wherein the peroxide adding means is a means using ozone.
  4.  ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水中の懸濁物質を除去する水処理装置であって、
     前記ハロゲン化物イオン含有水中に過酸化物を発生させる過酸化物発生手段と、
     前記過酸化物を発生させた過酸化物含有水を限外ろ過膜または精密ろ過膜を用いてろ過する膜ろ過手段と、
     前記膜ろ過手段の後段の、過酸化物を分解処理する過酸化物分解手段と、
     前記過酸化物分解手段により分解処理した処理水の少なくとも一部を返送して前記ハロゲン化合物イオン含有水に添加する返送手段と、
     を備え、
     前記限外ろ過膜または前記精密ろ過膜の膜間差圧の挙動に基づいて、前記過酸化物の発生量を調整することを特徴とする水処理装置。
    A water treatment apparatus for removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen,
    Peroxide generating means for generating a peroxide in the halide ion-containing water,
    Membrane filtration means for filtering the peroxide-containing water having generated the peroxide using an ultrafiltration membrane or a microfiltration membrane,
    The latter stage of the membrane filtration means, peroxide decomposition means for decomposing peroxide,
    Return means for returning at least a part of the treated water decomposed by the peroxide decomposing means and adding to the halogen compound ion-containing water,
    With
    A water treatment apparatus, wherein the amount of generated peroxide is adjusted based on the behavior of the transmembrane pressure of the ultrafiltration membrane or the microfiltration membrane.
  5.  請求項4に記載の水処理装置であって、
     前記膜間差圧をモニタリングし、前記過酸化物の前記発生量を制御する制御手段をさらに備えることを特徴とする水処理装置。
    The water treatment device according to claim 4,
    The water treatment apparatus further comprising a control unit that monitors the transmembrane pressure difference and controls the amount of the generated peroxide.
  6.  ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水中の懸濁物質を除去する水処理装置であって、
     前記ハロゲン化物イオン含有水中に過酸化物を発生させる過酸化物発生手段と、
     前記過酸化物を発生させた過酸化物含有水を限外ろ過膜または精密ろ過膜を用いてろ過する膜ろ過手段と、
     前記膜ろ過手段の後段の、過酸化物を分解処理する過酸化物分解手段と、
     前記過酸化物分解手段により分解処理した処理水の少なくとも一部を返送して前記ハロゲン化合物イオン含有水に添加する返送手段と、
     前記過酸化物分解手段の前段の、残留酸化物濃度測定手段と、
     を備え、
     前記残留酸化物濃度測定手段の測定値に基づいて、前記過酸化物発生手段による前記過酸化物の発生量を制御して、前記過酸化物による前記アンモニア態窒素のブレークポイント処理を行うことを特徴とする水処理装置。
    A water treatment apparatus for removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen,
    Peroxide generating means for generating a peroxide in the halide ion-containing water,
    Membrane filtration means for filtering the peroxide-containing water having generated the peroxide using an ultrafiltration membrane or a microfiltration membrane,
    The latter stage of the membrane filtration means, peroxide decomposition means for decomposing peroxide,
    Return means for returning at least a part of the treated water decomposed by the peroxide decomposing means and adding to the halogen compound ion-containing water,
    Before the peroxide decomposition means, residual oxide concentration measurement means,
    With
    Controlling the amount of the peroxide generated by the peroxide generating means based on the measurement value of the residual oxide concentration measuring means to perform a breakpoint treatment of the ammonia nitrogen by the peroxide. Characteristic water treatment equipment.
  7.  請求項6に記載の水処理装置であって、
     前記残留酸化物濃度測定手段は、全ハロゲン量と遊離ハロゲン量とをそれぞれ測定可能であることを特徴とする水処理装置。
    The water treatment device according to claim 6,
    The water treatment apparatus according to claim 1, wherein the residual oxide concentration measuring means can measure the total halogen amount and the free halogen amount, respectively.
  8.  請求項7に記載の水処理装置であって、
     前記残留酸化物濃度測定手段で測定した前記全ハロゲン量と前記遊離ハロゲン量との差が全ハロゲン量の20%以内になるように、前記過酸化物発生手段による前記過酸化物の発生量を制御することを特徴とする水処理装置。
    The water treatment device according to claim 7,
    The amount of the peroxide generated by the peroxide generating means is adjusted so that the difference between the total halogen amount and the free halogen amount measured by the residual oxide concentration measuring means is within 20% of the total halogen amount. A water treatment device characterized by controlling.
  9.  請求項4~8のいずれか1項に記載の水処理装置であって、
     前記過酸化物発生手段がオゾン発生手段であることを特徴とする水処理装置。
    The water treatment apparatus according to any one of claims 4 to 8, wherein
    A water treatment apparatus, wherein the peroxide generating means is an ozone generating means.
  10.  高分子有機物を含む高分子有機物含有水を処理する水処理方法であって、
     水槽から原水槽へ送液された高分子有機物含有水を前記原水槽へ循環しながら過酸化物を添加する過酸化物添加工程と、
     前記原水槽の水を膜ろ過処理する膜ろ過工程と、
     前記膜ろ過工程による膜ろ過処理で得られる濃縮水の少なくとも一部を前記原水槽に返送する濃縮水返送工程と、
     前記膜ろ過工程による膜ろ過処理で得られる膜ろ過水の過酸化物を分解処理する過酸化物分解工程と、
     前記過酸化物分解工程により分解処理した処理水の少なくとも一部を前記水槽に返送する処理水返送工程と、
     を含むことを特徴とする水処理方法。
    A water treatment method for treating a polymer organic material-containing water containing a polymer organic material,
    A peroxide addition step of adding a peroxide while circulating the polymer organic substance-containing water sent from the water tank to the raw water tank to the raw water tank,
    A membrane filtration step of membrane filtration of the water in the raw water tank,
    A concentrated water return step of returning at least a portion of the concentrated water obtained in the membrane filtration process by the membrane filtration step to the raw water tank,
    A peroxide decomposition step of decomposing the peroxide of the membrane filtration water obtained by the membrane filtration treatment by the membrane filtration step,
    A treated water return step of returning at least a part of the treated water decomposed by the peroxide decomposition step to the water tank,
    A water treatment method comprising:
  11.  高分子有機物を含む高分子有機物含有水を処理する水処理方法であって、
     水槽から原水槽へ送液された高分子有機物含有水を膜ろ過処理する膜ろ過工程と、
     前記膜ろ過工程による膜ろ過処理で得られる濃縮水に過酸化物を添加する過酸化物添加工程と、
     前記過酸化物添加工程により得られる過酸化物含有水の少なくとも一部を前記原水槽に返送する過酸化物含有水返送工程と、
     前記膜ろ過工程による膜ろ過処理で得られる膜ろ過水の過酸化物を分解処理する過酸化物分解工程と、
     前記過酸化物分解工程により分解処理した処理水の少なくとも一部を前記水槽に返送する処理水返送工程と、
     を含むことを特徴とする水処理方法。
    A water treatment method for treating a polymer organic material-containing water containing a polymer organic material,
    A membrane filtration step of subjecting the high-molecular organic substance-containing water sent from the water tank to the raw water tank to a membrane filtration treatment,
    A peroxide addition step of adding a peroxide to the concentrated water obtained by the membrane filtration treatment in the membrane filtration step,
    A peroxide-containing water return step of returning at least a portion of the peroxide-containing water obtained by the peroxide addition step to the raw water tank,
    A peroxide decomposition step of decomposing the peroxide of the membrane filtration water obtained by the membrane filtration treatment by the membrane filtration step,
    A treated water return step of returning at least a part of the treated water decomposed by the peroxide decomposition step to the water tank,
    A water treatment method comprising:
  12.  請求項10または11に記載の水処理方法であって、
     前記過酸化物添加工程が、オゾンを用いる工程であることを特徴とする水処理方法。
    The water treatment method according to claim 10 or 11,
    A water treatment method, wherein the peroxide adding step is a step using ozone.
  13.  ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水中の懸濁物質を除去する水処理方法であって、
     前記ハロゲン化物イオン含有水中に過酸化物を発生させる過酸化物発生工程と、
     前記過酸化物を発生させた過酸化物含有水を限外ろ過膜または精密ろ過膜を用いてろ過する膜ろ過工程と、
     前記膜ろ過工程の後段の、過酸化物を分解処理する過酸化物分解工程と、
     前記過酸化物分解工程において分解処理した処理水の少なくとも一部を返送して前記ハロゲン化合物イオン含有水に添加する返送工程と、
     を含み、
     前記限外ろ過膜または前記精密ろ過膜の膜間差圧の挙動に基づいて、前記過酸化物の発生量を調整することを特徴とする水処理方法。
    A water treatment method for removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen,
    A peroxide generating step of generating a peroxide in the halide ion-containing water,
    A membrane filtration step of filtering the peroxide-containing water that has generated the peroxide using an ultrafiltration membrane or a microfiltration membrane,
    A peroxide decomposing step of decomposing a peroxide at a later stage of the membrane filtration step,
    A return step of returning at least a part of the treated water decomposed in the peroxide decomposition step and adding the treated water to the halogen compound ion-containing water,
    Including
    A water treatment method, wherein the amount of the generated peroxide is adjusted based on the behavior of the transmembrane pressure difference of the ultrafiltration membrane or the microfiltration membrane.
  14.  請求項13に記載の水処理方法であって、
     前記膜間差圧をモニタリングし、前記過酸化物の前記発生量を制御することを特徴とする水処理方法。
    The water treatment method according to claim 13,
    A water treatment method comprising monitoring the transmembrane pressure difference and controlling the amount of the peroxide generated.
  15.  ハロゲン化物イオンおよびアンモニア態窒素を含むハロゲン化物イオン含有水中の懸濁物質を除去する水処理方法であって、
     前記ハロゲン化物イオン含有水中に過酸化物を発生させる過酸化物発生工程と、
     前記過酸化物を発生させた過酸化物含有水を限外ろ過膜または精密ろ過膜を用いてろ過する膜ろ過工程と、
     前記膜ろ過工程の後段の、過酸化物を分解処理する過酸化物分解工程と、
     前記過酸化物分解工程において分解処理した処理水の少なくとも一部を返送して前記ハロゲン化合物イオン含有水に添加する返送工程と、
     前記過酸化物分解工程の前段における残留酸化物濃度測定工程と、
     を含み、
     前記残留酸化物濃度測定工程の測定値に基づいて、前記過酸化物発生工程における前記過酸化物の発生量を制御して、前記過酸化物による前記アンモニア態窒素のブレークポイント処理を行うことを特徴とする水処理方法。
    A water treatment method for removing suspended substances in halide ion-containing water containing halide ions and ammonium nitrogen,
    A peroxide generating step of generating a peroxide in the halide ion-containing water,
    A membrane filtration step of filtering the peroxide-containing water that has generated the peroxide using an ultrafiltration membrane or a microfiltration membrane,
    A peroxide decomposing step of decomposing a peroxide at a later stage of the membrane filtration step,
    A return step of returning at least a part of the treated water decomposed in the peroxide decomposition step and adding the treated water to the halogen compound ion-containing water,
    A residual oxide concentration measurement step in a preceding stage of the peroxide decomposition step,
    Including
    Based on the measured value of the residual oxide concentration measurement step, controlling the amount of the peroxide generated in the peroxide generation step, performing a breakpoint treatment of the ammonia nitrogen by the peroxide. Characterized water treatment method.
  16.  請求項15に記載の水処理方法であって、
     前記残留酸化物濃度測定工程において、全ハロゲン量と遊離ハロゲン量とをそれぞれ測定することを特徴とする水処理方法。
    The water treatment method according to claim 15, wherein
    A water treatment method, wherein the total amount of halogen and the amount of free halogen are measured in the residual oxide concentration measuring step.
  17.  請求項16に記載の水処理方法であって、
     前記残留酸化物濃度測定工程において測定した前記全ハロゲン量と前記遊離ハロゲン量との差が全ハロゲン量の20%以内になるように、前記過酸化物発生工程における前記過酸化物の発生量を制御することを特徴とする水処理方法。
    The water treatment method according to claim 16,
    The amount of the peroxide generated in the peroxide generation step is determined so that the difference between the total halogen amount and the free halogen amount measured in the residual oxide concentration measurement step is within 20% of the total halogen amount. A water treatment method characterized by controlling.
  18.  請求項13~17のいずれか1項に記載の水処理方法であって、
     前記過酸化物発生工程がオゾン発生工程であることを特徴とする水処理方法。
    The water treatment method according to any one of claims 13 to 17, wherein
    A water treatment method, wherein the peroxide generation step is an ozone generation step.
PCT/JP2019/020573 2018-07-09 2019-05-24 Water treatment device and water treatment method WO2020012786A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018129965A JP7202796B2 (en) 2018-07-09 2018-07-09 Water treatment device and water treatment method
JP2018-129965 2018-07-09
JP2018-164379 2018-09-03
JP2018164380A JP7212478B2 (en) 2018-09-03 2018-09-03 MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD
JP2018164379A JP7188942B2 (en) 2018-09-03 2018-09-03 MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD
JP2018-164380 2018-09-03

Publications (1)

Publication Number Publication Date
WO2020012786A1 true WO2020012786A1 (en) 2020-01-16

Family

ID=69142931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020573 WO2020012786A1 (en) 2018-07-09 2019-05-24 Water treatment device and water treatment method

Country Status (1)

Country Link
WO (1) WO2020012786A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326258A (en) * 2002-05-13 2003-11-18 Fuji Electric Co Ltd Water treatment method
JP2008055385A (en) * 2006-09-04 2008-03-13 Kubota Corp Method and apparatus for treating water containing hardly decomposable organic matter
JP2014188473A (en) * 2013-03-27 2014-10-06 Kobelco Eco-Solutions Co Ltd Water treatment method
JP2015173995A (en) * 2014-03-13 2015-10-05 オルガノ株式会社 Water treatment equipment and water treatment method
JP2015181973A (en) * 2014-03-20 2015-10-22 オルガノ株式会社 Membrane filtration system, membrane filtration method, and apparatus of producing rearing water for aquatic organism
JP2017202467A (en) * 2016-05-12 2017-11-16 オルガノ株式会社 Membrane filtration system and membrane filtration method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326258A (en) * 2002-05-13 2003-11-18 Fuji Electric Co Ltd Water treatment method
JP2008055385A (en) * 2006-09-04 2008-03-13 Kubota Corp Method and apparatus for treating water containing hardly decomposable organic matter
JP2014188473A (en) * 2013-03-27 2014-10-06 Kobelco Eco-Solutions Co Ltd Water treatment method
JP2015173995A (en) * 2014-03-13 2015-10-05 オルガノ株式会社 Water treatment equipment and water treatment method
JP2015181973A (en) * 2014-03-20 2015-10-22 オルガノ株式会社 Membrane filtration system, membrane filtration method, and apparatus of producing rearing water for aquatic organism
JP2017202467A (en) * 2016-05-12 2017-11-16 オルガノ株式会社 Membrane filtration system and membrane filtration method

Similar Documents

Publication Publication Date Title
JP4844244B2 (en) Ballast water treatment apparatus and treatment method
JP6251095B2 (en) Membrane filtration system, membrane filtration method, and apparatus for producing water for breeding aquatic organisms
CA2439927C (en) Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
JP5691519B2 (en) Fresh water generation method
JP5124815B2 (en) Method for cleaning membranes and chemicals therefor
KR101809769B1 (en) Water treatment method and ultrapure water production method
JP4978002B2 (en) Ballast water treatment method
KR20080018885A (en) Ballast water treating apparatus and method of treating
JP2007069204A (en) Water treatment method, water treatment apparatus and method of manufacturing regenerated water
JP6263054B2 (en) Water treatment apparatus and water treatment method
JP5066487B2 (en) Method and apparatus for treating hydrogen peroxide-containing organic water
JP7202796B2 (en) Water treatment device and water treatment method
JP2018153749A (en) Water treatment method and water treatment system using reverse osmosis membrane
JP7212478B2 (en) MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD
WO2020012786A1 (en) Water treatment device and water treatment method
JP4576760B2 (en) Circulating cooling water treatment method
JP5516874B2 (en) Water treatment method and ultrapure water production method
JP7175837B2 (en) Method and apparatus for producing breeding water for marine organisms
JP7188942B2 (en) MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD
JP5604913B2 (en) Water treatment method and ultrapure water production method
JP6565966B2 (en) Water treatment method
JP6996846B2 (en) Water treatment equipment, water treatment methods, and equipment for producing breeding water for aquatic organisms
JP6540438B2 (en) Biological treatment method of treated water by aerobic fixed bed
JP5789922B2 (en) Water treatment method and ultrapure water production method
WO2022157926A1 (en) Cleaning device for filtration membrane, water treatment device, and cleaning method for filtration membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833843

Country of ref document: EP

Kind code of ref document: A1