JP4770683B2 - Battery state determination device and lead battery for automobile - Google Patents

Battery state determination device and lead battery for automobile Download PDF

Info

Publication number
JP4770683B2
JP4770683B2 JP2006271519A JP2006271519A JP4770683B2 JP 4770683 B2 JP4770683 B2 JP 4770683B2 JP 2006271519 A JP2006271519 A JP 2006271519A JP 2006271519 A JP2006271519 A JP 2006271519A JP 4770683 B2 JP4770683 B2 JP 4770683B2
Authority
JP
Japan
Prior art keywords
lead battery
battery
voltage value
state
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006271519A
Other languages
Japanese (ja)
Other versions
JP2008087654A (en
Inventor
美昭 町山
惠造 山田
佳史 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2006271519A priority Critical patent/JP4770683B2/en
Publication of JP2008087654A publication Critical patent/JP2008087654A/en
Application granted granted Critical
Publication of JP4770683B2 publication Critical patent/JP4770683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は電池状態判定装置および自動車用鉛電池に係り、特に、鉛電池の放電時電圧を用いて鉛電池の健康状態を判定する電池状態判定装置および該電池状態判定装置を備えた自動車用鉛電池に関する。   The present invention relates to a battery state determination device and a lead battery for an automobile, and more particularly, a battery state determination device for determining a health state of a lead battery using a discharge voltage of the lead battery, and an automobile lead including the battery state determination device. It relates to batteries.

一般に、自動車には内燃機関始動用の鉛電池が搭載されており、このような鉛電池は自動車用ないし車載用鉛電池と呼ばれている。自動車用鉛電池は、自動車の始動を確保するという点から、極めて重要な部品である。従って、自動車用鉛電池の電池状態を検知することは、例えば、自動車が一旦停止した後で、内燃機関の再始動を予測ないし保証するという意味で有益である。   In general, a lead battery for starting an internal combustion engine is mounted on an automobile, and such a lead battery is called a lead battery for an automobile or a vehicle. The lead battery for automobiles is an extremely important component from the viewpoint of ensuring the start of the automobile. Therefore, detecting the battery state of the lead battery for automobiles is useful in the sense of, for example, predicting or guaranteeing restart of the internal combustion engine after the automobile has stopped.

このため、従来、自動車用鉛電池の開回路電圧測定、交流電流を用いた内部抵抗の測定、充電電流や放電電流と放電電圧等との併用測定により、電池状態を検知する試みがなされてきた。その具体例として、鉛電池の電圧と電流との関係を予め準備しておき、実際の測定で得られたデータと比較して、鉛電池の残容量を検知する残容量検出装置が開示されている(例えば、特許文献1参照)。また、交流電流を印加して、内部抵抗が一定値以上になった時から内部抵抗と残容量の相関式を求め、これを基に鉛電池の残容量を監視すると共に、寿命期間を推定する技術が開示されている(例えば、特許文献2参照)。   For this reason, conventionally, attempts have been made to detect the battery state by measuring the open circuit voltage of an automotive lead battery, measuring the internal resistance using an alternating current, and measuring the charge current, discharge current and discharge voltage together. . As a specific example, there is disclosed a remaining capacity detecting device that prepares a relationship between the voltage and current of a lead battery in advance and detects the remaining capacity of the lead battery in comparison with data obtained by actual measurement. (For example, refer to Patent Document 1). In addition, when an alternating current is applied and the internal resistance exceeds a certain value, a correlation equation between the internal resistance and the remaining capacity is obtained, and based on this, the remaining capacity of the lead battery is monitored and the lifetime is estimated. A technique is disclosed (for example, see Patent Document 2).

特開平7−63830号公報JP-A-7-63830 特開2002−334725号公報JP 2002-334725 A

しかしながら、開回路電圧測定では誤差が大きく、鉛電池の充電状態の低下と劣化とを区別するができず、交流電流を用いた内部抵抗の測定では、測定装置が大掛かりで複雑なものとなる上、測定された内部抵抗と鉛電池の健康状態との正確な関連付けが難しく、また、放電電流を測定して別の測定と併用する技術では、内燃機関始動時の大電流を測定するために、電流センサが大きく、かつ、コスト高となってしまう、という問題がある。一方、鉛電池の放電時電圧を測定する場合にも、最適なタイミングで測定しないと、電池状態の判定に大きな影響を与える。   However, in open circuit voltage measurement, there is a large error, and it is impossible to distinguish between deterioration and deterioration of the charged state of a lead battery. In measuring internal resistance using alternating current, the measuring device is large and complicated. It is difficult to accurately relate the measured internal resistance to the health of the lead battery, and the technology that measures the discharge current and uses it in combination with another measurement is used to measure the large current at the start of the internal combustion engine. There is a problem that the current sensor is large and expensive. On the other hand, when measuring the discharge voltage of a lead battery, if it is not measured at an optimal timing, it greatly affects the determination of the battery state.

本発明は上記事案に鑑み、電流センサを使用せず鉛電池の健康状態を正確に判定可能な電池状態判定装置および電池状態判定装置を備えた自動車用鉛電池を提供することを課題とする。   This invention makes it a subject to provide the lead battery for motor vehicles provided with the battery state determination apparatus and battery state determination apparatus which can determine the health condition of a lead battery correctly, without using an electric current sensor in view of the said case.

上記課題を解決するために、本発明の第1の態様は、鉛電池の放電時電圧を用いて前記鉛電池の健康状態を判定する電池状態判定装置において、前記鉛電池の電圧を測定する電圧測定手段と、前記電圧測定手段で測定された電圧のうち最低電圧値を算出する算出手段と、前記算出手段により前記鉛電池の無劣化状態で算出された最低電圧値と前記鉛電池の無劣化ないし劣化状態で算出された直近の最低電圧値とから、前記鉛電池の健康状態を判定する状態判定手段と、を備え、前記算出手段は、前記最低電圧値を、前記電圧測定手段により前記鉛電池の放電開始後に測定された最低電圧値、かつ、前記鉛電池の放電開始後15ms以内に測定された最低電圧値として算出することを特徴とする。 In order to solve the above-described problem, a first aspect of the present invention is a battery state determination device that determines a health state of the lead battery using a discharge voltage of the lead battery, and a voltage for measuring the voltage of the lead battery. A measuring means, a calculating means for calculating a minimum voltage value among the voltages measured by the voltage measuring means, a minimum voltage value calculated by the calculating means in a non-deteriorating state of the lead battery, and no deterioration of the lead battery Or a state determination unit that determines a health state of the lead battery from the latest minimum voltage value calculated in a deteriorated state, and the calculation unit determines the minimum voltage value by the voltage measurement unit. the measured minimum voltage value after the start of discharging the battery, and, and calculating the minimum voltage value measured within the discharge start after 15ms of the lead battery.

本態様では、電圧測定手段により鉛電池の電圧が測定され、算出手段により電圧測定手段で測定された電圧のうち最低電圧値が算出される。このとき、算出手段は、最低電圧値を、電圧測定手段により鉛電池の放電開始後に測定された最低電圧値、かつ、鉛電池の放電開始後15ms以内に測定された最低電圧値として算出する。そして、状態判定手段により算出手段で鉛電池の無劣化状態で算出された最低電圧値と鉛電池の無劣化ないし劣化状態で算出された直近の最低電圧値とから、鉛電池の健康状態が判定される。本態様によれば、状態判定手段により、算出手段で鉛電池の無劣化状態で算出された最低電圧値と直近の最低電圧値とから鉛電池の健康状態が判定されるため、電流センサを使用せず鉛電池の健康状態を判定することができると共に、算出手段は、最低電圧値を、鉛電池の放電開始後に測定された最低電圧、かつ、鉛電池の放電開始後15ms以内に測定された最低電圧として、最適タイミングで最低電圧値を算出することから、状態判定手段により鉛電池の健康状態を正確に判定することができる。 In this aspect, the voltage of the lead battery is measured by the voltage measuring means, and the lowest voltage value is calculated from the voltages measured by the voltage measuring means by the calculating means. In this case, calculating means calculates a minimum voltage value, minimum voltage value measured after the start of discharging the lead battery by the voltage measuring means, and, as the lowest voltage value measured within the discharge after the start 15ms lead batteries . Then, the health state of the lead battery is determined from the minimum voltage value calculated by the state determination means in the non-degraded state of the lead battery and the latest minimum voltage value calculated in the non-degraded or deteriorated state of the lead battery. Is done. According to this aspect, since the state determination unit determines the health state of the lead battery from the lowest voltage value calculated by the calculation unit in the non-degraded state of the lead battery and the latest lowest voltage value, the current sensor is used. it is possible to determine the health of the lead battery does not, calculating means, the minimum voltage value, minimum voltage was measured after the start of discharging lead storage battery, and is measured within the discharge start after 15ms of lead battery Since the minimum voltage value is calculated at the optimum timing as the minimum voltage, the state determination means can accurately determine the health state of the lead battery.

本態様において、鉛電池は自動車用鉛電池であり、算出手段が算出する最低電圧値はエンジン始動用のセルモータを駆動するときの鉛電池の放電時電圧のうちの最低電圧値であることが好ましい。このとき、エンジン始動による鉛電池の放電とカーエヤコンやカーナビゲーション等の車載用電装品への放電とを区別するために、算出手段は、電圧測定手段で測定された鉛電池の電圧から、所定時間X(X:1〜100ms)以内に所定電圧Y(Y:0.5〜3.0V)以上の電圧降下があり、かつ、その後に所定値a(a:鉛電池の開回路電圧の109%)以上の電圧値となったか否かを判断し、肯定判断のときに最低電圧値を算出し、否定判断のときに最低電圧値を算出しないことが好ましい。また、不揮発性のメモリを更に備え、算出手段は鉛電池の無劣化状態で算出された最低電圧値をメモリに格納し、状態判定手段はメモリに格納された最低電圧値を読み出して鉛電池の健康状態を判定するようにすれば、電池状態検知装置への電力供給が途絶えた後でも、電力の再供給があったときに、無劣化状態で算出された最低電圧値のデータを失うことなく、鉛電池の健康状態を判定することができる。   In this aspect, the lead battery is a lead battery for automobiles, and the minimum voltage value calculated by the calculating means is preferably the minimum voltage value among the discharge-time voltages of the lead battery when driving the cell motor for starting the engine. . At this time, in order to distinguish between discharge of the lead battery due to engine start and discharge to in-vehicle electrical components such as car air conditioner and car navigation, the calculation means calculates the predetermined time from the voltage of the lead battery measured by the voltage measurement means. Within X (X: 1 to 100 ms), there is a voltage drop of a predetermined voltage Y (Y: 0.5 to 3.0 V) or more, and then a predetermined value a (a: 109% of the open circuit voltage of the lead battery) It is preferable to determine whether or not the voltage value is equal to or higher than the above value, calculate the minimum voltage value when the determination is affirmative, and not calculate the minimum voltage value when the determination is negative. In addition, a non-volatile memory is further provided, the calculation means stores the minimum voltage value calculated in the non-degraded state of the lead battery in the memory, and the state determination means reads the minimum voltage value stored in the memory to read the lead battery. If the health status is determined, even after the power supply to the battery status detector is interrupted, the data of the minimum voltage value calculated in the non-degraded state will not be lost when the power is supplied again. The health status of the lead battery can be determined.

また、上記課題を解決するために、本発明の第2の態様は、第1の態様の電池状態判定装置を備えた鉛電池である。第2の態様の鉛電池においても、第1の態様と同様の作用効果を奏する。   Moreover, in order to solve the said subject, the 2nd aspect of this invention is a lead battery provided with the battery state determination apparatus of the 1st aspect. The lead battery of the second aspect also has the same operational effects as the first aspect.

本発明によれば、状態判定手段により、算出手段で鉛電池の無劣化状態で算出された最低電圧値と直近の最低電圧値とから鉛電池の健康状態が判定されるため、電流センサを使用せず鉛電池の健康状態を判定することができると共に、算出手段は、最低電圧値を、鉛電池の放電開始後に測定された最低電圧値、かつ、鉛電池の放電開始後15ms以内に測定された最低電圧値として、最適タイミングで最低電圧値を算出することから、状態判定手段により鉛電池の健康状態を正確に判定することができる、という効果を得ることができる。 According to the present invention, since the state determination means determines the health state of the lead battery from the lowest voltage value calculated by the calculation means in the non-degraded state of the lead battery and the latest lowest voltage value, the current sensor is used. it is possible to determine the health of the lead battery does not, calculating means measures the lowest voltage value, minimum voltage value measured after the start of discharging lead storage battery, and, within the discharge start after 15ms of lead batteries Since the lowest voltage value is calculated at the optimal timing as the lowest voltage value, an effect that the health state of the lead battery can be accurately determined by the state determination means can be obtained.

以下、図面を参照して、本発明を自動車用鉛電池(型式:65B24R)に適用した実施の形態について説明する。   Hereinafter, an embodiment in which the present invention is applied to an automotive lead battery (model: 65B24R) will be described with reference to the drawings.

(構成)
図1に示すように、本実施形態の鉛電池10は、電池容器となる略角型の電槽8を有しており、電槽8内には合計6組の極板群が収容されている。電槽8の材質には、成形性、絶縁性および耐久性等の点で優れる、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、アクリルブタジエンスチレン(ABS)等の高分子樹脂を選択することができる。各極板群は、複数枚の負極板および正極板がセパレータを介して積層されており、セル電圧は2.0Vとされている。従って、鉛電池10の公称電圧は12Vである。電槽8の上部は、電槽8の上部開口を密閉するPE等の高分子樹脂製の上蓋9に接着ないし溶着されている。
(Constitution)
As shown in FIG. 1, the lead battery 10 of the present embodiment has a substantially rectangular battery case 8 serving as a battery container, and a total of six electrode plate groups are accommodated in the battery case 8. Yes. For the material of the battery case 8, it is possible to select a polymer resin such as polyethylene (PE), polypropylene (PP), and acrylic butadiene styrene (ABS) that is excellent in terms of moldability, insulation, and durability. it can. In each electrode plate group, a plurality of negative electrodes and positive electrodes are laminated via a separator, and the cell voltage is set to 2.0V. Therefore, the nominal voltage of the lead battery 10 is 12V. The upper part of the battery case 8 is bonded or welded to an upper lid 9 made of a polymer resin such as PE that seals the upper opening of the battery case 8.

上蓋9には、鉛電池10を自動車用電源として外部へ電力を供給するための2本(正負極)の出力端子7が立設されている。また、上蓋9には、鉛電池10の健康状態を判定する電池状態判定装置としてのAIユニット1が収容(内蔵)されている。   The upper lid 9 is provided with two (positive and negative) output terminals 7 for supplying electric power to the outside by using the lead battery 10 as an automobile power source. In addition, the upper lid 9 houses (incorporates) an AI unit 1 as a battery state determination device that determines the health state of the lead battery 10.

AIユニット1は、ADコンバータ、基準電源等で構成され鉛電池10の電圧を測定する電圧測定部と、ADコンバータ、サーミスタ等で構成され鉛電池10の温度を測定する温度測定部と、マイクロプロセッサ、ROM、RAM、不揮発性メモリのEEPROM等を有して構成された演算部と、コイル式のブザー(不図示)、ブザーを作動させるためのトランジスタや抵抗等を有して構成され警告音を発生させる報知部と、操作ボタン3、発光ダイオード(以下、LEDという。)、トランジスタや抵抗等を有して構成されLEDを点灯させて鉛電池10が要交換であることを表示する操作表示部2とを備えている。なお、AIユニット1は上蓋9内で接続導体により出力端子7に接続されており、作動電源は鉛電池10から供給される。   The AI unit 1 is composed of an AD converter, a reference power source, etc., and measures a voltage of the lead battery 10, a temperature measuring unit, which is composed of an AD converter, a thermistor, etc., and measures the temperature of the lead battery 10, and a microprocessor , ROM, RAM, nonvolatile memory EEPROM, etc., a coil-type buzzer (not shown), a transistor for operating the buzzer, resistors, etc. A notification unit to be generated, an operation display unit configured to include an operation button 3, a light emitting diode (hereinafter referred to as an LED), a transistor, a resistor, and the like, and turn on the LED to indicate that the lead battery 10 needs to be replaced. 2 are provided. The AI unit 1 is connected to the output terminal 7 by a connecting conductor in the upper lid 9, and operating power is supplied from the lead battery 10.

上蓋9のAIユニット1のブザーが実装された位置にはブザー放音孔6が形成されており、AIユニット1の操作表示部2の上面は上蓋9の上面と略同一平面を形成している。   A buzzer sound emitting hole 6 is formed at a position where the buzzer of the AI unit 1 is mounted on the upper lid 9, and the upper surface of the operation display unit 2 of the AI unit 1 is substantially flush with the upper surface of the upper lid 9. .

(劣化判定原理)
次に、AIユニット1による鉛電池10の劣化(健康状態)判定の原理について説明する。
(Degradation judgment principle)
Next, the principle of determining deterioration (health state) of the lead battery 10 by the AI unit 1 will be described.

マイクロプロセッサ(以下、MPと略称する。)は、所定時間(例えば、2ms)毎に、電圧測定部を介して鉛電池10のデジタル電圧値を取り込んでRAMに格納しており、取り込んだ電圧値に基づいて、鉛電池10の健康状態を判定する。   The microprocessor (hereinafter abbreviated as MP) captures the digital voltage value of the lead battery 10 via the voltage measurement unit and stores it in the RAM every predetermined time (for example, 2 ms). The health condition of the lead battery 10 is determined based on the above.

一般に、ガソリンエンジン車、ディーゼルエンジン車等の内燃機関を有する自動車では、鉛電池から電力を供給し、セルモータを回して、エンジンを始動する。この際、大電流が流れるが、それに伴い、鉛電池の端子間電圧は大きく降下する。このときの電圧降下、および電流の時間変化を測定すると、セルモータに電流が流れ始めた直後に、鋭いピーク状の大電流が流れ、図3および図4に示すように、同時に鉛電池の端子間電圧は鋭い谷状の電圧降下を示す。この電圧降下が最大となる最低電圧値Vstは、鉛電池からの放電電流が最大となる最大電流値Istのときに同時に現われる。   In general, in an automobile having an internal combustion engine such as a gasoline engine vehicle or a diesel engine vehicle, electric power is supplied from a lead battery, and a cell motor is rotated to start the engine. At this time, a large current flows, and accordingly, the voltage between the terminals of the lead battery greatly drops. When measuring the voltage drop and the time change of the current at this time, immediately after the current started to flow to the cell motor, a sharp peak-shaped large current flowed. As shown in FIG. 3 and FIG. The voltage shows a sharp valley-like voltage drop. The minimum voltage value Vst at which this voltage drop is maximum appears simultaneously at the maximum current value Ist at which the discharge current from the lead battery is maximum.

いま、エンジン始動系電気抵抗をRとすると、最低電圧値Vst、最大電流値Istの出現するタイミングにおいて、下記式(1)に示すようにオームの法則が成立する。   Assuming that the engine starting system electrical resistance is R, Ohm's law is established as shown in the following formula (1) at the timing when the minimum voltage value Vst and the maximum current value Ist appear.

Figure 0004770683
Figure 0004770683

エンジン始動系電気抵抗Rは、エンジン始動時にセルモータ、ハーネス等で構成されるエンジン始動系の抵抗であり、セルモータの静止導体としての抵抗に、車両のハーネス、電気接点等の抵抗を合計した全抵抗である。なお、エンジン始動系電気抵抗Rが一定値となるのは、最低電圧値Vstをとるときのタイミングのみで、その他のタイミングではエンジン始動系電気抵抗Rは時間とともに変化するため、式(1)は成立しない。   The engine starting system electric resistance R is the resistance of the engine starting system constituted by a cell motor, a harness, etc. at the time of starting the engine. The total resistance obtained by adding the resistance of the cell motor as a stationary conductor to the resistance of the vehicle harness, electric contact, etc. It is. It should be noted that the engine starting system electric resistance R is a constant value only at the timing when the minimum voltage value Vst is taken, and at other timings, the engine starting system electric resistance R changes with time. Not satisfied.

逆にいうと、車両が同じならば、エンジン始動電圧を最低電圧値Vstのタイミングで取得できれば、式(1)を利用して、エンジン始動系電気抵抗R自体を、抵抗値が一定である一種の抵抗器として鉛電池の劣化判定に使用できる。   In other words, if the vehicle is the same, if the engine starting voltage can be acquired at the timing of the lowest voltage value Vst, the engine starting system electric resistance R itself is a constant with a constant resistance value using the formula (1). This resistor can be used to judge deterioration of lead batteries.

一方、最低電圧値Vst、最大電流値Istの出現するタイミングにおいて、鉛電池の開回路電圧をVo、鉛電池の内部抵抗をrとすると、下記式(2)が成り立つ。   On the other hand, when the open circuit voltage of the lead battery is Vo and the internal resistance of the lead battery is r at the timing when the minimum voltage value Vst and the maximum current value Ist appear, the following equation (2) is established.

Figure 0004770683
Figure 0004770683

式(1)を式(2)に代入することにより、下式(3)が求められる。   By substituting equation (1) into equation (2), the following equation (3) is obtained.

Figure 0004770683
Figure 0004770683

式(3)から、最低電圧値Vstは、開回路電圧Vo、エンジン始動系電気抵抗R、鉛電池の内部抵抗rの関数となっていることが分かる。内部抵抗rは、鉛電池の無劣化状態で最小の値を示し、健康状態(SOH)が低下するにつれて増加する。従って、式(3)から、最低電圧値Vstが鉛電池の健康状態の指標となる。換言すれば、鉛電池の健康状態が低下すると(鉛電池が劣化すると)、内部抵抗rは大きくなるため、最低電圧値Vstは低下する。   From equation (3), it can be seen that the minimum voltage value Vst is a function of the open circuit voltage Vo, the engine starting system electrical resistance R, and the internal resistance r of the lead battery. The internal resistance r shows the minimum value in the non-degraded state of the lead battery, and increases as the health state (SOH) decreases. Therefore, from Equation (3), the minimum voltage value Vst is an indicator of the health status of the lead battery. In other words, when the health state of the lead battery is reduced (when the lead battery is deteriorated), the internal resistance r is increased, so that the minimum voltage value Vst is lowered.

図5は、無劣化状態(初期状態)の鉛電池と劣化後の同じ鉛電池について、エンジン始動時の鉛電池の端子間電圧の推移を表したものである。図5では、無劣化状態の鉛電池のエンジン始動時の最低電圧値をVst0、劣化後のエンジン始動時の最低電圧値をVstで表している。なお、図5において、鉛電池の劣化が進むにつれて、無劣化状態での最低電圧値Vst0と劣化後の最低電圧値Vstとの電圧差ΔVst(=Vst0−Vst)は大きくなる。   FIG. 5 shows the transition of the terminal voltage of the lead battery at the time of starting the engine for the lead battery in the non-degraded state (initial state) and the same lead battery after deterioration. In FIG. 5, the lowest voltage value at the time of starting the engine of the lead battery in the non-degraded state is represented by Vst0, and the lowest voltage value at the time of starting the engine after deterioration is represented by Vst. In FIG. 5, as the lead battery deteriorates, the voltage difference ΔVst (= Vst0−Vst) between the lowest voltage value Vst0 in the non-degraded state and the lowest voltage value Vst after deterioration increases.

AIユニット1は、上記原理に従い、電圧差ΔVstが後述する判定しきい値Vthより大きくなったときに、鉛電池10の劣化が進み要交換に至ったと判定する。ただし、上述したように、上記原理(式(1))を利用するためには、エンジン始動時の最低電圧値Vst0、Vstを正確に取得することが前提となるため、最低電圧値Vst0、Vstを最適タイミングで取得する必要がある。   In accordance with the above principle, the AI unit 1 determines that the lead battery 10 has deteriorated and needs to be replaced when the voltage difference ΔVst becomes larger than a determination threshold value Vth described later. However, as described above, in order to use the above principle (Equation (1)), it is assumed that the minimum voltage values Vst0 and Vst at the time of starting the engine are accurately obtained. Therefore, the minimum voltage values Vst0 and Vst Need to be acquired at the optimal timing.

(エンジン状態判定)
また、AIユニット1は、電圧測定部を介して測定した鉛電池10の電圧に基づいてエンジン状態を検知する機能を有している。すなわち、MPは、鉛電池10の電圧を常時監視(測定)し、電圧測定部を介して測定した電圧の変化より、エンジン始動、エンジン起動中、エンジン停止のエンジン状態を判定する。
(Engine condition judgment)
The AI unit 1 also has a function of detecting the engine state based on the voltage of the lead battery 10 measured through the voltage measuring unit. That is, the MP constantly monitors (measures) the voltage of the lead battery 10, and determines the engine state of engine start, engine start, and engine stop from the change in voltage measured via the voltage measurement unit.

<エンジン始動>
MPは、鉛電池10の放電開始後X(1〜100)ms以内にY(0.50〜3.0)V以上の電圧降下(例えば、好適には、15ms以内に1.5V以上の電圧降下)があり、かつその後にある所定値a以上になったか否かを判断し、肯定判断のときにはエンジン始動があったものと判定する。aの電圧値には、例えば、鉛電池10のOCVの109〜121%の電圧値を用いることができる。一方、否定判断のときにはカーエアコンやカーナビゲーション等の車載電装品を起動させたものとみなし、エンジンは始動していないとみなす。
<Engine start>
MP is a voltage drop of Y (0.50 to 3.0) V or more within X (1 to 100) ms after the start of discharge of the lead battery 10 (for example, preferably a voltage drop of 1.5 V or more within 15 ms). It is determined whether or not the engine has started and the engine has been started when the determination is affirmative. For example, a voltage value of 109 to 121% of the OCV of the lead battery 10 can be used as the voltage value of a. On the other hand, when a negative determination is made, it is considered that an in-vehicle electrical component such as a car air conditioner or a car navigation system has been started, and the engine is not started.

<エンジン起動中>
MPは、上述したエンジン始動の肯定判断の後、常時鉛電池10の電圧が上述した所定値a以上(エンジンが起動中の場合は発電機(オルタネータ、レギュレータ)が作動しているため、鉛電池10は充電状態となっており、電圧がOCVより高くなる。)か否かを判断し、肯定判断のときにエンジン起動中と判定する。
<Engine is running>
MP is a lead battery, because the voltage of the lead battery 10 is always greater than or equal to the above-described predetermined value a after the affirmative determination of the engine start described above (the generator (alternator, regulator) is operating when the engine is running). 10 is in a charged state, and the voltage is higher than OCV.) When the determination is affirmative, it is determined that the engine is being started.

<エンジン停止>
(1)エンジン起動中と判断した後に、鉛電池10の電圧がある一定値b以下になった場合:エンジン起動状態からエンジン停止状態になったと判定する。bの電圧値には、例えば、鉛電池10のOCVの103〜108%の電圧値を用いることができる。また、(2)エンジン起動中と判断した後に、鉛電池10の電圧がある一定値c以上の速度で低下し、かつ、電圧の降下幅がある一定値d以上の場合:エンジン起動状態からエンジン停止状態になったと判定する。cの電圧低下速度として1.0〜4.0V/s、また、dの電圧降下幅として0.05〜0.20Vを用いることができる。さらに、(3)エンジン起動中と判断した後に、鉛電池10の電圧がある一定値e以下に低下し、かつ、そのときの電圧の変化幅が、ある一定値fの時間幅で、ある一定値g以下になった場合:エンジン起動状態からエンジン停止状態になったと判定する。eの電圧値として鉛電池10のOCVの102〜109%の電圧値、fの値として0.01〜1.0s、gの電圧の変化幅として0.1〜0.3Vを用いることができる。MPは、(1)〜(3)のいずれかに該当したときに、エンジンが停止したもと判定する。
<Engine stop>
(1) After determining that the engine is being started, if the voltage of the lead battery 10 becomes equal to or less than a certain value b: it is determined that the engine is stopped from the engine starting state. For example, a voltage value of 103 to 108% of the OCV of the lead battery 10 can be used as the voltage value of b. Also, (2) after determining that the engine is being started, when the voltage of the lead battery 10 decreases at a speed equal to or higher than a certain value c and the voltage drop is equal to or more than a certain value d: It is determined that the vehicle has stopped. The voltage drop rate of c can be 1.0 to 4.0 V / s, and the voltage drop width of d can be 0.05 to 0.20 V. Further, (3) after determining that the engine is in operation, the voltage of the lead battery 10 decreases to a certain value e or less, and the voltage change width at that time is a certain constant value f with a certain time width. When the value is less than or equal to g: It is determined that the engine is stopped from the engine starting state. A voltage value of 102 to 109% of the OCV of the lead battery 10 can be used as the voltage value of e, 0.01 to 1.0 s can be used as the value of f, and 0.1 to 0.3 V can be used as the change width of the voltage of g. . MP determines that the engine has stopped when it falls under any of (1) to (3).

なお、MPは、エンジン停止後、鉛電池10の分極反応が解消した後(例えば、6時間経過後)に測定した鉛電池10の電圧をOCVとして取得する。   In addition, MP acquires the voltage of the lead battery 10 measured after the polarization reaction of the lead battery 10 is eliminated after the engine is stopped (for example, after 6 hours have elapsed) as an OCV.

(動作)
次に、フローチャートを参照して、AIユニット1の動作についてMPを主体として説明する。なお、AIユニット1に鉛電池1から電源が供給されると、初期設定処理において、プログラム、判定しきい値Vth等を含むプログラムデータがROMからRAMに展開され鉛電池10の劣化を判定するための劣化判定ルーチンが実行される。
(Operation)
Next, with reference to a flowchart, the operation of the AI unit 1 will be described with the MP as a main component. When power is supplied from the lead battery 1 to the AI unit 1, program data including a program and a determination threshold value Vth is expanded from the ROM to the RAM in the initial setting process to determine deterioration of the lead battery 10. The deterioration determination routine is executed.

図2に示すように、劣化判定ルーチンでは、まず、ステップ102において、エンジン始動があるまで待機する。MPは、上述したエンジン状態判定によりエンジン始動を判定する。エンジン始動と判定したときには、次のステップ104で、RAMに格納された電圧値を参照して、鉛電池10の放電開始時に測定された最低電圧値、かつ、鉛電池10の放電開始後15ms以内に測定された最低電圧値を、エンジン始動時の最低電圧値Vstとして算出する。なお、MPは温度測定部を介して鉛電池10の温度測定を行い、取り込んだ温度値により、最低電圧値Vstを、例えば、室温(25°C)における電圧値に温度補正する。 As shown in FIG. 2, in the deterioration determination routine, first, in step 102, the process waits until the engine is started. The MP determines the engine start based on the engine state determination described above. When it is determined that the engine start, the next step 104, by referring to the voltage value stored in the RAM, minimum voltage value measured at the discharge starting lead battery 10, and, after the start of discharging lead battery 10 15 ms The minimum voltage value measured within is calculated as the minimum voltage value Vst at engine start. Note that the MP measures the temperature of the lead battery 10 via the temperature measuring unit, and corrects the temperature of the lowest voltage value Vst to, for example, a voltage value at room temperature (25 ° C.) based on the acquired temperature value.

次のステップ106では、無劣化状態の鉛電池10のエンジン始動時の最低電圧値Vst0が既に取得されているか否かを、EEPROMを参照して判断する。すなわち、EEPROMの所定番地に、最低電圧値Vst0の値が書き込まれていれば、最低電圧値Vst0は既に取得されていると(肯定)判断し、ヌルであれば、最低電圧値Vst0は取得されていないと(否定)判断する。   In the next step 106, it is determined with reference to the EEPROM whether or not the lowest voltage value Vst0 at the time of starting the engine of the lead battery 10 in the non-deteriorated state has already been acquired. That is, if the minimum voltage value Vst0 is written at a predetermined address in the EEPROM, it is determined that the minimum voltage value Vst0 has already been acquired (affirmed). If it is null, the minimum voltage value Vst0 is acquired. Judge that it is not (deny).

ステップ106での判断が否定のときは、ステップ108において、ステップ104で算出した最低電圧値Vstが、無劣化状態の鉛電池10のエンジン始動時の最低電圧値Vst0の条件を満たすか否かを判断する。この条件は、例えば、(1)鉛電池10が自動車に取り付けられたときから半年以内であること、かつ、(2)エンジン始動前の鉛電池10のOCV(例えば、前回のエンジン停止後6時間経過時の開回路電圧)が12.5V以上であること、とすることができる。本実施形態では、操作表示部2には操作ボタン3が配置されているため、条件(1)の判断を行うために、例えば、操作ボタン3が所定操作で所定回数押下されると、MPは、鉛電池10が自動車に取り付けられたと判断し、その時点を起点として計時することで判断するようにしてもよい。なお、条件(1)からも明らかなように、本実施形態における「無劣化状態の鉛電池10のエンジン始動時の最低電圧値Vst0」の『無劣化状態』とは、SOHが100%の完全無劣化状態のみをいうのでなく、鉛電池10が健全な初期状態での実質的な無劣化状態をいう。   If the determination in step 106 is negative, it is determined in step 108 whether or not the minimum voltage value Vst calculated in step 104 satisfies the condition of the minimum voltage value Vst0 when the engine of the lead battery 10 in the non-degraded state is started. to decide. This condition is, for example, (1) within six months from when the lead battery 10 is attached to the automobile, and (2) the OCV of the lead battery 10 before starting the engine (for example, 6 hours after the previous engine stop) The open circuit voltage at the time) can be 12.5 V or higher. In the present embodiment, since the operation button 3 is arranged on the operation display unit 2, in order to determine the condition (1), for example, when the operation button 3 is pressed a predetermined number of times by a predetermined operation, the MP is Alternatively, it may be determined that the lead battery 10 is attached to the automobile and time is measured from that time. As is clear from condition (1), “no degradation state” of “minimum voltage value Vst0 at start of engine of lead battery 10 in no degradation state” in this embodiment is a complete SOH of 100%. Not only the non-degraded state but also the substantially non-degraded state in the initial state in which the lead battery 10 is healthy.

ステップ108で否定判断のときは、無劣化状態の鉛電池10のエンジン始動時の最低電圧値Vst0を取得するためにステップ102に戻り、肯定判断のときは、ステップ110において、ステップ104で算出した最低電圧値Vstを、無劣化状態の鉛電池10のエンジン始動時の最低電圧値Vst0として、EEPROMに格納して(書き込んで)、ステップ112へ進む。   When a negative determination is made at step 108, the process returns to step 102 in order to obtain the lowest voltage value Vst0 at the time of engine start of the non-deteriorated lead battery 10, and when an affirmative determination is made, the calculation is made at step 104 at step 110. The lowest voltage value Vst is stored (written) in the EEPROM as the lowest voltage value Vst0 when the engine of the lead battery 10 in the non-degraded state is started, and the routine proceeds to step 112.

一方、ステップ106での判断が肯定のときは、ステップ112でEEPROMから無劣化状態の鉛電池10のエンジン始動時の最低電圧値Vst0を読み出し、次のステップ114で電圧差ΔVst(=Vst0−Vst)を算出する。   On the other hand, if the determination in step 106 is affirmative, in step 112, the minimum voltage value Vst0 at the time of engine start of the non-degraded lead battery 10 is read from the EEPROM. ) Is calculated.

次に、ステップ116において、電圧差ΔVstが判定しきい値Vthより大きいか否かを判断する。否定判断のときは、鉛電池10の交換を必要とする程劣化が進んでいないため、ユーザ(ドライバ)に警告を発する必要がないので、ステップ102へ戻る。   Next, in step 116, it is determined whether or not the voltage difference ΔVst is larger than the determination threshold value Vth. When the determination is negative, since the deterioration has not progressed to the extent that the lead battery 10 needs to be replaced, it is not necessary to issue a warning to the user (driver), and the process returns to step 102.

一方、ステップ116で肯定判断のときには、次のステップ118において、エンジンが停止するまで待機する。MPは、上述したエンジン状態判定によりエンジン停止を判定する。エンジン停止と判定したときは、次のステップ120において、鉛電池10が要交換である旨を、以下に述べるように、ブザーによる聴覚的手段およびLEDによる視覚的手段で報知してステップ102へ戻る。   On the other hand, when the determination in step 116 is affirmative, in the next step 118, the process waits until the engine stops. The MP determines the engine stop by the above-described engine state determination. When it is determined that the engine is stopped, in the next step 120, as described below, the fact that the lead battery 10 needs to be replaced is notified by an audible means using a buzzer and a visual means using an LED, and the process returns to step 102. .

本実施形態では鉛電池10の上蓋9にAIユニット1が収容されているため、AIユニット1は、鉛電池10が設置される場所に配置される。多くはエンジンルーム内であり、または車室等の自動車内であり、ブザーが発する警報音は、走行中は車両のノイズにより聞こえにくい。このため、AIユニット1が発する警報音の発生タイミングを以下のように設定して、ユーザが警報音を聞きやすいタイミングで発し、ユーザに警報音が確実に伝達されるようにしている。なお、AIユニット1は、エンジンが停止したと判定した後、直ちに、DAコンバータを介してLEDを点灯させるトランジスタのゲートにハイレベル信号を出力してLEDを点灯させるとともに、所定時間経過後、別のDAコンバータを介してブザーを作動させるトランジスタのゲートにハイレベル信号を送出して警告音を発生させる。   In the present embodiment, since the AI unit 1 is accommodated in the upper lid 9 of the lead battery 10, the AI unit 1 is disposed at a place where the lead battery 10 is installed. Many are in the engine room or in an automobile such as a passenger compartment, and the alarm sound emitted by the buzzer is difficult to hear due to vehicle noise while driving. For this reason, the generation timing of the alarm sound generated by the AI unit 1 is set as follows, and the alarm sound is generated at a timing at which the user can easily hear the alarm sound, so that the alarm sound is reliably transmitted to the user. The AI unit 1 outputs a high level signal to the gate of the transistor that turns on the LED via the DA converter immediately after determining that the engine has stopped, and turns on the LED. A high-level signal is sent to the gate of the transistor that operates the buzzer via the DA converter of this type to generate a warning sound.

エンジン起動状態からエンジンを停止するタイミングにおいて、ユーザは、自動車から降り、ドアを閉め、ドアをロックして、自動車から離れる、という一連の動作を行うことが多いと推定される。従って、警告音を発生させる場合に、エンジンが停止したと判定したタイミングから一定のタイムラグを設けて報知すれば、警報がユーザに伝達される可能性が高くなる。報知開始タイミングに加えて、ブザーの警告音による報知継続時間もまた報知の重要な要因である。   At the timing of stopping the engine from the engine starting state, it is estimated that the user often performs a series of operations of getting out of the automobile, closing the door, locking the door, and leaving the automobile. Accordingly, when a warning sound is generated, if a certain time lag is provided from the timing when it is determined that the engine has stopped, there is a high possibility that an alarm will be transmitted to the user. In addition to the notification start timing, the notification continuation time by the buzzer warning sound is also an important factor of notification.

これらの具体的な時刻、時間としては、ブザーによる報知開始はエンジン停止後0〜60秒までの間に行われることが好ましい。報知継続時間は2秒以上であることが好ましく、最大数分間報知し続けることが好ましい。また、これらの時刻、時間の最適値は、車両の使用形態によって異なるので、鉛電池10の用途に応じて、個々のケースにより決定するようにすればよい。なお、本実施形態の鉛電池10は一般乗用車用のもので、ブザーによる警告音の報知継続時間を約30秒に設定している。   As these specific times and times, it is preferable that the notification start by the buzzer is performed between 0 and 60 seconds after the engine is stopped. The notification duration is preferably 2 seconds or more, and it is preferable to continue notification for a maximum of several minutes. Moreover, since the optimal value of these time and time changes with the usage forms of a vehicle, what is necessary is just to be determined by each case according to the use of the lead battery 10. FIG. In addition, the lead battery 10 of this embodiment is a thing for general passenger cars, The alerting | reporting continuation time of the warning sound by a buzzer is set to about 30 seconds.

本実施形態のAIユニット1によればほとんどの場合、警報音をユーザに確実に伝達できるが、実際には数回の聞き逃しが発生することを想定して、警報音を発生させる判定しきい値Vthは余裕を持ってやや高めに設定しておくことが好ましい。   According to the AI unit 1 of the present embodiment, in most cases, the alarm sound can be reliably transmitted to the user, but it is actually determined that the alarm sound is generated on the assumption that several missed hearings occur. The value Vth is preferably set slightly higher with a margin.

一方、LEDによる鉛電池10の電池状態の表示では、エンジン停止後、直ちに、LEDを点灯させて表示する。その時間は、本実施形態では約5分間である。また、AIユニット1は、操作表示部2に操作ボタン3を配置している。ブザーによる警告音を聞いた、または、電池状態を知りたいと希望するユーザが鉛電池10の健康状態を確認できるようにするためである。すなわち、この操作ボタン3による入力があった場合、電池状態をLEDで表示するようにして、ユーザが任意に電池状態を把握できるようにしている。なお、本実施形態では、鉛電池10の要交換を表示するLEDは、ユーザの注意を喚起するため、赤色LEDを用い点灯させるようにしている。   On the other hand, in the display of the battery state of the lead battery 10 by the LED, the LED is turned on and displayed immediately after the engine is stopped. The time is about 5 minutes in this embodiment. Further, the AI unit 1 has an operation button 3 disposed on the operation display unit 2. This is because a user who hears a warning sound from the buzzer or desires to know the battery state can check the health state of the lead battery 10. That is, when there is an input by the operation button 3, the battery state is displayed by the LED so that the user can arbitrarily grasp the battery state. In the present embodiment, the LED indicating that the lead battery 10 needs to be replaced is lit using a red LED in order to alert the user.

(作用等)
次に、本実施形態の鉛電池10の作用等についてAIユニット1を中心に説明する。
(Action etc.)
Next, the operation and the like of the lead battery 10 of the present embodiment will be described focusing on the AI unit 1.

AIユニット1は、電圧測定部を介して鉛電池10の電圧を測定し、演算部で、エンジン始動時に測定された電圧のうち最低電圧値Vstを算出する(ステップ104)。このとき、上述した式(1)が適用可能なように、RAMに格納した電圧値のうち、鉛電池10の放電開始後に測定された最低電圧値、かつ、鉛電池10の放電開始後15ms以内に測定された最低電圧値を最低電圧値Vstとして算出する。なお、測定された鉛電池10の電圧から、所定時間X(X:1〜100ms)以内に所定電圧Y(Y:0.5〜3.0V)以上の電圧降下(好適には、15ms以内に1.5V以上の電圧降下)があり、かつ、その後に所定値a(a:鉛電池10の開回路電圧の109%)以上の電圧値となったか否かを判断し、肯定判断のときに最低電圧値Vstを算出し、否定判断のときに鉛電池10の車載用電装品への放電とみなして最低電圧値Vstは算出しない(ステップ102)。そして、EEPROMに格納された無劣化状態の鉛電池10のエンジン始動時の最低電圧値Vst0と直近で測定した鉛電池10の最低電圧値Vstとの電圧差ΔVstが判定しきい値Vthより大きいかを判断することで(ステップ116)、大きいと判断した場合に、エンジン停止後にユーザに鉛電池10が要交換となった旨を報知する(ステップ120)。 The AI unit 1 measures the voltage of the lead battery 10 via the voltage measurement unit, and the calculation unit calculates the lowest voltage value Vst among the voltages measured when the engine is started (step 104). At this time, as applicable has the formula (1) described above, among the voltage values stored in the RAM, the measured minimum voltage value after discharge start lead battery 10, and, after the start of discharging lead battery 10 15 ms The lowest voltage value measured within is calculated as the lowest voltage value Vst. The voltage drop of the predetermined voltage Y (Y: 0.5 to 3.0 V) or more within a predetermined time X (X: 1 to 100 ms) from the measured voltage of the lead battery 10 (preferably within 15 ms) If there is a voltage drop of 1.5V or more) and then a voltage value of a predetermined value a (a: 109% of the open circuit voltage of the lead battery 10) or more is determined. The minimum voltage value Vst is calculated, and when the negative determination is made, the lead voltage 10 is regarded as a discharge to the on-vehicle electrical component, and the minimum voltage value Vst is not calculated (step 102). Whether the voltage difference ΔVst between the lowest voltage value Vst0 when the engine of the lead battery 10 in the non-degraded state stored in the EEPROM is started and the lowest voltage value Vst of the lead battery 10 measured most recently is larger than the determination threshold value Vth. (Step 116), when it is determined that it is large, the user is informed that the lead battery 10 has to be replaced after the engine is stopped (step 120).

本実施形態のAIユニット1によれば、鉛電池10の無劣化状態で算出された最低電圧値Vst0と直近の最低電圧値Vstとから鉛電池10の健康状態が判定されるため、電流センサを使用せず鉛電池10の健康状態を判定することができると共に、鉛電池10の放電開始後に測定された最低電圧値、かつ、鉛電池10の放電開始後15ms以内に測定された最低電圧値を最低電圧値Vstとして算出することから、上述した劣化判定原理が適用可能な最低電圧値Vstを好適に取得でき鉛電池10の劣化(健康状態)を正確に判定することができる。付言すれば、本実施形態では、AIユニット1による劣化判定を鉛電池10の電圧のみの測定で行い、ホール素子等の電流センサを使用しないので、AIユニット1のコストダウンおよび小型軽量化を図ることができ、ひいては、鉛電池10のコストダウンおよび軽量化を図ることができる。 According to the AI unit 1 of the present embodiment, the health state of the lead battery 10 is determined from the lowest voltage value Vst0 calculated in the non-degraded state of the lead battery 10 and the latest lowest voltage value Vst. it is possible to determine the health of the lead battery 10 without using the measured minimum voltage value after discharge start lead battery 10, and the lowest voltage value measured within the discharge start after 15ms of the lead battery 10 Is calculated as the minimum voltage value Vst, the minimum voltage value Vst to which the above-described deterioration determination principle is applicable can be suitably obtained, and deterioration (health state) of the lead battery 10 can be accurately determined. In other words, in the present embodiment, the deterioration determination by the AI unit 1 is performed by measuring only the voltage of the lead battery 10, and a current sensor such as a Hall element is not used. Therefore, the cost and size and weight of the AI unit 1 are reduced. As a result, the cost and weight of the lead battery 10 can be reduced.

また、本実施形態のAIユニット1は不揮発性のEEPROMを備えており、鉛電池10の無劣化状態でしか取得できない最低電圧値Vst0をEEPROMに書き込んでおき(ステップ110)、劣化判定にあたり利用している(ステップ112)。従って、AIユニット1は、例えば、鉛電池10を搭載した自動車が長期間動かされず(鉛電池10が充電されず)、AIユニット1への電力供給が途絶えた後でも、電力の再供給があったときに、最低電圧値Vst0のデータを失うことなく、鉛電池10の劣化状態を判定することができる。   In addition, the AI unit 1 of the present embodiment includes a nonvolatile EEPROM, and the lowest voltage value Vst0 that can be obtained only in the non-degraded state of the lead battery 10 is written in the EEPROM (step 110) and is used for the deterioration determination. (Step 112). Therefore, for example, the AI unit 1 can be re-supplied even after the automobile on which the lead battery 10 is mounted is not moved for a long time (the lead battery 10 is not charged) and the power supply to the AI unit 1 is interrupted. The deterioration state of the lead battery 10 can be determined without losing the data of the minimum voltage value Vst0.

なお、本実施形態では、説明を簡単にするために、鉛電池10の健康状態について、判定しきい値を用いて、良好、要交換の2つのレベルで判定する例を示したが、本発明はこれに限らず、複数の判定しきい値を設定し、例えば、良好、要注意、要交換の3つのレベル、または、それ以上に細分した判定を行うようにしてもよい。   In this embodiment, in order to simplify the explanation, an example in which the health state of the lead battery 10 is determined at two levels, i.e., good and requires replacement, using a determination threshold is shown. However, the present invention is not limited to this, and a plurality of determination threshold values may be set, and for example, determination may be performed in three sub-levels: good, attention required, and replacement required, or more.

また、本実施形態では、最低電圧値Vst0と最低電圧値Vstとの電圧差Vstを判定しきい値Vthと比較して鉛電池10の劣化判定を行う例を示したが、本発明はこれに限らず、例えば、最低電圧値Vst0と最低電圧値Vstとの割合を判定しきい値と比較するようにしてもよい。   Further, in the present embodiment, an example in which the deterioration determination of the lead battery 10 is performed by comparing the voltage difference Vst between the minimum voltage value Vst0 and the minimum voltage value Vst with the determination threshold value Vth is shown. For example, the ratio between the minimum voltage value Vst0 and the minimum voltage value Vst may be compared with a determination threshold value.

また、本実施形態では、鉛電池10の要交換を、赤色LEDを点灯させて表示する例を示したが、鉛電池10の劣化が更に進んだとき(例えば、電圧差ΔVstが上述した判定しきい値Vthより大きく別に設定された第2の判定しきい値より大きい場合)には、点滅させるようにしてもよい。   Further, in the present embodiment, an example in which the replacement of the lead battery 10 is displayed by turning on the red LED is shown. However, when the deterioration of the lead battery 10 further progresses (for example, the voltage difference ΔVst is determined as described above). If it is larger than the threshold value Vth and larger than the second determination threshold value set separately, it may be blinked.

さらに、本実施形態では、説明を簡単にするために、最低電圧値Vst0を一個取得してEEPROMに格納する例を説明したが、鉛電池10の無劣化状態で複数個の最低電圧値Vst0を取得し、取得した複数個の最低電圧値Vst0の例えば平均値や最頻値を算出してEEPROMに格納するようにしてもよい。このようにすれば、AIユニット1による劣化判定の精度をより高めることができる。   Further, in the present embodiment, for the sake of simplicity, an example in which one minimum voltage value Vst0 is acquired and stored in the EEPROM has been described. However, a plurality of minimum voltage values Vst0 are stored in the non-degraded state of the lead battery 10. For example, an average value or mode value of the plurality of acquired minimum voltage values Vst0 may be calculated and stored in the EEPROM. In this way, the accuracy of deterioration determination by the AI unit 1 can be further increased.

また、本実施形態では、鉛電池10が無劣化状態であること、とりわけ、上述した条件(1)の判断を行う起点として、操作ボタン3が所定操作で所定回数押下する例を示したが、MPが初めてのエンジン始動があったかを監視し、肯定判断のときに、鉛電池10が自動車に取り付けられたものとみなし、その時点を条件(1)の判断を行う起点としてもよい。この態様では、操作ボタン3による起点設定を排除することができる。   Moreover, in this embodiment, although the lead battery 10 is in a non-deteriorating state, in particular, the example in which the operation button 3 is pressed a predetermined number of times by a predetermined operation is shown as a starting point for determining the above-described condition (1). The MP may monitor whether or not the engine has been started for the first time, and when the determination is affirmative, the lead battery 10 may be regarded as being attached to the automobile, and that time may be used as a starting point for determining the condition (1). In this aspect, the starting point setting by the operation button 3 can be eliminated.

そして、本実施形態では、電池状態判定装置としてのAIユニット1を鉛電池10の上蓋9に収容した例を示したが、AIユニット1を鉛電池10から独立させて用いるようにしてもよい。   In the present embodiment, the example in which the AI unit 1 as the battery state determination device is accommodated in the upper lid 9 of the lead battery 10 is shown, but the AI unit 1 may be used independently from the lead battery 10.

本発明は電流センサを使用せず鉛電池の健康状態を正確に判定可能な電池状態判定装置および電池状態判定装置を備えた自動車用鉛電池を提供するものであるため、電池状態判定装置や自動車用鉛電池の製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention provides a battery state determination device capable of accurately determining the health state of a lead battery without using a current sensor, and a vehicle lead battery equipped with the battery state determination device. As it contributes to the manufacture and sale of lead batteries for industrial use, it has industrial applicability.

本発明が適用可能な実施形態の鉛電池の外観斜視図である。1 is an external perspective view of a lead battery according to an embodiment to which the present invention is applicable. 実施形態の鉛電池に収容されたAIユニットのマイクロプロセッサが実行する劣化判定ルーチンのフローチャートである。It is a flowchart of the deterioration determination routine which the microprocessor of the AI unit accommodated in the lead battery of the embodiment executes. エンジン始動時の鉛電池の端子間電圧を模式的に示すグラフである。It is a graph which shows typically the voltage between terminals of a lead battery at the time of engine starting. エンジン始動時の鉛電池の端子間電圧を所定時間毎に測定したときの測定値を時系列的に示すグラフである。It is a graph which shows the measured value when the voltage between terminals of the lead battery at the time of engine starting is measured for every predetermined time in time series. 無劣化状態の鉛電池のエンジン始動時の最低電圧値と劣化後の鉛電池のエンジン始動時の最低電圧値とを示すグラフである。It is a graph which shows the minimum voltage value at the time of engine starting of the lead battery of an undeteriorated state, and the minimum voltage value at the time of engine start of the lead battery after deterioration.

符号の説明Explanation of symbols

1 AIユニット(電圧測定手段、算出手段、状態判定手段、電池状態判定装置)
10 鉛電池
1 AI unit (voltage measurement means, calculation means, state determination means, battery state determination device)
10 Lead battery

Claims (5)

鉛電池の放電時電圧を用いて前記鉛電池の健康状態を判定する電池状態判定装置において、
前記鉛電池の電圧を測定する電圧測定手段と、
前記電圧測定手段で測定された電圧のうち最低電圧値を算出する算出手段と、
前記算出手段により前記鉛電池の無劣化状態で算出された最低電圧値と前記鉛電池の無劣化ないし劣化状態で算出された直近の最低電圧値とから、前記鉛電池の健康状態を判定する状態判定手段と、
を備え、前記算出手段は、前記最低電圧値を、前記電圧測定手段により前記鉛電池の放電開始後に測定された最低電圧値、かつ、前記鉛電池の放電開始後15ms以内に測定された最低電圧値として算出することを特徴とする電池状態判定装置。
In the battery state determination device for determining the health state of the lead battery using the discharge voltage of the lead battery,
Voltage measuring means for measuring the voltage of the lead battery;
A calculating means for calculating a minimum voltage value among the voltages measured by the voltage measuring means;
A state in which the health state of the lead battery is determined from the lowest voltage value calculated in the non-deteriorated state of the lead battery by the calculating means and the latest minimum voltage value calculated in the non-deteriorated or deteriorated state of the lead battery. A determination means;
Wherein the calculating means, the minimum voltage value, minimum voltage value measured after the start of discharging the lead-acid battery by the voltage measuring means, and the lowest measured within discharge start after 15ms of the lead battery A battery state determination device characterized by calculating as a voltage value.
前記鉛電池は自動車用鉛電池であり、前記算出手段が算出する最低電圧値はエンジン始動用のセルモータを駆動するときの前記鉛電池の放電時電圧のうちの最低電圧値であることを特徴とする請求項1に記載の電池状態判定装置。   The lead battery is an automotive lead battery, and the minimum voltage value calculated by the calculating means is a minimum voltage value among discharge voltages of the lead battery when driving a cell motor for starting an engine. The battery state determination device according to claim 1. 前記算出手段は、前記電圧測定手段で測定された鉛電池の電圧から、所定時間X(X:1〜100ms)以内に所定電圧Y(Y:0.5〜3.0V)以上の電圧降下があり、かつ、その後に所定値a(a:前記鉛電池の開回路電圧の109%)以上の電圧値となったか否かを判断し、肯定判断のときに前記最低電圧値を算出し、否定判断のときに前記最低電圧値を算出しないことを特徴とする請求項2に記載の電池状態判定装置。   The calculation means has a voltage drop of a predetermined voltage Y (Y: 0.5 to 3.0 V) or more within a predetermined time X (X: 1 to 100 ms) from the voltage of the lead battery measured by the voltage measuring means. It is then determined whether the voltage value is equal to or higher than a predetermined value a (a: 109% of the open circuit voltage of the lead battery), and the minimum voltage value is calculated when an affirmative determination is made. The battery state determination device according to claim 2, wherein the minimum voltage value is not calculated at the time of determination. 不揮発性のメモリを更に備え、前記算出手段は前記鉛電池の無劣化状態で算出された最低電圧値を前記メモリに格納し、前記状態判定手段は前記メモリに格納された最低電圧値を読み出して前記鉛電池の健康状態を判定することを特徴とする請求項1に記載の電池状態検知装置。   A non-volatile memory; and the calculation means stores in the memory a minimum voltage value calculated in a non-degraded state of the lead battery, and the state determination means reads out the minimum voltage value stored in the memory. The battery state detection device according to claim 1, wherein a health state of the lead battery is determined. 請求項1ないし請求項4のいずれか1項に記載の電池状態判定装置を備えた自動車用鉛電池。   The lead battery for motor vehicles provided with the battery state determination apparatus of any one of Claim 1 thru | or 4.
JP2006271519A 2006-10-03 2006-10-03 Battery state determination device and lead battery for automobile Expired - Fee Related JP4770683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271519A JP4770683B2 (en) 2006-10-03 2006-10-03 Battery state determination device and lead battery for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271519A JP4770683B2 (en) 2006-10-03 2006-10-03 Battery state determination device and lead battery for automobile

Publications (2)

Publication Number Publication Date
JP2008087654A JP2008087654A (en) 2008-04-17
JP4770683B2 true JP4770683B2 (en) 2011-09-14

Family

ID=39372235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271519A Expired - Fee Related JP4770683B2 (en) 2006-10-03 2006-10-03 Battery state determination device and lead battery for automobile

Country Status (1)

Country Link
JP (1) JP4770683B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149840A (en) * 2010-01-22 2011-08-04 Panasonic Corp State discrimination device of battery, battery including the state discrimination device, and vehicle including the state discrimination device
CN102324589B (en) * 2011-09-09 2013-09-11 宋杰 Intelligent sealed valve control lead-acid storage battery with embedded parameter sensor
JP6182588B2 (en) * 2013-02-19 2017-08-16 古河電気工業株式会社 Secondary battery deterioration determination method and secondary battery deterioration determination device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193745B2 (en) * 2004-04-12 2008-12-10 新神戸電機株式会社 Battery state detection method and battery state detection device
JP4507720B2 (en) * 2004-06-29 2010-07-21 新神戸電機株式会社 Deterioration determination method and deterioration determination device for lead acid battery
JP4715123B2 (en) * 2004-08-05 2011-07-06 パナソニック株式会社 Lead storage battery state detection device and lead storage battery integrally provided with the state detection device
JP4341556B2 (en) * 2005-01-05 2009-10-07 新神戸電機株式会社 Battery state detection device

Also Published As

Publication number Publication date
JP2008087654A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP5061907B2 (en) Battery state determination method and battery state determination device
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP4677970B2 (en) Battery state determination device and lead battery for automobile
JP5141089B2 (en) Reader
JP5338807B2 (en) Battery state determination method and automobile
WO2007105595A1 (en) Battery state judging device
JP4670778B2 (en) Battery status notification method
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP4844044B2 (en) Battery state detection system and automobile equipped with the same
JP5050489B2 (en) Battery state detection device and lead battery
JP2009241646A (en) Battery state determination system, and automobile having the system
JP4770683B2 (en) Battery state determination device and lead battery for automobile
JP4548011B2 (en) Deterioration degree judging device
JP4702115B2 (en) Battery status judgment device
JP2009113702A (en) Deterioration determination device
JP2010071731A (en) Device of determining charge state of onboard lead storage battery
JP4702251B2 (en) Battery state determination device and lead battery for automobile
JP2005292035A (en) Method of detecting battery condition
JP4374982B2 (en) Storage battery deterioration determination device and storage battery provided with the same
JP5104191B2 (en) battery
JP4760276B2 (en) Engine starting storage battery deterioration determining method and apparatus, and engine starting storage battery provided with the deterioration determining apparatus
JP5130868B2 (en) State determination device for vehicle storage battery and vehicle storage battery provided with the same
JP4765988B2 (en) Battery state determination device and lead battery for automobile
JP2008082990A (en) Battery state detector, and lead-acid battery for automobile
JP2008080977A (en) Battery state detection device and lead-acid battery for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4770683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees