JP5008086B2 - High-speed gas switching device with pressure adjustment function - Google Patents

High-speed gas switching device with pressure adjustment function Download PDF

Info

Publication number
JP5008086B2
JP5008086B2 JP2008134963A JP2008134963A JP5008086B2 JP 5008086 B2 JP5008086 B2 JP 5008086B2 JP 2008134963 A JP2008134963 A JP 2008134963A JP 2008134963 A JP2008134963 A JP 2008134963A JP 5008086 B2 JP5008086 B2 JP 5008086B2
Authority
JP
Japan
Prior art keywords
gas
valve
supply
pressure
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008134963A
Other languages
Japanese (ja)
Other versions
JP2009279527A (en
Inventor
淳 鈴木
秀彦 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008134963A priority Critical patent/JP5008086B2/en
Publication of JP2009279527A publication Critical patent/JP2009279527A/en
Application granted granted Critical
Publication of JP5008086B2 publication Critical patent/JP5008086B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は2種類のガスを切替ながら供給するガス切替装置に関し、特に切替操作を高速で、且つ切替時の圧力変動が小さく、全圧を任意に制御しながら切替供給することができるようにした調圧機能付高速ガス切替装置に関する。   The present invention relates to a gas switching device that supplies two types of gas while switching, and in particular, the switching operation is performed at high speed, and the pressure fluctuation at the time of switching is small, so that switching can be performed while arbitrarily controlling the total pressure. The present invention relates to a high-speed gas switching device with a pressure adjusting function.

真空中でガスを高周波電源によって励起させ、反応性の高いプラズマ状にしたものを、処理対象物に触れさせることによって処理を行うプラズマ処理は、例えば半導体製造工程等においてエッチングやCVD等の処理のために広く行われている。その際は各種処理を行う真空装置中のガスは、処理の種類によってプラズマ状態にするガスを変える必要があり、特に1つの製品を製造するときにも多数の処理工程が必要となることが多く、処理の種類毎にガスを交換する必要が生じる。   Plasma processing is performed by exciting a gas with a high-frequency power source in a vacuum and bringing a highly reactive plasma into contact with an object to be processed, such as etching or CVD in a semiconductor manufacturing process or the like. It has been widely done. In that case, it is necessary to change the gas in the vacuum apparatus for performing various treatments to a plasma state depending on the kind of treatment, and in particular, many treatment steps are often required when manufacturing one product. The gas needs to be exchanged for each type of treatment.

その際、各種処理を行う真空装置に供給するガスは、内部の全圧を制御しつつ、気体供給路を短時間で変更する必要があり、そのときガス供給管路内に先に供給したガスが残っていると、次に供給するガスと混合し、真空装置内のガスを排除した後も先のガスと混合したガスが供給されることとなり、真空装置内を所定の純度のガスに交換するまで多くの時間を要すると共に、無駄なガス供給を長時間継続する必要がある。   At that time, it is necessary to change the gas supply path in a short time while controlling the total internal pressure of the gas supplied to the vacuum apparatus for performing various processes. At that time, the gas previously supplied to the gas supply pipe line If the gas remains, it will be mixed with the gas to be supplied next, and the gas mixed with the previous gas will be supplied even after the gas in the vacuum device is eliminated. It takes a lot of time to do this, and it is necessary to continue unnecessary gas supply for a long time.

なお、ベントガス流入部を有するプラズマ分解装置と、そのプラズマ分解装置の後段に連結されたプラズマ分解装置内を排気する真空ポンプと、真空ポンプの後段に連結されプラズマ分解装置で分解したベントガスを最終処理する分解ガス処理装置とからなるベントガス除外装置によって、難分解性ガスを小型の設備で、高い分解効率で分解処理でき、高い置換効率でガス交換できるようにする技術は特開2002−306927号公報(特許文献1)に開示されている。なお、特許文献1記載の技術は本発明とは構成も用途も異なる。
特開2002−306927号公報
In addition, a plasma decomposition apparatus having a vent gas inflow portion, a vacuum pump exhausting the plasma decomposition apparatus connected to the subsequent stage of the plasma decomposition apparatus, and a vent gas decomposed by the plasma decomposition apparatus connected to the subsequent stage of the vacuum pump are finally processed. Japanese Patent Application Laid-Open No. 2002-306927 discloses a technique that allows a hardly-decomposable gas to be decomposed with high decomposition efficiency and gas exchange with high replacement efficiency by a small-sized facility by using a vent gas excluding device including a cracking gas processing device. (Patent Document 1). The technique described in Patent Document 1 is different in configuration and application from the present invention.
JP 2002-306927 A

前記のように、真空装置で各種の処理を連続して行わなければならないとき、真空装置に供給するガスは頻繁にその種類及び全圧を変更する必要が生じる。そのためそのときの気体供給路では短時間で、全圧を制御しながら供給するガスの種類及び流量を変更することができる必要がある。またそのときのガスの切り替えが適切に行わなければ、処理が適切に行われず、製品の性能に影響する。また、短時間でガスを全て交換するには、先のガスが管路内にできる限り残留しないようにする必要もある。   As described above, when various processes must be continuously performed in the vacuum apparatus, it is necessary to frequently change the type and the total pressure of the gas supplied to the vacuum apparatus. Therefore, in the gas supply path at that time, it is necessary to be able to change the type and flow rate of the supplied gas while controlling the total pressure in a short time. If the gas is not switched properly at that time, the process is not performed properly, which affects the performance of the product. In addition, in order to exchange all the gas in a short time, it is necessary to prevent the previous gas from remaining in the pipeline as much as possible.

上記のような所定の装置に所望のガスを、全圧を調整しながら高速で切り替えて供給する装置は、前記のようなプラズマ処理を行うとき以外にも、例えばガスセンサの性能を検査するときにも必要となる。即ち、ガスセンサは、所定の性状のガスをできる限り早く検出する必要があるため検出の応答時間が重要な性能のひとつであるが、その応答速度を測定するためには、その応答時間よりも遅くとも1桁以上高速に所定の性状のガスを供給する必要がある。   An apparatus for supplying a desired gas to a predetermined apparatus as described above by switching at high speed while adjusting the total pressure is not limited to performing plasma processing as described above, for example, when inspecting the performance of a gas sensor. Is also required. In other words, the gas sensor needs to detect a gas with a predetermined property as soon as possible, so the detection response time is one of the important performances, but in order to measure the response speed, the gas sensor must be slower than the response time. It is necessary to supply a gas having a predetermined property at a speed of one digit or more.

したがって本発明は、真空装置中の全圧を制御しつつ気体供給路を短時間で変更できる装置を提供することにより、気体の種類、流量を短い時間のうちに頻繁に変更することによって主としてプラズマ製膜及びプラズマ処理によって得られる製品の性能及び機能を向上させ、また、高速に気体供給を変更することによりガスセンサの正確な応答時間を測定することができる調圧機能付高速ガス切替装置を提供することを主たる目的とする。   Therefore, the present invention provides a device that can change the gas supply path in a short time while controlling the total pressure in the vacuum device, thereby mainly changing the gas type and flow rate frequently in a short time. Providing a high-speed gas switching device with a pressure adjustment function that improves the performance and functions of products obtained by film formation and plasma treatment, and can measure the exact response time of the gas sensor by changing the gas supply at high speed The main purpose is to do.

2つの異なる気体の流れを、それを流す装置中の圧力を制御しながら切り替える装置を提供するのが本発明であるが、そのためには、2つの気体流路を迅速に切り替えるための切替バルブと、装置中の圧力を制御する圧力制御バルブが必要である。さらに気体流れの切替直後に発生しうる圧力変動を小さくするためには、装置中への流れとは別に、装置中へ供給されない方の気体流れを排気する必要があるため、この気体排気のために実際の処理装置とは別な真空排気系であるバイパス真空排気系を併設する必要がある。   It is the present invention to provide a device for switching between two different gas flows while controlling the pressure in the device through which it flows. To that end, a switching valve for quickly switching between two gas flow paths and There is a need for a pressure control valve to control the pressure in the device. Furthermore, in order to reduce the pressure fluctuation that can occur immediately after switching the gas flow, it is necessary to exhaust the gas flow that is not supplied into the device separately from the flow into the device. In addition, it is necessary to provide a bypass evacuation system, which is an evacuation system different from the actual processing apparatus.

2つの気体流路を迅速に切り替えるための気体経路切替バルブはその開閉が迅速であり外部から容易に制御できる電磁開閉バルブを複数個組み合わせたものである。この切替バルブに今切り替えたい2種類の気体の供給源、気体を実際に利用する装置、及び前段落に記述したバイパス真空排気系が接続される。   A gas path switching valve for quickly switching between two gas flow paths is a combination of a plurality of electromagnetic on-off valves that can be opened and closed quickly and easily controlled from the outside. Connected to this switching valve are two types of gas supply sources to be switched now, a device that actually uses the gas, and the bypass evacuation system described in the previous paragraph.

実際の切替を行うに当たっては、予め切替前後の気体供給の状態で装置中の圧力を圧力制御バルブで調整し、さらに切替直後の圧力変動を小さくするためのバイパスライン上の圧力制御バルブを調整した上で、切替バルブを構成する各電磁弁の開閉を同時に電気的に反転させることによって装置中の圧力を制御した高速な気体流れの切替を行う。詳細は以下の実施例に示すが、本発明の特徴点は以下のようなものである。   In actual switching, the pressure in the device was adjusted with the pressure control valve in the state of gas supply before and after switching, and the pressure control valve on the bypass line was adjusted to reduce pressure fluctuation immediately after switching. Above, high-speed gas flow switching in which the pressure in the apparatus is controlled is performed by electrically reversing the opening and closing of the electromagnetic valves constituting the switching valve at the same time. Details are shown in the following examples, but the features of the present invention are as follows.

本発明に係る調圧機能付高速ガス切替装置は、上記課題を解決するため、第1流量制御バルブを介して第1供給ガスを真空装置に供給する第1管路と、第2流量制御バルブを介して第2供給ガスを供給する第2管路とを第1三方向バルブで連結して、第1供給ガスと第2供給ガスのいずれかのガスを第1三方向バルブから第3流量制御バルブを介して真空装置に供給可能とし、前記第2管路の第2流量制御バルブと前記第1三方向バルブとの間の管路と、第4流量制御バルブを介して排気する排気管路とを第2三方向バルブで連結するとともに、排気管路の第4流量制御バルブと第2三方向バルブとの間の管路に前記第1管路から分岐した管路を連結して、第1供給ガスと第2供給ガスのいずれかのガスを第4流量制御バルブを介して排気可能とし、前記第1三方向バルブと第2三方向バルブとの間の管路に第1オンオフバルブを設けると共に、前記第1管路と排気管路を連結する管路に第2オンオフバルブを設け、第1供給ガスの供給時には第1オンオフバルブと第2オンオフバルブとを閉じるとともに、第1三方向バルブ及び第2三方向バルブを全て開放し、第2供給ガスの供給時には第1オンオフバルブと第2オンオフバルブとを開放すると共に、第1三方向バルブの第1管路側と、第2三方向バルブの排気管路側を閉じることを特徴とする。   In order to solve the above problems, a high-speed gas switching device with a pressure regulating function according to the present invention includes a first pipe for supplying a first supply gas to a vacuum device via a first flow control valve, and a second flow control valve. And a second pipe for supplying the second supply gas via the first three-way valve, and the first supply gas and the second supply gas are supplied from the first three-way valve to the third flow rate. An exhaust pipe that can be supplied to a vacuum device through a control valve and exhausts through a pipe line between the second flow rate control valve of the second pipe line and the first three-way valve, and a fourth flow rate control valve. And a pipe branching from the first pipe to the pipe between the fourth flow control valve and the second three-way valve of the exhaust pipe, Either the first supply gas or the second supply gas can be exhausted via the fourth flow control valve. And a first on-off valve is provided in a pipe line between the first three-way valve and the second three-way valve, and a second on-off valve is provided in a pipe line connecting the first pipe line and the exhaust pipe line. The first on-off valve and the second on-off valve are closed when the first supply gas is supplied, and the first three-way valve and the second three-way valve are all opened, and the first on-off valve is supplied when the second supply gas is supplied. The second on / off valve is opened, and the first pipeline side of the first three-way valve and the exhaust pipeline side of the second three-way valve are closed.

本発明に係る他の調圧機能付高速ガス切替装置は、前記調圧機能付高速ガス切替装置において、前記調圧機能付高速ガス切替装置を複数直列に接続することにより、3種類以上の供給ガスの切り替えを行うことを特徴とする。   Another high-speed gas switching device with a pressure regulating function according to the present invention is the above-described high-speed gas switching device with a pressure regulating function, wherein three or more types of the high-speed gas switching device with a pressure regulating function are connected in series. It is characterized by performing gas switching.

本発明に係る他の調圧機能付高速ガス切替装置は、前記調圧機能付高速ガス切替装置をプラズマによって各種処理を行うプラズマ処理装置に用いることを特徴とする。   Another high-speed gas switching device with a pressure control function according to the present invention is characterized in that the high-speed gas switching device with a pressure control function is used in a plasma processing apparatus that performs various processes using plasma.

本発明に係る他の調圧機能付高速ガス切替装置は、前記調圧機能付高速ガス切替装置をガスセンサの応答時間の測定装置におけるガス供給装置として用いることを特徴とする。   Another high-speed gas switching device with a pressure regulating function according to the present invention is characterized in that the high-speed gas switching device with a pressure regulating function is used as a gas supply device in a measuring device for a response time of a gas sensor.

本発明は上記のように構成したので、気体供給路における気体の切り替え管路部分において、先に供給していたガスの残留量を減少することができ、真空装置中の全圧を制御しつつ気体供給路を短時間で変更できることができるようになる。それにより、気体の種類、流量を短い時間のうちに頻繁に変更することによって主としてプラズマ製膜及びプラズマ処理によって得られる製品の生産性を向上し、また製品の性能及び機能を向上させることができる。また、高速に気体供給を変更することにより、ガスセンサの正確な応答時間を測定することができる調圧機能付き高速ガス切替装置を得ることができる。   Since the present invention is configured as described above, it is possible to reduce the residual amount of the previously supplied gas in the gas switching pipe line portion in the gas supply path, while controlling the total pressure in the vacuum apparatus. The gas supply path can be changed in a short time. As a result, by frequently changing the gas type and flow rate in a short time, it is possible to improve the productivity of the product obtained mainly by plasma film formation and plasma treatment, and to improve the performance and function of the product. . Further, by changing the gas supply at high speed, it is possible to obtain a high-speed gas switching device with a pressure adjusting function capable of measuring an accurate response time of the gas sensor.

本発明は真空装置中の全圧を制御しつつ気体供給路を短時間で変更できるようにするという課題を、第1流量制御バルブを介して第1供給ガスを真空装置に供給する第1管路と、第2流量制御バルブを介して第2供給ガスを供給する第2管路とを第1三方向バルブで連結して、第1供給ガスと第2供給ガスのいずれかのガスを第1三方向バルブから第3流量制御バルブを介して真空装置に供給可能とし、前記第2管路の第2流量制御バルブと前記第1三方向バルブとの間の管路と、第4流量制御バルブを介して排気する排気管路とを第2三方向バルブで連結するとともに、排気管路の第4流量制御バルブと第2三方向バルブとの間の管路に前記第1管路から分岐した管路を連結して、第1供給ガスと第2供給ガスのいずれかのガスを第4流量制御バルブを介して排気可能とし、前記第1三方向バルブと第2三方向バルブとの間の管路に第1オンオフバルブを設けると共に、前記第1管路と排気管路を連結する管路に第2オンオフバルブを設け、第1供給ガスの供給時には第1オンオフバルブと第2オンオフバルブとを閉じるとともに、第1三方向バルブ及び第2三方向バルブを全て開放し、第2供給ガスの供給時には第1オンオフバルブと第2オンオフバルブとを開放すると共に、第1三方向バルブの第1管路側と、第2三方向バルブの排気管路側を閉じることによって実現した。   The present invention provides a first pipe for supplying a first supply gas to a vacuum device via a first flow rate control valve in order to change the gas supply path in a short time while controlling the total pressure in the vacuum device. And a second pipe for supplying the second supply gas via the second flow rate control valve are connected by a first three-way valve, and either one of the first supply gas and the second supply gas is connected to the first supply gas. 1 A three-way valve can be supplied to a vacuum device via a third flow rate control valve, a pipe line between the second flow rate control valve of the second pipe line and the first three-way valve, and a fourth flow rate control The exhaust line that exhausts through the valve is connected by a second three-way valve, and branches from the first pipe to a pipe line between the fourth flow rate control valve and the second three-way valve in the exhaust line. The first and second supply gases are connected to the fourth flow rate. A conduit that allows exhaust through a control valve, and that is provided with a first on / off valve in a conduit between the first three-way valve and the second three-way valve, and that connects the first conduit and the exhaust conduit. Is provided with a second on / off valve, and when the first supply gas is supplied, the first on / off valve and the second on / off valve are closed, and the first three-way valve and the second three-way valve are all opened to supply the second supply gas. The first on / off valve and the second on / off valve are opened at the time of supply, and the first pipeline side of the first three-way valve and the exhaust pipeline side of the second three-way valve are closed.

本発明の実施例を図面に沿って説明する。図1に本発明の典型的な構成例を示しており、真空装置へ供給されている供給ガスAとBの供給を短時間のうちに切り替えることができるようにしている。即ち、図1(a)において第1三方向バルブVと第2三方バルブVは三方向の管と接続する三方向バルブであり、このバルブでは、同図(b)のように(i)の二方向への供給と、(ii)の一方向のみの供給とに切換る作用をなす。なお、同図(ii)においてバルブの黒塗り部分は遮断状態を示す。なお、このような三方向バルブは従来から知られている種々のバルブを用いることができる。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a typical configuration example of the present invention, in which supply of the supply gases A and B supplied to the vacuum apparatus can be switched in a short time. That is, a three-way valve and the first three-way valve V 3 second way valve V 1 was to be connected to the three directions of the tube in FIG. 1 (a), in the valve, as shown in FIG. (B) (i ) In two directions and (ii) in only one direction. In FIG. 6 (ii), the black portion of the valve indicates a cut-off state. Such a three-way valve may be any of various conventionally known valves.

第1オンオフバルブV2と第2オンオフバルブV4は直管中の気体流れのオンオフを制御するバルブであり、このバルブは通常用いられているバルブと同様に、図1(c)の(i)のバルブを通過する状態と、(ii)の遮断する状態とに切り替える。以上の三方向バルブ及びオンオフバルブは電磁バルブとして高速で作動可能であり、バルブの開放及び閉止に要する時間はそれぞれ3.5及び5msである。   The first on / off valve V2 and the second on / off valve V4 are valves for controlling the on / off of the gas flow in the straight pipe. These valves are similar to the normally used valves in FIG. 1 (c) (i). Switching between the state of passing through the valve and the state of blocking in (ii). The above three-way valve and on / off valve can operate at high speed as electromagnetic valves, and the time required for opening and closing the valves is 3.5 and 5 ms, respectively.

これらのバルブは図1(a)に示すように連結されており、更にそれぞれ図示するように第1管路としての供給ガス系Aと、第2管路としての供給ガス系Bに接続されると共に第1流量制御バルブCV1を通して第1ガスを供給し、例えばプラズマ処理装置等の各種製品を製造する真空装置と、また第2流量制御バルブCV2を通してバイパス排気ラインへと接続している。なお、真空装置には圧力を測定する圧力計(真空計)が取り付けられている。   These valves are connected as shown in FIG. 1A, and are connected to a supply gas system A as a first pipeline and a supply gas system B as a second pipeline, as shown in FIG. At the same time, the first gas is supplied through the first flow rate control valve CV1, and connected to the bypass exhaust line through the second flow rate control valve CV2 and a vacuum device for manufacturing various products such as a plasma processing apparatus. The vacuum device is equipped with a pressure gauge (vacuum gauge) for measuring pressure.

これらの管路の連結状態をまとめると次のようなものである。即ち、第1流量制御バルブCV1を介して第1供給ガスAを真空装置に供給する第1管路と、第2流量制御バルブCV2を介して第2供給ガスBを供給する第2管路とを第1三方向バルブV3で連結して、第1供給ガスAと第2供給ガスBのいずれかのガスを第1三方向バルブV3から第3流量制御バルブCV3を介して真空装置に供給可能としている。また、第2供給ガスBを供給する第2管路の第2流量制御バルブCV2と前記第1三方向バルブV3との間の管路と、第4流量制御バルブCV4を介して排気する排気管路とを第2三方向バルブV1で連結するとともに、排気管路の第4流量制御バルブCV4と第2三方向バルブV1との間の管路に第1管路から分岐した管路を連結して、第1供給ガスAと第2供給ガスBのいずれかの、装置に供給されていないガスを第4流量制御バルブCV4を介して排気可能としている。また、第1三方向バルブV3と第2三方向バルブV1との間の管路に第1オンオフバルブV2を設けると共に、第1管路と排気管路を連結する管路に第2オンオフバルブV4を設ける。   The connection state of these pipes is summarized as follows. That is, a first pipeline that supplies the first supply gas A to the vacuum device via the first flow control valve CV1, and a second pipeline that supplies the second supply gas B via the second flow control valve CV2. Can be connected by the first three-way valve V3, and either the first supply gas A or the second supply gas B can be supplied from the first three-way valve V3 to the vacuum device via the third flow control valve CV3. It is said. Further, a second pipe for supplying the second supply gas B, a pipe line between the second flow rate control valve CV2 and the first three-way valve V3, and an exhaust pipe for exhausting through the fourth flow rate control valve CV4. And a pipe branched from the first pipe to the pipe between the fourth flow rate control valve CV4 and the second three-way valve V1 of the exhaust pipe. Thus, any one of the first supply gas A and the second supply gas B that is not supplied to the apparatus can be exhausted via the fourth flow rate control valve CV4. In addition, a first on / off valve V2 is provided in a pipe line between the first three-way valve V3 and the second three-way valve V1, and a second on / off valve V4 is connected to a pipe line connecting the first pipe line and the exhaust pipe line. Is provided.

このような管路構成において、後に詳述するように、第1供給ガスAの供給時には第1オンオフバルブV2と第2オンオフバルブV4とを閉じるとともに、第1三方向バルブV3及び第2三方向バルブV1を全て開放し、第2供給ガスBの供給時には第1オンオフバルブV2と第2オンオフバルブV4とを開放すると共に、第1三方向バルブV3の第1管路側と、第2三方向バルブV1の排気管路側を閉じることにより本発明が実施される。   In such a pipe configuration, as will be described in detail later, when the first supply gas A is supplied, the first on-off valve V2 and the second on-off valve V4 are closed, and the first three-way valve V3 and the second three-way valve are closed. All the valves V1 are opened, and when the second supply gas B is supplied, the first on / off valve V2 and the second on / off valve V4 are opened, and the first three-way valve V3 and the second three-way valve are opened. The present invention is implemented by closing the exhaust pipe side of V1.

図1(a)に示すシステムにより、真空装置へ供給される供給ガスA、Bを短時間のうちに切替、交換する手順をより詳細に説明する。まず当初の第1の段階では図2(a)に示すように、供給ガスAが真空装置に供給されている。即ち、この供給ガスAの真空装置への供給は、第1及び第2オンオフバルブV2及びV4を閉じ、第1及び第2三方向バルブ1及びV3を開けることによって行われる。この状態では供給ガスAは第1流量制御バルブCV1、第1三方向バルブV3及び第3流量制御バルブCV3を通して真空装置へと流れる。   A procedure for switching and replacing the supply gases A and B supplied to the vacuum apparatus in a short time by the system shown in FIG. 1A will be described in more detail. First, in the initial first stage, as shown in FIG. 2A, the supply gas A is supplied to the vacuum apparatus. That is, the supply gas A is supplied to the vacuum device by closing the first and second on / off valves V2 and V4 and opening the first and second three-way valves 1 and V3. In this state, the supply gas A flows to the vacuum device through the first flow control valve CV1, the first three-way valve V3, and the third flow control valve CV3.

一方この時供給ガスBは、第1及び第2オンオフバルブV2及びV4が閉じているために真空装置へと流れることができず、図中において第1流量制御バルブCV2、第2三方バルブV1、及び第4流量制御バルブCV4を通してバイパス排気される。以上の気体流れの状態は配管中に実線で示している。   On the other hand, the supply gas B cannot flow to the vacuum device because the first and second on / off valves V2 and V4 are closed at this time, and in the drawing, the first flow control valve CV2, the second three-way valve V1, And the exhaust is bypassed through the fourth flow control valve CV4. The above gas flow state is indicated by solid lines in the piping.

このように真空装置に供給ガスAが供給されている状態から供給ガスBへの供給への切替は、図2(b)に示すように、前記(a)の第1及び第2三方向バルブV1、V3、及び第1及び第2オンオフバルブV2、V4の全バルブの開閉を、すべて逆にすることによって達成される。これらの開閉は電気信号によって全て同時に行われるが、これによって第1及び第2三方向バルブV1及びV3は閉じ、第1及び第2オンオフバルブV2及びV4は開放される。   The switching from the state in which the supply gas A is supplied to the vacuum device to the supply to the supply gas B is performed as shown in FIG. 2 (b) by the first and second three-way valves in (a). This is accomplished by reversing the opening and closing of all the valves V1, V3 and the first and second on / off valves V2, V4. These opening / closing operations are all performed simultaneously by an electrical signal, whereby the first and second three-way valves V1 and V3 are closed, and the first and second on / off valves V2 and V4 are opened.

その結果、真空装置に供給されていた供給ガスAは第1三方向バルブV3が閉じられたために真空装置への流れが停止され、第2オンオフバルブV4が開放されたためにバイパス排気ラインから排気される。一方、供給ガスBは第1及び第2三方向バルブV1及びV3が閉鎖されたために、図中第2流量制御バルブCV2、第2三方向バルブV1、第1オンオフバルブV2、第1三方向バルブV3、第3流量制御バルブCV3を通して真空装置へと供給される。以上のように電磁バルブを用いることにより短時間に真空装置への供給ガスを切り替え、真空装置内のガス交換が可能になる。   As a result, the supply gas A supplied to the vacuum device is stopped from flowing to the vacuum device because the first three-way valve V3 is closed, and exhausted from the bypass exhaust line because the second on / off valve V4 is opened. The On the other hand, since the first and second three-way valves V1 and V3 are closed, the supply gas B has a second flow control valve CV2, a second three-way valve V1, a first on / off valve V2, and a first three-way valve in the figure. V3 is supplied to the vacuum device through the third flow rate control valve CV3. As described above, by using the electromagnetic valve, the supply gas to the vacuum apparatus can be switched in a short time, and the gas in the vacuum apparatus can be exchanged.

このようなガス切替を、図示の装置構成において供給ガスAとして空気を、供給ガスBとして水素−空気混合ガスを用いて確認した。ガス切替は真空装置での圧力を、絶対圧力を測定することのできる隔膜真空計及び水晶振動子型圧力計を用いて測定することにより確認した。水晶振動子型圧力計の出力は全圧の他、気体の粘性及び分子量に依存して変化するため、絶対圧力を同時に測定し水晶振動子型圧力計出力を全圧で校正することによって被測定気体の粘性及び分子量に依存した出力を得ることにより真空装置内の気体構成の変化を検出できる。   Such gas switching was confirmed using air as the supply gas A and a hydrogen-air mixed gas as the supply gas B in the illustrated apparatus configuration. The gas switching was confirmed by measuring the pressure in the vacuum apparatus using a diaphragm vacuum gauge and a quartz oscillator type pressure gauge capable of measuring an absolute pressure. Since the output of the quartz oscillator type pressure gauge changes depending on the viscosity and molecular weight of the gas in addition to the total pressure, the absolute pressure is measured simultaneously and the output of the quartz oscillator type pressure gauge is calibrated with the total pressure. By obtaining an output that depends on the viscosity and molecular weight of the gas, it is possible to detect changes in the gas configuration in the vacuum apparatus.

このガス切替においては、用途としてこの切替が大気中への水素漏洩を模したものであるため、ガス切替前後の全圧を大気圧(100kpa)に保つ必要があった。そこで、初めにこのガス切替前後で全圧が100kPaになるように、気体の完全閉止はできないもののバルブ中を通過するガス経路のコンダクタンスを変化させることができる流量調節バルブCV1、CV2、CV4を用いて真空装置での圧力調整を行った。その手順を以下に示す。   In this gas switching, since this switching simulates hydrogen leakage into the atmosphere, the total pressure before and after the gas switching needs to be maintained at atmospheric pressure (100 kpa). Therefore, first, flow control valves CV1, CV2, and CV4 that can change the conductance of the gas path that passes through the valve, although the gas cannot be completely closed so that the total pressure becomes 100 kPa before and after the gas switching, are used. The pressure was adjusted with a vacuum device. The procedure is shown below.

最初、空気(供給ガスA)を流量101sccmで真空装置へ流した状態で、第1流量制御バルブCV1を調節して真空装置内の絶対圧力を100kPaに保持する。次にこの供給ガスをAからBへ切替え、供給ガスBとして空気147sccm及び水素10sccmを前述した方法で真空装置に供給する。その後、第2流量制御バルブCV2のみを用いて100kPaに調整する。以上によりガス供給の前後において100kPaが達成される。なお、供給ガスAの総流量よりも供給ガスBの総流量が大きい場合には、第1流量制御バルブCV1の代わりに第3流量制御バルブCV3も用いることができる。また、バイパス排気ラインに接続する第4流量制御バルブCV4は、ガス切替に伴う圧力変動及び切替直後の圧力変動をできるだけ小さくするために適宜用いられる。以上による調整の後、供給ガスの空気から水素−空気混合ガスへの切替を行い、圧力測定によるガス切替を確認した。   First, in a state where air (supply gas A) is flowed to the vacuum device at a flow rate of 101 sccm, the first flow control valve CV1 is adjusted to maintain the absolute pressure in the vacuum device at 100 kPa. Next, the supply gas is switched from A to B, and 147 sccm of air and 10 sccm of hydrogen are supplied as supply gas B to the vacuum apparatus by the method described above. Thereafter, the pressure is adjusted to 100 kPa using only the second flow rate control valve CV2. Thus, 100 kPa is achieved before and after the gas supply. When the total flow rate of the supply gas B is larger than the total flow rate of the supply gas A, the third flow rate control valve CV3 can be used instead of the first flow rate control valve CV1. Further, the fourth flow rate control valve CV4 connected to the bypass exhaust line is appropriately used for minimizing the pressure fluctuation accompanying the gas switching and the pressure fluctuation immediately after the switching. After the adjustment as described above, the supply gas was switched from the air to the hydrogen-air mixed gas, and gas switching by pressure measurement was confirmed.

得られた結果を図3に示す。横軸の時間に対してガス切替に対する絶対圧力及び水晶振動子型圧力計出力を図3(a)に、また絶対圧力の相対変化及び圧力校正した水晶振動子型圧力計出力値を図3(b)にプロットしたが、横軸の時間で約5秒の時点で供給気体A、Bの切替を行うと、絶対圧力も若干変化するが、圧力校正した水晶振動子型圧力計の値はそれよりも大きく変化した。圧力校正した水晶振動子型圧力計の指示値が減少していることから、このガス切替によって供給ガスの粘性・分子量が低下していること、すなわち供給ガスの種類が変化し、ガス切替が迅速に行われていることがわかる。この、分子量及び粘性の低下は、供給ガス種類が純空気から水素混合空気への切り替わったことと定性的に一致する。なぜなら水素ガスの分子量及び粘性(分子量2.02、粘性8.35 μ・Pa・s)は空気(分子量28.97、粘性17.08 μ・Pa・s)と比較して極めて小さいからである。別途、図4に示す圧力校正したQゲージ値の空気中水素濃度依存性の結果を参照すると、図3(b)中の圧力校正した水晶振動子圧力計指示値の結果(=0.499)から、供給ガス切替後の空気中水素濃度は約45.7vol%であることがわかる。供給ガス切替前は純空気、すなわち水素濃度0vol%のガスを供給していたことから、極めて短時間に真空装置への供給ガスの切替が行われたことが示された。   The obtained results are shown in FIG. Fig. 3 (a) shows the absolute pressure and crystal oscillator pressure gauge output for gas switching with respect to the time on the horizontal axis, and Fig. 3 shows the relative change in absolute pressure and the output value of the crystal oscillator pressure gauge after pressure calibration. Plotted in b), when the supply gas A and B are switched at the time of about 5 seconds on the horizontal axis, the absolute pressure changes slightly, but the value of the quartz crystal type pressure gauge calibrated is Changed more than. Since the indicated value of the pressure calibrated quartz crystal type pressure gauge has decreased, the viscosity and molecular weight of the supply gas have decreased due to this gas switching. It can be seen that This decrease in molecular weight and viscosity qualitatively coincides with the fact that the type of supply gas is switched from pure air to hydrogen mixed air. This is because the molecular weight and viscosity of hydrogen gas (molecular weight 2.02, viscosity 8.35 μ · Pa · s) are extremely small compared to air (molecular weight 28.97, viscosity 17.08 μ · Pa · s). Separately, referring to the results of the dependence of the pressure calibrated Q gauge value on the hydrogen concentration in the air shown in FIG. 4, the result of the pressure calibrated crystal oscillator pressure gauge indication value in FIG. 3B (= 0.499). From this, it can be seen that the hydrogen concentration in the air after switching the supply gas is about 45.7 vol%. Since supply of pure air, that is, a gas having a hydrogen concentration of 0 vol%, was performed before the supply gas was switched, it was shown that the supply gas was switched to the vacuum apparatus in a very short time.

ここで図3(a)における絶対圧力が、時間分解測定の時間分解能の時間内で変化していることを考慮すると、実際にガス切替に要した時間はここでの時間分解能である50 msよりも短い可能性がある。時間分解能が50 msであることは、現状の測定に関する装置の性能によって制限されているものであり、ガス切替の本来の性能とは無関係である。したがってより時間分解能の速い測定を行うことができればこのガス切替法のより速い切替速度をより正確に求めることができる。   Here, considering that the absolute pressure in Fig. 3 (a) changes within the time resolution of time-resolved measurement, the actual time required for gas switching is 50 ms, which is the time resolution here. Could be too short. The time resolution of 50 ms is limited by the performance of the apparatus related to the current measurement, and has nothing to do with the original performance of gas switching. Therefore, if the measurement with faster time resolution can be performed, the faster switching speed of the gas switching method can be obtained more accurately.

圧力計の応答時間を、切替後飽和値に至るまでの変化量の90%に達するまでの時間と定義すると、水晶振動子型圧力計の指示値の応答時間は隔膜圧力計に比べると数倍から数十倍長い。この応答時間の遅延は、隔膜圧力計のより迅速な指示値の変化を考慮すると、ガス切替時間の遅さによるものではなく、この水晶振動子型圧力計の本来の応答時間の遅さに由来するものと考えられる。ちなみにここで用いた隔膜真空計及び水晶振動子型圧力計の応答時間はそれぞれメーカー公称で16 ms以下及び数百ms以下であるから、図3の結果はほぼこれらの公称値に対応している。しかしながら隔膜真空計に比較して遅いとは言え約数百ミリ秒程度の応答時間測定は、ここで提案するようなミリ秒単位、遅くとも数十ミリ秒単位で高速なガス切替法を用いることによって初めて測定可能となるのであるから、本ガス切替法はこのような、数百ミリ秒以上の種々のセンサの応答速度を測定する方法として有効な方法である。この、応答時間測定の限界値は現状数百ミリ秒であるが、これも時間分解の測定限界である50ミリ秒によって制限されているものであるから、測定の時間分解能の改善によってさらに速い応答時間を測定することが可能である。   When the response time of the pressure gauge is defined as the time required to reach 90% of the amount of change until the saturation value after switching, the response time of the indicated value of the quartz oscillator type pressure gauge is several times that of the diaphragm pressure gauge. From dozens of times longer. This delay in the response time is not due to the delay in the gas switching time, considering the more rapid change in the reading value of the diaphragm pressure gauge. It is thought to do. Incidentally, the response time of the diaphragm vacuum gauge and the quartz crystal type pressure gauge used here is 16 ms or less and several hundred ms or less in terms of manufacturer's nominal values, respectively, so the results in FIG. 3 almost correspond to these nominal values. . However, although it is slow compared with the diaphragm vacuum gauge, response time measurement of about several hundred milliseconds is performed by using a high-speed gas switching method in units of milliseconds as proposed here, and at the latest several tens of milliseconds. Since the measurement can be performed for the first time, the present gas switching method is an effective method for measuring the response speed of various sensors of several hundred milliseconds or more. The limit value of the response time measurement is currently several hundred milliseconds, but this is also limited by the time resolution measurement limit of 50 milliseconds. It is possible to measure time.

以上のように、本発明によりガス切替後前後のそれぞれ異なる供給流量に対し、圧力をも同時に制御しながら50ms以内にガス切替が可能なことが示された。上記の例ではガス切替前後の圧力を等しくしたが、当然のことながら流量制御バルブCVの調節によりガス切替前後の圧力は供給流量による制限の範囲内で任意に制御できる。その例については後に示す。   As described above, according to the present invention, it was shown that the gas can be switched within 50 ms while simultaneously controlling the pressure for the different supply flow rates before and after the gas switching. In the above example, the pressures before and after the gas switching are made equal, but it goes without saying that the pressures before and after the gas switching can be arbitrarily controlled within the limits of the supply flow rate by adjusting the flow control valve CV. An example will be shown later.

本発明はこのバルブ切り替えシステムの構成により、真空装置中の全圧を制御しつつ気体供給路を短時間で変更できるものであるが、特に三方向バルブV1及びV3を用いたことにより、確実にガスの切り替えを行うことができる。即ち、これらの三方向バルブの機能は、例えばこの部分に全くバルブを設けることなくT字管路とし、その縦管路におけるオンオフバルブV4の管路と交差する部分の手前にオンオフバルブを設けても同様の流路の切り替え作用を行うことができるが、その際にはT字管路の管結合部分と新たに設けたオンオフバルブとの間にデッドスペースができ、正確なガス供給量の制御が困難となるほか、切り替え直後においてデッドスペースに存在する残留ガスが供給されることによっても適切なガスの切り替えが行われない。したがって本発明では、前記のような三方向バルブを用いることにより、T字管路の結合部分で直接管路の切り替えを行うことができ、適切な切り替えが可能となる。   The present invention can change the gas supply path in a short time while controlling the total pressure in the vacuum apparatus by the configuration of the valve switching system. In particular, by using the three-way valves V1 and V3, Gas switching can be performed. That is, the function of these three-way valves is, for example, a T-shaped pipe without providing any valve at this part, and an on / off valve is provided in front of the part intersecting the pipe of the on / off valve V4 in the vertical pipe. Can switch the flow path in the same way, but in that case, there is a dead space between the pipe connection part of the T-shaped pipe line and the newly installed on-off valve, and the gas supply amount is accurately controlled. In addition, it is difficult to switch the gas properly even if the residual gas existing in the dead space is supplied immediately after switching. Therefore, in the present invention, by using the three-way valve as described above, the pipe line can be switched directly at the coupling portion of the T-shaped pipe line, and appropriate switching can be performed.

えば、図5(b)のような組み合わせでも、ガス切替は可能である。しかし、ガス切替時に生じうる圧力変動の一因として、切替後に導入するガスが切替前にその流れを止められていた分(図5(a)、(b)中の太線部分)のガスによるものであると考えられることから、流れを止められていたガスの量を最小にするために図1(図5(a))のような三方弁を用いた構成とした。 For example, a combination such as in FIG. 5 (b), gas switching is possible. However , as a cause of the pressure fluctuation that may occur at the time of gas switching, the gas introduced after the switching is caused by the gas that was stopped before the switching (the thick line portions in FIGS. 5A and 5B). it is considered to be the, was constructed using a three-way valve as shown in FIG. 1 to the amount of gas had been stopped Re flow to a minimum (Figure 5 (a)).

次にバイパス排気系の効用について説明する。例えばバイパス排気系のない図6のようなバルブ構成を用いても、供給ガスA,Bを高速に切り替えることは可能である。まずV3を開、V2を閉にすることによって切替前のガスAが装置に供給される(図6中の灰色線)。次にV2、V3の開閉を電気的に同時に反転させるとV2が開、V3が閉になることからガスBのみが装置に供給される(図6中の黒色線)。しかしながら図6の構成では切替前にV2で閉止されている部分に存在するガスBがこの部分で滞留してしまい、V2でのガスBの圧力がこれより上流の部分の圧力、ここではガスボンベに接続している圧力制御器の2次圧と同等となる。この状態でガス切替を行うと、切替時に装置中の圧力がこの部分の圧力の影響を受け、例え流量制御バルブCV2があったとしても切替時の圧力変動を制御することができない。切替時の圧力変動を小さくするためには切替前においてもその流れが止められることなく流れており、かつその時の圧力が制御されている状態にする必要がある。その、切替前のガスを切替前の時点で流れのある状態にしておくために用いられるのがバイパス真空排気系である。なお、この排気系は切替前に供給されているガスAが切替後に迅速に排気されるためにも有効である。   Next, the effect of the bypass exhaust system will be described. For example, the supply gases A and B can be switched at high speed even if a valve configuration as shown in FIG. 6 without a bypass exhaust system is used. First, the gas A before switching is supplied to the apparatus by opening V3 and closing V2 (gray line in FIG. 6). Next, when the opening and closing of V2 and V3 are electrically reversed at the same time, V2 is opened and V3 is closed, so that only gas B is supplied to the apparatus (black line in FIG. 6). However, in the configuration of FIG. 6, the gas B existing in the portion closed by V2 before switching is retained in this portion, and the pressure of the gas B in V2 is the pressure in the upstream portion, in this case the gas cylinder. This is equivalent to the secondary pressure of the connected pressure controller. If the gas is switched in this state, the pressure in the apparatus is affected by the pressure of this portion at the time of switching, and the pressure fluctuation at the time of switching cannot be controlled even if there is the flow control valve CV2. In order to reduce the pressure fluctuation at the time of switching, it is necessary to keep the flow unstopped even before the switching and to control the pressure at that time. The bypass evacuation system is used to keep the gas before switching in a flowable state before switching. This exhaust system is also effective because the gas A supplied before switching is quickly exhausted after switching.

図7に、切替前後で圧力が異なる場合の結果について示した。この場合、切替前はアルゴン24 SCCM、8 kPa、切替後は水素50 SCCM、10 kPaである。初めアルゴンを上記条件で流し、約7秒後に水素ガスに切り替えた。その後約22秒のところで再びアルゴンガスの流れに戻した。図7(a)はこの時の、絶対圧力を測定する隔膜真空計及び測定するガスの粘性・分子量に敏感な水晶振動子圧力計の指示値である。ガス切替のタイミングを実線で同時に図7中に示した。アルゴンから水素に切り替えた際、絶対圧力は増加するが圧力校正された水晶振動子圧力計の指示値は減少していることから、このガス切替によって供給ガスの粘性・分子量が低下していること、すなわち供給ガスの種類が変化し、ガス切替が迅速に行われていることがわかる。この分子量及び粘性の低下は、アルゴンの分子量及び粘性(分子量39.95、粘性20.96 μ・Pa・s)が水素ガス(分子量2.02、粘性8.35 μ・Pa・s)と比較して大きいことを考慮すると。供給ガス種類がアルゴンから水素への切り替わったことと定性的に一致する。   FIG. 7 shows the results when the pressure is different before and after switching. In this case, argon is 24 SCCM, 8 kPa before switching, and hydrogen is 50 SCCM, 10 kPa after switching. First, argon was flowed under the above conditions, and after about 7 seconds, the gas was switched to hydrogen gas. Thereafter, the flow of argon gas was returned to about 22 seconds. FIG. 7A shows the indication values of the diaphragm vacuum gauge for measuring the absolute pressure and the quartz oscillator pressure gauge sensitive to the viscosity and molecular weight of the gas to be measured. The gas switching timing is simultaneously shown in FIG. When switching from argon to hydrogen, the absolute pressure increases but the indicated value of the pressure calibrated quartz crystal manometer decreases, so the viscosity and molecular weight of the supply gas decreases due to this gas switching. That is, it can be seen that the type of the supply gas is changed and the gas switching is performed quickly. Considering that this molecular weight and viscosity decrease are larger than that of hydrogen gas (molecular weight: 2.02, viscosity: 8.35 μ · Pa · s), the molecular weight and viscosity of argon (molecular weight: 39.95, viscosity: 20.96 μ · Pa · s). This is qualitatively consistent with the supply gas type switching from argon to hydrogen.

なお、図3と比較すると絶対圧力が安定するのに時間がかかっている。これはガス切替の前後で圧力が異なることにより、同じ真空排気速度の設定では圧力が新しい平衡値に達するのに時間がかかることによるものである。これをより迅速に圧力制御するためには、切替直後において過渡的に真空排気の速度を変化させるか、流路上の開閉度を変化させる必要がある。この場合は真空排気速度を低下させるか、流路上開閉度を小さくすることで圧力上昇の速度を速めることができる。以上のようにガス切替前後において圧力が異なる場合でもその制御は可能であるが、この場合には上記のように過渡的に真空排気速度や流路上開閉度を制御する必要が生じる。   Compared with FIG. 3, it takes time for the absolute pressure to stabilize. This is because it takes time for the pressure to reach a new equilibrium value at the same evacuation speed setting because the pressure is different before and after gas switching. In order to control the pressure more quickly, it is necessary to change the speed of evacuation transiently or to change the degree of opening and closing on the flow path immediately after switching. In this case, the speed of pressure increase can be increased by reducing the evacuation speed or reducing the degree of opening and closing on the flow path. As described above, even when the pressure is different before and after gas switching, the control is possible, but in this case, it is necessary to transiently control the evacuation speed and the opening / closing degree on the flow path as described above.

また、前記の例においては供給ガスAと供給ガスBの2種類のガスを切り替える例を示したが、例えば図8のように供給ガスBの管路の上流に前記と同様の管路構成を直列に連結し、それらの管路のバルブを前記と同趣旨で開閉制御することによって、更に多数のガスの切り替えを同様に行うことができる。   Further, in the above example, an example of switching between two types of gas, supply gas A and supply gas B, has been shown. For example, as shown in FIG. By connecting them in series and controlling the opening and closing of the valves of these pipe lines in the same manner as described above, it is possible to switch a large number of gases in the same manner.

本発明は前記のように、プラズマ製膜を初めとした各種プラズマ処理を行う装置、更にはガスセンサの応答時間の測定等に有効に利用することができるが、そのほか各種容器や室内に複数のガスを切り替えて供給する同様の装置に有効に利用することができる。   As described above, the present invention can be effectively used for apparatuses for performing various plasma treatments such as plasma deposition, and for measuring the response time of a gas sensor. It can be effectively used for the same apparatus that supplies by switching.

本発明による調圧機能付高速ガス切替装置の実施例の典型的な構成例を示す図である。It is a figure which shows the typical structural example of the Example of the high-speed gas switching apparatus with a pressure regulation function by this invention. 同実施例のガス切替態様を示す図である。It is a figure which shows the gas switching aspect of the Example. 本発明の実験例である、純空気―水素・空気混合ガス切替時の隔膜圧力計指示値及び水晶振動子圧力計指示値の変化(a)及び絶対圧力の相対変化及び圧力校正した水晶振動子圧力計指示値(b)の変化を示す図である。Example of experiment of the present invention, change of diaphragm pressure gauge indicating value and crystal oscillator pressure gauge indicating value when switching pure air-hydrogen / air mixed gas (a), relative change of absolute pressure, and pressure calibrated crystal oscillator It is a figure which shows the change of a pressure gauge instruction | indication value (b). 圧力校正した水晶振動子圧力計指示値の空気中水素濃度依存性の結果を示すグラフである。It is a graph which shows the result of the hydrogen concentration dependence in the air of the crystal oscillator pressure gauge indication value which carried out pressure calibration. ガス切替バルブのバルブ構成の比較図である。It is a comparison figure of the valve composition of a gas change valve. バイパス排気系が存在しない場合に考えられるガス切替装置構成を示す図である。It is a figure which shows the gas switch apparatus structure considered when a bypass exhaust system does not exist. アルゴン―水素切替時の隔膜圧力計指示値及び水晶振動子圧力計指示値の変化(a)及び絶対圧力に対する相対変化及び圧力校正した水晶振動子圧力計指示値の変化(b)を示す図である。The figure which shows the change (a) of the diaphragm pressure gauge instruction | indication value and quartz oscillator pressure gauge instruction | indication value at the time of argon-hydrogen switching, the relative change with respect to an absolute pressure, and the change (b) of the quartz oscillator pressure gauge instruction | indication value which pressure-calibrated is there. 3種類のガス切替に用いられるバルブ構成図を示す図である。It is a figure which shows the valve | bulb block diagram used for three types of gas switching.

Claims (5)

第1流量制御バルブを介して第1供給ガスを真空装置に供給する第1管路と、第2流量制御バルブを介して第2供給ガスを供給する第2管路とを第1三方向バルブで連結して、第1供給ガスと第2供給ガスのいずれかのガスを第1三方向バルブから第3流量制御バルブを介して真空装置に供給可能とし、
前記第2管路の第2流量制御バルブと前記第1三方向バルブとの間の管路と、第4流量制御バルブを介して排気する排気管路とを第2三方向バルブで連結するとともに、排気管路の第4流量制御バルブと第2三方向バルブとの間の管路に前記第1管路から分岐した管路を連結して、第1供給ガスと第2供給ガスのいずれかのガスを第4流量制御バルブを介して排気可能とし、
前記第1三方向バルブと第2三方向バルブとの間の管路に第1オンオフバルブを設けると共に、前記第1管路と排気管路を連結する管路に第2オンオフバルブを設け、
第1供給ガスの供給時には第1オンオフバルブと第2オンオフバルブとを閉じるとともに、第1三方向バルブ及び第2三方向バルブを全て開放し、
第2供給ガスの供給時には第1オンオフバルブと第2オンオフバルブとを開放すると共に、第1三方向バルブの第1管路側と、第2三方向バルブの排気管路側を閉じることを特徴とする調圧機能付高速ガス切替装置。
A first three-way valve includes a first pipe that supplies the first supply gas to the vacuum device via the first flow control valve and a second pipe that supplies the second supply gas via the second flow control valve. In connection with each other, it is possible to supply either the first supply gas or the second supply gas from the first three-way valve to the vacuum device via the third flow control valve,
The pipe line between the second flow rate control valve of the second pipe line and the first three-way valve is connected to the exhaust pipe line for exhausting through the fourth flow rate control valve by the second three-way valve. A pipe branched from the first pipe is connected to a pipe between the fourth flow rate control valve and the second three-way valve in the exhaust pipe, and one of the first supply gas and the second supply gas Gas can be exhausted through the fourth flow control valve,
A first on / off valve is provided in a pipe line between the first three-way valve and the second three-way valve, and a second on / off valve is provided in a pipe line connecting the first pipe line and the exhaust pipe line;
When supplying the first supply gas, the first on-off valve and the second on-off valve are closed, and the first three-way valve and the second three-way valve are all opened.
When supplying the second supply gas, the first on-off valve and the second on-off valve are opened, and the first pipeline side of the first three-way valve and the exhaust pipeline side of the second three-way valve are closed. High-speed gas switching device with pressure adjustment function.
前記調圧機能付高速ガス切替装置を複数直列に接続することにより、3種類以上の供給ガスの切り替えを行うことを特徴とする請求項1記載の調圧機能付き高速ガス切替装置。   The high-speed gas switching device with a pressure adjusting function according to claim 1, wherein a plurality of types of supply gas are switched by connecting a plurality of high-speed gas switching devices with a pressure adjusting function in series. 前記調圧機能付高速ガス切替装置をプラズマによって各種処理を行うプラズマ処理装置に用いることを特徴とする請求項1記載の調圧機能付高速ガス切替装置。   2. The high-speed gas switching apparatus with a pressure adjusting function according to claim 1, wherein the high-speed gas switching apparatus with a pressure adjusting function is used in a plasma processing apparatus that performs various processes using plasma. 前記調圧機能付高速ガス切替装置をガスセンサの応答時間の測定装置におけるガス供給装置として用いることを特徴とする請求項1記載の調圧機能付高速ガス切替装置。   The high-speed gas switching device with a pressure adjusting function according to claim 1, wherein the high-speed gas switching device with a pressure adjusting function is used as a gas supply device in a response time measuring device of a gas sensor. 前記バルブは電磁弁などの高速動作のバルブから成るガス切替バルブであり、バイパス排気、及び圧力制御機構を備えたことを特徴とする請求項1記載の調圧機能のついた高速ガス切替装置。   2. The high-speed gas switching device with a pressure regulating function according to claim 1, wherein the valve is a gas switching valve including a high-speed operation valve such as an electromagnetic valve, and includes a bypass exhaust and a pressure control mechanism.
JP2008134963A 2008-05-23 2008-05-23 High-speed gas switching device with pressure adjustment function Expired - Fee Related JP5008086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134963A JP5008086B2 (en) 2008-05-23 2008-05-23 High-speed gas switching device with pressure adjustment function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134963A JP5008086B2 (en) 2008-05-23 2008-05-23 High-speed gas switching device with pressure adjustment function

Publications (2)

Publication Number Publication Date
JP2009279527A JP2009279527A (en) 2009-12-03
JP5008086B2 true JP5008086B2 (en) 2012-08-22

Family

ID=41450559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134963A Expired - Fee Related JP5008086B2 (en) 2008-05-23 2008-05-23 High-speed gas switching device with pressure adjustment function

Country Status (1)

Country Link
JP (1) JP5008086B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771078B (en) * 2017-01-06 2023-05-30 中国科学院地球化学研究所 Continuous automatic measuring device of interface carbon dioxide exchange flux
JP2019158758A (en) * 2018-03-15 2019-09-19 日本碍子株式会社 Apparatus and method for evaluating response time of gas sensor
CN117612920B (en) * 2024-01-23 2024-04-05 上海邦芯半导体科技有限公司 Reactive gas switching system and plasma processing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918892B2 (en) * 1988-10-14 1999-07-12 株式会社日立製作所 Plasma etching method
JPH03142922A (en) * 1989-10-30 1991-06-18 Matsushita Electric Ind Co Ltd Semiconductor vapor growth device
JPH04240198A (en) * 1991-01-14 1992-08-27 Furukawa Electric Co Ltd:The Vapor phase growth method for thin film
JP4908045B2 (en) * 2006-04-17 2012-04-04 株式会社日立ハイテクノロジーズ Plasma processing method and plasma processing apparatus

Also Published As

Publication number Publication date
JP2009279527A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
KR101565437B1 (en) Gas supply apparatus for semiconductor manufacturing apparatus
TWI452610B (en) Gas supply devices for semiconductor manufacturing equipment
KR101557522B1 (en) Feeder for reducing gas pressure and cylinder cabinet, valve box, and substrate processing apparatus with the same
JP6216389B2 (en) Pressure flow control device
KR20090025823A (en) A calibration/test apparatus and method for vacuum gauges without movement
JP5134841B2 (en) Gas supply unit
US20120000542A1 (en) Mass flow controller, mass flow controller system, substrate processing device, and gas flow rate adjusting method
JP5008086B2 (en) High-speed gas switching device with pressure adjustment function
JP6022987B2 (en) Pneumatic circuit for tire testing equipment
KR20170033236A (en) Method of calculating output flow rate of flow rate controller
KR102596165B1 (en) Mass flow rate control system, and semiconductor manufacturing device and vaporizer including said system
US8056579B2 (en) Mass flow controller
JP2011118654A (en) Semiconductor manufacturing apparatus and flow rate controller
JPH0815079A (en) Instrument and method for measuring pressure leakage
TWI836282B (en) Enhanced process and hardware architecture to detect and correct ‎realtime product substrates
JP2008248395A (en) Plasma treating apparatus and pressure control method of plasma treating apparatus
CN111855113A (en) Annealing machine, leak rate detection device and detection method
KR102388518B1 (en) Method for inspecting shower plate of plasma processing apparatus
JP2826479B2 (en) Gas supply device and operation method thereof
CN221302467U (en) Calibrating device for mass flow verifier
JP2001308013A (en) Exhaust control mechanism for semiconductor manufacturing apparatus
WO2021229787A1 (en) Plasma processing apparatus inspection method
JP4511236B2 (en) Semiconductor manufacturing apparatus and measurement deviation detection method
JP2002115800A (en) Pressure controller equipped with flow measuring function
JPH0318674A (en) Gas pressure controlling method and vacuum device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees