JP4508394B2 - Purification method of organic phosphonic acid - Google Patents

Purification method of organic phosphonic acid Download PDF

Info

Publication number
JP4508394B2
JP4508394B2 JP2000285427A JP2000285427A JP4508394B2 JP 4508394 B2 JP4508394 B2 JP 4508394B2 JP 2000285427 A JP2000285427 A JP 2000285427A JP 2000285427 A JP2000285427 A JP 2000285427A JP 4508394 B2 JP4508394 B2 JP 4508394B2
Authority
JP
Japan
Prior art keywords
acid
phosphonic acid
ppm
organic phosphonic
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000285427A
Other languages
Japanese (ja)
Other versions
JP2002097193A (en
Inventor
広也 渡邊
英子 桑原
一成 田中
祥一 仁藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000285427A priority Critical patent/JP4508394B2/en
Publication of JP2002097193A publication Critical patent/JP2002097193A/en
Application granted granted Critical
Publication of JP4508394B2 publication Critical patent/JP4508394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、有機ホスホン酸の精製方法に関するものである。
【0002】
【従来の技術】
有機ホスホン酸類は、金属イオンのキレート化剤として周知であり、スケール除去剤や微量の金属の存在により分解する過酸化物の安定化剤として広く用いられているほか、そのキレート化能を利用して多様な分野に応用されている。
【0003】
有機ホスホン酸の製造方法としては、塩酸酸性下、アンモニアまたはアミン、アルデヒドまたはケトンおよびホスホン酸からアミノアルキレンホスホン酸を得る方法(米国特許3,288,846号、Journal of Organic Chemistry 第31巻1603頁)などが知られている。
【0004】
しかしながら、一般的な方法により製造した場合や市販品として入手した有機ホスホン酸は、原料や反応装置から持ちこまれる金属として、Feなどの重金属、Naなどのアルカリ金属、Caなどのアルカリ土類金属などの不純物を少ない場合でも1ppm以上、多い場合には100ppm以上含んでいることがほとんどである。このような微量の金属不純物を含む有機ホスホン酸は、電子工業や医療関連分野などのある特定の用途に使用する上で、金属不純物により悪影響を受ける場合がある。
【0005】
有機ホスホン酸から金属を除去する手段として、有機ホスホン酸水溶液に酸を加え、有機ホスホン酸を固体の酸として晶出分離する方法が可能である。しかし、多くの有機ホスホン酸は種々の金属との親和性が非常に高く、すでに述べたような微量の金属不純物を除去することは困難であり、有効な方法は提案されていない。
【0006】
【発明が解決しようとする課題】
本発明は、従来技術における上記のような問題を解決し、金属不純物含量が極めて少ない有機ホスホン酸を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、有機ホスホン酸を強酸性陽イオン交換樹脂に接触させることにより、微量の金属不純物を除去できることを見出し、本発明に到達した。すなわち、本発明は、分子内に1つ以上のホスホン酸基またはその塩を有する有機ホスホン酸を強酸性陽イオン交換樹脂に接触させることを特徴とする有機ホスホン酸の精製方法に関するものである。また、さらに精製度を上げるために、有機ホスホン酸水溶液を電気透析させる工程と組み合わせてもよい。
【0008】
【発明の実施の形態】
本発明の有機ホスホン酸は、分子内に少なくとも1つ以上のホスホン酸基またはその塩を含む化合物であり、具体的には、メチルジホスホン酸、エチリデンジホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、1−ヒドロキシプロピリデン−1,1−ジホスホン酸、1−ヒドロキシブチリデン−1,1−ジホスホン酸、エチルアミノビス(メチレンホスホン酸)、ドデシルアミノビス(メチレンホスホン酸)、エチレンジアミンビス(メチレンホスホン酸)、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、1,2−プロピレンジアミンテトラ(メチレンホスホン酸)、ヘキサメチレンジアミンテトラ(メチレンホスホン酸)、シクロヘキサンジアミンテトラ(メチレンホスホン酸)、グリコールエーテルジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、トリエチレンテトラミンヘキサ(メチレンホスホン酸)、トリ(2−アミノエチル)アミンヘキサ(メチレンホスホン酸)、テトラエチレンペンタミンヘプタ(メチレンホスホン酸)、ペンタエチレンヘキサミンオクタ(メチレンホスホン酸)、および、これらの塩、並びに、これらの酸化体が挙げられる。
【0009】
有機ホスホン酸は、一般に水溶液として強酸性陽イオン交換樹脂に接触させる。有機ホスホン酸の水への溶解度はそれぞれの化合物で異なり、広範囲にわたるが、有機ホスホン酸が沈殿しない均一な溶液であることが好ましい。
【0010】
強酸性陽イオン交換樹脂は、機械的、化学的に安定な母体により構成されていることが好ましく、たとえば、スチレン−ジビニルベンゼン共重合体を母体としたものを好適に用いることができる。そして、強酸性陽イオン交換樹脂は、スルホン酸基またはその塩に代表される強酸性基を有するものであり、市販品として、オルガノ株式会社製のアンバーライトIR120B、201Bや三菱化学株式会社製のダイヤイオンSK1B、PK212がある。
【0011】
これらの強酸性陽イオン交換樹脂は、一般に、酸性基がナトリウム塩の形態で市販されているため、酸の水溶液と接触させて酸性基を水素型に変換し、水洗した後に有機ホスホン酸と接触させる。用いる酸の種類および濃度、水洗方法に特に制限はなく、塩酸や硫酸などの酸の水溶液と強酸性陽イオン交換樹脂をバッチ式または流通式で接触させた後、同様の方法で水と強酸性陽イオン交換樹脂を接触させればよい。このとき、水洗に用いる水が金属を含んでいると、金属はイオン交換樹脂に吸着され、水素型の酸性基が金属塩型に変化するため、イオン交換水や超純水のように金属含量が極めて低いものを用いることが好ましい。
【0012】
有機ホスホン酸と強酸性陽イオン交換樹脂を接触させる方法としては、(1)有機ホスホン酸水溶液に強酸性陽イオン交換樹脂を浸漬する方法、(2)強酸性陽イオン交換樹脂を充填した充填塔に有機ホスホン酸水溶液を通液する方法等がある。
【0013】
(1)の方法では有機ホスホン酸水溶液や強酸性陽イオン交換樹脂を撹拌等の方法で流動させ、両者の接触効率を高くすることができる。(2)の方法では通液速度に特に制限はないが、空間速度0.5から50/時間で通液することが好ましい。
【0014】
いずれの方法においても、接触させる場合の温度に制限はないが、有機ホスホン酸は一般に水溶液として強酸性陽イオン交換樹脂と接触させるため、10〜90℃で接触させることが好ましい。
【0015】
強酸性陽イオン交換樹脂は、使用に伴い金属吸着能が低下する。その場合、酸の水溶液と接触させ、金属塩となった酸性基を水素型に変換した後、水洗して、繰り返し使用できる。酸の水溶液を接触させる方法、用いる酸の種類および濃度、水洗方法に特に制限はなく、市販の強酸性陽イオン交換樹脂を水素型に変換する場合と同様の方法で行うことができる。
【0016】
【実施例】
以下に本発明を実施例によって詳細に説明するが、本発明は実施例によって制限されるものでない。なお、有機ホスホン酸水溶液中の金属濃度はICP発光分析により求めた。
【0017】
実施例1
強酸性陽イオン交換樹脂アンバーライトIR120Bを50mL充填したカラムに1N硫酸水溶液を空間速度5/時間で3時間通液して水素型に変換した後、イオン交換水を通液し水洗した。その後、樹脂を取り出し、5.0重量%のアミノトリ(メチレンホスホン酸)水溶液300mL中に浸漬、静置した。樹脂と接触させる前の水溶液は、ナトリウム0.40ppm、カルシウム1.33ppm、マグネシウム0.18ppmを含んでいた。24時間経過した後の水溶液は、ナトリウム0.08ppm、カルシウム0.07ppmを含み、マグネシウム濃度は0.05ppm以下であった。
【0018】
実施例2
強酸性陽イオン交換樹脂アンバーライトIR120Bを50mL充填したカラムに1N硫酸水溶液を空間速度5/時間で3時間通液して水素型に変換した後、イオン交換水を通液し水洗した。その後、5.0重量%のアミノトリ(メチレンホスホン酸)水溶液300mLを空間速度10/時間で通液した。通液前の水溶液は、ナトリウム0.40ppm、カルシウム1.33ppm、マグネシウム0.18ppmを含んでいた。通液後の水溶液のナトリウム、カルシウム、マグネシウム濃度は、いずれも0.05ppm以下であった。
【0019】
実施例3
強酸性陽イオン交換樹脂ダイヤイオンPK212を50mL充填したカラムに1N硫酸水溶液を空間速度5/時間で3時間通液して水素型に変換した後、イオン交換水を通液し水洗した。その後、5.0重量%のアミノトリ(メチレンホスホン酸)水溶液300mLを空間速度10/時間で通液した。通液前の水溶液は、ナトリウム0.40ppm、カルシウム1.33ppm、マグネシウム0.18ppmを含んでいた。通液後の水溶液のナトリウム、カルシウム、マグネシウム濃度は、いずれも0.05ppm以下であった。
【0020】
比較例1
三菱化学株式会社製の弱酸性陽イオン交換樹脂ダイヤイオンWK40を50mL充填したカラムにイオン交換水を通液し水洗した。その後、5.0重量%のアミノトリ(メチレンホスホン酸)水溶液300mLを空間速度10/時間で通液した。通液前の水溶液は、ナトリウム0.40ppm、カルシウム1.33ppm、マグネシウム0.18ppmを含んでいた。通液後の水溶液は、ナトリウム0.31ppm、カルシウム1.35ppm、マグネシウム0.18ppmを含んでいた。
【0021】
比較例2
三菱化学株式会社製のキレート樹脂ダイヤイオンCR11を50mL充填したカラムに1N硫酸水溶液を空間速度5/時間で3時間通液して水素型に変換した後、イオン交換水を通液し水洗した。その後、5.0重量%のアミノトリ(メチレンホスホン酸)水溶液300mLを空間速度10/時間で通液した。通液前の水溶液は、ナトリウム0.40ppm、カルシウム1.33ppm、マグネシウム0.18ppmを含んでいた。通液後の水溶液は、ナトリウム0.25ppm、カルシウム1.15ppm、マグネシウム0.14ppmを含んでいた。
【0022】
実施例4
強酸性陽イオン交換樹脂アンバーライトIR120Bを50mL充填したカラムに1N硫酸水溶液を空間速度5/時間で3時間通液して水素型に変換した後、イオン交換水を通液し水洗した。その後、2.0重量%のエチレンジアミンテトラ(メチレンホスホン酸)水溶液300mLを空間速度10/時間で通液した。通液前の水溶液は、ナトリウム0.27ppm、カルシウム0.59ppmを含んでいた。通液後の水溶液のナトリウム、カルシウム濃度は、いずれも0.05ppm以下であった。
【0023】
実施例5
強酸性陽イオン交換樹脂アンバーライトIR120Bを50mL充填したカラムに1N硫酸水溶液を空間速度5/時間で3時間通液して水素型に変換した後、イオン交換水を通液し水洗した。その後、5.0重量%のジエチレントリアミンペンタ(メチレンホスホン酸)水溶液300mLを空間速度10/時間で通液した。通液前の水溶液は、ナトリウム3.23ppm、カルシウム4.47ppm、マグネシウム0.21ppm、亜鉛0.09ppmを含んでいた。通液後の水溶液のナトリウム、カルシウム、マグネシウム、および亜鉛濃度は、いずれも0.05ppm以下であった。
【0024】
【発明の効果】
本発明の方法により、金属不純物含量が極めて少ない有機ホスホン酸を得ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying an organic phosphonic acid.
[0002]
[Prior art]
Organic phosphonic acids are well known as chelating agents for metal ions, and are widely used as scale removers and stabilizers for peroxides that decompose in the presence of trace amounts of metals. Applied to various fields.
[0003]
As a method for producing organic phosphonic acid, a method of obtaining aminoalkylenephosphonic acid from ammonia or amine, aldehyde or ketone and phosphonic acid under acidic conditions of hydrochloric acid (US Pat. No. 3,288,846, Journal of Organic Chemistry, Vol. 31, page 1603). ) Etc. are known.
[0004]
However, the organic phosphonic acid produced by a general method or obtained as a commercial product is a metal brought in from raw materials or reaction equipment, such as heavy metals such as Fe, alkali metals such as Na, alkaline earth metals such as Ca, etc. Even when the amount of impurities is small, it is almost 1 ppm or more. Such an organic phosphonic acid containing a trace amount of metal impurities may be adversely affected by the metal impurities when used in certain specific applications such as the electronics industry and medical related fields.
[0005]
As a means for removing the metal from the organic phosphonic acid, it is possible to add an acid to the organic phosphonic acid aqueous solution and crystallize and separate the organic phosphonic acid as a solid acid. However, many organic phosphonic acids have a very high affinity with various metals, and it is difficult to remove a trace amount of metal impurities as described above, and no effective method has been proposed.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems in the prior art and provide an organic phosphonic acid having a very low metal impurity content.
[0007]
[Means for Solving the Problems]
The present inventors have found that trace amounts of metal impurities can be removed by bringing an organic phosphonic acid into contact with a strongly acidic cation exchange resin, and the present invention has been achieved. That is, the present invention relates to a method for purifying an organic phosphonic acid, which comprises contacting an organic phosphonic acid having one or more phosphonic acid groups or a salt thereof in a molecule with a strongly acidic cation exchange resin. In order to further increase the degree of purification, it may be combined with a step of electrodialyzing an organic phosphonic acid aqueous solution.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The organic phosphonic acid of the present invention is a compound containing in the molecule at least one phosphonic acid group or a salt thereof, specifically, methyldiphosphonic acid, ethylidene diphosphonic acid, 1-hydroxyethylidene-1, 1-diphosphonic acid, 1-hydroxypropylidene-1,1-diphosphonic acid, 1-hydroxybutylidene-1,1-diphosphonic acid, ethylaminobis (methylenephosphonic acid), dodecylaminobis (methylenephosphonic acid), ethylenediamine Bis (methylenephosphonic acid), aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), 1,2-propylenediaminetetra (methylenephosphonic acid), hexamethylenediaminetetra (methylenephosphonic acid), cyclohexanediaminetetra (methylene Phosphonic acid), Recall ether diamine tetra (methylene phosphonic acid), diethylene triamine penta (methylene phosphonic acid), triethylene tetramine hexa (methylene phosphonic acid), tri (2-aminoethyl) amine hexa (methylene phosphonic acid), tetraethylene pentamine hepta (methylene phosphone) Acid), pentaethylenehexamine octa (methylenephosphonic acid), and salts thereof, and oxidants thereof.
[0009]
The organic phosphonic acid is generally contacted with the strongly acidic cation exchange resin as an aqueous solution. The solubility of the organic phosphonic acid in water varies depending on each compound and is wide, but it is preferably a uniform solution in which the organic phosphonic acid does not precipitate.
[0010]
The strongly acidic cation exchange resin is preferably composed of a mechanically and chemically stable matrix, and for example, a styrene-divinylbenzene copolymer as a matrix can be suitably used. The strongly acidic cation exchange resin has a strongly acidic group typified by a sulfonic acid group or a salt thereof, and commercially available products such as Amberlite IR120B and 201B manufactured by Organo Corporation and Mitsubishi Chemical Corporation. There are Diaion SK1B and PK212.
[0011]
Since these strongly acidic cation exchange resins are generally marketed in the form of sodium salt, the acidic group is contacted with an aqueous solution of acid to convert the acidic group to a hydrogen form, washed with water, and then contacted with organic phosphonic acid. Let There are no particular restrictions on the type and concentration of the acid used, and the washing method. After contacting an acidic aqueous solution such as hydrochloric acid or sulfuric acid with a strongly acidic cation exchange resin in a batch or flow manner, water and strong acid are treated in the same manner. What is necessary is just to contact cation exchange resin. At this time, if the water used for washing contains metal, the metal is adsorbed on the ion exchange resin, and the hydrogen type acidic group changes to the metal salt type, so that the metal content like ion exchange water or ultrapure water. Is preferably used.
[0012]
As a method of bringing the organic phosphonic acid into contact with the strong acid cation exchange resin, (1) a method of immersing the strong acid cation exchange resin in an organic phosphonic acid aqueous solution, and (2) a packed tower packed with the strong acid cation exchange resin There is a method of passing an organic phosphonic acid aqueous solution.
[0013]
In the method (1), an organic phosphonic acid aqueous solution or a strongly acidic cation exchange resin can be flowed by a method such as stirring to increase the contact efficiency between them. In the method (2), the liquid passing speed is not particularly limited, but it is preferable to pass the liquid at a space speed of 0.5 to 50 / hour.
[0014]
In any method, there is no limitation on the temperature when contacting, but it is preferable that the organic phosphonic acid is brought into contact with a strongly acidic cation exchange resin as an aqueous solution at 10 to 90 ° C.
[0015]
Strongly acidic cation exchange resins have a reduced metal adsorption capacity with use. In that case, after contacting with an acid aqueous solution and converting the acidic group which became a metal salt into a hydrogen form, it can be washed with water and used repeatedly. There are no particular limitations on the method of contacting an acid aqueous solution, the type and concentration of the acid used, and the method of washing with water, and the method can be carried out in the same manner as when a commercially available strong acidic cation exchange resin is converted to the hydrogen type.
[0016]
【Example】
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the examples. The metal concentration in the organic phosphonic acid aqueous solution was determined by ICP emission analysis.
[0017]
Example 1
A 1N aqueous sulfuric acid solution was passed through a column packed with 50 mL of strongly acidic cation exchange resin Amberlite IR120B for 3 hours at a space velocity of 5 / hour to convert it into a hydrogen type, and then ion exchanged water was passed through and washed. Thereafter, the resin was taken out and immersed in a 5.0% by weight aminotri (methylenephosphonic acid) aqueous solution (300 mL) and allowed to stand. The aqueous solution before contact with the resin contained 0.40 ppm sodium, 1.33 ppm calcium, and 0.18 ppm magnesium. After 24 hours, the aqueous solution contained 0.08 ppm sodium and 0.07 ppm calcium, and the magnesium concentration was 0.05 ppm or less.
[0018]
Example 2
A 1N aqueous sulfuric acid solution was passed through a column packed with 50 mL of strongly acidic cation exchange resin Amberlite IR120B for 3 hours at a space velocity of 5 / hour to convert it into a hydrogen type, and then ion exchanged water was passed through and washed. Thereafter, 300 mL of a 5.0 wt% aqueous aminotri (methylenephosphonic acid) solution was passed at a space velocity of 10 / hour. The aqueous solution before passing through contained 0.40 ppm sodium, 1.33 ppm calcium, and 0.18 ppm magnesium. The sodium, calcium, and magnesium concentrations of the aqueous solution after passing were all 0.05 ppm or less.
[0019]
Example 3
A 1N sulfuric acid aqueous solution was passed through a column packed with 50 mL of strongly acidic cation exchange resin Diaion PK212 for 3 hours at a space velocity of 5 / hour to convert to a hydrogen type, and then ion-exchanged water was passed through and washed. Thereafter, 300 mL of a 5.0 wt% aqueous aminotri (methylenephosphonic acid) solution was passed at a space velocity of 10 / hour. The aqueous solution before passing through contained 0.40 ppm sodium, 1.33 ppm calcium, and 0.18 ppm magnesium. The sodium, calcium, and magnesium concentrations of the aqueous solution after passing were all 0.05 ppm or less.
[0020]
Comparative Example 1
Ion exchange water was passed through a column packed with 50 mL of weakly acidic cation exchange resin Diaion WK40 manufactured by Mitsubishi Chemical Corporation and washed with water. Thereafter, 300 mL of a 5.0 wt% aqueous aminotri (methylenephosphonic acid) solution was passed at a space velocity of 10 / hour. The aqueous solution before passing through contained 0.40 ppm sodium, 1.33 ppm calcium, and 0.18 ppm magnesium. The aqueous solution after passing through contained 0.31 ppm of sodium, 1.35 ppm of calcium, and 0.18 ppm of magnesium.
[0021]
Comparative Example 2
A 1N sulfuric acid aqueous solution was passed through a column packed with 50 mL of a chelate resin Diaion CR11 manufactured by Mitsubishi Chemical Corporation for 3 hours at a space velocity of 5 / hour to convert to a hydrogen type, and then ion-exchanged water was passed through and washed. Thereafter, 300 mL of a 5.0 wt% aqueous aminotri (methylenephosphonic acid) solution was passed at a space velocity of 10 / hour. The aqueous solution before passing through contained 0.40 ppm sodium, 1.33 ppm calcium, and 0.18 ppm magnesium. The aqueous solution after passing through contained sodium 0.25 ppm, calcium 1.15 ppm, and magnesium 0.14 ppm.
[0022]
Example 4
A 1N aqueous sulfuric acid solution was passed through a column packed with 50 mL of strongly acidic cation exchange resin Amberlite IR120B for 3 hours at a space velocity of 5 / hour to convert it into a hydrogen type, and then ion exchanged water was passed through and washed. Thereafter, 300 mL of a 2.0 wt% ethylenediaminetetra (methylenephosphonic acid) aqueous solution was passed at a space velocity of 10 / hour. The aqueous solution before passing through contained 0.27 ppm sodium and 0.59 ppm calcium. The sodium and calcium concentrations of the aqueous solution after passing were both 0.05 ppm or less.
[0023]
Example 5
A 1N aqueous sulfuric acid solution was passed through a column packed with 50 mL of strongly acidic cation exchange resin Amberlite IR120B for 3 hours at a space velocity of 5 / hour to convert it into a hydrogen type, and then ion exchanged water was passed through and washed. Thereafter, 300 mL of a 5.0 wt% aqueous solution of diethylenetriaminepenta (methylenephosphonic acid) was passed at a space velocity of 10 / hour. The aqueous solution before passing through contained 3.23 ppm sodium, 4.47 ppm calcium, 0.21 ppm magnesium, and 0.09 ppm zinc. The sodium, calcium, magnesium, and zinc concentrations of the aqueous solution after passing were all 0.05 ppm or less.
[0024]
【The invention's effect】
By the method of the present invention, an organic phosphonic acid having a very low metal impurity content can be obtained.

Claims (1)

アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、1,2−プロピレンジアミンテトラ(メチレンホスホン酸)、またはジエチレントリアミンペンタ(メチレンホスホン酸)を強酸性陽イオン交換樹脂に接触させることを特徴とする有機ホスホン酸の精製方法。  Characterized by contacting aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), 1,2-propylenediaminetetra (methylenephosphonic acid), or diethylenetriaminepenta (methylenephosphonic acid) with a strongly acidic cation exchange resin. To purify organic phosphonic acid.
JP2000285427A 2000-09-20 2000-09-20 Purification method of organic phosphonic acid Expired - Lifetime JP4508394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000285427A JP4508394B2 (en) 2000-09-20 2000-09-20 Purification method of organic phosphonic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285427A JP4508394B2 (en) 2000-09-20 2000-09-20 Purification method of organic phosphonic acid

Publications (2)

Publication Number Publication Date
JP2002097193A JP2002097193A (en) 2002-04-02
JP4508394B2 true JP4508394B2 (en) 2010-07-21

Family

ID=18769499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285427A Expired - Lifetime JP4508394B2 (en) 2000-09-20 2000-09-20 Purification method of organic phosphonic acid

Country Status (1)

Country Link
JP (1) JP4508394B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR054096A1 (en) * 2004-11-12 2007-06-06 Monsanto Technology Llc RECOVERY OF NOBLE METALS OF WATER PROCESS CURRENTS AND PREPARATION PROCESS OF N- (PHOSPHONOMETIL) -GLYCINE
JP2007022956A (en) * 2005-07-15 2007-02-01 Mitsubishi Gas Chem Co Inc Method for producing high purity aminomethylene phosphonic acid
JP4775095B2 (en) * 2006-04-24 2011-09-21 三菱瓦斯化学株式会社 Method for producing high purity aminomethylene phosphonic acid
JP5650031B2 (en) * 2011-03-29 2015-01-07 株式会社ケミクレア Purification method for Horner-Wadsworth-Emmons reagent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133928A (en) * 1976-05-03 1977-11-09 Monsanto Co Nnphosphonomethylglycine derivative

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133928A (en) * 1976-05-03 1977-11-09 Monsanto Co Nnphosphonomethylglycine derivative

Also Published As

Publication number Publication date
JP2002097193A (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US5055286A (en) Process for preparing high purity hydrogen peroxide
JP2629507B2 (en) Purification method of hydrogen peroxide solution
JPS5943879A (en) Composition for etching print circuit using hydrogen peroxide-containing sulfuric acid solution and method therefor
WO2017057320A1 (en) High-purity carboxylic acid ester and method for producing same
JP4508394B2 (en) Purification method of organic phosphonic acid
JP4948727B2 (en) Method for producing a highly stable hydroxylamine solution
JP3171058B2 (en) Hydrogen peroxide water purification method
JP5167253B2 (en) Processing method of developing waste liquid containing tetraalkylammonium ions
US5614165A (en) Process for purification of hydrogen peroxide
JP2007022956A (en) Method for producing high purity aminomethylene phosphonic acid
KR20180068958A (en) Method for producing purified aqueous silicate solution
CN1269727C (en) Method for producing aqueous hydroxylamine solutions which are substantially free of metal ions
US3156531A (en) Hydrogen peroxide purification
JP2006068680A (en) Denitrating reductant composition and producing method therefor
EP0957086A2 (en) Process for the removal of metal compounds from an aqueous acid solution
CA2124546A1 (en) Process for purification of hydrogen peroxide
JP4775095B2 (en) Method for producing high purity aminomethylene phosphonic acid
CN114450088A (en) Composition and method for regenerating cation exchange resins
JP2822183B2 (en) Method for recovering organic phosphorus compounds in aqueous solution
JPH0741307A (en) Method for purifying hydrogen peroxide
JP3852981B2 (en) Method for purifying hydrogen peroxide water
JP2003124173A (en) Cleaning liquid for semiconductor wafer
EP0113137B1 (en) Process for the preparation of pure silica
US3890431A (en) SO{HD 2 {L removal from gases
WO2008069136A1 (en) Method for purifying chemical added with chelating agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4508394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

EXPY Cancellation because of completion of term