JP4508443B2 - Coal gasification power plant - Google Patents

Coal gasification power plant Download PDF

Info

Publication number
JP4508443B2
JP4508443B2 JP2001045976A JP2001045976A JP4508443B2 JP 4508443 B2 JP4508443 B2 JP 4508443B2 JP 2001045976 A JP2001045976 A JP 2001045976A JP 2001045976 A JP2001045976 A JP 2001045976A JP 4508443 B2 JP4508443 B2 JP 4508443B2
Authority
JP
Japan
Prior art keywords
gas
filter
backwash
backwashing
coal gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001045976A
Other languages
Japanese (ja)
Other versions
JP2002241770A (en
Inventor
聡 辻口
隆弘 西田
芳樹 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Mitsubishi Power Ltd
Original Assignee
Electric Power Development Co Ltd
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Babcock Hitachi KK filed Critical Electric Power Development Co Ltd
Priority to JP2001045976A priority Critical patent/JP4508443B2/en
Publication of JP2002241770A publication Critical patent/JP2002241770A/en
Application granted granted Critical
Publication of JP4508443B2 publication Critical patent/JP4508443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Industrial Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石炭をガス化して生成した可燃性ガスにより発電を行うプラントに係り、特に効率的かつ経済的にチャー捕集装置のフィルタを逆洗し、プラントの安定した連続運転を可能とする石炭ガス化発電プラント及びフィルタ逆洗装置に関する。
【0002】
【従来の技術】
石炭ガス化炉で発生した生成ガス中には多量の未反応チャーが含まれており、この未反応チャーを回収しないと大幅なプラント効率の低下につながる。また下流の脱流装置及び発電設備のガスタービンでは閉塞又は損傷等の大きなトラブルを生じる。従来の石炭ガス化発電プラントにおいては、このような理由から、チャー捕集装置として、ほぼ100%に近い集塵効率が得られるフィルタが採用されている。フィルタによる集塵は、フィルタ内エレメント(以下、エレメントと称す)の表面にチャー等のダストを捕捉することにより行われる。エレメント表面に捕捉されたダストにより、プラント運転が進むにつれてフィルタ前後の差圧が増加し、そのまま運転続行は不可能であるため、ある一定差圧に達する前に、エレメントの内面から逆洗することによりダストを払い落す。すなわち、高圧の逆洗ガスをフィルタ内に逆方向より瞬時に流すことにより、エレメント表面に捕捉されたダストを剥離除去させる。通常、エレメント内部に目詰まりを起こさせないように、この逆洗ガスには清浄なN2ガスが用いられる。
【0003】
従来技術の石炭ガス化発電プラントの例を図3に示す。ガス化炉1で発生した生成ガス及び未反応チャーは、熱回収ボイラ2で顕熱を回収され、チャー捕集装置を構成するサイクロン3で生成ガス中の未反応チャーを回収除去した後にフィルタ4へ供給される。フィルタ4では生成ガス中の残りの未反応チャーを捕集して回収除去し、回収したチャーはサイクロン3で回収したチャーとともに、ライン20を通り搬送ガスによりガス化炉1へリサイクルされる。フィルタ4を流出した生成ガスは水洗装置5で水洗冷却され、脱流装置6で脱流後、発電用の燃料ガスとして発電設備7に供給される。
【0004】
一方、フィルタ4では、エレメント10の表面にチャー等のダストが蓄積されるにつれて、差圧計(pd)11で検出されるフィルタ4前後の差圧が増加するため、ある一定の差圧(フィルタにおける許容最大差圧)になる前に、逆洗バルブ12を瞬時に開閉し、逆洗ガスホルダ8より高圧の逆洗ガス25をフィルタ4内に逆方向より流すことにより、エレメント10の表面に捕捉されたダストを剥離除去させる。なお逆洗ガスホルダ8とフィルタ4との間は、エメント10への逆洗ガスによる熱衝撃を和らげるため、スチーム(STM)トレース22等の昇温手段で逆洗ガスを昇温している。通常、逆洗ガスとしては圧縮機9aで所定圧力に加圧した清浄なN2ガスを用いる。
【0005】
【発明が解決しようとする課題】
従来の石炭ガス化発電プラントにあっては、フィルタの逆洗ガスにダストが含まれていると、エレメント内面に入り込み目詰まりを起こして運転不能になるため、通常、逆洗ガスとして清浄なN2ガスを用いる。しかしN2ガスを用いる場合、N2ガスを別途生成し、さらにそのN2ガスを逆洗ガス圧力まで昇圧するための動力が必要となる。従ってプラント効率が低下するという問題があった。そこでプラント効率の低下をできるだけ避けるため、圧力を持った生成ガスをリサイクルして用いる方法が提案されている。この場合、逆洗ガスとしてはできだけ清浄なガスが望ましいため、脱硫装置の脱流後の精製ガスをリサイクルして使用すると、脱硫装置までの水洗装置、COS転化器、重金属吸着塔、各種熱交換器及び配管等をすべて容量増加しなければならず、設備費が大幅に増加する。またプロセスの下流側でリサイクルすればするほど逆洗ガス圧力まで昇圧するリサイクルガス圧縮機の圧縮比が大きくなり、リサイクルガス圧縮機のコスト及び動力が増加するという問題があった。
【0006】
本発明の課題は、プラント効率の低下を抑制し、経済的に安定してチャー捕集装置のフィルタの逆洗運転を可能とする石炭ガス化発電プラントを提供することにある。
【0007】
【課題を解決するための手段】
前記の課題を達成するため、本発明に係る石炭ガス化発電プラントは、石炭より生成ガスを発生する石炭ガス化炉と、生成ガス中の未反応チャーを回収するチャー捕集装置と、生成ガスを冷却する水洗装置と、生成ガスを脱硫する脱硫装置と、精製ガスにより発電する発電設備と、チャー捕集装置のフィルタのダストを逆洗ガスで除去するフィルタ逆洗装置とを備えた石炭ガス化発電プラントにおいて、フィルタ逆洗装置は、水洗装置と脱硫装置との間より分岐した生成ガスを逆洗ガスとして使用するものである構成とする。
【0008】
そしてフィルタ逆洗装置は、分岐した逆洗ガスを昇圧する圧縮機と、圧縮機へ順次接続されるダスト除去機構と逆洗ガスホルダとよりなり、逆洗ガスホルダはフィルタへ接続されるものであり、ダスト除去機構は、逆洗ガスフィルタであり、逆洗ガスフィルタは、分岐ラインに並設されたバイパスラインに設置され、プラント運転初期の所定時間に逆洗ガスを流して逆洗ガスに同伴されたダストを除去するものである。
【0009】
また逆洗ガスフィルタは、分岐ラインと並設されたバイパスラインとのそれぞれのラインに並列に設置されるとともに差圧監視装置が付設され、差圧監視装置の差圧に応じていずれか一方の逆洗ガスフィルタに切り替えられ、連続して逆洗ガスに同伴されたダストを除去するものである構成でもよい。
【0010】
さらにフィルタ逆洗装置にあっては、前記いずれか一つの石炭ガス化発電プラントに具備された構成であり、圧縮機より逆洗ガスホルダまでの機器は炭素鋼で形成されるとともに、逆洗ガスフィルタは樹脂で形成され、逆洗ガスホルダに逆洗ガスの昇温手段が付設されて逆洗ガスホルダよりフィルタまでの配管は耐熱耐食性鋼で形成される構成でもよい。
【0011】
【発明の実施の形態】
本発明の実施の形態を図1を参照しながら説明する。図1に示すように、石炭をガス化し生成ガスを発生する石炭ガス化炉1と、生成ガス中の未反応チャーを回収するチャー捕集装置のフィルタ4と、フィルタ4の生成ガスを冷却する水洗装置5と、生成ガスを脱硫する脱硫装置6と、脱硫した精製ガスにより発電する発電設備7と、フィルタ4のエレメント10よりダストを逆洗ガスにより除去するフィルタ逆洗装置とよりなる石炭ガス化発電プラントであって、フィルタ逆洗装置は、水洗装置5と脱硫装置6との間より分岐ライン(リサイクルガスライン)21を経て分岐した生成ガスを逆洗ガスに使用するものである構成とする。
【0012】
そしてフィルタ逆洗装置は、分岐した分岐ライン21へ直結する主ライン24の生成ガスを昇圧する圧縮機(リサイクルガス圧縮機)9と、圧縮機9へ接続するダスト除去機構と、ダスト除去機構へ接続する逆洗ガスホルダ8とよりなり、逆洗ガスホルダ8はフィルタ4へ接続されるものとする。またダスト除去機構は、逆洗ガスフィルタ30で形成され、逆洗ガスフィルタ30は、分岐ライン21へ直結する主ライン24に並設されたバイパスライン23に設置され、プラント運転初期の所定時間に分岐ライン21を経て逆洗ガスを流し、逆洗ガスに同伴されたダストを除去するものである。
【0013】
すなわち、ガス化炉1で発生した生成ガス及び未反応チャーは、熱回収ボイラ2で顕熱を回収され、サイクロン3で生成ガス中の未反応チャーを回収除去された後、フィルタ4へ供給される。フィルタ4では生成ガス中の残りの未反応チャーをエレメント10で捕集して回収除去し、回収したチャーは、サイクロン3で回収したチャーとともに、ライン20を通り搬送ガスによりガス化炉1へリサイクルされる。フィルタ4を出た生成ガスは水洗装置5で水洗冷却され、脱硫装置6で脱硫後、発電用の燃料ガスとして発電設備7に供給される。
【0014】
一方、フィルタ4では、エレメント10の表面にチャー等のダストが蓄積されるにつれて、差圧計11で検出されるフィルタ4の生成ガス流通方向の前後差圧が増加するため、ある一定の差圧(フィルタにおける許容最大差圧)になる前に、逆洗バルブ12を瞬時に開閉し、逆洗ガスホルダ8より高圧の逆洗ガスをフィルタ4内に逆方向より流すことにより、エレメント10の表面に捕捉されていたダストを剥離除去する。
【0015】
ここで、逆洗ガスとして水洗装置5と脱硫装置6との間より約130℃に冷却した生成ガスを分岐し、リサイクルガス圧縮機9で約60Kg/cm2Gに昇圧し、分岐ライン21を通り、逆洗ガスホルダ8に生成ガスをリサイクル供給する。リサイクルガス中にH2S等の腐食性ガスが入っている場合、停止時に配管(ライン)内等に錆が発生する可能性があり、この錆が起動時にリサイクルガス中に同伴されて逆洗ガスホルダ8に供給され、逆洗ガスとして使用される可能性がある。そこで逆洗ガスホルダ8の直前にリサイクルガスライン21にバイパスライン23を設け、バイパスライン23に逆洗ガスフィルタ30を設置し、プラント運転初期の起動時等の一定時間にリサイクルガスをバイパスライン23に流すことにより、最も錆等のダスト混入の可能性の高い、起動時の逆洗ガス中の錆等のダストを除去する。一定時間、逆洗ガスフィルタ30にリサイクルガスを流通した後、主ライン24に切り替えることにより、以後は清浄なリサイクルガスによる安定したフィルタ4の逆洗が可能となる。
【0016】
次に本実施の形態の作用を説明する。フィルタの逆洗ガスとして、脱硫装置の上流の水洗装置出口部、すなわち、水洗装置と脱硫装置との間より分岐した生成ガスを、リサイクルして使用することにより、N2ガスに比べN2ガス生成のための動力が不要であり、さらに、そのN2ガスを逆洗ガス圧力まで昇圧するための動力が大幅に低減可能となる。ここで、水洗装置より上流側の生成ガスでは温度が高く、そのままリサイクルガス圧縮機を通せないため、冷却後の水洗装置出口ガスがリサイクルガスとして望ましい。また脱硫装置で脱硫後の精製ガスをリサイクルする場合、脱硫装置までの水洗装置、COS転化器、各種熱交換器及び配管等のすべて容量を増加しなければならないため、設備費が大幅に増加する。また、プロセスの下流側よりリサイクルすればするほど逆洗ガス圧力まで昇圧するリサイクルガス圧縮機の圧縮比が大きくなり、リサイクルガス圧縮機のコスト及び動力が増加するため脱硫装置の上流側でリサイクルすることが望ましい。
【0017】
生成ガスをリサイクルして用いる場合、通常、リサイクルガス圧縮機入口には圧縮機保護のため、ストレーナ等の脱塵装置が設置されるが、リサイクルガス圧縮機の下流側では腐食性生成ガスにより、リサイクルガスライン内に発生した錆が運転中にリサイクルガス中に同伴され、フィルタの逆洗時に、逆洗ガス中に同伴された錆等のダストが、フィルタのエレメント内面に入り込んで目詰まりを起こし、運転不能となり、フィルタ運転停止すなわちプラント停止という事態になる恐れがある。そこでリサイクルガスライン内の錆の発生を防止するため、リサイクルガス圧縮機以降を耐食性材料で形成し、なおかつ結露防止のためにスチーム等のヒートトレース(昇温手段)を実施する方法もあるが、しかしリサイクルガス圧縮機よりフィルタまではかなりの距離があり、このラインへの耐食性高級材料の使用及びスチームトレースの施工は大幅な設備費及び運転費の増加となる。そこでその生成ガスをリサイクルした逆洗ガスラインの逆洗ガスホルダ直前に逆洗ガスに同伴されてくる錆等のダストを除去する機構を設置し、つまり逆洗ガスに同伴されてくる錆等のダストを逆洗ガスフィルタで除去することにより、逆洗時にフィルタに目詰まりを生じさせることなく、清浄な逆洗ガスによる、安定した逆洗運転が可能となる。本装置によれば、リサイクルガス圧縮機から逆洗ガスホルダまでのラインへの耐食性高級材料の使用やスチームトレースの施工は不要である。
【0018】
また、逆洗ガスホルダ直前にバイパスラインを設け、バイパスラインに逆洗ガスフィルタを設置し、起動時の一定時間リサイクルガスをバイパスラインに流すことにより、逆洗ガス中に、最も錆等のダスト混入の可能性の高い起動時に逆洗ガス中の錆等のダストを除去でき、清浄な逆洗ガスによる安定した逆洗を可能とする。
【0019】
本発明の他の実施の形態を図2に示す。逆洗ガスフィルタ30は、分岐ライン21と直結する主ライン24aと、並設されたバイパスライン23aとのそれぞれのライン24a,23aに並列に設置されるとともに差圧監視装置(pd)13が付設され、差圧監視装置13の差圧に応じていずれか一方の逆洗ガスフィルタに切り替えられ、連続して逆洗ガスに同伴したダストを除去する構成である。
【0020】
すなわち起動時の他、定常運転中にダストが混入してくる可能性がある場合は、逆洗ガスホルダ8の直前に差圧監視装置13を取り付けた逆洗ガスフィルタ30を並列に2基設置し、常時、差圧を監視しながら切り替え運用し、連続して逆洗ガスに同伴されてくる錆等のダストを除去することにより、清浄な逆洗ガスによる安定したフィルタの逆洗が可能となる。つまり、逆洗ガスホルダ直前に差圧監視装置を取り付けた逆洗ガスフィルタを並列に2基設置し、常時、差圧を監視しながら切り替え運用(フィルタ間の差圧を測定し差圧高に応じて切替)し、連続して逆洗ガスに同伴されてくる錆等のダストを除去することにより、清浄な逆洗ガスによる安定した逆洗運転を可能とする。
【0021】
さらに本発明の他の実施の形態として図2によりフィルタ逆洗装置を説明する。前記のうちのいずれか一つの石炭ガス化発電プラントに具備されている装置であって、圧縮機9より逆洗ガスホルダ8までの分岐ライン21及び主ライン24a,23aは炭素鋼で形成されるとともに、逆洗ガスフィルタ30は樹脂製であり、逆洗ガスホルダ8に逆洗ガスの昇温手段22が付設されて逆洗ガスホルダ8よりフィルタ4までの主ライン24bは耐熱耐食性鋼で形成される構成とする。通常、逆洗ガスホルダはフィルタ近傍に設置されるため、逆洗ガスホルダ直前に逆洗ガスフィルタを設置することにより、逆洗ガスホルダとフィルタまでの短いライン(配管)のみ耐食性材料にすることにより、リサイクルガス圧縮機から逆洗ガスホルダまでの距離の長いラインは通常の炭素鋼で十分であり、経済的メリットが大きい。また、逆洗ガスフィルタ〜フィルタ間は、フィルタのエレメントへの逆洗による熱衝撃を和らげるため、逆洗ガスを昇温する必要があり、この間に逆洗ガスフィルタを設置するためには、耐熱性に優れた高級材質のフィルタが必要になる。従って昇温する前の逆洗ガスホルダ直前であれば、温度が低いため樹脂製の安価なフィルタが設置可能となる。
【0022】
【発明の効果】
本発明によれば、水洗装置と脱硫装置との間より生成ガスを分岐してチャー捕集装置の逆洗ガスとし、逆洗ガスフィルタを設けて逆洗ガスに同伴されたダストを除去するため、チャー捕集装置の逆洗を安定して行うことができ、プラントの効率低下が抑制されて連続運転が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す構成図である。
【図2】本発明の他の実施の形態を示す構成図である。
【図3】従来の技術を示す図である。
【符号の説明】
1 ガス化炉
2 熱回収ボイラ
3 サイクロン
4 フィルタ
5 水洗装置
6 脱硫装置
7 発電設備
8 逆洗ガスホルダ
9 リサイクルガス圧縮機
9a N2ガス圧縮機
10 エレメント
11 差圧計
12 逆洗バルブ
13 差圧監視装置
20 ライン
21 リサイクルガスライン
21a 逆洗N2ガスライン
22 スチームトレース
23 バイパスライン
23a バイパスライン
24 主ライン
24a 主ライン
24b 主ライン
30 逆洗ガスフィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plant that generates power using a combustible gas generated by gasifying coal, and in particular, backwashing a filter of a char collection device efficiently and economically enables stable continuous operation of the plant. The present invention relates to a coal gasification power plant and a filter backwash device.
[0002]
[Prior art]
A large amount of unreacted char is contained in the generated gas generated in the coal gasifier, and unless this unreacted char is recovered, the plant efficiency will be significantly reduced. In addition, a large trouble such as blockage or damage occurs in the downstream deflow device and the gas turbine of the power generation equipment. In a conventional coal gasification power plant, for such reasons, a filter capable of obtaining a dust collection efficiency close to 100% is adopted as a char collection device. Dust collection by a filter is performed by capturing dust such as char on the surface of an element in the filter (hereinafter referred to as an element). Because the dust trapped on the element surface increases the differential pressure before and after the filter as the plant operation proceeds, it is impossible to continue operation, so backwash from the inner surface of the element before reaching a certain differential pressure. To remove dust. That is, dust trapped on the element surface is peeled and removed by allowing high-pressure backwash gas to flow instantaneously through the filter in the reverse direction. Normally, clean N2 gas is used as the backwash gas so as not to cause clogging inside the element.
[0003]
An example of a conventional coal gasification power plant is shown in FIG. The generated gas and unreacted char generated in the gasification furnace 1 are recovered with sensible heat by the heat recovery boiler 2, and after the unreacted char in the generated gas is recovered and removed by the cyclone 3 constituting the char collection device, the filter 4 Supplied to. The filter 4 collects and collects and removes the remaining unreacted char in the generated gas, and the collected char is recycled to the gasifier 1 through the line 20 together with the char collected by the cyclone 3 by the carrier gas. The product gas that has flowed out of the filter 4 is washed and cooled by the water washing device 5, deflowed by the deflow device 6, and then supplied to the power generation facility 7 as fuel gas for power generation.
[0004]
On the other hand, in the filter 4, as dust such as char accumulates on the surface of the element 10, the differential pressure before and after the filter 4 detected by the differential pressure gauge (pd) 11 increases. Before reaching the maximum allowable differential pressure), the backwash valve 12 is instantaneously opened and closed, and a backwash gas 25 having a pressure higher than that of the backwash gas holder 8 is caused to flow in the filter 4 in the reverse direction. Remove and remove dust. In addition, between the backwashing gas holder 8 and the filter 4, in order to relieve the thermal shock by the backwashing gas to the element 10, the backwashing gas is heated by a heating means such as a steam (STM) trace 22 or the like. Usually, as the backwash gas, clean N2 gas pressurized to a predetermined pressure by the compressor 9a is used.
[0005]
[Problems to be solved by the invention]
In conventional coal gasification power plants, if dust is contained in the backwash gas of the filter, it enters the inner surface of the element and becomes clogged, making it impossible to operate. Use gas. However, when N2 gas is used, power for generating N2 gas separately and boosting the N2 gas to the backwash gas pressure is required. Therefore, there is a problem that the plant efficiency is lowered. Therefore, in order to avoid a decrease in plant efficiency as much as possible, a method has been proposed in which product gas having pressure is recycled and used. In this case, as clean gas as possible is desirable as the backwash gas. If the purified gas after desulfurization of the desulfurizer is recycled and used, the water washer, COS converter, heavy metal adsorption tower, various heats up to the desulfurizer The capacity of all the exchangers and pipes must be increased, which greatly increases the equipment cost. Further, there is a problem that the more the gas is recycled on the downstream side of the process, the larger the compression ratio of the recycle gas compressor that increases the pressure to the backwash gas pressure, thereby increasing the cost and power of the recycle gas compressor.
[0006]
An object of the present invention is to suppress a decrease in plant efficiency, economical and to provide a stable coal gasification power generation plant which enables backwashing operation of the filter of char collection device.
[0007]
[Means for Solving the Problems]
To achieve the above object, a coal gasification power plant according to the present invention includes a coal gasification furnace that generates product gas from coal, a char collection device that recovers unreacted char in the product gas, and a product gas. Coal gas equipped with a water-washing device for cooling the gas, a desulfurization device for desulfurizing the generated gas, a power generation facility for generating electricity with purified gas, and a filter back-washing device for removing dust from the filter of the char collection device with the backwash gas In the chemical power plant, the filter backwashing device uses the product gas branched from between the water washing device and the desulfurization device as the backwashing gas.
[0008]
And the filter backwash device is composed of a compressor for boosting the branched backwash gas, a dust removal mechanism and a backwash gas holder that are sequentially connected to the compressor, and the backwash gas holder is connected to the filter, The dust removal mechanism is a backwash gas filter, and the backwash gas filter is installed in a bypass line arranged in parallel with the branch line, and flows backwash gas at a predetermined time in the initial stage of plant operation and is accompanied by the backwash gas. To remove dust.
[0009]
The backwash gas filter is installed in parallel with each of the branch line and the bypass line, and a differential pressure monitoring device is attached, and either one of the backwash gas filters is selected according to the differential pressure of the differential pressure monitoring device. The configuration may be such that the dust is switched to the backwash gas filter and continuously removes the dust accompanying the backwash gas.
[0010]
Further, in the filter backwash device, any one of the above coal gasification power plants is configured, and the equipment from the compressor to the backwash gas holder is made of carbon steel, and the backwash gas filter The backwashing gas holder may be provided with a backwashing gas heating means, and the pipe from the backwashing gas holder to the filter may be made of heat and corrosion resistant steel.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, a coal gasification furnace 1 that gasifies coal to generate a product gas, a filter 4 of a char collection device that recovers unreacted char in the product gas, and a product gas of the filter 4 are cooled. Coal gas comprising a water washing device 5, a desulfurization device 6 for desulfurizing the product gas, a power generation facility 7 for generating electricity using the desulfurized refined gas, and a filter backwash device for removing dust from the elements 10 of the filter 4 by backwashing gas In the hydroelectric power plant, the filter backwashing device uses the product gas branched through the branch line (recycle gas line) 21 between the water washing device 5 and the desulfurization device 6 as the backwashing gas. To do.
[0012]
And the filter backwashing device is connected to the compressor (recycle gas compressor) 9 for boosting the generated gas of the main line 24 directly connected to the branched branch line 21, the dust removal mechanism connected to the compressor 9, and the dust removal mechanism The backwashing gas holder 8 is connected to the filter 4. The dust removal mechanism is formed by a backwash gas filter 30, and the backwash gas filter 30 is installed in a bypass line 23 provided in parallel with the main line 24 directly connected to the branch line 21, and at a predetermined time in the initial stage of plant operation. The backwash gas is allowed to flow through the branch line 21 to remove dust accompanying the backwash gas.
[0013]
That is, the generated gas and unreacted char generated in the gasification furnace 1 are recovered by the heat recovery boiler 2, and after the unreacted char in the generated gas is recovered and removed by the cyclone 3, it is supplied to the filter 4. The In the filter 4, the remaining unreacted char in the generated gas is collected and removed by the element 10, and the collected char is recycled to the gasifier 1 through the line 20 together with the char collected by the cyclone 3 by the carrier gas. Is done. The product gas exiting the filter 4 is washed and cooled by the water washing device 5, desulfurized by the desulfurization device 6, and then supplied to the power generation equipment 7 as fuel gas for power generation.
[0014]
On the other hand, in the filter 4, as dust such as char accumulates on the surface of the element 10, the differential pressure across the filter 4 in the direction of product gas flow detected by the differential pressure gauge 11 increases. Before reaching the maximum allowable pressure difference in the filter, the backwash valve 12 is opened and closed instantaneously, and a high-pressure backwash gas flows from the backwash gas holder 8 into the filter 4 in the reverse direction, thereby trapping the element 10 on the surface. The removed dust is removed.
[0015]
Here, the product gas cooled to about 130 ° C. is branched as a backwash gas between the water washing device 5 and the desulfurization device 6, and the pressure is increased to about 60 kg / cm 2 G by the recycle gas compressor 9. As a result, the generated gas is recycled to the backwash gas holder 8. If corrosive gas such as H 2 S is contained in the recycled gas, rust may be generated in the piping (line) at the time of stoppage, and this rust is accompanied by the recycled gas at the time of start-up and backwashing. There is a possibility that the gas is supplied to the gas holder 8 and used as a backwash gas. Therefore, a bypass line 23 is provided in the recycle gas line 21 immediately before the backwash gas holder 8, and a backwash gas filter 30 is installed in the bypass line 23, and the recycle gas is supplied to the bypass line 23 at a predetermined time such as at the start of the plant operation. By flowing it, dust such as rust in the backwash gas at the time of start-up, which is most likely to contain dust such as rust, is removed. After circulating the recycle gas through the backwash gas filter 30 for a certain period of time, by switching to the main line 24, the filter 4 can be backwashed with clean recycle gas stably thereafter.
[0016]
Next, the operation of this embodiment will be described. As the backwash gas for the filter, the outlet of the water washing device upstream of the desulfurization device, that is, the product gas branched from between the water washing device and the desulfurization device is recycled and used to generate N2 gas compared to N2 gas. The power for boosting the N2 gas to the backwash gas pressure can be greatly reduced. Here, since the temperature of the product gas upstream from the water washing apparatus is high and the recycle gas compressor cannot pass through as it is, the water washing apparatus outlet gas after cooling is desirable as the recycle gas. In addition, when refining the purified gas after desulfurization in the desulfurization equipment, the capacity of the water washing equipment, COS converter, various heat exchangers and piping etc. to the desulfurization equipment must be increased, which greatly increases the equipment cost. . In addition, the more the gas is recycled from the downstream side of the process, the higher the compression ratio of the recycle gas compressor that boosts the pressure to the backwash gas pressure, and the cost and power of the recycle gas compressor increase. It is desirable.
[0017]
When the product gas is recycled and used, a dust removal device such as a strainer is usually installed at the inlet of the recycle gas compressor to protect the compressor, but on the downstream side of the recycle gas compressor, Rust generated in the recycle gas line is entrained in the recycle gas during operation, and when backwashing the filter, rust and other dust entrained in the backwash gas enter the inner surface of the filter element and cause clogging. Otherwise, the operation becomes impossible and there is a possibility that the filter operation stops, that is, the plant stops. Therefore, in order to prevent the occurrence of rust in the recycle gas line, there is a method of forming the recycle gas compressor and the subsequent parts with corrosion-resistant materials and implementing heat tracing (temperature raising means) such as steam to prevent condensation, However, there is a considerable distance from the recycle gas compressor to the filter, and the use of high-corrosion-resistant materials and the installation of steam traces in this line will greatly increase the equipment and operating costs. Therefore, a mechanism for removing dust such as rust accompanying backwashing gas is installed just before the backwashing gas holder of the backwashing gas line that recycled the generated gas, that is, rusting dust accompanying the backwashing gas. By using a backwash gas filter, it is possible to perform a stable backwash operation with clean backwash gas without causing clogging of the filter during backwashing. According to this apparatus, it is not necessary to use a high-grade corrosion-resistant material in the line from the recycle gas compressor to the backwash gas holder or to perform the steam trace.
[0018]
In addition, by installing a bypass line just before the backwash gas holder, installing a backwash gas filter in the bypass line, and flowing the recycle gas through the bypass line for a certain period of time during startup, dust such as rust is most mixed in the backwash gas. Dust such as rust in the backwashing gas can be removed at start-up when there is a high possibility, and stable backwashing with clean backwashing gas is possible.
[0019]
Another embodiment of the present invention is shown in FIG. The backwash gas filter 30 is installed in parallel with each of the lines 24a and 23a of the main line 24a directly connected to the branch line 21 and the bypass line 23a, and a differential pressure monitoring device (pd) 13 is attached. In this configuration, the backwashing gas filter is switched to one of the backwashing gas filters in accordance with the differential pressure of the differential pressure monitoring device 13 to continuously remove dust accompanying the backwashing gas.
[0020]
That is, when there is a possibility that dust may enter during steady operation in addition to during startup, two backwash gas filters 30 with a differential pressure monitoring device 13 attached in front of the backwash gas holder 8 are installed in parallel. By constantly switching while monitoring the differential pressure and removing dust such as rust that is continuously entrained in the backwash gas, it is possible to backwash the filter stably with clean backwash gas. . In other words, two backwashing gas filters with a differential pressure monitoring device installed in front of the backwashing gas holder are installed in parallel, and switching operation is performed while monitoring the differential pressure at all times. Switching) and removing dust such as rust continuously accompanying the backwash gas, thereby enabling stable backwash operation with clean backwash gas.
[0021]
Furthermore, a filter backwashing apparatus will be described with reference to FIG. It is an apparatus provided in any one of the above coal gasification power plants, and the branch line 21 and the main lines 24a, 23a from the compressor 9 to the backwash gas holder 8 are made of carbon steel. The backwashing gas filter 30 is made of resin, and the backwashing gas holder 8 is provided with a backwashing gas temperature raising means 22 so that the main line 24b from the backwashing gas holder 8 to the filter 4 is made of heat and corrosion resistant steel. And Normally, the backwash gas holder is installed in the vicinity of the filter. By installing a backwash gas filter immediately before the backwash gas holder, only a short line (pipe) from the backwash gas holder to the filter is used as a corrosion resistant material. For the line with a long distance from the gas compressor to the backwashing gas holder, ordinary carbon steel is sufficient, and the economic merit is great. Also, between the backwash gas filter and the filter, the backwash gas needs to be heated in order to reduce the thermal shock caused by backwashing the filter elements. A high-quality filter with excellent properties is required. Therefore, just before the backwashing gas holder before raising the temperature, since the temperature is low, an inexpensive resin filter can be installed.
[0022]
【The invention's effect】
According to the present invention, the product gas is branched from between the water washing device and the desulfurization device to obtain the backwash gas of the char collecting device, and the backwash gas filter is provided to remove the dust accompanying the backwash gas. In addition, the backwashing of the char collection device can be performed stably, and a decrease in the efficiency of the plant is suppressed, and continuous operation is possible.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 is a configuration diagram showing another embodiment of the present invention.
FIG. 3 is a diagram showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gasification furnace 2 Heat recovery boiler 3 Cyclone 4 Filter 5 Flushing device 6 Desulfurization device 7 Power generation equipment 8 Backwash gas holder 9 Recycled gas compressor 9a N2 gas compressor 10 Element 11 Differential pressure gauge 12 Backwash valve 13 Differential pressure monitoring device 20 Line 21 Recycle gas line 21a Backwash N2 gas line 22 Steam trace 23 Bypass line 23a Bypass line 24 Main line 24a Main line 24b Main line 30 Backwash gas filter

Claims (5)

石炭より生成ガスを発生する石炭ガス化炉と、生成ガス中の未反応チャーを回収するチャー捕集装置と、生成ガスを冷却する水洗装置と、生成ガスを脱硫する脱硫装置と、精製ガスにより発電する発電設備と、前記チャー捕集装置のフィルタのダストを逆洗ガスで除去するフィルタ逆洗装置とを備えた石炭ガス化発電プラントにおいて、前記フィルタ逆洗装置は、前記水洗装置と前記脱硫装置との間より分岐した生成ガスを前記逆洗ガスとして使用するものであることを特徴とする石炭ガス化発電プラント。  A coal gasification furnace that generates product gas from coal, a char collection device that recovers unreacted char in the product gas, a water washing device that cools the product gas, a desulfurization device that desulfurizes the product gas, and a refined gas In a coal gasification power plant including a power generation facility for generating electricity and a filter backwashing device for removing dust from the filter of the char collection device with a backwashing gas, the filter backwashing device includes the water washing device and the desulfurization device. A coal gasification power plant, wherein the product gas branched from the apparatus is used as the backwash gas. 前記フィルタ逆洗装置は、分岐した逆洗ガスを昇圧する圧縮機と、該圧縮機へ順次接続されるダスト除去機構と逆洗ガスホルダとよりなり、該逆洗ガスホルダはフィルタへ接続されることを特徴とする請求項1記載の石炭ガス化発電プラント。  The filter backwashing device comprises a compressor that boosts the branched backwashing gas, a dust removal mechanism and a backwashing gas holder that are sequentially connected to the compressor, and the backwashing gas holder is connected to the filter. The coal gasification power plant according to claim 1 characterized by things. 前記ダスト除去機構は、逆洗ガスフィルタであることを特徴とする請求項2記載の石炭ガス化発電プラント。  The coal gasification power plant according to claim 2, wherein the dust removing mechanism is a backwash gas filter. 前記逆洗ガスフィルタは、分岐ラインに並設されたバイパスラインに設置され、プラント運転初期の所定時間に逆洗ガスを流して該逆洗ガスに同伴されたダストを除去するものであることを特徴とする請求項3記載の石炭ガス化発電プラント。  The backwash gas filter is installed in a bypass line arranged in parallel with the branch line, and flows backwash gas at a predetermined time in the early stage of plant operation to remove dust accompanying the backwash gas. The coal gasification power plant according to claim 3 characterized by things. 前記逆洗ガスフィルタは、分岐ラインと並設されたバイパスラインとのそれぞれのラインに並列に設置されるとともに差圧監視装置が付設され、該差圧監視装置の差圧に応じていずれか一方の逆洗ガスフィルタに切り替えられ、連続して逆洗ガスに同伴されたダストを除去するものであることを特徴とする請求項3記載の石炭ガス化発電プラント。  The backwash gas filter is installed in parallel with each of the branch line and the bypass line, and a differential pressure monitoring device is attached, and either one of the backwash gas filters is provided according to the differential pressure of the differential pressure monitoring device. The coal gasification power plant according to claim 3, wherein the coal gasification power plant is switched to a backwash gas filter to remove dust continuously entrained in the backwash gas.
JP2001045976A 2001-02-22 2001-02-22 Coal gasification power plant Expired - Fee Related JP4508443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001045976A JP4508443B2 (en) 2001-02-22 2001-02-22 Coal gasification power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045976A JP4508443B2 (en) 2001-02-22 2001-02-22 Coal gasification power plant

Publications (2)

Publication Number Publication Date
JP2002241770A JP2002241770A (en) 2002-08-28
JP4508443B2 true JP4508443B2 (en) 2010-07-21

Family

ID=18907681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045976A Expired - Fee Related JP4508443B2 (en) 2001-02-22 2001-02-22 Coal gasification power plant

Country Status (1)

Country Link
JP (1) JP4508443B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12031720B2 (en) 2018-11-21 2024-07-09 Mitsubishi Heavy Industries, Ltd. Pulverized coal drying system for pulverizer, pulverized coal drying method therefor, pulverized coal drying program, pulverizer, and integrated gasification combined cycle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037012A (en) * 2004-07-29 2006-02-09 Takuma Co Ltd Gasification power generation system and gasification power generation method
JP5665297B2 (en) 2009-09-30 2015-02-04 三菱重工業株式会社 Dust removal device
CN102657966B (en) * 2012-05-23 2014-07-23 宋泳 Quick suction filtration device
JP6047436B2 (en) * 2013-03-22 2016-12-21 三菱日立パワーシステムズ株式会社 Gas purification device, coal gasification system and coal gasification power plant equipped with the same
CN104696971B (en) * 2015-03-03 2018-01-12 陕西天宏硅材料有限责任公司 A kind of method for balancing production of polysilicon dry process system pressure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000157819A (en) * 1998-11-27 2000-06-13 Mitsubishi Heavy Ind Ltd Backwashing device for dust extracting filter
JP2001107061A (en) * 1999-10-07 2001-04-17 Babcock Hitachi Kk Electric power generation system by gasifying waste
JP2001262160A (en) * 2000-03-17 2001-09-26 Toshiba Corp Apparatus for thermal decomposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000157819A (en) * 1998-11-27 2000-06-13 Mitsubishi Heavy Ind Ltd Backwashing device for dust extracting filter
JP2001107061A (en) * 1999-10-07 2001-04-17 Babcock Hitachi Kk Electric power generation system by gasifying waste
JP2001262160A (en) * 2000-03-17 2001-09-26 Toshiba Corp Apparatus for thermal decomposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12031720B2 (en) 2018-11-21 2024-07-09 Mitsubishi Heavy Industries, Ltd. Pulverized coal drying system for pulverizer, pulverized coal drying method therefor, pulverized coal drying program, pulverizer, and integrated gasification combined cycle

Also Published As

Publication number Publication date
JP2002241770A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
CN102627981B (en) Energy regenerating in synthesis gas application
HU213648B (en) Partial oxidation process with production of power
DE102009035300B4 (en) Air stream gasifier with integrated radiant cooler
DE202005021661U1 (en) Apparatus for producing synthesis gases by partial oxidation of slurries produced from ash-containing fuels and full quenching of the raw gas
TWI491726B (en) The method of gas purification, coal gasification plant and shift catalyst
DE202005021662U1 (en) Apparatus for producing synthesis gases by partial oxidation of slurries produced from ash-containing fuels with partial quenching and waste heat recovery
CN101735859B (en) Method, apparatus, and system for acid gas removal
JP4508443B2 (en) Coal gasification power plant
JP5424927B2 (en) Gas purification method and gas purification equipment
US20090120290A1 (en) Low temperature solids removal system for gasification
CN215559637U (en) Black water treatment system
CN111201307A (en) Aftertreatment arrangement and method for the aftertreatment of gases at least downstream of a fluidized bed gasification process, and logic unit and use
JP2020168614A (en) Suspension filter, slag water filter circulation system, gasification furnace, gasification combined power generation facility and suspension filtration method
CN209872882U (en) High-efficient raw coke oven gas cooling clean system
CN102003915A (en) Device and method for processing pressure difference rise of low-temperature methanol washing crude gas precooling systems
JP4533764B2 (en) Pressurized coal gasification furnace and coal gasification combined cycle power generation facility
CN112850829A (en) Slag water treatment system
JP2000178567A (en) Composite coal gasification-power generation plant and purification apparatus for coal-gasified gas
CN211079062U (en) Synthetic gas washing system suitable for harsh working conditions
RU2580747C2 (en) Method for production of synthesis gas
CN214196281U (en) Novel supplementary unloading system of coal underground gasification coal tar
CN220867342U (en) Pulverized coal gasification device
JPS6069221A (en) Combined power plant utilizing gasified coal
JP3848029B2 (en) Power generation equipment using coal gasification gas
CN107353936A (en) The purification separation system and its technique of a kind of hydrogasification synthesis gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees