JP4511236B2 - Semiconductor manufacturing apparatus and measurement deviation detection method - Google Patents

Semiconductor manufacturing apparatus and measurement deviation detection method Download PDF

Info

Publication number
JP4511236B2
JP4511236B2 JP2004128185A JP2004128185A JP4511236B2 JP 4511236 B2 JP4511236 B2 JP 4511236B2 JP 2004128185 A JP2004128185 A JP 2004128185A JP 2004128185 A JP2004128185 A JP 2004128185A JP 4511236 B2 JP4511236 B2 JP 4511236B2
Authority
JP
Japan
Prior art keywords
processing chamber
value
pressure gauge
pressure
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004128185A
Other languages
Japanese (ja)
Other versions
JP2005311172A (en
Inventor
好朗 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2004128185A priority Critical patent/JP4511236B2/en
Publication of JP2005311172A publication Critical patent/JP2005311172A/en
Application granted granted Critical
Publication of JP4511236B2 publication Critical patent/JP4511236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、半導体製造装置および測定ずれ検出方法に関し、特にバルブで仕切られた搬送室と真空(または昇圧)処理室とを備える半導体基板を製造する装置およびこの装置における圧力計の測定ずれ検出方法に関するものである。   The present invention relates to a semiconductor manufacturing apparatus and a measurement deviation detection method, and more particularly to an apparatus for manufacturing a semiconductor substrate including a transfer chamber and a vacuum (or pressure increase) processing chamber partitioned by a valve, and a measurement deviation detection method for a pressure gauge in this apparatus. It is about.

半導体基板の成膜(CVD(Chemical Vapor Deposition)、スパッタ)処理やドライエッチング処理等において、処理中や処理前の処理室圧力は、処理特性に大きく影響するため、圧力計による圧力の監視や、測定した圧力をもとにしてポンプの排気量やガス導入量を調整し、処理室の圧力調整をおこなっている。したがって、処理室の圧力計には、高い精度が要求される。一方、処理室に設置された圧力計は、反応性の処理ガス等にさらされるために測定部の消耗や故障が発生し、測定値のずれが生じることがあるため、定期的な校正や交換をおこなう必要がある。この圧力計の消耗度や故障頻度は、処理条件、動作環境、製造誤差等の影響因子が多くバラツキが大きいため、消耗度や故障頻度の予測は、困難である。このため、処理室圧力計の消耗による測定値ずれや故障の検知技術は重要な技術である。   In the process of film formation (CVD (Chemical Vapor Deposition), sputtering) and dry etching of semiconductor substrates, the processing chamber pressure during and before processing greatly affects the processing characteristics. The process chamber pressure is adjusted by adjusting the pump displacement and gas introduction rate based on the measured pressure. Therefore, high accuracy is required for the pressure gauge in the processing chamber. On the other hand, pressure gauges installed in the processing chamber are exposed to reactive processing gases, etc., which may cause wear and failure of the measuring unit and cause deviations in measured values. It is necessary to do. It is difficult to predict the degree of wear and the failure frequency because the degree of wear and the failure frequency of this pressure gauge have many influencing factors such as processing conditions, operating environment, and manufacturing errors. For this reason, a technique for detecting a measurement value shift or failure due to exhaustion of the processing chamber pressure gauge is an important technique.

圧力計ずれ検出技術の例が特許文献1に開示されている。図4は、特許文献1に記載されているドライエッチング装置の構成図である。図4のドライエッチング装置では、真空室204の圧力を圧力計208で測定し、測定した信号を圧力制御部206に送り、圧力制御部206が圧力調整器205を動作させて、真空室204が設定圧力になるように制御する装置である。圧力計208のずれ(異常)を検知するために、圧力計208と同一の真空室に圧力計209を設置し、装置制御部211にて設定圧力値と圧力計209により測定された真空室204の圧力測定値とを比較する。圧力計208にずれが発生した場合は、その測定値をもとに制御された真空室204の圧力と設定圧力に差が生じるため、圧力計209の測定値と設定圧力を比較することにより圧力計208のずれを検出することが可能となる。ただし、圧力計208と圧力計209とは、どちらも真空室204に設置されるため、反応性の処理ガス等の影響により劣化が発生し、圧力計209の測定値も比較基準としての信頼性に欠ける。そこで信頼性を向上させるために、反応性の処理ガス導入時に閉じるバルブ212を備えた圧力計210を設置している。圧力計210は、反応性の処理ガス等の影響を受けにくく、劣化が少ないため、その測定値を基準として圧力計208と圧力計209の劣化状態を判定する構造となっている。   An example of pressure gauge deviation detection technology is disclosed in Patent Document 1. FIG. 4 is a configuration diagram of the dry etching apparatus described in Patent Document 1. In the dry etching apparatus of FIG. 4, the pressure in the vacuum chamber 204 is measured by the pressure gauge 208, the measured signal is sent to the pressure control unit 206, the pressure control unit 206 operates the pressure regulator 205, and the vacuum chamber 204 is It is a device that controls the pressure to be set. In order to detect deviation (abnormality) of the pressure gauge 208, the pressure gauge 209 is installed in the same vacuum chamber as the pressure gauge 208, and the set pressure value and the vacuum chamber 204 measured by the pressure gauge 209 are measured by the apparatus control unit 211. Is compared with the measured pressure value. When a deviation occurs in the pressure gauge 208, a difference occurs between the pressure in the vacuum chamber 204 controlled based on the measured value and the set pressure. Therefore, the measured value of the pressure gauge 209 is compared with the set pressure. It is possible to detect the deviation of the total 208. However, since both the pressure gauge 208 and the pressure gauge 209 are installed in the vacuum chamber 204, deterioration occurs due to the influence of a reactive processing gas or the like, and the measured value of the pressure gauge 209 is also reliable as a comparison standard. Lack. Therefore, in order to improve reliability, a pressure gauge 210 having a valve 212 that is closed when a reactive processing gas is introduced is installed. Since the pressure gauge 210 is not easily affected by a reactive processing gas or the like and has little deterioration, the pressure gauge 210 has a structure for determining the deterioration state of the pressure gauge 208 and the pressure gauge 209 based on the measured value.

また、他の圧力計ずれ検出技術の例が特許文献2に開示されている。図5は、特許文献2に記載されている真空処理装置の構成図であり、図6は、特許文献2に記載されている圧力制御方法を示すフローチャートである。図5の真空装置では、ステップS124でゲートバルブ131bを開けて、ある程度の時間が経過すると、搬送チャンバ110とプロセスチャンバ120との2つの圧力が同じになると仮定する。ステップS125において、時間経過後の搬送チャンバ110の圧力センサ134aの測定値Pt2と、プロセスチャンバ120の圧力センサ134bの測定値Pp2を測定し、ステップS126で測定値差ΔP=(Pp2-Pt2)をセンサずれ量として算出し、設定値の補正をおこなう。   Another example of pressure gauge deviation detection technology is disclosed in Patent Document 2. FIG. 5 is a configuration diagram of the vacuum processing apparatus described in Patent Document 2, and FIG. 6 is a flowchart showing the pressure control method described in Patent Document 2. In the vacuum apparatus of FIG. 5, it is assumed that the two pressures in the transfer chamber 110 and the process chamber 120 become the same when a certain amount of time has elapsed after the gate valve 131b is opened in step S124. In step S125, the measured value Pt2 of the pressure sensor 134a of the transfer chamber 110 after the elapse of time and the measured value Pp2 of the pressure sensor 134b of the process chamber 120 are measured. In step S126, the measured value difference ΔP = (Pp2-Pt2) is calculated. Calculated as the sensor deviation amount and corrects the set value.

特許第2826409号公報(図2)Japanese Patent No. 2826409 (FIG. 2) 特開2000−181548号公報(図1、図4)JP 2000-181548 A (FIGS. 1 and 4)

特許文献1に開示されている技術では、処理室にバルブや圧力計を追加して、圧力計のずれを検知しようとする構造である。この技術では、本来処理では使用しない圧力計やバルブを追加する必要があり、実施するための部品費用や改造費用が高額となる欠点がある。特に、例えば2〜6個の複数の処理室を有する近年の生産設備において、すべての処理室に複数の圧力計を設置すると装置費用や装置設置場所が増加し、生産コストの増加につながるために、実現が困難である。この問題は、従来の技術が、圧力測定値を単純に比較する機能しか持たないために、圧力の等しい場所(同一の処理室内)に比較用の圧力計を設置しなければならないことに起因している。   The technique disclosed in Patent Document 1 has a structure in which a valve or a pressure gauge is added to the processing chamber to detect a deviation of the pressure gauge. In this technique, it is necessary to add a pressure gauge and a valve which are not originally used in the processing, and there is a drawback that the cost of parts and modification for implementation are high. In particular, in recent production facilities having, for example, 2 to 6 processing chambers, if a plurality of pressure gauges are installed in all the processing chambers, the equipment cost and equipment installation location increase, leading to an increase in production costs. It is difficult to realize. This problem is due to the fact that the conventional technology has only a function of comparing pressure measurement values, so that a pressure gauge for comparison must be installed in a place where pressure is equal (in the same processing chamber). ing.

一方、特許文献2に開示されている技術では、ゲートバルブが開いた時に両チャンバは、同一圧力になるという前提で、圧力測定ずれ量の補正をおこなっている。しかし、近年の半導体処理装置では、高純度な処理をおこなうために搬送室及び処理室への不純物ガス混入を抑制する予備真空室を持つ装置が多く、これらの装置では搬送室及び処理室の圧力は、処理中、常に1E-2Pa以下の分子流領域の低い圧力に保たれている。1E-2Pa以下の分子流領域の圧力では、チャンバ間の圧力差の絶対値が小さいため圧力分布を平衡化する力が弱く、コンダクタンスの小さいゲートバルブ開口の影響を大きく受けて、ゲートバルブが開いた状態で接続されているチャンバ同士でも圧力差が発生する。このため、特許文献2の圧力ずれ検出方法は、予備真空室を持たない半導体処理装置や、大気圧側での搬送などの粘性流圧力領域(1E-1Pa以上)では使用可能であるが、近年の半導体処理装置の処理室圧力計における測定ずれ検出には使用できない。   On the other hand, in the technique disclosed in Patent Document 2, the pressure measurement deviation is corrected on the assumption that both chambers have the same pressure when the gate valve is opened. However, in recent semiconductor processing apparatuses, in order to perform high-purity processing, there are many apparatuses having a preliminary vacuum chamber that suppresses the mixing of impurity gas into the transfer chamber and the processing chamber. In these apparatuses, the pressure in the transfer chamber and the processing chamber is large. Is always kept at a low pressure in the molecular flow region of 1E-2 Pa or less during processing. At the pressure of the molecular flow region of 1E-2Pa or less, since the absolute value of the pressure difference between the chambers is small, the force that balances the pressure distribution is weak, and the gate valve opens greatly due to the influence of the gate valve opening with low conductance. A pressure difference is also generated between chambers connected in a heated state. For this reason, the pressure deviation detection method of Patent Document 2 can be used in a semiconductor processing apparatus that does not have a preliminary vacuum chamber, or in a viscous flow pressure region (1E-1 Pa or higher) such as transfer on the atmospheric pressure side. It cannot be used for detection of measurement deviation in the processing chamber pressure gauge of the semiconductor processing apparatus.

したがって、本発明の目的は、分子流領域の圧力下で測定ずれ量を検出する、設備費の安価な半導体製造装置およびこの装置における圧力計の測定ずれ検出方法を提供することにある。   Accordingly, it is an object of the present invention to provide a semiconductor manufacturing apparatus that detects a measurement deviation amount under pressure in a molecular flow region and has a low equipment cost, and a measurement deviation detection method for a pressure gauge in this apparatus.

前記目的を達成する本発明の一つのアスペクトに係る半導体製造装置は、減圧可能な搬送室と、減圧可能な処理室と、搬送室と処理室との間を遮断あるいは開放するバルブと、搬送室内の圧力を計測する搬送室圧力計と、処理室内の圧力を計測する処理室圧力計と、を備える。また、バルブ遮断時の処理室圧力計による第1の計測値と、バルブ開放後、所定の時間経過した時の搬送室圧力計による第2の計測値とを入力し、バルブ開放後、所定の時間経過した時の処理室圧力計における測定ずれ量を求めるずれ検出器を備える。
ずれ検出器は、第1の計測値と、第2の計測値とに基づいて、所定の時間経過した時の処理室の圧力の予想値を求め、所定の時間経過した時の処理室圧力計による計測値と予想値との差を測定ずれ量として求めるように構成される。
A semiconductor manufacturing apparatus according to one aspect of the present invention that achieves the above object includes a depressurized transfer chamber, a depressurized process chamber, a valve that blocks or opens between the transfer chamber and the process chamber, and a transfer chamber. And a processing chamber pressure gauge for measuring the pressure in the processing chamber. In addition, the first measured value by the processing chamber pressure gauge when the valve is shut off and the second measured value by the transfer chamber pressure gauge when a predetermined time has elapsed after opening the valve are input. A deviation detector for obtaining a measurement deviation amount in the processing chamber pressure gauge when time has elapsed is provided.
The deviation detector obtains an estimated value of the pressure in the processing chamber when a predetermined time elapses based on the first measurement value and the second measurement value, and the processing chamber pressure gauge when the predetermined time elapses The difference between the measured value and the predicted value is obtained as a measurement deviation amount.

また、ずれ検出器は、測定ずれ量が所定の値より大きな場合には処理室圧力計が異常である旨の信号を出力するようにしてもよい。   The deviation detector may output a signal indicating that the processing chamber pressure gauge is abnormal when the measurement deviation amount is larger than a predetermined value.

さらに、処理室に備えられる真空ポンプの排気速度と、バルブのコンダクタンスと、第1の計測値と、第2の計測値とから、予想値を求めてもよい。   Further, an expected value may be obtained from the exhaust speed of the vacuum pump provided in the processing chamber, the conductance of the valve, the first measured value, and the second measured value.

さらにまた、排気速度をSs、コンダクタンスをC、第1の計測値をPsc、第2の計測値をPhoとする場合に、予想値Psyを、Psy=(SsPsc+CPho)/(Ss+C)として求めてもよい。   Furthermore, when the exhaust velocity is Ss, the conductance is C, the first measurement value is Psc, and the second measurement value is Pho, the expected value Psy is Psy = (SsPsc + CPho) / (Ss + C) You may ask as.

本発明の他のアスペクトに係る半導体製造装置は、減圧可能な搬送室と、減圧可能なn個(nは2以上の自然数)の処理室と、搬送室と第i(i=1〜nの整数)の処理室との間を遮断あるいは開放する第iのバルブと、搬送室内の圧力を計測する搬送室圧力計と、第iの処理室内の圧力を計測する第iの処理室圧力計と、を備える。また、第iのバルブ開放前であって全てのバルブが遮断している時の第iの処理室圧力計による計測値と、第iのバルブ開放後、所定の時間経過した時の搬送室圧力計による計測値とを入力し、所定の時間経過した時の第iの処理室圧力計における第iの測定ずれ量を求める第iの検出器と、を備える。さらに、第iの検出器から出力される第iの測定ずれ量について、ずれが同一方向でi=1〜nのずれの合計値が所定の値より大きな場合には警報を発生させる警報器を備える。
第iの検出器は、第iのバルブ開放前であって全てのバルブが遮断している時の第iの処理室圧力計による計測値と、第iのバルブが開放後、所定の時間経過した時の搬送室圧力計による計測値とに基づいて、所定の時間経過した時の第iの処理室の圧力の第iの予想値を求め、所定の時間経過した時の第iの処理室圧力計による第iの計測値と第iの予想値との差を第iの測定ずれ量として求めるように構成される。
A semiconductor manufacturing apparatus according to another aspect of the present invention includes a depressurized transfer chamber, depressurizable n (n is a natural number of 2 or more) processing chambers, a transfer chamber, and i-th (i = 1 to n). An i-th valve that shuts off or opens a (integer) processing chamber, a transfer chamber pressure gauge that measures the pressure in the transfer chamber, and an i-th processing chamber pressure gauge that measures the pressure in the i-th processing chamber . Further, the measured value by the i-th processing chamber pressure gauge when all the valves are shut off before the i-th valve is opened, and the transfer chamber pressure when a predetermined time has elapsed after the i-th valve is opened. And an i-th detector for obtaining an i-th measurement deviation amount in the i-th processing chamber pressure gauge when a predetermined time has elapsed. Further, for the i-th measurement deviation amount output from the i-th detector, an alarm device for generating an alarm when the deviation is in the same direction and the total value of deviations i = 1 to n is larger than a predetermined value. Prepare.
The i-th detector is a measured value by the i-th processing chamber pressure gauge when all valves are shut off before the i-th valve is opened, and a predetermined time has elapsed after the i-th valve is opened. The i-th predicted value of the pressure in the i-th processing chamber when a predetermined time elapses is obtained based on the measured value by the transfer chamber pressure gauge at the time, and the i-th processing chamber when the predetermined time elapses A difference between the i-th measured value by the pressure gauge and the i-th predicted value is obtained as the i-th measurement deviation amount.

本発明のさらに他のアスペクトに係る測定ずれ検出方法は、半導体基板を製造する装置における圧力計の測定ずれを検出する方法である。この方法は、減圧可能な搬送室と減圧可能な処理室との間をバルブによって遮断するステップと、バルブが遮断している状態で処理室内の圧力を計測し、第1の計測値を求めるステップと、を含む。また、搬送室と処理室との間をバルブによって開放するステップと、所定の時間待ち合わせるステップと、搬送室内の圧力を計測し、第2の計測値を求めるステップと、を含む。さらに、第1の計測値と、第2の計測値とから処理室の圧力の予想値を求めるステップと、バルブが開放している時の処理室の圧力の計測値と予想値との差を測定ずれ量として求めるステップと、を含む。   A measurement deviation detection method according to still another aspect of the present invention is a method for detecting a measurement deviation of a pressure gauge in an apparatus for manufacturing a semiconductor substrate. The method includes a step of blocking between a depressurized transfer chamber and a depressurized processing chamber by a valve, a step of measuring a pressure in the processing chamber in a state where the valve is blocked, and obtaining a first measurement value. And including. Further, the method includes a step of opening the space between the transfer chamber and the processing chamber by a valve, a step of waiting for a predetermined time, and a step of measuring a pressure in the transfer chamber and obtaining a second measured value. Further, a step of obtaining an estimated value of the pressure in the processing chamber from the first measured value and the second measured value, and a difference between the measured value of the pressure in the processing chamber when the valve is open and the expected value are calculated. Determining as a measurement deviation amount.

本発明によれば、処理室に隣接する真空搬送室の既設の圧力計を利用して、処理室の圧力計ずれを検知する機能を実現するので、処理室への圧力計やバルブの追加を不要とし、設備費を安価なものとすることができる。   According to the present invention, since the function of detecting a pressure gauge deviation in the processing chamber is realized using an existing pressure gauge in the vacuum transfer chamber adjacent to the processing chamber, a pressure gauge and a valve are added to the processing chamber. It is unnecessary and the equipment cost can be reduced.

また、バルブのコンダクタンスや処理室の真空リーク量の影響を考慮して圧力計のずれ量を検出するので、圧力が低い(1E-2Pa以下の分子流領域)場合でも、処理室圧力計の測定ずれを検出することが可能である。   In addition, pressure gauge deviation is detected taking into account the effects of valve conductance and processing chamber vacuum leakage, so even if the pressure is low (molecular flow region of 1E-2Pa or less), measurement of the processing chamber pressure gauge It is possible to detect a deviation.

さらに、複数の処理室の圧力ずれ信号の符号と合計値を管理することにより、搬送室圧力計の劣化や故障による各処理室の圧力計ずれの検出精度低下を防止することができる。   Furthermore, by managing the sign and total value of the pressure difference signals of a plurality of processing chambers, it is possible to prevent a decrease in detection accuracy of pressure gauge deviations in each processing chamber due to deterioration or failure of the transfer chamber pressure gauge.

本発明の実施形態に係る半導体製造装置について説明する。半導体製造装置は、真空ポンプ(図1の5)によって減圧可能な搬送室(図1の3)と、真空ポンプ(図1の8)によって減圧可能な処理室(図1の7)と、搬送室(図1の3)と処理室(図1の7)との間を遮断あるいは開放するゲートバルブ(図1の6)を備える。また、搬送室(図1の3)内の圧力を計測する搬送室圧力計(図1の23)と、処理室(図1の7)内の圧力を計測する処理室圧力計(図1の24)と、ゲートバルブ(図1の6)遮断時の処理室圧力計(図1の24)の計測値と、ゲートバルブ開放時の搬送室圧力計(図1の23)の計測値とを入力してゲートバルブ開放時の処理室圧力計(図1の24)における測定ずれ量を求めるずれ検出器(図1の22、26)と、を備える。   A semiconductor manufacturing apparatus according to an embodiment of the present invention will be described. The semiconductor manufacturing apparatus includes a transfer chamber (3 in FIG. 1) that can be depressurized by a vacuum pump (5 in FIG. 1), a processing chamber (7 in FIG. 1) that can be depressurized by a vacuum pump (8 in FIG. 1), a transfer A gate valve (6 in FIG. 1) is provided to block or open between the chamber (3 in FIG. 1) and the processing chamber (7 in FIG. 1). Further, a transfer chamber pressure gauge (23 in FIG. 1) that measures the pressure in the transfer chamber (3 in FIG. 1) and a processing chamber pressure gauge (in FIG. 1) that measures the pressure in the processing chamber (7 in FIG. 1). 24), the measured value of the processing chamber pressure gauge (24 in FIG. 1) when the gate valve (6 in FIG. 1) is shut off, and the measured value of the transfer chamber pressure gauge (23 in FIG. 1) when the gate valve is opened. Deviation detectors (22 and 26 in FIG. 1) for inputting and obtaining a measurement deviation amount in the processing chamber pressure gauge (24 in FIG. 1) when the gate valve is opened.

このような構成の半導体製造装置は、ゲートバルブが遮断している状態で処理室内の圧力を計測し、第1の計測値(図2のPsc)を求める。また、搬送室と処理室との間をゲートバルブによって開放して所定の時間(図2のTs)待ち合わせて、搬送室内の圧力を計測し、第2の計測値(図2のPho)を求める。さらに、第1の計測値と第2の計測値とから処理室の圧力の予想値(図2のPsy)を求め、ゲートバルブが開放している時の処理室の圧力の計測値(図2のPso)と予想値との差を測定ずれ量(図2のPse)として求める。求めた測定ずれ量が許容範囲(図2のPa)内にあるか否かにより処理室の圧力計ずれを判断する。   The semiconductor manufacturing apparatus having such a configuration measures the pressure in the processing chamber while the gate valve is shut off, and obtains the first measurement value (Psc in FIG. 2). Further, the gate chamber opens between the transfer chamber and the processing chamber, waits for a predetermined time (Ts in FIG. 2), measures the pressure in the transfer chamber, and obtains the second measured value (Pho in FIG. 2). . Further, an expected value of the pressure in the processing chamber (Psy in FIG. 2) is obtained from the first measured value and the second measured value, and the measured value of the pressure in the processing chamber when the gate valve is open (FIG. 2). Pso) and the expected value are obtained as the measurement deviation (Pse in FIG. 2). The pressure gauge deviation in the processing chamber is determined based on whether or not the obtained measurement deviation amount is within an allowable range (Pa in FIG. 2).

すなわち、直接比較できない圧力値を比較する機能を提供することにより、新たに比較用の圧力計を追加することなく、既設の圧力計を利用して、圧力計の劣化や故障による処理の異常を防止させることができる。   In other words, by providing a function to compare pressure values that cannot be directly compared, existing pressure gauges can be used to eliminate abnormalities in processing due to pressure gauge deterioration or failure without adding a new pressure gauge for comparison. Can be prevented.

次に実施例に従い半導体製造装置についてより詳しく説明する。図1は、本発明の第1の実施例に係る半導体製造装置の構成を示すブロック図である。図1において、半導体製造装置は、予備真空室1、真空搬送室3、処理室7、ゲートバルブ2、6、搬送室真空ポンプ5、処理室真空ポンプ8、搬送制御器20、処理室制御器21、圧力比較判定器22、判定規格算出器26、搬送室圧力計23、処理室圧力計24を備える。なお、図1に示す半導体製造装置は、予備真空室1、真空搬送室3、処理室7の3つの部屋から構成された基本的な真空処理装置を例にしている。   Next, the semiconductor manufacturing apparatus will be described in more detail in accordance with an embodiment. FIG. 1 is a block diagram showing a configuration of a semiconductor manufacturing apparatus according to a first embodiment of the present invention. In FIG. 1, a semiconductor manufacturing apparatus includes a preliminary vacuum chamber 1, a vacuum transfer chamber 3, a processing chamber 7, gate valves 2 and 6, a transfer chamber vacuum pump 5, a processing chamber vacuum pump 8, a transfer controller 20, and a processing chamber controller. 21, a pressure comparison / determination unit 22, a determination standard calculation unit 26, a transfer chamber pressure gauge 23, and a processing chamber pressure gauge 24. The semiconductor manufacturing apparatus shown in FIG. 1 is an example of a basic vacuum processing apparatus composed of three chambers: a preliminary vacuum chamber 1, a vacuum transfer chamber 3, and a processing chamber 7.

予備真空室1と真空搬送室3との間は、半導体基板の搬送時のみ開くゲートバルブ2で仕切られている。真空搬送室3と処理室7との間も同様にゲートバルブ6で仕切られており、ゲートバルブ2とゲートバルブ6とは、同時に開くことがないように搬送制御器20で制御される。真空搬送室3には、搬送アーム4と搬送室圧力計23が設置されており、真空搬送室3は、搬送室真空ポンプ5によって真空に維持される。処理室7には、処理室圧力計24が設置されており、処理室7は、処理室真空ポンプ8によって真空に維持されている。搬送室圧力計23から出力される圧力信号41は、搬送制御器20に入力され、処理室圧力計24から出力される圧力信号46は、処理室制御器21に入力される。また、圧力信号41と圧力信号46とは、圧力比較判定器22および判定規格算出器26に入力される。   The preliminary vacuum chamber 1 and the vacuum transfer chamber 3 are partitioned by a gate valve 2 that opens only when the semiconductor substrate is transferred. Similarly, the vacuum transfer chamber 3 and the processing chamber 7 are partitioned by the gate valve 6, and the gate valve 2 and the gate valve 6 are controlled by the transfer controller 20 so as not to be opened simultaneously. The vacuum transfer chamber 3 is provided with a transfer arm 4 and a transfer chamber pressure gauge 23, and the vacuum transfer chamber 3 is maintained in a vacuum by a transfer chamber vacuum pump 5. A processing chamber pressure gauge 24 is installed in the processing chamber 7, and the processing chamber 7 is maintained in a vacuum by the processing chamber vacuum pump 8. A pressure signal 41 output from the transfer chamber pressure gauge 23 is input to the transfer controller 20, and a pressure signal 46 output from the process chamber pressure gauge 24 is input to the process chamber controller 21. The pressure signal 41 and the pressure signal 46 are input to the pressure comparison / determination unit 22 and the determination standard calculation unit 26.

なお、図1に示す構成において、従来の標準的な半導体製造装置(真空生産装置)に新たに追加した機器は、圧力比較判定器22と判定規格算出器26の2つだけであり、他の機器は、標準的な真空生産装置にあらかじめ設置されているものである。   In the configuration shown in FIG. 1, there are only two devices newly added to the conventional standard semiconductor manufacturing apparatus (vacuum production apparatus), that is, the pressure comparison determination unit 22 and the determination standard calculation unit 26. The equipment is pre-installed in standard vacuum production equipment.

次に、本発明の第1実施例の半導体製造装置の動作について図1及び図2を用いて説明する。図2は、ゲートバルブ開閉に伴う搬送室圧力計測値Ph(t)と処理室圧力計測値Ps(t)との変化を表す図である。なお、搬送室圧力計測値Ph(t)は、搬送室圧力計23から出力される圧力信号41の値であり、処理室圧力計測値Ps(t)は、処理室圧力計24から出力される圧力信号46の値である。   Next, the operation of the semiconductor manufacturing apparatus according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a diagram illustrating a change between the transfer chamber pressure measurement value Ph (t) and the processing chamber pressure measurement value Ps (t) when the gate valve is opened and closed. The transfer chamber pressure measurement value Ph (t) is the value of the pressure signal 41 output from the transfer chamber pressure gauge 23, and the process chamber pressure measurement value Ps (t) is output from the process chamber pressure gauge 24. This is the value of the pressure signal 46.

まず、半導体基板は、外部から予備真空室1に搬入され予備真空室1が減圧された後、搬送制御器20から出力される予備室ゲートバルブ開閉信号40により開けられたゲートバルブ2を通り、搬送アーム4によって半導体基板が真空搬送室3に搬送される。   First, the semiconductor substrate is carried into the preliminary vacuum chamber 1 from the outside and the preliminary vacuum chamber 1 is depressurized, and then passes through the gate valve 2 opened by the preliminary chamber gate valve opening / closing signal 40 output from the transfer controller 20. The semiconductor substrate is transferred to the vacuum transfer chamber 3 by the transfer arm 4.

その後、再び予備室ゲートバルブ開閉信号40によりゲートバルブ2が閉じられる。この時、図2に示す「ゲートバルブ閉A」の区間の状態となる。この状態において圧力信号41の値は、バルブ開前搬送室圧力計測値Phcであり、圧力信号46の値は、バルブ開前処理室圧力計測値Pscである。判定規格算出器26は、バルブ開前処理室圧力計測値Pscとあらかじめ設定された処理室真空ポンプ8の到達圧力値Pusと処理室真空ポンプ8の排気速度Ssとの3つのパラメータから、処理室7の真空リーク量Qsを算出して記録する。なお、真空リーク量Qsは、
Qs=Ss(Psc-Pus) −−−(1)
と表される。
Thereafter, the gate valve 2 is closed again by the auxiliary chamber gate valve opening / closing signal 40. At this time, the state of the “gate valve closed A” section shown in FIG. In this state, the value of the pressure signal 41 is the measured pressure value Phc before the valve is opened, and the value of the pressure signal 46 is the measured value Psc of the processing chamber before the valve is opened. The determination standard calculator 26 calculates the processing chamber from three parameters, that is, the measured pressure value Psc of the processing chamber before opening the valve, the ultimate pressure value Pus of the processing chamber vacuum pump 8 set in advance, and the exhaust speed Ss of the processing chamber vacuum pump 8. The vacuum leak amount Qs of 7 is calculated and recorded. The amount of vacuum leak Qs is
Qs = Ss (Psc-Pus) ---- (1)
It is expressed.

さらにその後、搬送制御器20から出力されるゲートバルブ開閉信号43によってゲートバルブ6を開き、搬送アーム4によって基板搬送動作を開始する。ゲートバルブ6を開くと、図2に示す「ゲートバルブ開」の区間の状態となる。この状態では、バルブの開口部を通して、真空搬送室3と処理室7との圧力差が縮まるように、通常は圧力の高い真空搬送室3から処理室7への気体の流れができる。この流れの流量Qyは、ゲートバルブ6のコンダクタンスC、あらかじめ設定された安定待ち時間Ts後のバルブ開時真空搬送室圧力計測値Pho、予想処理室圧力値Psyから決まり、
Qy=C(Pho-Psy) −−−(2)
となる。
Thereafter, the gate valve 6 is opened by the gate valve opening / closing signal 43 output from the transfer controller 20, and the substrate transfer operation is started by the transfer arm 4. When the gate valve 6 is opened, the state of the “gate valve open” section shown in FIG. In this state, a gas can normally flow from the vacuum transfer chamber 3 having a high pressure to the process chamber 7 so that the pressure difference between the vacuum transfer chamber 3 and the process chamber 7 is reduced through the opening of the valve. The flow rate Qy of this flow is determined from the conductance C of the gate valve 6, the valve opening vacuum transfer chamber pressure measurement value Pho after the preset stabilization waiting time Ts, and the expected processing chamber pressure value Psy,
Qy = C (Pho-Psy) ---- (2)
It becomes.

一般に、真空室の圧力をP、真空室への気体の流量をQ、真空室に備えられる真空ポンプの排気速度をS、真空ポンプの到達圧力をPuとすると、
P=Q/S+Pu −−−(3)
で表される関係がある。したがって、処理室7への気体流量の総量は、Qy+Qsであるので、予想処理室圧力値Psyは、
Psy=(Qy+Qs)/Ss+Pus −−−(4)
と表される。式(4)に式(1)、(2)を代入すると、
Psy=(C(Pho-Psy)+Ss(Psc-Pus))/Ss+Pus −−−(5)
が得られ、式(5)からPsyを求めると、
Psy=(SsPsc+CPho)/(Ss+C) −−−(6)
が得られる。
Generally, if the pressure in the vacuum chamber is P, the gas flow rate to the vacuum chamber is Q, the exhaust speed of the vacuum pump provided in the vacuum chamber is S, and the ultimate pressure of the vacuum pump is Pu,
P = Q / S + Pu ---- (3)
There is a relationship represented by Therefore, since the total amount of gas flow to the processing chamber 7 is Qy + Qs, the predicted processing chamber pressure value Psy is
Psy = (Qy + Qs) / Ss + Pus −−− (4)
It is expressed. Substituting equations (1) and (2) into equation (4),
Psy = (C (Pho-Psy) + Ss (Psc-Pus)) / Ss + Pus −−− (5)
And Psy is obtained from equation (5).
Psy = (SsPsc + CPho) / (Ss + C) −−− (6)
Is obtained.

式(6)で表される予想処理室圧力値Psyは、判定規格算出器26において算出される。さらに、判定規格算出器26は、予想処理室圧力値Psyを中心としてあらかじめ設定された値から、処理室圧力許容範囲Paを算出し、圧力比較判定器22に送る。   The predicted processing chamber pressure value Psy represented by the equation (6) is calculated by the determination standard calculator 26. Further, the determination standard calculator 26 calculates the processing chamber pressure allowable range Pa from a value set in advance with the predicted processing chamber pressure value Psy as a center, and sends it to the pressure comparison determination device 22.

ゲートバルブ6を開いてから、あらかじめ設定された安定待ち時間Ts以降に、圧力比較判定器22は、バルブ開時処理室圧力計測値Psoが処理室圧力許容範囲Paの範囲内か否かを比較判定する。バルブ開時処理室圧力計測値Psoが処理室圧力許容範囲Paの外側にある場合は、処理室圧力計異常信号44を処理室制御器21に送り、処理を停止させ異常品の発生を防止する。バルブ開時処理室圧力計測値Psoが処理室圧力許容範囲Paの内側にある場合には、処理室圧力計異常信号44が送信されず、基板搬送終了後にゲートバルブ6を閉じて(図2に示す「ゲートバルブ閉B」の区間)、搬送制御器20から処理室制御器21に送信される搬送完了信号42によって処理室制御器21は、処理室7における処理を開始する。   After the gate valve 6 is opened, the pressure comparison / determination unit 22 compares whether or not the valve-opening processing chamber pressure measurement value Pso is within the processing chamber pressure allowable range Pa after the preset stabilization waiting time Ts. judge. When the valve-opening processing chamber pressure measurement value Pso is outside the processing chamber pressure allowable range Pa, a processing chamber pressure gauge abnormality signal 44 is sent to the processing chamber controller 21 to stop the processing and prevent the occurrence of abnormal products. . If the measured value Pso of the processing chamber pressure when the valve is open is inside the processing chamber pressure allowable range Pa, the processing chamber pressure gauge abnormality signal 44 is not transmitted, and the gate valve 6 is closed after the substrate transfer is completed (see FIG. 2). In the “gate valve closed B” section), the processing chamber controller 21 starts processing in the processing chamber 7 by the transfer completion signal 42 transmitted from the transfer controller 20 to the processing chamber controller 21.

処理室7での処理終了後、処理室7から真空搬送室3への基板搬送時も、上記の真空搬送室3から処理室7への搬送時と同様に図2の状態推移(ゲートバルブ閉A⇒ゲートバルブ開⇒ゲートバルブ閉B)を示すため、処理室圧力計24の異常(ずれ)判定をおこなうことができる。   After the processing in the processing chamber 7 is completed, the state transition of FIG. 2 (when the gate valve is closed) is also performed when the substrate is transferred from the processing chamber 7 to the vacuum transfer chamber 3 as in the transfer from the vacuum transfer chamber 3 to the processing chamber 7 described above. Since A ⇒ gate valve open ⇒ gate valve closed B), it is possible to determine whether the processing chamber pressure gauge 24 is abnormal (deviation).

第1の実施例における半導体製造装置は、以上の説明のように構成され、式(6)に従って、圧力信号41と、圧力信号46と、ポンプ、バルブの既知の特性定数とを用いて予想処理室圧力値Psyを算出する。そして、圧力値Psyを基準として、処理室圧力計24のずれ判定をおこなうことができる。したがって、新たに圧力計やバルブを追加する必要がないため、半導体製造装置の設備費を安価なものとすることができる。   The semiconductor manufacturing apparatus according to the first embodiment is configured as described above, and uses the pressure signal 41, the pressure signal 46, and the known characteristic constants of the pump and valve according to the equation (6) to perform the prediction process. The chamber pressure value Psy is calculated. The deviation of the processing chamber pressure gauge 24 can be determined based on the pressure value Psy. Therefore, since it is not necessary to add a new pressure gauge or valve, the equipment cost of the semiconductor manufacturing apparatus can be reduced.

また、ゲートバルブ6のコンダクタンスや処理室の真空リーク量の影響を考慮して圧力計のずれを検出するため、低い圧力での測定ずれ検出精度が高く、処理室7や真空搬送室3の圧力が低い(1E-2Pa以下の分子流領域)場合であっても、処理室圧力計24の測定ずれを精度良く検出することができる。   Further, since the pressure gauge deviation is detected in consideration of the conductance of the gate valve 6 and the amount of vacuum leak in the processing chamber, the measurement deviation detection accuracy at a low pressure is high, and the pressure in the processing chamber 7 and the vacuum transfer chamber 3 is high. Even when the flow rate is low (molecular flow region of 1E-2 Pa or less), the measurement deviation of the processing chamber pressure gauge 24 can be detected with high accuracy.

図3は、本発明の第2の実施例に係る半導体製造装置の構成を示すブロック図である。図3において、半導体製造装置は、予備真空室1、真空搬送室3a、処理室7、10、12、ゲートバルブ2、6、9、11、搬送室真空ポンプ5、処理室真空ポンプ8、13、14、搬送制御器20a、圧力比較判定器22、27、30、判定規格算出器26、28、31、搬送室圧力計23、処理室圧力計24、29、32、搬送室圧力計ずれ警報器33を備える。なお、図3において図1と同一の符号は、同一物あるいは相当物を表し、説明を省略する。また、処理室制御器は、不図示としてある。   FIG. 3 is a block diagram showing a configuration of a semiconductor manufacturing apparatus according to the second embodiment of the present invention. In FIG. 3, the semiconductor manufacturing apparatus includes a preliminary vacuum chamber 1, a vacuum transfer chamber 3 a, processing chambers 7, 10, 12, gate valves 2, 6, 9, 11, a transfer chamber vacuum pump 5, and processing chamber vacuum pumps 8, 13. , 14, transfer controller 20a, pressure comparison / determination units 22, 27, 30, determination standard calculators 26, 28, 31, transfer chamber pressure gauge 23, processing chamber pressure gauges 24, 29, 32, transfer chamber pressure gauge deviation alarm A device 33 is provided. 3, the same reference numerals as those in FIG. 1 represent the same or equivalent components, and the description thereof is omitted. Further, the processing chamber controller is not shown.

第2の実施例では、真空搬送室3aに対して3つの処理室7、10、12が設置してある。処理室10には、真空搬送室3aとの間のゲートバルブ9、処理室真空ポンプ13、処理室圧力計29が備えられており、処理室10は、処理室真空ポンプ13によって真空に維持されている。処理室圧力計29から出力される圧力信号48は、圧力比較判定器27および判定規格算出器28に入力される。   In the second embodiment, three processing chambers 7, 10, and 12 are provided for the vacuum transfer chamber 3a. The processing chamber 10 is provided with a gate valve 9 to the vacuum transfer chamber 3 a, a processing chamber vacuum pump 13, and a processing chamber pressure gauge 29, and the processing chamber 10 is maintained in vacuum by the processing chamber vacuum pump 13. ing. The pressure signal 48 output from the processing chamber pressure gauge 29 is input to the pressure comparison / determination unit 27 and the determination standard calculator 28.

また、処理室12には、真空搬送室3aとの間のゲートバルブ11、処理室真空ポンプ14、処理室圧力計32が備えられており、処理室12は、処理室真空ポンプ14によって真空に維持されている。処理室圧力計32から出力される圧力信号49は、圧力比較判定器30および判定規格算出器31に入力される。   Further, the processing chamber 12 is provided with a gate valve 11 to the vacuum transfer chamber 3 a, a processing chamber vacuum pump 14, and a processing chamber pressure gauge 32, and the processing chamber 12 is evacuated by the processing chamber vacuum pump 14. Maintained. The pressure signal 49 output from the processing chamber pressure gauge 32 is input to the pressure comparison / determination unit 30 and the determination standard calculation unit 31.

さらに、搬送室圧力計23から出力される圧力信号41は、搬送制御器20aに入力されると共に、圧力比較判定器22、27、30、判定規格算出器26、28、31に入力される。また、搬送制御器20aから出力されるゲートバルブ開閉信号43は、ゲートバルブ6、圧力比較判定器22、判定規格算出器26に入力される。搬送制御器20aから出力されるゲートバルブ開閉信号54は、ゲートバルブ9、圧力比較判定器27、判定規格算出器28に入力される。搬送制御器20aから出力されるゲートバルブ開閉信号55は、ゲートバルブ11、圧力比較判定器30、判定規格算出器31に入力される。   Further, the pressure signal 41 output from the transfer chamber pressure gauge 23 is input to the transfer controller 20a, and is also input to the pressure comparison / determination units 22, 27, and 30 and the determination standard calculators 26, 28, and 31. The gate valve opening / closing signal 43 output from the transport controller 20 a is input to the gate valve 6, the pressure comparison / determination unit 22, and the determination standard calculation unit 26. The gate valve opening / closing signal 54 output from the transport controller 20 a is input to the gate valve 9, the pressure comparison / determination unit 27, and the determination standard calculator 28. The gate valve opening / closing signal 55 output from the transport controller 20 a is input to the gate valve 11, the pressure comparison / determination unit 30, and the determination standard calculation unit 31.

以上のような構成の半導体製造装置は、半導体基板の処理時に、複数の処理室を搬送しながら処理をおこなうが、同時に2つ以上のゲートバルブが開くことはない。したがって、それぞれの処理室7、10、12へ半導体基板を搬入または搬出する際に第1の実施例と同様の方法で、それぞれの処理室の圧力計(処理室圧力計24、処理室圧力計29、処理室圧力計32)に対し個別に異常(ずれ)判定をおこない異常があれば処理を停止する。   The semiconductor manufacturing apparatus configured as described above performs processing while transporting a plurality of processing chambers when processing a semiconductor substrate, but two or more gate valves do not open at the same time. Accordingly, when the semiconductor substrate is carried into or out of the respective processing chambers 7, 10, and 12, the pressure gauges (processing chamber pressure gauges 24, processing chamber pressure gauges) of the respective processing chambers are used in the same manner as in the first embodiment. 29, the process chamber pressure gauge 32) is individually determined to be abnormal (deviation), and if there is an abnormality, the process is stopped.

さらに、第2の実施例では、各処理室の圧力比較判定器22、27、30から処理室圧力ずれ量(図2におけるPseに相当)をそれぞれ圧力ずれ信号50、51、52として、搬送室圧力計ずれ警報器33に集めている。   Further, in the second embodiment, the processing chamber pressure deviation amounts (corresponding to Pse in FIG. 2) from the pressure comparison / determination units 22, 27, and 30 of the processing chambers are used as pressure deviation signals 50, 51, and 52, respectively. Collected in the pressure gauge deviation alarm 33.

搬送室圧力計ずれ警報器33は、各処理室からの圧力ずれ信号50、51、52の値の符号を含めた合計値を算出し、あらかじめ設定された値を超える場合(すべての圧力計のずれが同一方向で合計値が設定値より大きい場合)は、搬送室圧力計23の異常な測定ずれが懸念されるため、警報を発生させて装置の処理を停止させる。   The transfer chamber pressure gauge deviation alarm device 33 calculates the total value including the sign of the value of the pressure deviation signals 50, 51, and 52 from each processing chamber, and exceeds a preset value (for all pressure gauges). When the deviation is in the same direction and the total value is larger than the set value), an abnormal measurement deviation of the transfer chamber pressure gauge 23 is a concern, so an alarm is generated to stop the processing of the apparatus.

搬送室圧力計23は、反応性ガス等にさらされることはなく劣化や故障頻度は少ないが、劣化や故障の可能性はゼロではないため、各処理室の圧力ずれ信号の符号と合計値を管理することにより、搬送室圧力計23の劣化や故障による各処理室の圧力計ずれの検出精度低下を防止することができる。   The transfer chamber pressure gauge 23 is not exposed to a reactive gas or the like and has a low frequency of deterioration and failure, but the possibility of deterioration and failure is not zero. By managing, it is possible to prevent a decrease in detection accuracy of pressure gauge deviation in each processing chamber due to deterioration or failure of the transfer chamber pressure gauge 23.

本発明の第1の実施例に係る半導体製造装置の構成を示すブロック図である。1 is a block diagram showing a configuration of a semiconductor manufacturing apparatus according to a first embodiment of the present invention. ゲートバルブ開閉に伴う搬送室圧力計測値Ph(t)と処理室圧力計測値Ps(t)との変化を表す図である。It is a figure showing change of conveyance chamber pressure measurement value Ph (t) and processing chamber pressure measurement value Ps (t) accompanying gate valve opening and closing. 本発明の第2の実施例に係る半導体製造装置の構成を示すブロック図である。It is a block diagram which shows the structure of the semiconductor manufacturing apparatus which concerns on the 2nd Example of this invention. 従来のドライエッチング装置の構成図である。It is a block diagram of the conventional dry etching apparatus. 従来の真空処理装置の構成図である。It is a block diagram of the conventional vacuum processing apparatus. 従来の圧力制御方法を示すフローチャート図である。It is a flowchart figure which shows the conventional pressure control method.

符号の説明Explanation of symbols

1 予備真空室
2、6、9、11 ゲートバルブ
3、3a 真空搬送室
4 搬送アーム
5 搬送室真空ポンプ
7、10、12 処理室
8、13、14 処理室真空ポンプ
20、20a 搬送制御器
21 処理室制御器
22、27、30 圧力比較判定器
23 搬送室圧力計
24、29、32 処理室圧力計
26、28、31 判定規格算出器
33 搬送室圧力計ずれ警報器
40 予備室ゲートバルブ開閉信号
41 圧力信号
42 搬送完了信号
43 ゲートバルブ開閉信号
44 処理室圧力計異常信号
45 処理完了信号
46、48、49 圧力信号
50、51、52 ずれ信号
54、55 ゲートバルブ開閉信号
1 Preliminary vacuum chamber 2, 6, 9, 11 Gate valve 3, 3a Vacuum transfer chamber 4 Transfer arm 5 Transfer chamber vacuum pump 7, 10, 12 Processing chamber 8, 13, 14 Processing chamber vacuum pump 20, 20a Transfer controller 21 Processing chamber controllers 22, 27, 30 Pressure comparison / determination unit 23 Transfer chamber pressure gauges 24, 29, 32 Processing chamber pressure gauges 26, 28, 31 Judgment standard calculator 33 Transfer chamber pressure gauge deviation alarm device 40 Preliminary chamber gate valve opening / closing Signal 41 Pressure signal 42 Transfer completion signal 43 Gate valve opening / closing signal 44 Processing chamber pressure gauge abnormality signal 45 Processing completion signal 46, 48, 49 Pressure signal 50, 51, 52 Deviation signal 54, 55 Gate valve opening / closing signal

Claims (9)

減圧可能な搬送室と、
減圧可能な処理室と、
前記搬送室と前記処理室との間を遮断あるいは開放するバルブと、
前記搬送室内の圧力を計測する搬送室圧力計と、
前記処理室内の圧力を計測する処理室圧力計と、
前記バルブ遮断時の前記処理室圧力計による第1の計測値と、前記バルブ開放後、所定の時間経過した時の前記搬送室圧力計による第2の計測値とを入力し、前記バルブ開放後、前記所定の時間経過した時の前記処理室圧力計における測定ずれ量を求めるずれ検出器と、
を備え
前記ずれ検出器は、前記第1の計測値と、前記第2の計測値とに基づいて、前記所定の時間経過した時の前記処理室の圧力の予想値を求め、前記所定の時間経過した時の前記処理室圧力計による計測値と前記予想値との差を前記測定ずれ量として求めるように構成されることを特徴とする半導体製造装置。
A depressurized transfer chamber;
A depressurized processing chamber;
A valve for blocking or opening between the transfer chamber and the processing chamber;
A transfer chamber pressure gauge for measuring the pressure in the transfer chamber;
A processing chamber pressure gauge for measuring the pressure in the processing chamber;
The first measured value by the processing chamber pressure gauge when the valve is shut off and the second measured value by the transfer chamber pressure gauge when a predetermined time has elapsed after opening the valve are input, and after the valve is opened A deviation detector for obtaining a measurement deviation amount in the processing chamber pressure gauge when the predetermined time has elapsed,
Equipped with a,
The deviation detector obtains an expected value of the pressure in the processing chamber when the predetermined time has elapsed based on the first measurement value and the second measurement value, and the predetermined time has elapsed. the semiconductor manufacturing apparatus according to claim Rukoto configured to determine a difference between the predicted value and the measured value by the processing chamber pressure gauge when as the measurement displacement amount.
前記ずれ検出器は、前記測定ずれ量が所定の値より大きな場合には前記処理室圧力計が異常である旨の信号を出力することを特徴とする請求項記載の半導体製造装置。 The deviation detector, the measurement deviation amount is a semiconductor manufacturing apparatus according to claim 1, wherein the outputting the signal indicating the processing chamber pressure gauge is abnormal if greater than a predetermined value. 前記処理室に備えられる真空ポンプの排気速度と、前記バルブのコンダクタンスと、前記第1の計測値と、前記第2の計測値とから、前記予想値を求めることを特徴とする請求項記載の半導体製造装置。 And pumping speed of the vacuum pump provided in the processing chamber, and the conductance of said valve, said a first measurement value, and a second measurement value, according to claim 1, wherein the determining the predicted value Semiconductor manufacturing equipment. 前記排気速度をSs、前記コンダクタンスをC、前記第1の計測値をPsc、前記第2の計測値をPhoとする場合に、前記予想値Psyを、Psy=(SsPsc+CPho)/(Ss+C)として求めることを特徴とする請求項記載の半導体製造装置。 When the exhaust velocity is Ss, the conductance is C, the first measured value is Psc, and the second measured value is Pho, the predicted value Psy is Psy = (SsPsc + CPho) / (Ss + 4. The semiconductor manufacturing apparatus according to claim 3 , wherein the semiconductor manufacturing apparatus is obtained as C). 減圧可能な搬送室と、
減圧可能なn個(nは2以上の自然数)の処理室と、
前記搬送室と前記第i(i=1〜nの整数)の処理室との間を遮断あるいは開放する第iのバルブと、
前記搬送室内の圧力を計測する搬送室圧力計と、
前記第iの処理室内の圧力を計測する第iの処理室圧力計と、
前記第iのバルブ開放前であって全てのバルブが遮断している時の前記第iの処理室圧力計による計測値と、前記第iのバルブ開放後、所定の時間経過した時の前記搬送室圧力計による計測値とを入力し、前記所定の時間経過した時の前記第iの処理室圧力計における第iの測定ずれ量を求める第iの検出器と、
前記第iの検出器から出力される前記第iの測定ずれ量について、ずれが同一方向でi=1〜nのずれの合計値が所定の値より大きな場合には警報を発生させる警報器と、
を備え
前記第iの検出器は、前記第iのバルブ開放前であって全てのバルブが遮断している時の前記第iの処理室圧力計による計測値と、前記第iのバルブが開放後、前記所定の時間経過した時の前記搬送室圧力計による計測値とに基づいて、前記所定の時間経過した時の前記第iの処理室の圧力の第iの予想値を求め、前記所定の時間経過した時の前記第iの処理室圧力計による第iの計測値と前記第iの予想値との差を前記第iの測定ずれ量として求めるように構成されることを特徴とする半導体製造装置。
A depressurized transfer chamber;
N processing chambers (n is a natural number of 2 or more) that can be decompressed;
An i-th valve that shuts off or opens between the transfer chamber and the i-th (i = 1 to n) processing chamber;
A transfer chamber pressure gauge for measuring the pressure in the transfer chamber;
An i-th process chamber pressure gauge for measuring the pressure in the i-th process chamber;
The measured value by the i-th processing chamber pressure gauge when all the valves are shut off before the i-th valve is opened, and the conveyance when a predetermined time has elapsed after the i-th valve is opened. An i-th detector that inputs a measured value by a chamber pressure gauge and obtains an i-th measurement deviation amount in the i-th processing chamber pressure gauge when the predetermined time has elapsed;
An alarm device for generating an alarm when the total deviation of i = 1 to n is greater than a predetermined value in the same direction with respect to the i-th measurement deviation amount output from the i-th detector; ,
Equipped with a,
The i th detector is measured by the i th processing chamber pressure gauge when all the valves are shut off before the i th valve is opened, and after the i th valve is opened, Based on a measured value by the transfer chamber pressure gauge when the predetermined time has elapsed, an i-th predicted value of the pressure in the i-th processing chamber when the predetermined time has elapsed is obtained, and the predetermined time semiconductor production, wherein Rukoto configured to determine as a measurement displacement amount of said i-the difference between the measured value of the i by the processing chamber pressure gauge of the i and the predicted value of the i-th when elapsed apparatus.
半導体基板を製造する装置における圧力計の測定ずれ検出方法であって、
減圧可能な搬送室と減圧可能な処理室との間をバルブによって遮断するステップと、
前記バルブが遮断している状態で前記処理室内の圧力を計測し、第1の計測値を求めるステップと、
前記搬送室と前記処理室との間を前記バルブによって開放するステップと、
所定の時間待ち合わせるステップと、
前記搬送室内の圧力を計測し、第2の計測値を求めるステップと、
前記第1の計測値と、前記第2の計測値とから前記処理室の圧力の予想値を求めるステップと、
前記バルブが開放している時の前記処理室の圧力の計測値と前記予想値との差を測定ずれ量として求めるステップと、
を含むことを特徴とする測定ずれ検出方法。
A measurement deviation detection method of a pressure gauge in an apparatus for manufacturing a semiconductor substrate,
A step of blocking between the transfer chamber capable of depressurization and the processing chamber depressurized by a valve;
Measuring a pressure in the processing chamber in a state where the valve is shut off, and obtaining a first measurement value;
Opening the space between the transfer chamber and the processing chamber by the valve;
Waiting for a predetermined time;
Measuring the pressure in the transfer chamber to obtain a second measured value;
Obtaining an expected value of the pressure in the processing chamber from the first measurement value and the second measurement value;
Obtaining a difference between the measured value of the processing chamber pressure when the valve is open and the expected value as a measurement deviation amount; and
A measurement deviation detection method comprising:
前記測定ずれ量が所定の値より大きな場合には前記処理室における圧力計が異常であると判断するステップをさらに含むことを特徴とする請求項記載の測定ずれ検出方法。 7. The measurement deviation detection method according to claim 6 , further comprising a step of determining that the pressure gauge in the processing chamber is abnormal when the measurement deviation amount is larger than a predetermined value. 前記処理室に備えられる真空ポンプの排気速度と、前記バルブのコンダクタンスと、前記第1の計測値と、前記第2の計測値とから、前記予想値を求めることを特徴とする請求項記載の測定ずれ検出方法。 And pumping speed of the vacuum pump provided in the processing chamber, and the conductance of said valve, said a first measurement value, and a second measurement value, according to claim 6, wherein the determining the predicted value Measurement deviation detection method. 前記排気速度をSs、前記コンダクタンスをC、前記第1の計測値をPsc、前記第2の計測値をPhoとする場合に、前記予想値Psyを、Psy=(SsPsc+CPho)/(Ss+C)として求めることを特徴とする請求項記載の測定ずれ検出方法。 When the exhaust velocity is Ss, the conductance is C, the first measured value is Psc, and the second measured value is Pho, the predicted value Psy is Psy = (SsPsc + CPho) / (Ss + 9. The measurement deviation detection method according to claim 8 , wherein the measurement deviation detection method is obtained as C).
JP2004128185A 2004-04-23 2004-04-23 Semiconductor manufacturing apparatus and measurement deviation detection method Expired - Fee Related JP4511236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004128185A JP4511236B2 (en) 2004-04-23 2004-04-23 Semiconductor manufacturing apparatus and measurement deviation detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128185A JP4511236B2 (en) 2004-04-23 2004-04-23 Semiconductor manufacturing apparatus and measurement deviation detection method

Publications (2)

Publication Number Publication Date
JP2005311172A JP2005311172A (en) 2005-11-04
JP4511236B2 true JP4511236B2 (en) 2010-07-28

Family

ID=35439564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128185A Expired - Fee Related JP4511236B2 (en) 2004-04-23 2004-04-23 Semiconductor manufacturing apparatus and measurement deviation detection method

Country Status (1)

Country Link
JP (1) JP4511236B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033300A (en) * 2010-07-29 2012-02-16 Hitachi High-Technologies Corp Charged particle beam device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251543A (en) * 1992-03-05 1993-09-28 Nec Kyushu Ltd Semiconductor processor
JPH11229141A (en) * 1998-02-13 1999-08-24 Kokusai Electric Co Ltd Substrate transporting method
JP2001070781A (en) * 1999-09-09 2001-03-21 Ebara Corp Vacuum treatment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251543A (en) * 1992-03-05 1993-09-28 Nec Kyushu Ltd Semiconductor processor
JPH11229141A (en) * 1998-02-13 1999-08-24 Kokusai Electric Co Ltd Substrate transporting method
JP2001070781A (en) * 1999-09-09 2001-03-21 Ebara Corp Vacuum treatment device

Also Published As

Publication number Publication date
JP2005311172A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
US10883866B2 (en) Pressure-based flow rate control device and malfunction detection method therefor
US11313756B2 (en) Flow rate control device and abnormality detection method using flow rate control device
KR101565437B1 (en) Gas supply apparatus for semiconductor manufacturing apparatus
US20080067146A1 (en) Plasma processing apparatus, method for detecting abnormality of plasma processing apparatus and plasma processing method
JP4598044B2 (en) Flow verification failure diagnosis device, flow verification failure diagnosis method, and flow verification failure diagnosis program
US20090061541A1 (en) Semiconductor fabrication system, and flow rate correction method and program for semiconductor fabrication system
US8606412B2 (en) Method for detecting malfunction of valve on the downstream side of throttle mechanism of pressure type flow control apparatus
KR20030007938A (en) Methods and apparatus for maintaining a pressure within an environmentally controlled chamber
US20060168844A1 (en) Vacuum processing apparatus and vacuum processing method
US7592569B2 (en) Substrate processing apparatus, pressure control method for substrate processing apparatus and recording medium having program recorded therein
JP6037707B2 (en) Plasma processing apparatus and diagnostic method for plasma processing apparatus
US8616043B2 (en) Methods and apparatus for calibrating pressure gauges in a substrate processing system
KR102203557B1 (en) Exhaust system, and substrate processing apparatus using the same
JP4511236B2 (en) Semiconductor manufacturing apparatus and measurement deviation detection method
JP5102068B2 (en) Multistage vacuum pump
JP2826409B2 (en) Dry etching equipment
JP5008086B2 (en) High-speed gas switching device with pressure adjustment function
KR20070075935A (en) Vacuum pumping system of substrate processing apparatus and method of vacuum pumping transfer chamber using the same
KR20060122420A (en) Vacuum system
JP2007095728A (en) Device manufacturing apparatus and leak check method
KR100932118B1 (en) Vacuum system of semiconductor manufacturing equipment
JP2004273682A (en) Treatment device
KR20050089215A (en) Apparatus for manufacturing semiconductor device
KR20230137163A (en) An apparatus and method for determining an error of a liquid flow meter in a substrate processing system
JP2023009685A (en) Substrate processing method and substrate processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees