JP4509862B2 - Method for manufacturing sintered soft magnetic member - Google Patents

Method for manufacturing sintered soft magnetic member Download PDF

Info

Publication number
JP4509862B2
JP4509862B2 JP2005155360A JP2005155360A JP4509862B2 JP 4509862 B2 JP4509862 B2 JP 4509862B2 JP 2005155360 A JP2005155360 A JP 2005155360A JP 2005155360 A JP2005155360 A JP 2005155360A JP 4509862 B2 JP4509862 B2 JP 4509862B2
Authority
JP
Japan
Prior art keywords
soft magnetic
molding
powder
mass
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005155360A
Other languages
Japanese (ja)
Other versions
JP2006332420A (en
Inventor
雅樹 谷中
千生 石原
輝雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2005155360A priority Critical patent/JP4509862B2/en
Priority to KR1020060044548A priority patent/KR100783149B1/en
Publication of JP2006332420A publication Critical patent/JP2006332420A/en
Application granted granted Critical
Publication of JP4509862B2 publication Critical patent/JP4509862B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Description

本発明は、電磁弁、電磁クラッチ、電子制御式燃料噴射装置用インジェクター等のアクチュエータに好適な、軟磁気特性、特に、高磁束密度と高透磁率を備えた焼結軟磁性部材の製造方法に関する。   The present invention relates to a method for producing a sintered soft magnetic member having soft magnetic characteristics, particularly high magnetic flux density and high permeability, suitable for actuators such as electromagnetic valves, electromagnetic clutches, and injectors for electronically controlled fuel injection devices. .

電磁弁、電磁クラッチ、電子制御式燃料噴射装置用インジェクター等のアクチュエータの磁心等に用いられる軟磁性部材は、磁束密度が高いことが要求されるが、磁束密度は磁心中のFe成分の占積率で決まるため、焼結軟磁性部材としては、高い磁束密度の部材を製造するために高密度に圧粉成形する必要がある。また、速い応答が要求される用途の場合、透磁率を高めることが必要となる。そのため純鉄系等の焼結軟磁性部材は、一般の焼結機械部品を製造する場合の2倍以上の高い成形圧力をかけて圧粉成形を行っている。   Soft magnetic members used in magnetic cores of actuators such as solenoid valves, electromagnetic clutches, and injectors for electronically controlled fuel injection devices are required to have a high magnetic flux density, but the magnetic flux density is the occupation of the Fe component in the magnetic core. Therefore, the sintered soft magnetic member needs to be compacted at a high density in order to produce a member having a high magnetic flux density. Further, in applications where a quick response is required, it is necessary to increase the magnetic permeability. Therefore, a sintered soft magnetic member such as pure iron is compacted by applying a molding pressure that is at least twice as high as that for manufacturing a general sintered machine part.

一般の焼結機械部品は鉄基地の強度を向上させるため炭素を0.3〜1.2質量%程度含有させるが、この炭素分は通常原料粉末に黒鉛粉末を添加することによって付与している。そのため、一般の焼結部品では、黒鉛粉末が潤滑剤として機能するため、原料粉末に別途に添加する成形潤滑剤の効果とあいまって、圧粉成形後に成形体を金型より抜き出す際、抜き出し圧力を低減したり成形体のカジリが発生しない等、成形体の潤滑効果に有利な方向に働く。
ところで、焼結軟磁性部材は、純鉄、珪素鉄合金(Fe−1〜6Si系合金)、パーマロイ(Fe−30〜80Ni系合金)、パーメンジュール(Fe−30〜60Co系合金)、電磁ステンレス鋼(Fe−5〜13Cr−2〜6Si系合金)等の粉末を用いる。これらのうち純鉄、パーマロイは粉末が軟らかくかつ粘性を有する材料で、圧粉成形後に成形体を金型より抜き出す時に金型に凝着しやすく、抜き出し圧力が高くなり抜き出しにくい。また、珪素鉄合金、パーメンジュール、電磁ステンレス鋼は、粉末が硬く、圧粉成形後に成形体を金型より抜き出す時に金型を引っ掻きつつ抜き出されるため、金型をかじりやすく、やはり抜き出し圧力が高くなり抜き出し難い。このような金型からの抜き出し時に問題のある粉末を原料として用いる焼結軟磁性部材においては、原料粉に炭素分を付与すると、炭素が鉄基地中に固溶し、磁気特性、特に透磁率が劣化するため黒鉛粉末の添加は行われない。このため焼結軟磁性部材においては、黒鉛粉末を添加して潤滑効果を得ることができず、成形体の潤滑効果は、原料粉末に添加した成形潤滑剤の効果のみによることになる。したがって、一般の焼結機械部品の場合よりも潤滑性を向上させることが困難である。
このような原料粉末を用いて焼結軟磁性部材を製造する場合、高圧で高密度に圧粉成形した成形体を金型から抜き出す際には、成形体の潤滑効果が低いため抜き出し圧力が高くなり、型カジリが生じ易いという問題がある。この問題は、製品の高さが大きいもの、すなわち圧粉成形後の成形体の抜き出し時に金型と成形体の摺動する距離が長い軟磁性焼結部材において顕著であり、抜き出し方向の寸法が25mmを超えるような場合、成形金型の型孔表面に形成された成形潤滑剤の被膜が破れて金属接触が生じて成形体にカジリが発生したり、最悪の場合、圧粉成形後の成形体の抜き出しができなくなる。
なお、成形体の抜き出し方向の寸法が大きい、すなわち金型の摺動面積が大きい場合であっても、成形体の底面積、すなわちパンチの加圧面積が大きい製品であれば、金型の摺動面積に対してパンチの加圧面積が相対的に大きくなり、抜き出し時の単位面積当たりの荷重を小さくできる。しかし、金型の摺動面積がパンチの加圧面積に比して大きくなると相対的に大きな抜き出し荷重を必要とするため、金型の摺動面積とパンチの加圧面積の比が1を超える製品において、上記の問題がより顕著となっている。
General sintered machine parts contain about 0.3 to 1.2% by mass of carbon in order to improve the strength of the iron base, but this carbon content is usually imparted by adding graphite powder to the raw material powder. . For this reason, in general sintered parts, graphite powder functions as a lubricant. Therefore, combined with the effect of a molding lubricant added separately to the raw material powder, the extraction pressure when the molded product is extracted from the mold after compacting. It works in a direction that is advantageous for the lubrication effect of the molded body, for example, reducing squeezing and no galling of the molded body.
By the way, sintered soft magnetic members are pure iron, silicon iron alloy (Fe-1-6Si alloy), permalloy (Fe-30-30Ni alloy), permendur (Fe-30-60Co alloy), electromagnetic Powder of stainless steel (Fe-5-13Cr-2-6Si alloy) or the like is used. Of these, pure iron and permalloy are soft and viscous materials. When the molded product is extracted from the mold after compacting, it easily adheres to the mold, and the extraction pressure increases and is difficult to extract. In addition, silicon iron alloy, permendur, and electromagnetic stainless steel are hard in powder, and are easily removed by scratching the mold when the molded product is extracted from the mold after compacting. It becomes difficult to pull out. In a sintered soft magnetic member that uses a powder having a problem when extracted from the mold as a raw material, when carbon content is added to the raw material powder, the carbon dissolves in the iron base, and the magnetic properties, particularly the magnetic permeability. Since graphite deteriorates, graphite powder is not added. For this reason, in the sintered soft magnetic member, it is not possible to obtain a lubricating effect by adding graphite powder, and the lubricating effect of the compact is only due to the effect of the molding lubricant added to the raw material powder. Therefore, it is more difficult to improve the lubricity than in the case of general sintered machine parts.
When manufacturing a sintered soft magnetic member using such raw material powder, when the compact molded at high pressure and high density is extracted from the mold, the extraction pressure is high because the lubrication effect of the compact is low. Therefore, there is a problem that mold galling is likely to occur. This problem is conspicuous in a soft magnetic sintered member having a large product height, that is, a long sliding distance between the mold and the molded product when the molded product is extracted after compacting. If it exceeds 25 mm, the film of the forming lubricant formed on the surface of the mold hole of the molding die is broken to cause metal contact, and the molded body is galling. In the worst case, molding after compacting is performed. The body cannot be extracted.
Even if the size of the molded body is large, that is, when the sliding area of the mold is large, if the product has a large bottom area of the molded body, that is, a pressing area of the punch, The pressurizing area of the punch is relatively large with respect to the moving area, and the load per unit area during extraction can be reduced. However, since a relatively large extraction load is required when the sliding area of the mold becomes larger than the pressing area of the punch, the ratio of the sliding area of the mold to the pressing area of the punch exceeds 1. In products, the above problems are more prominent.

一方、このような焼結軟磁性部材を製造する際に、成形体の潤滑効果を増加させるため多量の成形潤滑剤を添加すると、高圧で圧縮成形しても、成形潤滑剤の体積分だけ、成形体の密度が低下し、かつFe成分の占積率が低下し、磁束密度が低下することとなる。また、成形潤滑剤は焼結時に揮発除去されるべきものであるが、成形体は高圧で圧粉成形され高密度となっているので、成形潤滑剤の全量を除去することは困難で、残留した成形潤滑剤が焼結時に分解して生じた炭素分がFe基地中に拡散固溶して磁気特性、特に透磁率を劣化させる。   On the other hand, when manufacturing such a sintered soft magnetic member, if a large amount of molding lubricant is added to increase the lubrication effect of the molded body, even if compression molding is performed at a high pressure, only the volume of the molded lubricant is The density of the molded body is lowered, the space factor of the Fe component is lowered, and the magnetic flux density is lowered. In addition, the molding lubricant should be removed by volatilization during sintering, but since the molded body is compacted at high pressure and has a high density, it is difficult to remove the entire amount of the molding lubricant. The carbon component produced by the decomposition of the molded lubricant during sintering diffuses and dissolves in the Fe matrix and degrades the magnetic properties, particularly the magnetic permeability.

このような状況の下に、焼結軟磁性部材の製造方法として、特許文献1は、高級脂肪酸系潤滑剤を内面に塗布した成形用金型にFeを主成分とする磁性粉末を充填し、成形圧力784MPa以上で温間で加圧成形して、得られた粉末成形体を焼結した焼結軟磁性体を開示している。この成形工程では成形用金型の内面に塗布された高級脂肪酸系潤滑剤と、少なくとも成形金型の内面に接する磁性粉末との間でメカノケミカル反応を生じさせて磁性粉末と高級脂肪酸系潤滑剤とを化学的に結合させ、金属石鹸の被膜を磁性粉末成形体の表面に形成するものである。
特開2003−82401号公報
Under such circumstances, as a method for producing a sintered soft magnetic member, Patent Document 1 fills a molding die in which a higher fatty acid-based lubricant is applied on the inner surface with a magnetic powder mainly composed of Fe, Disclosed is a sintered soft magnetic material obtained by sintering a powder compact obtained by press-molding warm at a compacting pressure of 784 MPa or more. In this molding process, a mechanochemical reaction is caused between the higher fatty acid lubricant applied to the inner surface of the molding die and at least the magnetic powder in contact with the inner surface of the molding die, thereby causing the magnetic powder and the higher fatty acid lubricant. And a metal soap film is formed on the surface of the magnetic powder compact.
JP 2003-82401 A

一般に圧粉成形時の潤滑法としては、原料粉末に成形潤滑剤を添加する混入潤滑法(内部潤滑法)と金型型孔壁面に成形潤滑剤を塗布する金型潤滑法(外部潤滑法)とがある。
混入潤滑法は、原料粉末の配合時に一緒に成形潤滑剤を添加するのみで済むのに対し、金型潤滑法では成形潤滑剤を塗布する装置が必要で、かつ成形潤滑剤を塗布する手間が必要となり、混入潤滑法に比べて製造コストの高い潤滑方法である。
特許文献1は、この製造コストの高い金型潤滑法によるものである。また、金型の型孔の深さは圧粉成形後の成形体高さの2〜2.5倍が原料粉末の充填のために必要であり、成形体の高さが大きい場合は型孔の深さが大きくなる。このため、金型潤滑法では、成形金型の内面全体に必要量のみ均一に成形潤滑剤を塗布することが難しく、さらに製品形状が複雑になれば成形潤滑剤の均一な塗布がより一層難しくなる。この点で特許文献1は上記課題を必ずしも解決するものではない。さらに、特許文献1は、上記のメカノケミカル反応を行うため温間成形、すなわち加熱条件下での成形を必須とするもので、通常の冷間成形に比して加熱装置および加熱するためのエネルギー等の製造コストのかかる成形方法を必須とするものである。
Generally, the lubrication method for compacting is a mixed lubrication method (internal lubrication method) in which a molding lubricant is added to the raw material powder, and a mold lubrication method (external lubrication method) in which a molding lubricant is applied to the mold hole wall surface. There is.
The mixed lubrication method requires only adding a molding lubricant at the time of blending the raw material powder, whereas the mold lubrication method requires a device for applying the molding lubricant and is troublesome to apply the molding lubricant. This is a lubrication method that is necessary and has a higher manufacturing cost than the mixed lubrication method.
Patent Document 1 is based on the mold lubrication method having a high manufacturing cost. In addition, the mold hole depth of the mold is required to be 2 to 2.5 times the height of the compact after compacting to fill the raw material powder. If the compact has a large height, The depth increases. For this reason, in the mold lubrication method, it is difficult to uniformly apply the molding lubricant only to the required amount over the entire inner surface of the molding die, and even more difficult to uniformly apply the molding lubricant if the product shape is complicated. Become. In this respect, Patent Document 1 does not necessarily solve the above problem. Furthermore, Patent Document 1 requires warm molding, that is, molding under heating conditions, in order to perform the above mechanochemical reaction. Compared to ordinary cold molding, a heating device and energy for heating are used. Therefore, a molding method requiring a high manufacturing cost is essential.

本発明はこのような事情に鑑みてなされたものであり、安価な混入潤滑法を用いるとともに、安価な冷間成形で実施でき、かつ、成形体の抜き出し方向の寸法が25mmを超えるような場合でも、成形体表面に型カジリを生じさせず、良好な抜き出し性で成形体の抜き出しを行うことができる焼結軟磁性部材の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and when an inexpensive mixed lubrication method is used, it can be implemented by inexpensive cold forming, and the size of the molded body in the extraction direction exceeds 25 mm. However, it is an object of the present invention to provide a method for producing a sintered soft magnetic member that does not cause mold galling on the surface of the molded body and can be pulled out with good pullability.

上記課題を解決するため本発明の焼結軟磁性部材の製造方法は、軟磁性粉末に成形潤滑剤を添加混合した原料粉末を所望の形状に成形し、得られた成形体を焼結する焼結軟磁性部材の製造方法において、前記成形潤滑剤として、エチレンビスステアロアミドと脂肪族カルボン酸モノアミドを質量比で6:4〜8:2の割合で混合した成形潤滑剤0.4〜1.2質量%を用いることを特徴とする。   In order to solve the above-mentioned problems, the method for producing a sintered soft magnetic member of the present invention is a method for forming a raw material powder obtained by adding a molding lubricant to a soft magnetic powder into a desired shape and sintering the resulting molded body. In the manufacturing method of a soft magnetic member, as the molding lubricant, a molding lubricant in which ethylene bisstearamide and an aliphatic carboxylic acid monoamide are mixed in a mass ratio of 6: 4 to 8: 2 is 0.4 to 1. .2% by mass is used.

本発明の焼結軟磁性部材の製造方法は、軟磁性粉末を成形するに当たり、成形潤滑剤として、エチレンビスステアロアミドと脂肪族カルボン酸モノアミドを質量比で6:4〜8:2の割合で混合した成形潤滑剤0.4〜1.2質量%を用いるもので、抜き出し方向の寸法が25mm以上の軟磁性粉末成形体を圧粉成形後金型から良好に抜き出すことができるという効果が得られる。   In the method for producing a sintered soft magnetic member of the present invention, in molding soft magnetic powder, ethylene bisstearamide and aliphatic carboxylic acid monoamide are used in a mass ratio of 6: 4 to 8: 2 as a molding lubricant. In this method, 0.4 to 1.2% by mass of the molding lubricant mixed in 1) is used, and the soft magnetic powder molded body having a dimension in the extraction direction of 25 mm or more can be satisfactorily extracted from the mold after compacting. can get.

エチレンビスステアロアミド(エチレンビス脂肪族モノカルボン酸アミド)は、融点が約120〜145℃程度であり、金属成分を含有しないので、金属成分が気化して炉内に堆積したりせずに、すべて炭化水素ガスとなって炉外に排出されるので、粉末冶金用成形潤滑剤として使用されている。また、エチレンビスステアロアミドは、一般に使用されているステアリン酸亜鉛に比べて、原料粉末の圧縮性および成形体の抜き出し性が高いという利点を有しているが、原料粉末の見掛け密度および流動度が低いという欠点を有している。このような抜き出し性に優れたエチレンビスステアロアミドであっても、上記の抜き出し方向の寸法が25mmを超えるような軟磁性焼結部材の成形体の抜き出しにおいては型カジリが発生する。   Ethylene bisstearamide (ethylene bis aliphatic monocarboxylic acid amide) has a melting point of about 120 to 145 ° C. and does not contain a metal component, so that the metal component does not vaporize and accumulate in the furnace. , All are converted to hydrocarbon gas and discharged outside the furnace, so they are used as molding lubricants for powder metallurgy. In addition, ethylene bisstearamide has the advantage of higher compressibility of raw material powder and higher extractability of molded product compared to commonly used zinc stearate, but the apparent density and flow of raw material powder It has the disadvantage of low degree. Even with such ethylene bisstearamide having excellent pullability, mold galling occurs when the molded product of the soft magnetic sintered member having a dimension in the pulling direction exceeding 25 mm is extracted.

このため、本発明の軟磁性焼結部材の製造方法においては、エチレンビスステアロアミドに脂肪族カルボン酸モノアミドを添加して抜き出し性を向上させたものを成形潤滑剤として使用する。脂肪族カルボン酸モノアミド(以下、「モノアミド」という)は最も一般的な酸アミドで、融点が40〜110℃程度のもので、滑剤や離形剤として使用されているものである。具体的にはラウリン酸アミド(融点87℃)、パルチミン酸アミド(融点100℃)、ステアリン酸アミド(融点101〜107℃)、ベヘン酸アミド(融点98〜110℃)、ヒドロキシステアリン酸アミド(融点107℃)、オレイン酸アミド(融点75℃)、エルカ酸アミド(融点81〜82℃)、リシノール酸アミド(融点62℃)、あるいはこれらの混合物等があげられる。   For this reason, in the method for producing a soft magnetic sintered member of the present invention, a product obtained by adding an aliphatic carboxylic acid monoamide to ethylene bisstearamide to improve the extraction property is used as a molding lubricant. Aliphatic carboxylic acid monoamide (hereinafter referred to as “monoamide”) is the most common acid amide and has a melting point of about 40 to 110 ° C. and is used as a lubricant or a release agent. Specifically, lauric acid amide (melting point 87 ° C.), palmitic acid amide (melting point 100 ° C.), stearic acid amide (melting point 101 to 107 ° C.), behenic acid amide (melting point 98 to 110 ° C.), hydroxy stearic acid amide (melting point) 107 ° C.), oleic acid amide (melting point 75 ° C.), erucic acid amide (melting point 81 to 82 ° C.), ricinoleic acid amide (melting point 62 ° C.), or a mixture thereof.

図1は、エチレンビスステアロアミドにモノアミドとしてステアリン酸アミドを添加量を変えて混合したものを成形潤滑剤として用いた場合の、成形体の抜き出し圧力、ならびに原料粉末の見掛け密度および流動度の変化を示したものである。この図1は、原料粉末として鉄粉末に銅粉末を1.5質量%と黒鉛粉末を1.0質量%添加混合したもので、この原料粉末100質量部に成形潤滑剤を0.8質量部添加した焼結機械部品用原料の場合の例である。図1より、モノアミド20質量%以上をエチレンビスステアロアミドへ添加することにより、抜き出し性がさらに向上することがわかる。しかしその一方で、モノアミドを添加すると原料粉末の見掛け密度は低下し、特にモノアミドの添加量が40質量%を超えると低下の割合が急激に大きくなる。これらのことから、エチレンビスステアロアミドへのモノアミドの添加は20〜40質量%の範囲で見掛け密度および流動度の大きな低下を生じさせず、抜き出し圧力を向上させることができることがわかる。   FIG. 1 shows the extraction pressure of a molded product and the apparent density and fluidity of a raw material powder when a mixture of ethylene bisstearamide and stearamide as a monoamide with different addition amounts is used as a molding lubricant. It shows a change. FIG. 1 shows a raw material powder in which 1.5% by mass of copper powder and 1.0% by mass of graphite powder are added to iron powder, and 0.8 parts by mass of molding lubricant is added to 100 parts by mass of the raw material powder. It is an example in the case of the added raw material for sintered machine parts. From FIG. 1, it can be seen that the extractability is further improved by adding 20% by mass or more of monoamide to ethylene bisstearamide. On the other hand, however, when monoamide is added, the apparent density of the raw material powder decreases, and particularly when the amount of monoamide added exceeds 40% by mass, the rate of decrease increases rapidly. From these facts, it can be seen that the addition of monoamide to ethylene bisstearamide can improve the extraction pressure without causing a significant decrease in apparent density and fluidity in the range of 20 to 40% by mass.

図1は焼結機械部品の場合の例であるが、この範囲のエチレンビスステアロアミドとモノアミドの混合物を軟磁性焼結部材の成形潤滑剤として使用すると、焼結軟磁性部材の場合においても同様の効果を示し、成形体の抜き出し方向の寸法が25mmを超えるような成形体の抜き出しについても良好に行えることがはじめてわかった。
本発明はこの知見に由来するものであり、このような成形潤滑剤を軟磁性焼結部材の製造に適用したことを発明の骨子とするものである。
FIG. 1 shows an example of a sintered machine part. When a mixture of ethylene bisstearamide and monoamide in this range is used as a molding lubricant for a soft magnetic sintered member, the sintered soft magnetic member is used. It has been found for the first time that the same effect can be obtained and the molded product can be satisfactorily extracted with a dimension in the extraction direction of the molded product exceeding 25 mm.
The present invention is derived from this finding, and the gist of the present invention is that such a molding lubricant is applied to the production of a soft magnetic sintered member.

焼結軟磁性部材は、高密度に圧粉成形されるため一般の焼結機械部品に比べて気孔量が少なく成形潤滑剤の除去がし難いという傾向があるが、エチレンビスステアロアミドとモノアミドを混合した成形潤滑剤は焼結中、特に脱ろう時に分解しやすく、揮発除去が容易であり、この点でも焼結軟磁性部材に適している。ただし、その添加量が0.4質量%に満たないと、潤滑効果が乏しく圧粉成形後の成形体の抜き出しが良好に行えなくなる。特に、その抜き出し方向の寸法が25mm以上の成形体を抜き出す場合には、0.6質量%以上を添加すると好適である。一方、その添加量が1.2質量%を超えると成形体密度が低くなり、磁束密度が低下することとなる。また、成形潤滑剤が分解して生じる炭素分の除去がしにくくなり、これが鉄基地中に拡散して磁気特性、特に透磁率の低下が生じるおそれがあるので、その添加量は1.2質量%以下に止めるべきである。   Sintered soft magnetic members are compacted with high density and tend to have fewer pores than conventional sintered machine parts, making it difficult to remove molding lubricants. The molding lubricant mixed with is easily decomposed during dewaxing, especially during dewaxing, and is easy to remove by volatilization. In this respect, it is suitable for a sintered soft magnetic member. However, if the amount added is less than 0.4% by mass, the lubrication effect is poor and the molded product after compacting cannot be extracted well. In particular, when a molded product having a dimension in the extraction direction of 25 mm or more is extracted, it is preferable to add 0.6% by mass or more. On the other hand, when the addition amount exceeds 1.2% by mass, the density of the compact is lowered and the magnetic flux density is lowered. In addition, it becomes difficult to remove the carbon content generated by the decomposition of the molding lubricant, which may diffuse into the iron base and cause a decrease in magnetic properties, particularly permeability, so the amount added is 1.2 mass. % Should be kept below.

なお、エチレンビスステアロアミドとモノアミドを混合した成形潤滑剤を用いれば、粉末の硬さが低く金型に凝着しやすい純鉄粉末やパーマロイ粉末、粉末の硬さが高く金型を引っ掻きやすい珪素鉄合金粉末、あるいはパーメンジュール粉末や電磁ステンレス鋼粉末のいずれの場合にも優れた潤滑効果を示し、良好な抜き出しが行える。   If a molding lubricant that is a mixture of ethylene bisstearamide and monoamide is used, pure iron powder or permalloy powder that has low powder hardness and easily adheres to the mold, and the powder has high hardness and is easy to scratch the mold. In any case of silicon iron alloy powder, permendur powder or electromagnetic stainless steel powder, an excellent lubricating effect is exhibited and good extraction can be performed.

成形圧力は、使用する原料粉末と製品に要求される磁気特性(磁束密度および透磁率)とにより決定されるもので、特に限定するものではない。一例としては、Siを用いる軟磁性材料において原料粉末にSi粉を添加する場合等は、成形体密度がある程度以上であれば焼結時に収縮して高い焼結体密度が得られるため、成形圧力は700MPa程度以上で事足りる。また焼結収縮量の小さい純鉄材料等の場合は、予め成形体密度を高めておかなければ高い焼結体密度の製品が得られないため、成形圧力は800MPa以上とする必要がある。一方、過大な成形圧力は金型の損耗を招くため好ましくなく、1200MPa程度までが推奨される。   The molding pressure is determined by the raw material powder used and the magnetic properties (magnetic flux density and permeability) required for the product, and is not particularly limited. As an example, when adding Si powder to the raw material powder in a soft magnetic material using Si, if the molded body density is more than a certain level, it shrinks during sintering and a high sintered body density can be obtained. Is about 700 MPa or more. In the case of a pure iron material or the like having a small amount of sintering shrinkage, a product with a high sintered body density cannot be obtained unless the molded body density is increased in advance. Therefore, the molding pressure needs to be 800 MPa or more. On the other hand, an excessive molding pressure is not preferable because it causes wear of the mold, and about 1200 MPa is recommended.

軟磁性粉末として、粉末が軟質な平均粒径が65μmの純鉄粉末、ならびに、粉末が硬質な平均粒径が65μmでCr:6質量%、Si:3質量%で残部がFeおよび不可避不純物からなるFe−Cr−Si合金からなる電磁ステンレス原料粉末の2種類を用意した。また、成形潤滑剤として、エチレンビスステアロアミドとモノアミドとしてステアリン酸アミドとを質量比で75:25に混合したもの、および比較のためエチレンビスステアロアミドのみのもの、およびステアリン酸亜鉛を用意し、これらを軟磁性粉末に1.0質量%添加混合した原料粉末を用いて、成形圧力800MPaで成形して、外径がφ11.3mmで抜き出し方向の寸法が異なる成形体を成形し、その抜き出し状態を観察した。その結果を表1に併せて示す。   As the soft magnetic powder, pure iron powder having a soft average particle diameter of 65 μm and soft powder having a hard average particle diameter of 65 μm, Cr: 6% by mass, Si: 3% by mass, the balance being Fe and inevitable impurities Two types of electromagnetic stainless steel raw material powder made of an Fe—Cr—Si alloy were prepared. In addition, as a molding lubricant, ethylene bisstearamide and monoamide mixed with stearamide in a mass ratio of 75:25, and for comparison only ethylene bisstearamide and zinc stearate are prepared. Then, using a raw material powder obtained by adding 1.0% by mass to soft magnetic powder and molding it at a molding pressure of 800 MPa, a molded body having an outer diameter of φ11.3 mm and different dimensions in the extraction direction was molded. The extracted state was observed. The results are also shown in Table 1.

Figure 0004509862
Figure 0004509862

成形潤滑剤としてエチレンビスステアロアミドとモノアミドの混合物を用いた場合、原料粉末が軟質または硬質のいずれの場合でも、全ての成形体の抜き出し方向の寸法において抜き出し圧力が低く、抜き出し性が良好であることがわかる。一方、成形潤滑剤がエチレンビスステアロアミドのみ、またはステアリン酸亜鉛の場合は、エチレンビスステアロアミドの方が抜き出し圧力は低いもののエチレンビスステアロアミドとモノアミドの混合物より抜きだし圧力が高い。
また、成形体の抜き出し方向の寸法が25mmの場合、エチレンビスステアロアミドでも型カジリが大きく抜き出し性が悪く、25mmを超えると成形体の抜き出しができなくなっている。なお、ステアリン酸亜鉛を使用した例では25mm以上で成形体の抜き出しができなかった。
以上より、エチレンビスステアロアミドとモノアミドの混合物を成形潤滑剤として用いると、軟磁性粉末成形体の抜き出しを良好に行えることが確認された。
When a mixture of ethylene bisstearamide and monoamide is used as a molding lubricant, the extraction pressure is low in the dimensions in the extraction direction of all molded products, regardless of whether the raw material powder is soft or hard. I know that there is. On the other hand, when the molding lubricant is only ethylene bisstearamide or zinc stearate, the extraction pressure of ethylene bisstearamide is lower than the mixture of ethylene bisstearamide and monoamide, although the extraction pressure is lower.
Further, when the dimension in the drawing direction of the molded body is 25 mm, even if ethylenebisstearamide is used, the mold galling is large and the pulling property is poor, and if it exceeds 25 mm, the molded body cannot be pulled out. In the example using zinc stearate, the molded product could not be extracted at 25 mm or more.
From the above, it was confirmed that when a mixture of ethylene bisstearamide and monoamide was used as a molding lubricant, the soft magnetic powder molded body could be satisfactorily extracted.

軟磁性粉末として、さらにFe−47Ni合金(パーマロイ)粉末、Fe−50Co(パーメンジュール)粉末、および、平均粒径が65μmの純鉄粉末に平均粒径が10μmのSi微粉末を3.5質量%添加して純鉄粉末表面にSi微粉末を被覆した珪素鉄原料粉末の3種類を用い、実施例1で用いたエチレンビスステアロアミドとモノアミドを75:25に混合した成形潤滑剤を1.0質量%添加混合した原料粉末とし、同様の成形条件で成形した。成形体の寸法は外径がφ11.3mmで、抜き出し方向の寸法が40mmで、成形した際の抜き出し状態を観察したが、いずれの軟磁性粉末の場合も、良好な抜き出しが行えた。   As soft magnetic powder, Fe-47Ni alloy (permalloy) powder, Fe-50Co (permendur) powder, and pure iron powder having an average particle diameter of 65 μm and Si fine powder having an average particle diameter of 10 μm are 3.5. Three types of silicon iron raw material powders, which are added by mass% and coated with Si fine powder on the surface of pure iron powder, are molded lubricants in which ethylene bisstearamide and monoamide used in Example 1 are mixed at 75:25. The raw material powder was mixed with 1.0% by mass and molded under the same molding conditions. The dimensions of the molded body were an outer diameter of φ11.3 mm and a dimension in the extraction direction of 40 mm, and the extraction state at the time of molding was observed. However, in any of the soft magnetic powders, good extraction was performed.

軟磁性粉末として実施例1で用いた純鉄粉末に、実施例1で用いたエチレンビスステアロアミドとモノアミドの成形潤滑剤の添加量を変えて添加混合した原料粉末を用いた。この原料粉末を、実施例1と同様の成形条件で、抜き出し方向の寸法が20、25および50mmの成形体を成形した。この際の抜き出し状態を観察した結果を表2に示す。   As the soft magnetic powder, a raw material powder was used which was added and mixed with the pure iron powder used in Example 1 while changing the addition amounts of the ethylene bisstearamide and monoamide molding lubricants used in Example 1. This raw material powder was molded under the same molding conditions as in Example 1 and molded bodies with dimensions in the extraction direction of 20, 25, and 50 mm. Table 2 shows the results of observation of the extracted state at this time.

Figure 0004509862
Figure 0004509862

表2に示す結果から、成形潤滑剤の添加量が0.2質量%では添加量が乏しく、成形体の抜き出し方向の寸法が25mm以上の試料では抜き出せないが、0.4質量%以上の添加で抜き出しが行えるようになり、特に0.6質量%以上の添加で抜き出し圧力が低くなることがわかる。
一方、成形潤滑剤の添加量が1.2質量%を超えると、添加量が過剰となって焼結工程において成形潤滑剤の除去が不完全となり、焼結後の軟磁性焼結部材の磁気特性の低下が認められた。
これらのことから成形潤滑剤の添加量は、0.4〜1.2質量%の範囲で軟磁性粉末成形体の抜き出しが行え、特に抜き出し方向の寸法が25mm以上の成形体では0.6〜1.2質量%の範囲で良好な抜き出しが行えることがわかった。
From the results shown in Table 2, when the addition amount of the molding lubricant is 0.2% by mass, the addition amount is insufficient, and it cannot be extracted with a sample having a dimension in the extraction direction of the molded body of 25 mm or more, but it is not less than 0.4% by mass. It can be seen that the extraction pressure can be reduced with the addition of 0.6% by mass or more.
On the other hand, if the added amount of the molding lubricant exceeds 1.2% by mass, the added amount becomes excessive, resulting in incomplete removal of the molding lubricant in the sintering process, and the magnetic properties of the sintered soft magnetic sintered member. A decrease in properties was observed.
From these facts, the amount of molding lubricant added is in the range of 0.4 to 1.2% by mass, and the soft magnetic powder molded product can be extracted. In particular, in the molded product whose dimension in the extraction direction is 25 mm or more, 0.6 to It was found that good extraction can be performed in the range of 1.2% by mass.

軟磁性粉末として実施例1で用いた電磁ステンレス原料粉末に、成形潤滑剤として実施例1で用いたエチレンビスステアロアミドとモノアミドの混合物、エチレンビスステアロアミドのみ、およびステアリン酸亜鉛の添加量を変えて添加混合した原料粉末を用いた。この原料粉末を、外径が30mm、内径が20mmで、かつ抜き出し方向の寸法が25mmの形状に圧粉成形した成形体を10−2Torrの減圧ガス雰囲気中で1250℃×60分間焼結し、得られた焼結体を、測定のために高さ5mmに加工し表3に示す試料番号49〜69のリング状試料を得た。これらの試料について、1次側100回、2次側20回巻線し、直流のB−H曲線を室温(20℃)にて測定し、磁界強さ2500(A/m)における磁束密度B2500(T)および透磁率μを求めた結果を表3に併せて示す。 Addition amount of the mixture of ethylene bisstearamide and monoamide used in Example 1 as the molding lubricant, only ethylene bisstearamide, and zinc stearate to the magnetic stainless steel raw material powder used in Example 1 as the soft magnetic powder The raw material powder which was added and mixed while changing was used. A compact formed by compacting this raw material powder into a shape having an outer diameter of 30 mm, an inner diameter of 20 mm, and a dimension in the extraction direction of 25 mm is sintered in a reduced gas atmosphere of 10 −2 Torr at 1250 ° C. for 60 minutes. The obtained sintered body was processed to a height of 5 mm for measurement to obtain ring-shaped samples of sample numbers 49 to 69 shown in Table 3. These samples were wound 100 times on the primary side and 20 times on the secondary side, the DC BH curve was measured at room temperature (20 ° C.), and the magnetic flux density B at a magnetic field strength of 2500 (A / m). 2500 (T) result of obtaining and permeability mu m shown in Table 3.

Figure 0004509862
Figure 0004509862

表3に示す結果から、成形潤滑剤としてエチレンビスステアロアミドとモノアミドの混合物を用いた場合、磁束密度は、成形潤滑剤添加量が0.2〜1.2質量%の範囲でほぼ一定の値を示しており、成形潤滑剤添加量が1.2質量%を超えると若干の低下が見られる。また、透磁率も添加量が0.2〜1.4質量%の範囲で4000を超える高い値を示している。
一方、成形潤滑剤としてエチレンビスステアロアミドのみを用いた場合、成形潤滑剤添加量が0.6質量%まではエチレンビスステアロアミドとモノアミドの混合物と同様の高い磁束密度を示すが、0.6質量%を超えると磁束密度の低下傾向が顕著となっている。また、透磁率は成形潤滑剤の添加量が増加するにしたがい低下しており、0.6質量%を超えると透磁率が4000を下回るまで低下している。これは、成形潤滑剤の添加量が増加するにつれて、成形潤滑剤の除去が難しくなり、成形潤滑剤が分解した炭素分が基地に固溶するためと考えられる。
そして成形潤滑剤としてステアリン酸亜鉛を用いた場合は、これらの傾向がより顕著であり、成形潤滑剤添加量が0.6質量%を超えた際の磁束密度の低下傾向、および透磁率の低下傾向がエチレンビスステアロアミドのみを用いた場合よりも大きいことがわかる。
これらのことからエチレンビスステアロアミドとモノアミドの混合物を成形潤滑剤として用いた場合、成形潤滑剤添加量が0.2〜1.2質量%の範囲で磁気特性の低下がほとんどないことが確認された。
From the results shown in Table 3, when a mixture of ethylene bisstearamide and monoamide is used as the molding lubricant, the magnetic flux density is almost constant in the range of 0.2 to 1.2% by mass of the molding lubricant addition amount. A slight decrease is observed when the amount of molding lubricant added exceeds 1.2% by mass. Moreover, the magnetic permeability has also shown the high value which exceeds 4000 in the range whose addition amount is 0.2-1.4 mass%.
On the other hand, when only ethylene bisstearamide is used as the molding lubricant, the same high magnetic flux density as that of the mixture of ethylene bisstearamide and monoamide is shown up to 0.6% by mass of the molding lubricant. When the amount exceeds 0.6 mass%, the tendency to decrease the magnetic flux density becomes prominent. Further, the magnetic permeability decreases as the amount of the molding lubricant added increases, and when it exceeds 0.6% by mass, the magnetic permeability decreases until it falls below 4000. This is presumably because the removal of the molding lubricant becomes difficult as the amount of the molding lubricant added increases, and the carbon component decomposed by the molding lubricant dissolves in the base.
And when zinc stearate is used as a molding lubricant, these tendencies are more prominent, the magnetic flux density tends to decrease when the amount of molding lubricant added exceeds 0.6% by mass, and the permeability decreases. It can be seen that the tendency is greater than when only ethylene bisstearamide is used.
From these facts, it was confirmed that when a mixture of ethylene bisstearamide and monoamide was used as a molding lubricant, there was almost no decrease in magnetic properties when the amount of molding lubricant added was in the range of 0.2 to 1.2% by mass. It was done.

本発明の製造法により、電磁弁、電磁クラッチ等のアクチュエータの磁心等に好適な、抜き出し方向の寸法が25mm以上の焼結軟磁性部材を製造する場合でも、金型からの抜き出しが容易でその成形体表面に型カジリを生ずることなく成形することが可能となる。   Even when a sintered soft magnetic member having a dimension in the extraction direction of 25 mm or more suitable for a magnetic core of an actuator such as an electromagnetic valve or an electromagnetic clutch is manufactured by the manufacturing method of the present invention, the extraction from the mold is easy. It becomes possible to mold without forming mold on the surface of the molded body.

焼結機械部品用原料粉末におけるエチレンビスステアロアミドと脂肪族カルボン酸モノアミドの混合割合が成形体の抜き出し圧力、原料粉末の見掛け密度、流動度に及ぼす影響を示すグラフである。It is a graph which shows the influence which the mixing ratio of the ethylenebisstearoamide and aliphatic carboxylic acid monoamide in the raw material powder for sintered machine parts has on the extraction pressure of the molded product, the apparent density of the raw material powder, and the fluidity.

Claims (2)

軟磁性粉末に成形潤滑剤を添加混合した原料粉末を所望の形状に成形し、得られた成形体を焼結する焼結軟磁性部材の製造方法において、
前記成形潤滑剤として、エチレンビスステアロアミドと脂肪族カルボン酸モノアミドを質量比で6:4〜8:2の割合で混合した成形潤滑剤0.4〜1.2質量%を用いることを特徴とする焼結軟磁性部材の製造方法。
In the method for producing a sintered soft magnetic member, a raw material powder obtained by adding and mixing a molding lubricant to soft magnetic powder is molded into a desired shape, and the resulting molded body is sintered.
As the molding lubricant, 0.4 to 1.2% by mass of a molding lubricant in which ethylene bisstearamide and an aliphatic carboxylic acid monoamide are mixed at a mass ratio of 6: 4 to 8: 2 is used. A method for producing a sintered soft magnetic member.
前記焼結軟磁性部材の抜き出し方向の寸法が25mm以上の成形体であり、前記成形潤滑剤を0.6質量%以上配合したことを特徴とする請求項1に記載の焼結軟磁性部材の製造方法。


2. The sintered soft magnetic member according to claim 1, wherein the sintered soft magnetic member is a molded body having a dimension in a drawing direction of 25 mm or more, and the molding lubricant is blended by 0.6 mass% or more. Production method.


JP2005155360A 2005-05-27 2005-05-27 Method for manufacturing sintered soft magnetic member Expired - Fee Related JP4509862B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005155360A JP4509862B2 (en) 2005-05-27 2005-05-27 Method for manufacturing sintered soft magnetic member
KR1020060044548A KR100783149B1 (en) 2005-05-27 2006-05-18 Method for manufacturing sintered soft magnetic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005155360A JP4509862B2 (en) 2005-05-27 2005-05-27 Method for manufacturing sintered soft magnetic member

Publications (2)

Publication Number Publication Date
JP2006332420A JP2006332420A (en) 2006-12-07
JP4509862B2 true JP4509862B2 (en) 2010-07-21

Family

ID=37553779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005155360A Expired - Fee Related JP4509862B2 (en) 2005-05-27 2005-05-27 Method for manufacturing sintered soft magnetic member

Country Status (2)

Country Link
JP (1) JP4509862B2 (en)
KR (1) KR100783149B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032711B1 (en) * 2011-07-05 2012-09-26 太陽誘電株式会社 Magnetic material and coil component using the same
CN105722624B (en) * 2013-09-12 2019-09-06 加拿大国立研究院 Lubricant for powder metallurgy and the metal-powder compositions comprising the lubricant
JP7077117B2 (en) * 2018-04-25 2022-05-30 株式会社神戸製鋼所 Manufacturing method of mixed powder for powder metallurgy
CN111774563A (en) * 2020-07-13 2020-10-16 重庆有研重冶新材料有限公司 Method for preventing copper base alloy powder from bonding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289418A (en) * 2001-03-28 2002-10-04 Daido Steel Co Ltd High-density sintered body granulating powder and sintered body using the same
JP2003526693A (en) * 1997-10-21 2003-09-09 ヘガネス・コーポレーシヨン Improved metallurgical composition containing binder / lubricant and method of making same
JP2005133148A (en) * 2003-10-30 2005-05-26 Mitsubishi Materials Corp Method for manufacturing compound soft magnetic material having high strength and high specific resistance
WO2005096324A1 (en) * 2004-03-31 2005-10-13 Sumitomo Electric Industries, Ltd. Soft magnetic material and dust core

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4064711B2 (en) 2002-04-24 2008-03-19 株式会社神戸製鋼所 Powder for powder magnetic core, high-strength powder magnetic core, and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526693A (en) * 1997-10-21 2003-09-09 ヘガネス・コーポレーシヨン Improved metallurgical composition containing binder / lubricant and method of making same
JP2002289418A (en) * 2001-03-28 2002-10-04 Daido Steel Co Ltd High-density sintered body granulating powder and sintered body using the same
JP2005133148A (en) * 2003-10-30 2005-05-26 Mitsubishi Materials Corp Method for manufacturing compound soft magnetic material having high strength and high specific resistance
WO2005096324A1 (en) * 2004-03-31 2005-10-13 Sumitomo Electric Industries, Ltd. Soft magnetic material and dust core

Also Published As

Publication number Publication date
KR20060122706A (en) 2006-11-30
JP2006332420A (en) 2006-12-07
KR100783149B1 (en) 2007-12-07

Similar Documents

Publication Publication Date Title
US9962765B2 (en) Method of producing workpiece and workpiece thereof
JP4509862B2 (en) Method for manufacturing sintered soft magnetic member
JP2009120918A (en) Method for producing sintered component
JP2008069384A (en) Fe-BASED SINTERED METAL BEARING AND ITS MANUFACTURING METHOD
JP2010037632A (en) Powder mixture for powder metallurgy and method for producing compact
US7718082B2 (en) Lubricants for insulated soft magnetic iron-based powder compositions
CN100522420C (en) Metal powder composition including a bonding lubricant and a bonding lubricant comprising glyceryl stearate
JP2016035106A (en) Compositions and methods for improved dimensional control in ferrous powder metallurgy applications
JP4627023B2 (en) Soft magnetic material, dust core, and method for manufacturing dust core
US8658054B2 (en) Mixture for preventing surface stains
JP4371935B2 (en) Method for producing a soft magnetic sintered member
US20160311026A1 (en) Machine component using powder compact and method for producing same
US6001150A (en) Boric acid-containing lubricants for powered metals, and powered metal compositions containing said lubricants
CN107615411B (en) Mixed powder for dust core and dust core
WO2017150604A1 (en) Method for producing machine component
JP2013194254A (en) Iron-based powder, powder for molding and sintered compact
JP2014177664A (en) Powder for molding, lubricant concentrated powder and method of producing metal member
WO2006025432A1 (en) Method for forming powder in powder metallurgy and method for producing sintered parts
US20160064125A1 (en) Powder metallurgical method for fabricating high-density soft magnetic metallic material
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
JP2017011073A (en) Powder-compact magnetic core and method of manufacturing power-compact magnetic core
Kandavel et al. Experimental Investigations on Plastic Deformation and Densification Characteristics of P/M Fe–C–Cu–Mo Alloy Steels Under Cold Upsetting
JP4624214B2 (en) Powder molding method in powder metallurgy and method for manufacturing sintered parts
JP5431490B2 (en) Manufacturing method of dust core
JP2017128764A (en) Iron-based sintered slide material and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4509862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees