JP4507720B2 - Deterioration determination method and deterioration determination device for lead acid battery - Google Patents

Deterioration determination method and deterioration determination device for lead acid battery Download PDF

Info

Publication number
JP4507720B2
JP4507720B2 JP2004190934A JP2004190934A JP4507720B2 JP 4507720 B2 JP4507720 B2 JP 4507720B2 JP 2004190934 A JP2004190934 A JP 2004190934A JP 2004190934 A JP2004190934 A JP 2004190934A JP 4507720 B2 JP4507720 B2 JP 4507720B2
Authority
JP
Japan
Prior art keywords
voltage
deterioration
open circuit
battery
engine start
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004190934A
Other languages
Japanese (ja)
Other versions
JP2006008038A (en
Inventor
美昭 町山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004190934A priority Critical patent/JP4507720B2/en
Publication of JP2006008038A publication Critical patent/JP2006008038A/en
Application granted granted Critical
Publication of JP4507720B2 publication Critical patent/JP4507720B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は鉛蓄電池の劣化判定方法及び劣化判定装置に係り、特に、開路電圧とエンジン始動電圧とから鉛蓄電池の劣化を判定する劣化判定方法及び劣化判定装置に関する。   The present invention relates to a deterioration determination method and a deterioration determination device for a lead storage battery, and more particularly, to a deterioration determination method and a deterioration determination device for determining deterioration of a lead storage battery from an open circuit voltage and an engine start voltage.

従来、車両に搭載された鉛蓄電池は、走行中、常にオルタネータによりフロート充電され、また、負荷もランプ類などに限られていたため、あまり深い充電はされず、ほぼ常時満充電付近に保たれ使用されてきた。しかし、近年、環境意識の高まりから、車両からの二酸化炭素の排出を削減する必要が生じ、特に、大型バスやトラック等では、信号待ちなどの停車時にエンジンを停止させるアイドルストップ機能を有するシステム車が増加してきている。   Conventionally, lead-acid batteries mounted on vehicles are always float-charged by an alternator during driving, and the load is limited to lamps, etc., so it is not charged too deep and is almost always fully charged and used. It has been. In recent years, however, environmental awareness has increased, and it has become necessary to reduce carbon dioxide emissions from vehicles. Especially in large buses and trucks, a system vehicle with an idle stop function that stops the engine when the vehicle is stopped, such as waiting for a signal. Has been increasing.

このようなシステム車では、エンジン停止中のエアコン、カーステレオなどの負荷はすべて鉛蓄電池からの電力で賄われるため、従来に比べ深い放電状態が増え、電池の残容量が少なくなるケースが増加すると予想される。また、これに伴って、電池の劣化も早まると予測される。一方、鉛蓄電池の出力は、残容量や劣化に依存するため、エンジン停止中に電池の残容量が小さくなると、エンジンが起動するのに充分な出力がなくなり、アイドルストップ後の再起動時に、エンジンがかからなくなるおそれがある。従って、鉛蓄電池の劣化を検知することは、エンジン始動を確保する上で特に重要である。   In such a system car, loads such as air conditioners and car stereos when the engine is stopped are all covered by power from lead-acid batteries, so the number of cases where the deep discharge state increases and the remaining capacity of the battery decreases compared to the conventional case will increase. is expected. Along with this, the deterioration of the battery is also expected to be accelerated. On the other hand, since the output of the lead storage battery depends on the remaining capacity and deterioration, if the remaining capacity of the battery becomes small while the engine is stopped, there will be insufficient output to start the engine, and the engine will be May be lost. Therefore, detecting the deterioration of the lead storage battery is particularly important for ensuring engine start.

鉛蓄電池の劣化状態を検知する具体例として、満充電状態の電池を短時間放電させ、放電前の電池電圧からの放電時の電池電圧の降下量(以下、放電時電圧降下量という。)を求め、これより予め求めておいた電池容量と放電時電圧降下量との関係図から、劣化状態を検知する方法が提案されている(例えば、特許文献1参照)。この方法では、劣化して容量の小さくなった鉛蓄電池は内部抵抗が大きくなり、放電時電圧降下量も大きくなることを利用しているため、満充電状態の電池の電圧降下量が電池の劣化状態を反映する限り、鉛蓄電池の劣化状態を適正に検出することができる。   As a specific example of detecting the deterioration state of a lead-acid battery, a fully charged battery is discharged for a short time, and a battery voltage drop amount (hereinafter referred to as a discharge voltage drop amount) at the time of discharge from a battery voltage before the discharge. A method for detecting a deterioration state from a relationship diagram between a battery capacity and a voltage drop during discharge obtained in advance has been proposed (see, for example, Patent Document 1). This method uses the fact that a lead-acid battery that has deteriorated and has a reduced capacity has a high internal resistance and a large voltage drop during discharge. As long as the state is reflected, the deterioration state of the lead storage battery can be detected appropriately.

特許第3192794号Japanese Patent No. 3192794

しかしながら、実際にエンジン始動用として長期間使用された鉛蓄電池の中には、満充電状態で、劣化していない電池と放電時電圧降下量の差がほとんどないにも拘らず、電池容量が極めて小さくなっているものが多数見られることが判明した。以下、このような電池を劣化電池Aと呼ぶことにすると、劣化電池Aは、満充電から少し放電しただけで放電容量がほとんど無くなってしまい、自動車エンジン始動用使用の際に、何ら兆候がないまま、例えば、ライトを少しの間点灯しただけで、エンジン始動が不能となる。   However, some lead-acid batteries that have actually been used for engine starting for a long period of time have a very high battery capacity despite the fact that there is almost no difference between the fully-degraded battery and the voltage drop during discharge. It turned out that many things which became small were seen. Hereinafter, when such a battery is referred to as a deteriorated battery A, the deteriorated battery A has almost no discharge capacity even after being slightly discharged from a full charge, and there is no sign in use for starting an automobile engine. For example, the engine cannot be started simply by turning on the light for a while.

本発明者は劣化電池Aの特性を詳細に検討した。その結果、劣化電池Aでは、満充電状態から僅かに放電しただけで、放電時電圧降下量が大幅に増加することが分かった。図1は、このことを模式的に示したものであり、鉛蓄電池の開路電圧OCVと放電時電圧Vstとの関係を表している。図1を作成するにあたって、実験方法として、鉛蓄電池を車両に搭載し、エンジン始動を行って、電池電圧が降下する際の最低電圧を測定した。放電の負荷にはエンジン始動用のセルモータを用いた。ある充電状態、すなわち、あるOCVでエンジン始動実験を行った後、電池を車両から降ろした。この電池を電子負荷放電装置により、所定の電気量を放電し、OCVが安定するまで放置し、再度電池を車両に搭載してエンジン始動実験を行った。これを繰り返すことにより、電池の充電状態(SOC)100%から0%までの放電電圧を測定した。図1における放電の負荷はエンジン始動であるため、以下、放電電圧をエンジン始動電圧Vstと呼ぶことにする。   The inventor examined the characteristics of the deteriorated battery A in detail. As a result, it was found that in the deteriorated battery A, the amount of voltage drop during discharge greatly increases only by slightly discharging from the fully charged state. FIG. 1 schematically shows this, and shows the relationship between the open circuit voltage OCV and the discharge voltage Vst of the lead storage battery. In creating FIG. 1, as an experimental method, a lead storage battery was mounted on a vehicle, the engine was started, and the minimum voltage when the battery voltage dropped was measured. A cell motor for starting the engine was used as a discharge load. After conducting an engine start experiment in a certain state of charge, that is, in a certain OCV, the battery was removed from the vehicle. The battery was discharged with a predetermined amount of electricity by an electronic load discharge device and left until the OCV was stabilized. The battery was mounted on the vehicle again and an engine start experiment was conducted. By repeating this, the discharge voltage from 100% to 0% of the state of charge (SOC) of the battery was measured. Since the discharge load in FIG. 1 is engine start, the discharge voltage is hereinafter referred to as engine start voltage Vst.

開路電圧は電池の充電状態の指標であり、ある開路電圧に対し、ある充電状態が1対1に対応する。図1において開路電圧の高い領域が充電状態の高い領域であり、最も開路電圧の高い点が満充電状態となる。図1に示すように、2種類の電池(新品電池、劣化電池A)は、各々12.9V前後が満充電状態となる。新品電池では、開路電圧を下げていくと、すなわち、満充電の状態から放電して充電状態が低下していくと、それにつれてVstも低下していく。Vstは鉛蓄電池の出力の尺度となり、Vstがある水準以下に低下した場合、エンジン始動不能となる。一方、劣化電池Aでは、満充電状態(OCV=12.9V前後)においてエンジン始動電圧Vstは新品電池と大きな差がない。しかし、この劣化電池Aを少し放電すると、Vstは急激に低下する。すなわち、劣化電池Aでは、エンジン始動用として使用中に、誤って放電させてしまった場合に、すぐにエンジン始動不可能になる可能性が大きい。そして、劣化電池Aは、上述した特許文献1の放電時電圧下降量を利用した方法では劣化判定が不能である。   The open circuit voltage is an indicator of the state of charge of the battery, and for a certain open circuit voltage, a certain state of charge corresponds one-to-one. In FIG. 1, the region where the open circuit voltage is high is the region where the charge state is high, and the point where the open circuit voltage is the highest is the fully charged state. As shown in FIG. 1, two types of batteries (new battery, deteriorated battery A) are each fully charged at around 12.9V. In a new battery, when the open circuit voltage is lowered, that is, when the state of charge is lowered by discharging from a fully charged state, Vst is also lowered accordingly. Vst is a measure of the output of the lead storage battery. When Vst drops below a certain level, the engine cannot be started. On the other hand, in the deteriorated battery A, the engine starting voltage Vst is not significantly different from that of a new battery in a fully charged state (OCV = 12.9 V). However, when the deteriorated battery A is discharged a little, Vst rapidly decreases. That is, with the deteriorated battery A, if it is accidentally discharged during use for starting the engine, there is a high possibility that the engine cannot be started immediately. And the deterioration determination of the deteriorated battery A is impossible by the method using the voltage drop amount at the time of discharge in Patent Document 1 described above.

本発明は上記事案に鑑み、放電電圧の低下では検出できない劣化モードの鉛蓄電池の劣化を正確に判定可能な劣化判定方法及び劣化判定装置を提供することを課題とする。   An object of the present invention is to provide a deterioration determination method and a deterioration determination apparatus capable of accurately determining deterioration of a lead-acid battery in a deterioration mode that cannot be detected by a decrease in discharge voltage.

上記課題を解決するために、本発明の第1の態様は、開路電圧(Vo)とエンジン始動電圧(Vst)とから鉛蓄電池の劣化を判定する劣化判定方法であって、異なる2つの時刻における前記鉛蓄電池の開路電圧(Vo1、Vo2)と、前記異なる2つの時刻のそれぞれ後の最初のエンジン始動時のエンジン始動電圧(Vst1、Vst2)とを測定し、前記測定した開路電圧(Vo1、Vo2)とエンジン始動電圧(Vst1、Vst2)とから、エンジン始動電圧の差分(ΔVst=Vst2−Vst1)を開路電圧の差分(ΔVo=Vo2−Vo1)で除算した劣化状態判定係数(α=ΔVst/ΔVo)を算出し、前記算出した劣化状態判定係数(α)が一定値以上で、かつ、前記測定した異なる2つの時刻における開路電圧(Vo1、Vo2)が一定の電圧値以上の場合に、前記鉛蓄電池が劣化していると判定する、ステップを含む。   In order to solve the above-described problem, a first aspect of the present invention is a deterioration determination method for determining deterioration of a lead storage battery from an open circuit voltage (Vo) and an engine start voltage (Vst), at two different times. An open circuit voltage (Vo1, Vo2) of the lead storage battery and an engine start voltage (Vst1, Vst2) at the first engine start after each of the two different times are measured, and the measured open circuit voltages (Vo1, Vo2). ) And the engine starting voltage (Vst1, Vst2), and a deterioration state determination coefficient (α = ΔVst / ΔVo) obtained by dividing the difference in engine starting voltage (ΔVst = Vst2−Vst1) by the difference in open circuit voltage (ΔVo = Vo2−Vo1). ), And the calculated deterioration state determination coefficient (α) is a certain value or more, and the open circuit voltage (Vo1,. If o2) is above a certain voltage value, it is determined that the lead storage battery is deteriorated, comprising.

また、本発明の第2の態様は、開路電圧(Vo)とエンジン始動電圧(Vst)とから鉛蓄電池の劣化を判定する劣化判定装置において、異なる2つの時刻における前記鉛蓄電池の開路電圧(Vo1、Vo2)と、前記異なる2つの時刻のそれぞれ後の最初のエンジン始動時のエンジン始動電圧(Vst1、Vst2)とを測定する電圧測定手段と、前記電圧測定手段により測定された開路電圧(Vo1、Vo2)とエンジン始動電圧(Vst1、Vst2)とから、エンジン始動電圧の差分(ΔVst=Vst2−Vst1)を開路電圧の差分(ΔVo=Vo2−Vo1)で除算した劣化状態判定係数(α=ΔVst/ΔVo)を算出する劣化係数算出手段と、前記劣化係数算出手段により算出された劣化状態判定係数(α)が一定値以上で、かつ、前記電圧測定手段により測定された異なる2つの時刻における開路電圧(Vo1、Vo2)が一定の電圧値以上の場合に、前記鉛蓄電池が劣化していると判定する劣化判定手段と、を備える。   Moreover, the 2nd aspect of this invention is the deterioration determination apparatus which determines deterioration of a lead storage battery from open circuit voltage (Vo) and engine starting voltage (Vst), and the open circuit voltage (Vo1) of the said lead storage battery in two different time. , Vo2) and a voltage measuring means for measuring an engine starting voltage (Vst1, Vst2) at the first engine starting after each of the two different times, and an open circuit voltage (Vo1, Vst2) measured by the voltage measuring means Vo2) and the engine start voltage (Vst1, Vst2), the deterioration state determination coefficient (α = ΔVst /) obtained by dividing the difference in engine start voltage (ΔVst = Vst2−Vst1) by the difference in open circuit voltage (ΔVo = Vo2−Vo1). A deterioration coefficient calculating means for calculating (ΔVo), and the deterioration state determination coefficient (α) calculated by the deterioration coefficient calculating means is a certain value or more, And a deterioration determining means for determining that the lead storage battery is deteriorated when the open circuit voltages (Vo1, Vo2) at two different times measured by the voltage measuring means are equal to or higher than a certain voltage value. .

本発明では、劣化電池Aは、新品電池と比較した場合、高OCV領域で、OCVの変化に対するVstの変化が大きいことに着目し、鉛蓄電池の劣化の判定を行う。すなわち、異なる2つ時刻における開路電圧(Vo1、Vo2)と、それらの時刻のそれぞれ後の最初のエンジン始動時のエンジン始動電圧(Vst1、Vst2)とを測定する。これらより、エンジン始動電圧の差分(ΔVst=Vst2−Vst1)を開路電圧の差分(ΔVo=Vo2−Vo1)で除算した劣化状態判定係数(α=ΔVst/ΔVo)を算出する。次に、劣化状態判定係数(α)が一定値以上で、かつ、開路電圧(Vo1、Vo2)が一定の電圧値以上の場合に、鉛蓄電池が劣化していると判定する。開路電圧(Vo1、Vo2)の閾値(一定値)も実際の鉛蓄電池の使用形態によって決定されるべきであるが、試験の結果、自動車エンジンの始動用鉛蓄電池としては、12.5V程度が適当であることが判明した。同様に、劣化状態判定係数(α)も実際の鉛蓄電池の使用形態によって決定されるべきであるが、試験の結果、自動車エンジンの始動用鉛蓄電池としては、α=2程度が適当であることが判明した。   In the present invention, when the deteriorated battery A is compared with a new battery, the deterioration of the lead storage battery is determined by focusing on the fact that the change in Vst with respect to the change in OCV is large in the high OCV region. That is, the open circuit voltages (Vo1, Vo2) at two different times and the engine start voltages (Vst1, Vst2) at the first engine start after each of those times are measured. From these, the deterioration state determination coefficient (α = ΔVst / ΔVo) is calculated by dividing the difference in engine starting voltage (ΔVst = Vst2−Vst1) by the difference in open circuit voltage (ΔVo = Vo2−Vo1). Next, when the deterioration state determination coefficient (α) is a certain value or more and the open circuit voltages (Vo1, Vo2) are a certain voltage value or more, it is determined that the lead storage battery is deteriorated. The threshold value (constant value) of the open circuit voltage (Vo1, Vo2) should also be determined by the actual usage of the lead acid battery, but as a result of the test, about 12.5V is appropriate as a lead acid battery for starting an automobile engine. It turned out to be. Similarly, the degradation condition determination coefficient (α) should be determined according to the actual usage form of the lead storage battery. However, as a result of the test, about α = 2 is appropriate as a lead storage battery for starting an automobile engine. There was found.

本発明によれば、劣化状態判定係数(α)が一定値以上で、かつ、異なる2つの時刻における開路電圧(Vo1、Vo2)が一定の電圧値以上の場合に、鉛蓄電池が劣化していると判定するので、放電電圧の低下では検出できない劣化モードの鉛蓄電池の劣化を検出することができ、従来完全には防止できなかったエンジン始動不良を未然に防止することができる、という効果を得ることができる。   According to the present invention, the lead-acid battery is deteriorated when the deterioration state determination coefficient (α) is a certain value or more and the open circuit voltages (Vo1, Vo2) at two different times are more than a certain voltage value. Therefore, it is possible to detect the deterioration of the lead-acid battery in the deterioration mode that cannot be detected by the decrease in the discharge voltage, and to prevent the engine starting failure that could not be completely prevented conventionally. be able to.

以下、本発明をガソリンエンジン車、ディーゼルエンジン車等の内燃機関システムに適用した実施の形態について説明する。   Hereinafter, embodiments in which the present invention is applied to an internal combustion engine system such as a gasoline engine vehicle or a diesel engine vehicle will be described.

具体的な判定に必要なデータの測定方法としては以下のようになる。まず、任意のタイミングt1で、鉛蓄電池の開路電圧OCVを測定し、これをVo1とする。次に、t1の直近のタイミングでエンジン始動電圧の測定を行う。これをVst1とする。その後、この鉛蓄電池を通常通りに使用する。使用中には使用形態にもよるが、放電、充電の繰り返しにより、SOCが変化し、それに伴ってOCVも変化していく。そして、ある期間鉛蓄電池を使用し、OCVが変化したタイミングt2で、鉛蓄電池のOCVを測定し、これをVo2とする。使用期間としては、電池が経時劣化しない程度の短いものが好ましい(たとえば、t1からt2の間は1ヶ月以内が好ましい。)。また、Vo2の値としては、Vo1の値とある程度の差がなければならないが、鉛蓄電池の通常の使用状態で、充分に測定条件を満たす状態が実現されている。   The method of measuring data necessary for specific determination is as follows. First, at an arbitrary timing t1, the open circuit voltage OCV of the lead storage battery is measured and is designated as Vo1. Next, the engine starting voltage is measured at the timing closest to t1. This is Vst1. Then, this lead acid battery is used as usual. While in use, depending on the mode of use, the SOC changes due to repeated discharge and charge, and the OCV changes accordingly. Then, the lead storage battery is used for a certain period, and at the timing t2 when the OCV changes, the OCV of the lead storage battery is measured and is designated as Vo2. The period of use is preferably short so that the battery does not deteriorate with time (for example, the period between t1 and t2 is preferably within one month). Further, the value of Vo2 must be somewhat different from the value of Vo1, but a state in which the measurement condition is sufficiently satisfied is realized in a normal use state of the lead storage battery.

続いて、t2の直近のタイミングでエンジン始動電圧の測定を行ない、これをVst2とする。データは、必要度に応じて測定頻度を高くすればよいが、鉛蓄電池に充電制御装置が付属して使用される場合など、場合によっては、Vo1、Vst1を測定直後に放電装置によって放電してやることにより、すぐにVo2、Vst2を測定可能になり、判定の迅速化も可能である。   Subsequently, the engine starting voltage is measured at the timing closest to t2, and this is set as Vst2. The data may be measured at a higher frequency according to necessity, but in some cases, such as when a lead storage battery is used with a charge control device, Vo1 and Vst1 may be discharged by the discharge device immediately after measurement. Thus, Vo2 and Vst2 can be measured immediately, and the determination can be speeded up.

次に、開路電圧の差分(ΔVo=Vo2−Vo1)と、エンジン始動電圧の差分(ΔVst=Vst2−Vst1)とを算出し、エンジン始動電圧の差分(ΔVst)を開路電圧の差分(ΔVo)で除算した劣化状態判定係数(α=ΔVst/ΔVo)を算出する。   Next, an open circuit voltage difference (ΔVo = Vo2−Vo1) and an engine start voltage difference (ΔVst = Vst2−Vst1) are calculated, and the engine start voltage difference (ΔVst) is calculated as an open circuit voltage difference (ΔVo). The divided deterioration state determination coefficient (α = ΔVst / ΔVo) is calculated.

次いで、劣化状態判定係数(α)が2.0以上で、かつ、2つの時刻における開路電圧(Vo1、Vo2)が12.5V以上か否かを判断し、肯定判断の場合に、鉛蓄電池が劣化していると判定し、否定判断の場合に鉛蓄電池が劣化していないと判定する。そして、鉛蓄電池が劣化していると判定したときには、ドライバに報知するために、所定の信号を出力する。このような報知形態としては、例えば、鉛蓄電池側に配されたLEDを点灯させラッチするサイリスタのゲートに信号を入力するようにしてもよいし、液晶表示装置に表示するようにしてもよい。また、上述した測定、算出、判定を行うバッテリコントローラから、バッテリコントローラの上位コントローラとなる車両コントローラに通信により報知し、車両コントローラがインストールメントパネルに表示させるようにしてもよい。   Next, it is determined whether the deterioration condition determination coefficient (α) is 2.0 or more and the open circuit voltages (Vo1, Vo2) at two times are 12.5V or more. It determines with having deteriorated, and in the case of negative determination, it determines with the lead acid battery not having deteriorated. And when it determines with the lead acid battery having deteriorated, in order to alert | report to a driver, a predetermined signal is output. As such a notification form, for example, a signal may be input to the gate of a thyristor that lights and latches an LED disposed on the lead storage battery side, or may be displayed on a liquid crystal display device. Further, the battery controller that performs the above-described measurement, calculation, and determination may be notified by communication to a vehicle controller that is a host controller of the battery controller, and the vehicle controller may display on the installation panel.

また、データ採取(電圧の測定)、劣化状態判定係数(α)の算出(演算)、劣化の判定、結果の報知も、現在、安価なADコンバータ、マイクロプロセッサなどが入手可能であり、これらを用いて一体型の判定装置を構成することも可能であり、以下、一構成例について説明する。   In addition, inexpensive AD converters, microprocessors, etc. are currently available for data collection (voltage measurement), calculation (calculation) of degradation condition determination coefficient (α), determination of degradation, and notification of results. It is also possible to configure an integrated determination device, and one configuration example will be described below.

図2に示すように、劣化度判定装置としてのバッテリコントローラ10は、エンジン等の車両側の制御を行う車両コントローラ20の下位装置として機能し、中央演算処理装置として機能するCPUと、バッテリコントローラ10の基本制御プログラムが記憶されたROMと、CPUのワークエリアとして働くと共にデータを一時的に記憶するRAMとを有するマイコン2、マイコン2の外部バスに接続され不揮発性メモリとして機能するEPROM3、鉛蓄電池1のアナログ電圧をデジタル電圧に変換する電圧測定手段の一部としてのA/Dコンバータ、及び、車両コントローラ20との通信を行うためのインターフェイスを含んで構成されており、通信線により車両コントローラ20と接続されている。なお、A/Dコンバータは汎用品が使用可能であり、鉛蓄電池1の動作電圧の範囲で数mVの精度で測定する必要があるために、分解能は14ビット以上で応答速度は1データ/秒が望ましい。   As shown in FIG. 2, the battery controller 10 as a deterioration degree determination device functions as a subordinate device of the vehicle controller 20 that performs vehicle-side control of the engine or the like, a CPU that functions as a central processing unit, and the battery controller 10. A microcomputer 2 having a ROM in which a basic control program is stored, a RAM that serves as a work area for the CPU and temporarily stores data, an EPROM 3 connected to an external bus of the microcomputer 2 and functioning as a nonvolatile memory, a lead-acid battery 1 includes an A / D converter as a part of voltage measuring means for converting an analog voltage into a digital voltage, and an interface for performing communication with the vehicle controller 20, and the vehicle controller 20 is connected by a communication line. Connected with. The A / D converter can be a general-purpose product and needs to be measured with an accuracy of several mV within the operating voltage range of the lead-acid battery 1. Therefore, the resolution is 14 bits or more and the response speed is 1 data / second. Is desirable.

鉛蓄電池1の正極外部出力端子は、イグニッションスイッチ(以下、IGNと略称する。)11の中央端子に接続されている。IGN11は、中央端子とは別に、OFF端子、ON/ACC端子及びSTART端子を有しており、中央端子とこれらOFF、ON/ACC及びSTART端子のいずれかとは、ロータリー式に切り替え接続が可能である。IGN11のON/ACC端子、START端子側には、鉛蓄電池1の負荷となり、モータジェネレータ、スタータ、発電機等を表すMG12が接続されている。一方、鉛蓄電池1の負極外部出力端子はグランドに接続されている。   A positive external output terminal of the lead storage battery 1 is connected to a central terminal of an ignition switch (hereinafter abbreviated as IGN) 11. The IGN11 has an OFF terminal, an ON / ACC terminal, and a START terminal in addition to the central terminal. The central terminal and any of these OFF, ON / ACC, and START terminals can be switched in a rotary manner. is there. An MG 12 serving as a load of the lead storage battery 1 and representing a motor generator, a starter, a generator, and the like is connected to the ON / ACC terminal and the START terminal side of the IGN 11. On the other hand, the negative electrode external output terminal of the lead storage battery 1 is connected to the ground.

従って、バッテリコントローラ10のマイコン2は、鉛蓄電池1の両端電圧をデジタル値として取り込むことが可能であり、電圧測定手段、劣化係数算出手段、劣化判定手段として機能すると共に、鉛蓄電池1が劣化していると判定したときに車両コントローラ20に通信によりその旨を報知する。なお、EPROM3には、Vo1、Vst1が記憶され、劣化状態判定係数(α)を算出するときに、Vo1、Vst1が読み出される。   Therefore, the microcomputer 2 of the battery controller 10 can take in the voltage between both ends of the lead storage battery 1 as a digital value, and functions as a voltage measurement means, a deterioration coefficient calculation means, a deterioration determination means, and the lead storage battery 1 deteriorates. When it is determined that the vehicle controller 20 is informed, the vehicle controller 20 is notified by communication. Note that Vo1 and Vst1 are stored in the EPROM 3, and when the deterioration state determination coefficient (α) is calculated, Vo1 and Vst1 are read out.

このような構成例では、マイコン2(のCPU)は、エンジン始動時を把握する必要がある。エンジン始動時に鉛蓄電池1の電圧は急激に降下し、その後上昇する。このため、例えば、IGN11がON/ACC端子に接続された旨を車両コントローラから報知を受け、鉛蓄電池1の放電電圧を所定のサンプリング時間毎に測定し(取り込み)、最も低い電圧をエンジン始動電圧Vstとするようにしてもよい。また、車両コントローラ20から報知を受けなくても、図2に点線で示したように、ホール素子等の電流センサ4を挿入してエンジン始動時を把握するようにしてもよい。この例では、バッテリコントローラ10が電流センサ4に接続された電流測定用のA/Dコンバータを有する必要がある。マイコン2は、電流測定用のA/Dコンバータから電流値を取り込み、所定値(例えば、0.1A)未満のときは、IGN11がOFF端子に接続されているものとみなし、取り込んだ電流値が所定値以上のときに、鉛蓄電池1の放電電圧を所定のサンプリング時間毎に測定し(取り込み)、最も低い電圧をエンジン始動電圧Vstとすればよい。   In such a configuration example, the microcomputer 2 (its CPU) needs to grasp when the engine is started. When the engine is started, the voltage of the lead-acid battery 1 rapidly decreases and then increases. Therefore, for example, the vehicle controller is notified that the IGN 11 is connected to the ON / ACC terminal, the discharge voltage of the lead storage battery 1 is measured (captured) every predetermined sampling time, and the lowest voltage is set as the engine starting voltage. Vst may be set. Further, even when no notification is received from the vehicle controller 20, as indicated by a dotted line in FIG. In this example, the battery controller 10 needs to have an A / D converter for current measurement connected to the current sensor 4. The microcomputer 2 captures the current value from the A / D converter for current measurement, and if it is less than a predetermined value (for example, 0.1 A), it is assumed that the IGN 11 is connected to the OFF terminal, and the captured current value is When the value is equal to or greater than the predetermined value, the discharge voltage of the lead storage battery 1 is measured (captured) every predetermined sampling time, and the lowest voltage may be set as the engine starting voltage Vst.

次に、鉛蓄電池1が劣化しているか否かの基準となる、劣化状態判定係数(α)の基準値(一定値)及び開路電圧(Vo1、Vo2)の基準値(一定の電圧値)を設定するために実施した実施例について説明する。   Next, the reference value (constant value) of the deterioration state determination coefficient (α) and the reference value (constant voltage value) of the open circuit voltages (Vo1, Vo2), which are criteria for determining whether or not the lead storage battery 1 is deteriorated. An embodiment carried out for setting will be described.

上述した内燃機関システムとして、排気量2000ccの電子制御燃料噴射装置付きのガソリンエンジン自動車を選んだ。新車で搭載されている鉛蓄電池1はJIS規格55B24サイズのものである。   As the internal combustion engine system described above, a gasoline engine vehicle with an electronically controlled fuel injection device with a displacement of 2000 cc was selected. The lead-acid battery 1 installed in the new vehicle is of JIS standard 55B24 size.

(実験1)
公称容量36AhのJIS55B24の劣化電池Aを用意した。劣化電池Aは自家用車で約3年間、走行距離にして約40000km使用されたものである。始めにこの劣化電池Aを14.5V定電圧、15時間、制限電流5時間率(7.2A)で完全充電した。完全充電後、5時間率電流で終止電圧10.5Vまで放電し、容量確認した。容量は8.9Ahであった。容量測定後、劣化電池Aを再度同じ条件で充電し、満充電とした。
(Experiment 1)
A deteriorated battery A of JIS55B24 having a nominal capacity of 36 Ah was prepared. The deteriorated battery A is a private car that has been used for about 34,000 years as a mileage. First, the deteriorated battery A was fully charged at a constant voltage of 14.5 V, 15 hours, and a 5-hour rate of limiting current (7.2 A). After complete charging, the battery was discharged at a 5 hour rate current to a final voltage of 10.5 V, and the capacity was confirmed. The capacity was 8.9 Ah. After the capacity measurement, the deteriorated battery A was charged again under the same conditions to be fully charged.

続いて、劣化電池Aをガソリンエンジン自動車に取り付けた。エンジンを始動しない状態で劣化電池Aの端子電圧を測定した。この際には自動車のキーを抜いておき、自動車の待機電流が最小になるように留意した。この電圧を開路電圧Vo1とした。   Subsequently, the deteriorated battery A was attached to a gasoline engine vehicle. The terminal voltage of the deteriorated battery A was measured without starting the engine. At this time, the car key was pulled out so as to minimize the standby current of the car. This voltage was defined as the open circuit voltage Vo1.

次に、サンプリング速度1.0msの一般用デジタルレコーダで電池の端子電圧を測定、記録しながら、エンジンの始動キーを操作し、エンジンを始動した。得られた時間/端子電圧曲線からエンジン始動電圧Vst1を得た。一旦、劣化電池Aを前記自動車から取り外して、電子負荷放電装置に接続し、5時間率電流で10分間放電した。放電後1時間放置し、再度前記自動車に搭載し、Vo1、Vst1の測定手順と同じようにして、開路電圧Vo2とエンジン始動電圧Vst2を測定した。そして、得られたVo1、Vst1、Vo2、Vst2からαを算出した。   Next, the engine start key was operated to start the engine while measuring and recording the battery terminal voltage with a general digital recorder with a sampling rate of 1.0 ms. The engine starting voltage Vst1 was obtained from the obtained time / terminal voltage curve. Once the deteriorated battery A was removed from the automobile, it was connected to an electronic load discharge device and discharged at a 5 hour rate current for 10 minutes. The battery was left for 1 hour after discharge, mounted again on the automobile, and the open circuit voltage Vo2 and the engine starting voltage Vst2 were measured in the same manner as the measurement procedure for Vo1 and Vst1. Then, α was calculated from the obtained Vo1, Vst1, Vo2, and Vst2.

(実験2)
公称容量36AhのJIS55B24の新品電池を用意した。5時間率電流で終止電圧10.5Vまで放電し、容量確認した。容量は37Ahであった。容量測定後、劣化電池Aと同じ条件で充電し、満充電とした。以下、上述した実験1と同様にして、Vo1、Vst1、Vo2、Vst2を測定し、αを算出した。下表1に、以上の実験結果を示す。
(Experiment 2)
A new battery of JIS55B24 having a nominal capacity of 36 Ah was prepared. The battery was discharged at a current of 5 hours to a final voltage of 10.5 V, and the capacity was confirmed. The capacity was 37 Ah. After the capacity measurement, the battery was charged under the same conditions as the deteriorated battery A and was fully charged. Thereafter, Vo1, Vst1, Vo2, and Vst2 were measured and α was calculated in the same manner as in Experiment 1 described above. Table 1 below shows the above experimental results.

劣化電池Aと新品電池の放電容量を比較すると、新品電池が公称の36Ah以上の容量を持っており、劣化電池Aはそれに対して23.7%の容量である。これらの電池で満充電状態の放電時電圧降下量は殆ど差が無く、この値から電池の劣化状態を判定するのは困難である。一方、αを比較すると、劣化電池Aにおいては新品電池の約5倍という値になり、高い感度で劣化状態を判定可能である。   Comparing the discharge capacities of the deteriorated battery A and the new battery, the new battery has a nominal capacity of 36 Ah or more, and the deteriorated battery A has a capacity of 23.7%. There is almost no difference in the amount of voltage drop during discharge when these batteries are fully charged, and it is difficult to determine the deterioration state of the battery from this value. On the other hand, when α is compared, the deteriorated battery A has a value of about five times that of a new battery, and the deterioration state can be determined with high sensitivity.

上記は測定の一例であり、多数の劣化電池を用いて、上記の実験を行い、判定の精度を検証した。結果を図3、図4に示す。図3は劣化していると判定する電池のSOCを50%として、開路電圧の基準値(図3、4では判定閾値と表示)を変化させた時の、各αに対する検出率の変化を示したものである。α=1.0または2.0とした場合、開路電圧の基準値を12.5V以下とすることで、ほぼ全ての劣化電池を検出可能である。ところが、α=3.0とすると、開路電圧の基準値を更に下げた12.4Vとしても劣化検出ができない電池が発生する。図4は、逆に、SOH50%以上の電池を劣化していると誤判定する場合の確率を、開路電圧の基準値を変化させた時の、各αに対する変化を示したものである。α=2.0または3.0とした場合、開路電圧の基準値を12.5V以上とすることで誤判定はほぼ無視できるレベルとなる。ところが、α=1.0とすると、開路電圧の基準値を12.6V以上にしても誤判定は20%近くなり無視できないレベルとなる。以上の結果から、αの基準値としては2.0、開路電圧の基準値としては12.5Vを採用するのが最適であることが分かる。   The above is an example of measurement, and the above experiment was performed using a large number of deteriorated batteries to verify the accuracy of the determination. The results are shown in FIGS. FIG. 3 shows the change in the detection rate for each α when the SOC of the battery determined to be deteriorated is 50% and the reference value of the open circuit voltage (shown as the determination threshold in FIGS. 3 and 4) is changed. It is a thing. When α = 1.0 or 2.0, almost all deteriorated batteries can be detected by setting the reference value of the open circuit voltage to 12.5 V or less. However, when α = 3.0, a battery is generated in which deterioration cannot be detected even when the reference value of the open circuit voltage is further reduced to 12.4V. On the contrary, FIG. 4 shows the change with respect to each α when the reference value of the open circuit voltage is changed as the probability of erroneously determining that a battery having SOH of 50% or more is deteriorated. When α = 2.0 or 3.0, setting the reference value of the open circuit voltage to 12.5 V or more makes the erroneous determination almost negligible. However, when α = 1.0, even if the reference value of the open circuit voltage is 12.6 V or more, the erroneous determination is close to 20%, which is a level that cannot be ignored. From the above results, it is understood that it is optimal to adopt 2.0 as the reference value of α and 12.5 V as the reference value of the open circuit voltage.

本発明は放電電圧の低下では検出できない劣化モードの鉛蓄電池の劣化を正確に判定可能な劣化判定方法及び劣化判定装置を提供するため、鉛蓄電池ないし劣化判定装置の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a deterioration determination method and a deterioration determination device that can accurately determine deterioration of a lead storage battery in a deterioration mode that cannot be detected by a decrease in discharge voltage, it contributes to the manufacture and sale of lead storage batteries or deterioration determination devices. Has industrial applicability.

ガソリンエンジン自動車でのエンジン始動時の鉛蓄電池の開路電圧と放電時電圧との関係を示したグラフである。It is the graph which showed the relationship between the open circuit voltage of the lead acid battery at the time of engine start in a gasoline engine vehicle, and the voltage at the time of discharge. 劣化判定装置の一構成例を示すブロック回路図である。It is a block circuit diagram which shows the example of 1 structure of a deterioration determination apparatus. 劣化していると判定する鉛蓄電池のSOCを50%として、判定を行う開路電圧の基準値を変化させたときの、各αに対する検出率の変化を示すグラフである。It is a graph which shows the change of the detection rate with respect to each (alpha) when changing the reference value of the open circuit voltage which makes determination by setting SOC of the lead storage battery determined to be 50% as 50%. SOH50%以上の鉛蓄電池を劣化していると誤判定する場合の確率を、判定を行う開路電圧の基準値を変化させたときの、各αに対する変化を示したグラフである。It is the graph which showed the change with respect to each (alpha) when changing the reference value of the open circuit voltage which determines the probability in the case of misdetermining that the lead acid battery of 50% or more of SOH has deteriorated.

符号の説明Explanation of symbols

1 鉛蓄電池
2 マイコン(電圧測定手段の一部、劣化係数算出手段、劣化判定手段)
3 EPROM(不揮発性メモリ)
10 バッテリコントローラ(電圧測定手段の一部)
1 Lead storage battery 2 Microcomputer (a part of voltage measuring means, deterioration coefficient calculating means, deterioration determining means)
3 EPROM (nonvolatile memory)
10 Battery controller (part of voltage measurement means)

Claims (7)

開路電圧(Vo)とエンジン始動電圧(Vst)とから鉛蓄電池の劣化を判定する劣化判定方法であって、
異なる2つの時刻における前記鉛蓄電池の開路電圧(Vo1、Vo2)と、前記異なる2つの時刻のそれぞれ後の最初のエンジン始動時のエンジン始動電圧(Vst1、Vst2)とを測定し、
前記測定した開路電圧(Vo1、Vo2)とエンジン始動電圧(Vst1、Vst2)とから、エンジン始動電圧の差分(ΔVst=Vst2−Vst1)を開路電圧の差分(ΔVo=Vo2−Vo1)で除算した劣化状態判定係数(α=ΔVst/ΔVo)を算出し、
前記算出した劣化状態判定係数(α)が一定値以上で、かつ、前記測定した異なる2つの時刻における開路電圧(Vo1、Vo2)が一定の電圧値以上の場合に、前記鉛蓄電池が劣化していると判定する、
ステップを含む劣化状態判定方法。
A deterioration determination method for determining deterioration of a lead storage battery from an open circuit voltage (Vo) and an engine start voltage (Vst),
Measure the open circuit voltage (Vo1, Vo2) of the lead storage battery at two different times and the engine start voltage (Vst1, Vst2) at the first engine start after each of the two different times;
Deterioration obtained by dividing the difference in engine start voltage (ΔVst = Vst2−Vst1) by the difference in open circuit voltage (ΔVo = Vo2−Vo1) from the measured open circuit voltage (Vo1, Vo2) and engine start voltage (Vst1, Vst2). A state determination coefficient (α = ΔVst / ΔVo) is calculated,
When the calculated deterioration state determination coefficient (α) is not less than a certain value and the measured open circuit voltages (Vo1, Vo2) at two different times are not less than a certain voltage value, the lead storage battery is deteriorated. It is determined that
A degradation state determination method including steps.
前記一定の電圧値が12.5V以上であることを特徴とする請求項1に記載の劣化判定方法。   The deterioration determination method according to claim 1, wherein the constant voltage value is 12.5 V or more. 前記一定値が2.0以上であることを特徴とする請求項1又は請求項2に記載の劣化判定方法。   The deterioration determination method according to claim 1, wherein the certain value is 2.0 or more. 開路電圧(Vo)とエンジン始動電圧(Vst)とから鉛蓄電池の劣化を判定する劣化判定装置において、
異なる2つの時刻における前記鉛蓄電池の開路電圧(Vo1、Vo2)と、前記異なる2つの時刻のそれぞれ後の最初のエンジン始動時のエンジン始動電圧(Vst1、Vst2)とを測定する電圧測定手段と、
前記電圧測定手段により測定された開路電圧(Vo1、Vo2)とエンジン始動電圧(Vst1、Vst2)とから、エンジン始動電圧の差分(ΔVst=Vst2−Vst1)を開路電圧の差分(ΔVo=Vo2−Vo1)で除算した劣化状態判定係数(α=ΔVst/ΔVo)を算出する劣化係数算出手段と、
前記劣化係数算出手段により算出された劣化状態判定係数(α)が一定値以上で、かつ、前記電圧測定手段により測定された異なる2つの時刻における開路電圧(Vo1、Vo2)が一定の電圧値以上の場合に、前記鉛蓄電池が劣化していると判定する劣化判定手段と、
を備えた劣化判定装置。
In the deterioration determination device that determines the deterioration of the lead storage battery from the open circuit voltage (Vo) and the engine starting voltage (Vst),
Voltage measuring means for measuring an open circuit voltage (Vo1, Vo2) of the lead storage battery at two different times and an engine starting voltage (Vst1, Vst2) at the first engine start after each of the two different times;
Based on the open circuit voltage (Vo1, Vo2) measured by the voltage measuring means and the engine start voltage (Vst1, Vst2), the difference (ΔVst = Vst2-Vst1) of the engine start voltage is calculated as the difference of the open circuit voltage (ΔVo = Vo2-Vo1). ) Deterioration coefficient calculation means for calculating a deterioration state determination coefficient (α = ΔVst / ΔVo) divided by
The deterioration state determination coefficient (α) calculated by the deterioration coefficient calculating means is not less than a certain value, and the open circuit voltages (Vo1, Vo2) at two different times measured by the voltage measuring means are not less than a certain voltage value. In this case, a deterioration determination means for determining that the lead storage battery has deteriorated,
A deterioration determination device comprising:
前記一定の電圧値が12.5V以上であることを特徴とする請求項4に記載の劣化判定装置。   The deterioration determination apparatus according to claim 4, wherein the constant voltage value is 12.5 V or more. 前記一定値が2.0以上であることを特徴とする請求項4又は請求項5に記載の劣化判定装置。   The deterioration determination apparatus according to claim 4 or 5, wherein the constant value is 2.0 or more. 少なくとも、前記異なる2つの時刻のうち先の時刻において前記電圧測定手段で測定された開路電圧(Vo1)及び前記先の時刻後の最初のエンジン始動時のエンジン始動電圧(Vst1)を記憶する不揮発性メモリを更に備えたことを特徴とする請求項4乃至請求項6のいずれか1項に記載の劣化度判定装置。   Non-volatile storage of at least the open circuit voltage (Vo1) measured by the voltage measuring means at the previous time among the two different times and the engine start voltage (Vst1) at the first engine start after the previous time The deterioration degree determination apparatus according to claim 4, further comprising a memory.
JP2004190934A 2004-06-29 2004-06-29 Deterioration determination method and deterioration determination device for lead acid battery Expired - Fee Related JP4507720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190934A JP4507720B2 (en) 2004-06-29 2004-06-29 Deterioration determination method and deterioration determination device for lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190934A JP4507720B2 (en) 2004-06-29 2004-06-29 Deterioration determination method and deterioration determination device for lead acid battery

Publications (2)

Publication Number Publication Date
JP2006008038A JP2006008038A (en) 2006-01-12
JP4507720B2 true JP4507720B2 (en) 2010-07-21

Family

ID=35775741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190934A Expired - Fee Related JP4507720B2 (en) 2004-06-29 2004-06-29 Deterioration determination method and deterioration determination device for lead acid battery

Country Status (1)

Country Link
JP (1) JP4507720B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661712B2 (en) * 2006-07-18 2011-03-30 トヨタ自動車株式会社 Vehicle start control device
JP4702251B2 (en) * 2006-10-03 2011-06-15 新神戸電機株式会社 Battery state determination device and lead battery for automobile
JP4770683B2 (en) * 2006-10-03 2011-09-14 新神戸電機株式会社 Battery state determination device and lead battery for automobile
JP4677970B2 (en) * 2006-10-11 2011-04-27 新神戸電機株式会社 Battery state determination device and lead battery for automobile
JP4879118B2 (en) * 2007-08-21 2012-02-22 株式会社オートネットワーク技術研究所 Startability prediction device
KR101745194B1 (en) * 2015-12-04 2017-06-08 현대자동차주식회사 Method for detecting abnormal cell in battery
KR20180074301A (en) * 2016-12-23 2018-07-03 삼성전자주식회사 Method and apparatus for determining abnormal state of battery
JP2020016582A (en) * 2018-07-26 2020-01-30 ラピスセミコンダクタ株式会社 Semiconductor device and method for detecting remaining amount of battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228226A (en) * 2000-02-21 2001-08-24 Yazaki Corp Device for determining degree of degradation of battery and recording medium in which program for computing degree of degradation is recorded
JP2002252901A (en) * 2001-02-23 2002-09-06 Yazaki Corp Method and apparatus for detecting voltage-current characteristic for on-vehicle battery, method and apparatus for calculating internal resistance of on- vehicle battery, and method and apparatus for detecting degree of deterioration of on-vehicle battery
JP2003014829A (en) * 2001-06-27 2003-01-15 Yuasa Corp Life determining device, life determining method and life determination program of secondary battery
JP2004072927A (en) * 2002-08-08 2004-03-04 Nissan Motor Co Ltd Controlling device of motor-operated vehicle
JP2004177374A (en) * 2002-11-29 2004-06-24 Shin Kobe Electric Mach Co Ltd Method of estimating battery condition, and method of determining engine start

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228226A (en) * 2000-02-21 2001-08-24 Yazaki Corp Device for determining degree of degradation of battery and recording medium in which program for computing degree of degradation is recorded
JP2002252901A (en) * 2001-02-23 2002-09-06 Yazaki Corp Method and apparatus for detecting voltage-current characteristic for on-vehicle battery, method and apparatus for calculating internal resistance of on- vehicle battery, and method and apparatus for detecting degree of deterioration of on-vehicle battery
JP2003014829A (en) * 2001-06-27 2003-01-15 Yuasa Corp Life determining device, life determining method and life determination program of secondary battery
JP2004072927A (en) * 2002-08-08 2004-03-04 Nissan Motor Co Ltd Controlling device of motor-operated vehicle
JP2004177374A (en) * 2002-11-29 2004-06-24 Shin Kobe Electric Mach Co Ltd Method of estimating battery condition, and method of determining engine start

Also Published As

Publication number Publication date
JP2006008038A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP5061907B2 (en) Battery state determination method and battery state determination device
JP4057276B2 (en) Method and apparatus for determining the state of a secondary storage battery mounted on a vehicle
US8886478B2 (en) Extended battery diagnosis in traction batteries
WO2007105595A1 (en) Battery state judging device
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP5338807B2 (en) Battery state determination method and automobile
EP1526030B1 (en) Control apparatus and method for vehicle equipped power supply having battery deterioration diagnostic feature
US20030097225A1 (en) State of charge calculation device and state of charge calculation method
US9551750B2 (en) Monitoring system and vehicle
WO1999012044A2 (en) Battery charge indicator
JP4193745B2 (en) Battery state detection method and battery state detection device
JP4507720B2 (en) Deterioration determination method and deterioration determination device for lead acid battery
JP2006015896A (en) Method for estimating degree of deterioration and device for estimating degree of deterioration
JP2008074257A (en) Battery deterioration determination device
JP4548011B2 (en) Deterioration degree judging device
JP4702115B2 (en) Battery status judgment device
JP2000137062A (en) Method and device for detecting residual capacity of secondary battery
JP6604478B2 (en) Vehicle and its battery state detection system
KR20120004670A (en) Battery sensor for vehicle
JP2005292035A (en) Method of detecting battery condition
JP4786253B2 (en) Battery state detection device
JP4374982B2 (en) Storage battery deterioration determination device and storage battery provided with the same
JP2000190793A (en) Battery capacity warning system
JP4341556B2 (en) Battery state detection device
JP4760276B2 (en) Engine starting storage battery deterioration determining method and apparatus, and engine starting storage battery provided with the deterioration determining apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4507720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees