JP4505145B2 - 大面積プラズマ源および大面積プラズマ源内でプラズマ領域を囲むチャンバハウジング - Google Patents

大面積プラズマ源および大面積プラズマ源内でプラズマ領域を囲むチャンバハウジング Download PDF

Info

Publication number
JP4505145B2
JP4505145B2 JP2000592463A JP2000592463A JP4505145B2 JP 4505145 B2 JP4505145 B2 JP 4505145B2 JP 2000592463 A JP2000592463 A JP 2000592463A JP 2000592463 A JP2000592463 A JP 2000592463A JP 4505145 B2 JP4505145 B2 JP 4505145B2
Authority
JP
Japan
Prior art keywords
plasma
housing
gas
wall
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000592463A
Other languages
English (en)
Other versions
JP2002534785A (ja
Inventor
ジョンソン、ウェイン・エル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of JP2002534785A publication Critical patent/JP2002534785A/ja
Application granted granted Critical
Publication of JP4505145B2 publication Critical patent/JP4505145B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、処理チャンバ内で基板に行われる堆積プロセス及びエッチングプロセスを含むプラズマアシストプロセスの実行において使用されるプラズマ源、特に、大面積の基板の処理を可能にするプラズマ源に関する。
【0002】
【従来の技術】
上述されたようなタイプのプロセスが、大面積のウエハ、更にフラットパネルディスプレイに対して、行われるのを可能にするプラズマ源が必要とされている。産業界では、1側面が1mであるフラットパネルディスプレイを表示するために努力がなされ、また、このような基板のプラズマアシストプロセスには、現行のシステムで発生されるよりも更に高いプラズマイオン密度のレベルが求められるという、傾向がある。このような大面積の基板のプラズマアシストプロセスは、高い処理速度を果たすために、高プラズマ密度と高ポンプ速度との両方を必要とする。
【0003】
上述されたようなタイプのプラズマ源において、プラズマ堆積もしくはエッチングの速度は、処理ガスのスループット即ちポンプ速度が処理チャンバの要求を満たしている限り、イオンフラックス即ちイオン密度に対応している。かくして、大面積の基板に対し満足なプロセス速度を実現するには、ガスのスループットとイオンフラックスとの両方が充分に高くなくてはならない。
【0004】
更に、必然的に広いディメンションを有するプラズマ源は、大気圧からのかなりの力に耐えなくてはならず、また、この源の処理チャンバ内に均一なプラズマを発生させる電界を形成するための最適な幾何学的形状を提供することが可能でなくてはならない。
【0005】
【発明が解決しようとする課題】
本発明の目的は、上述されたような能力を有する大面積プラズマ源を提供することである。
本発明の他の目的は、ハウジング内に閉じ込められたプラズマのための必須の静電気シールドを与えると共に高周波電磁界エネルギーのプラズマへの伝達を可能にしながら、大気圧の力に対して支持可能な、大面積プラズマ源のハウジングを提供することである。
【0006】
本発明は、これら並びに他の目的を、大気圧に対して支持可能にする金属静電気シールド部材から成る側壁、もしくは大気圧を支持可能で、静電気シールド機能を与える導電部材と結合された畝状誘電壁、もしくはこれら2つの壁の組み合わせ、を有するプラズマ源のハウジングを提供することによって果たされる。これらの壁は、所定の垂直幾何学に関わって、しかしこれに限定されず、直線に、内もしくは外に傾斜されて、内もしくは外に曲げられるなどして、成型され得る。かくして、プラズマ源のハウジングは、事実上、必要とされる所定のディメンション及び形状を有して構成され得、高周波エネルギーが、ハウジング壁を介してプラズマに供給されるのを可能にしている。更に、ハウジングは、処理チャンバ壁を冷却するシステムに、容易に適応する。
【0007】
本発明の更なる目的は、処理チャンバ内で、高度なプラズマの均一性を果たすことである。プラズマを発生させ維持する高周波電界は、処理チャンバを囲む領域内に発生するので、プラズマの均一性は、ガス分子もしくは処理ガスを用いての拡散と、流れとプラズマ勾配とが組み合わさりプロセスの均一性を実現することによって、果たされる。かくして、いかなる圧力及び高周波出力レベルで、プラズマの均一性は、処理チャンバのアスペクト比の関数、即ち処理チャンバの高さに対する断面値の2乗根の比である。この断面値は、チャンバが平均断面領域を有している場所における、水平面の面積である。
【0008】
標準的な試験の手順と共に本明細書で開示された原則を適用することによって、高度なプラズマの均一性が果たされ得ることが、現在判っている。
【0009】
【課題を解決するための手段】
本発明に関われば、上述の及び他の目的は、大面積の基板にプラズマアシストプロセスを行うために使用される大面積プラズマ源においてプラズマ領域を囲むチャンバハウジングによって、果たされる。このチャンバハウジングは、
プラズマ領域に対応する空間を囲み、ほぼ垂直に延びた壁を構成し、複数の開口部と空間の周囲に静電気シールドを形成する導電部材とを有する、ハウジング部材と、
夫々に、周囲端を有し、各開口部を閉じるように配置されている、複数の誘電部材と、
ハウジング部材と各誘電部材の周囲端との間にハーメチックシールを形成するシール手段とを、具備する。
【0010】
【発明の実施の形態】
図1は、本発明に関わるプロセス装置の第1の実施形態を示している。本装置は、基本的に、チャンバハウジング2と、このハウジング2を囲むエンクロージャ4とから構成されている。ハウジング2並びにエンクロージャ4は、共同して、環状の空間6を形成している。この環状の空間6は、本実施形態において、水平面内で矩形の断面を有する。これは、フラットパネルディスプレイを構成する基板を処理するのに適した形状である。しかし、他の断面も提供され得、いくらかの応用即ち半導体ウエハの処理のために、円形の断面が、基板の形状に対応するだけでなく、矩形よりもよい構造強度を提供する。
【0011】
前記空間6は、液体クーラントで満たされ、高周波電流が供給される高周波コイル8を内に有する。この高周波電流は、ハウジング2並びにエンクロージャ4の上壁及び下壁によって囲まれたプロセス領域10でプラズマを発生させ保持するために、ハウジング2によって囲まれた領域に電界を発生させる。エンクロージャ4の上壁12は、クーラント供給/返還ライン16と、ガス分子及びイオンをプロセス領域10から外へポンプ送りし、この領域10内を所望の真空圧力に維持するための真空ポンプアセンブリ18と、領域10内に新鮮な処理ガスを入れるのに使用される連通通路(示されず)とを、支持している。
【0012】
更に、前記壁12は、高速マッチングアセンブリ即ちマッチングネットワーク20を支持している。これは、本来公知の部品であり、代表的には、2つの可変キャパシタとインダクタとのLネットワークから成る。この可変キャパシタは、自動制御ネットワークによって機械的に調節される。このネットワーク20の目的は、マッチングネットワーク並びにプラズマ源を調査するジェネレータにより見られるような負荷インピーダンスと、高周波ジェネレータの源のインピーダンスとを釣り合わせることである。代表的には、高周波ジェネレータの源のインピーダンスは、50Ωで、かくして、可変マッチングネットワーク部品は、このマッチングネットワークの出力インピーダンスがプラズマ源に対する入力インピーダンスと複合的に結合するように、変化される。マッチングされている状況で、マッチングネットワーク結合点における前進パワーは、最大化され、反射パワーが、最小化される。マッチングネットワークのデザインは、速度及びローバスト性及び制御性は異なるが、同じ基本原則に基づいており、先行技術に見られることも多い。
【0013】
以下で詳細が説明されるように、チャンバハウジング2は、領域10のための、垂直な隔定壁を提供し、エンクロージャ4の比較的広い領域の壁12、14の外面に作用する大気圧と、領域10内に発生され前記複数の壁の内面に作用する真空圧との間の差によって、壁12,14に作用する力に耐えるように構成されている。更に、チャンバハウジング2は、領域10のための静電気シールドを提供し、高周波エネルギーをコイル8から領域10へと伝導可能にするように構成されている。エンクロージャ4の垂直壁は、必須ではないが、各壁の対向面の間の圧力差により壁12、14にかかる上述された力に耐える助けとなるように構成され得る。
【0014】
各真空ポンプ18は、各ゲートバルブ即ち絞り22を有する、カップリングフランジ24により壁12に設けられた真空ポンプアセンブリの一部である。ゲートバルブ22が大きく開かれているとき、最大ポンプ送り速度が果たされ得る。しかし、一部分の閉鎖が、分布されたポンプオリフィスを介して様々に流れを制限することにより、ポンプ速度の空間的な変化を可能にする。ゲートバルブ24は、公知のデザインであり得る。
【0015】
前記フランジ24は、円柱形部分であり、これは、壁12の各貫通孔28と各ポンプ18の入口端との間の流れの通路を提供している。これら孔28は、ポンプポートであり、夫々、各真空ポンプ18の入口と連通している。夫々の真空ポンプ18の動作の適当な選択及び制御に加え、孔28の数の適当な選択と位置付けとによって、排気ガスの流れは、領域10が均一なガスの排出に合わせられ得る。ポンプの選択及び制御と孔28の配置とは、当業界で既に公知の原則並びに慣習に基づいて果たされ得る。
【0016】
また、所望のプロセスの均一性を果たすには、ガス注入の適当な制御が必要である。本発明の態様が、以下に説明される。
更に、源の下部には、適当な基板支持体、並びに、バイアス電圧、例えば高周波バイアスを支持体へ印加するための手段が設けられている。このような基板支持体は、当業界で公知の原則並びに慣習に従って、構成され、源内に設置され得る。
【0017】
図2は、基本的に幾何学構造において図1の源とは異なる、本発明に係わる源の第2の実施形態を示す、図1に類似した図である。図1に示される実施形態のチャンバ10は、平行な形状を有するが、図2のチャンバ10’は、角錐台の形状である。かくして、ハウジング2’の側壁は、エンクロージャ4’の側壁と同様に、源の垂直軸に対して傾斜されている。
図3は、アルミニウムのような導電部材で作られ、必須の圧縮及び引張りの強度を与えるのに充分な厚さの壁を有するハウジング2の一部を示す斜視詳細図である。エンクロージャ4の内部が真空下にあるとき、この内部に向かって方向付けられ、統合された圧力が、材料内に曲げモーメントを発生させ、故に、引張りもしくは圧縮下にあるエンクロージャ4の分けられた領域を作る。
【0018】
導電部材により形成され、ハウジング2は、静電気シールドを構成する。ハウジング2には、一連の垂直方向に長い凹部32が設けられている。これらの凹部32は、ハウジングの周囲に、均一な間隔で配置されている。各凹部32の中心には、狭い弾性のあるスロット34がある。このスロット34は、ハウジング2の厚さ方向の残りの壁を通って延び、前記領域10と連通している。各凹部32には、各凹部32のスロット34内に延びた突出部分を備え、アルミナのような誘電材料で形成された挿入部36が設けられている。各挿入部36には、この挿入部36の外側で挿入部の内方に面している面36、42、42’において、4つの弾性真空シール40,40’が設けられている。各挿入部36は、各フレーム46で覆われている。このフレーム46は、ねじ穴48を通って延びる複数のねじ(示されず)を用いて、関連した挿入部36とシール40,42を凹部32の内に保持している。2つのシール40,40’の間に、図4の52で示されるような、少なくとも1つの大気への通路が設けられている。この通路は、システムが完全に組み立てられたときに、アクセスのために、エンクロージャ4の外側位置に延びるように構成されている。通路52は、シール40,40’両方の漏れのチェックを可能にする。かくして、チャンバ2と壁4との間のクーラント流体54に対するシールと、領域10内の真空に対するシールとの両方が、1つのポートでチェックされ得る。
【0019】
高周波エネルギーは、コイル8から領域10内へと、挿入部36及びスロット34を介して流れ得る。
図5は、図1の実施形態の構造の他の形を示している。図5に示される構造の形において、ハウジング2には、ハウジング2の壁全体を通って延び、垂直に長いスロット60が設けられている。説明された実施形態において、各スロット60は、ハウジング2の外面に隣接し、外へ分かれている即ちじょうご型に開いている部分と、ハウジング2の縦壁に対し垂直な表面を備えた部分64とを、有する。誘電ウインドウ66が、各スロット60の部分64に設けられ、この部分64に、部分64と誘電ウインドウ66の周囲端との両方に鍮付けされた金属バンド68によって固定されている。このバンド68は、誘電ウインドウ66とハウジング2との間の熱膨張差を補うように機能する。図5は、ハウジング2の垂直外面の切断された部分を示している。このような部分を示した理由は、隣接したスロット60相互間の領域の断面形状を比較的良く説明できるからである。
【0020】
バンド68は、コバール材で形成され得る。コバール材は、54%の鉄、29%のニッケル、17%のコバルトを含む合金の商標名である。コバール材の熱膨張係数は、金属ハウジングの熱膨張係数と誘電ウインドウの熱膨張係数との間である。このような金属の使用が、産業界では一般的である。
図5の実施形態において、各スロット60には、図3及び図4に示された実施形態の各スロット34より大きい面積が与えられ得る。かくして、図5の実施形態は、領域10中への高周波エネルギーの通路のために比較的大きい総有効誘電ウインドウを、提供可能である。更に、構造即ち構造面積は、誘電ウインドウをプラズマ源のハウジング壁に固定する必要性が、本実施形態で最小にされる。
【0021】
図6は、本発明に係わるチャンバハウジング72の更なる実施形態を説明している。ハウジング72は、図1のハウジング2と同様な一般的形状を有するが、開口部74のフレームとなる凹部76によって囲まれた大面積の開口部74が、各側面に設けられている。各開口部74は、例えばアルミナで形成された堅い静電気パネル78によって、完全に覆われる。各パネル78は、台部分80と複数の垂直に延びるリブ82とから構成された、上下続きの静電本体である。リブ82は、右角度で台部分80から突出している。パネル78は、開口部74と凹部76とを全体に横切って延びるような大きさにされている。
【0022】
更に、ハウジング72には、アルミナのような導電部材で形成された複数の長い負荷支持部材86が設けられている。各部材86は、T字形の断面を有し、隣接した2つのリブ82の間に位置されており、ハウジング72の下端と上端とに、下端と上端とにおいて固定的に接続されている。部材86は、静電気シールドの導電部材として機能する。これらの部材が高周波電気によるハウジング72への良い接続を上端及び下端で有していることは、重要である。十分な接続、及び音楽機械接続が、各部材86の上端と下端とを、ハウジング72の上端と下端とに固定するために、機械ねじ(示されず)によって提供され得る。部材86は、金属で形成されており、かくして比較的弾力がないので、弾力のある材料の層が、各部材86と土台部分80の関連部分との間に配置されるのが好ましい。このような部材の1つ88が、図6に示されている。
【0023】
図6に示された実施形態に代わって、静電気シールドが、図7の(A)に示されるように、各パネル78の外面をコートする金属の形状で設けられ得る。このコートは、2つの隣接したリブ82の間に夫々配置された各ストリップの形でよい。本実施形態において、リブ82は、これらの端部が各パネル78の上端と下端とから離れるように、短くされている。上部並びに下部ウインドウブレース89(上部ブレース89のみが図7の(A)に示されている)は、各パネル78の上端並びに下端に沿って延びており、リブ82の端部を受けるノッチと、リブ82とインターロックするタブとが設けられている。これらタブは、塗布された金属コートと直接接する。ウインドウブレース89は、各誘電パネル78の周囲全体を、ハウジング72の関連開口部に取着している。ブレース89は、図7の(A)に示されるように、ハウジング72にボルト締めされる。
【0024】
各ブレース89は、図7の(B)に示されるような所定の組立て構造を有している。図7の(B)は、特に、O−リングシール40、40”並びに漏れ検査ポート52’を示している。図6並びに図7の(A)に示された両実施形態において、各静電気パネル78は、チャンバが真空状態にあるとき内方へ方向付けられた圧力の存在により賦課された曲げモーメントに抵抗可能でなくてはならない。これが、リブ82の主要な目的である。
【0025】
図6に示された実施形態並びに上述されたような変形例の場合、各誘電パネル78は、関連凹部76に、グルーブ41内に保持された少なくとも2つのO―リングによってハーメチックシールされている。好ましくは、このようなシールは、ハウジングの内部から外部への通路52のような一連の通路と結合された空間によって分けられた、リング40、40’のような二重の弾性シールによって、果たされ、技術者が、液体の漏れもしくは真空の漏れに気付くのが可能になる。
【0026】
図8は、チャンバ領域10内で上を向いたときの壁12の裏面とチャンバ2の壁とを示す、断面平面図である。壁12は、壁12の開口部98に固定された誘電挿入部96に支持されこれを通って垂直に延びる入口部分92を有する複数の処理ガス誘導管90を、支持している。挿入部96並びにアセンブリの他の誘電部分が、例えばPTFEで形成され得る。各管90は、横に延びる出口部分94を有する。この出口部分94は、関連する入口部分92の間に延びている。各管90の出口部分94には、長さに沿って延びている、出口ホール、即ち注入ノズル94’(図9の(A)並びに(B))の列が設けられている。
【0027】
管90の出口部分94は、被処理基板より上の高さに配置され、最適なガス分子が、基板に到着されるのを可能にする。出口部分94と基板との間の距離が大きくなるにつれて、管90の間の空間が大きくなり、もう一方で、基板に到達されるイオン化ガスの密度がほぼ均一である。言うまでもなく、管90間の空間増加は、管の数を減少させる。しかし、所定のプロセスの間、管90の出口部分は基板に近づけられるのが好ましい。例えば、ガスのイオン化と、この結果生じたイオンと基板との接触との間の時間を短くするのが好ましい場合、前記のようにされ得る。
【0028】
各ガス注入管入力部分は、入口マニホルド(示されず)からのガスの注入を制御するように、流量調節バルブもしくは個々の質量制御器に接続されている。各管90の各端へのガスの流れを制御することによって、様々のガス注入形態が、後述されるように、可能にされる。
【0029】
壁12の中央に、漏斗型通路の形をしたヴューポート99が設けられている。この漏斗型の通路は、被処理基板全体を囲む視界領域を提供するように曲げられている。ヴューポート99は、単にチャンバの外観検査及びこの処理のために使用されるか、内部チャンバへの光学上のアクセスを必要とする診断用システムに適応され得る。
【0030】
ガス注入管90の外面は、時間中、処理ガスの残りでコートされる。本発明の更なる特徴に係われば、こうしたコーティングは、ハウジング2の内部を洗浄する間高周波バイアスを管90に適用することによって、管90から除去され得る。
従来、このような洗浄は、現代のエッチングもしくは堆積チャンバにおいて、独立した洗浄プロセスによって、周期的に行われてきた。チャンバは、領域10に設けられた基板で洗浄される。領域10は、プラズマ中でイオン化されたときハウジング2内の表面から残りのコーティングを除去可能なガスで、満たされる。プラズマ発生高周波電界が、領域10に、形成される。ウエハ処理において、洗浄プロセスは、化学プロセスの速度をプラズマ中の原子もしくはイオンの数を増加させて改良するために、通常のプロセスにおける圧力よりかなり高い圧力で導電されることが多い。高周波バイアスをハウジング2の一部に与えることで、残りの除去速度を加速させることができる。
【0031】
金属の電極をハウジングの外部とハウジングの誘電壁の後ろに設け、バイアスを壁に与えるために電圧を電極に印加し、洗浄速度を加速させることは、公知である。このタイプの配置は、例えばWayne Johnsonによる“ALL RF BIASABLE ANO/OR SURFACE TEMPERATURE CONTROLLED ESRF”と題された懸案中の仮出願60/065,794号に、開示されている。
【0032】
管90への高周波バイアスの適用は、管90内のイオン衝撃エネルギーを強化させ得、かくして、残りが内壁から出るようにエッチングされる速度並びに効果を増す。イオン衝撃は、衝撃を受ける表面の表面温度の上昇として考えられ得、かくして、化学反応速度を加速し得る。
好ましくは、注入管90は、陽極酸化されたアルミニウムで形成されるか、水晶もしくはアルミナで形成された誘電チューブがシースで覆われた金属管部材により構成される。
【0033】
洗浄高周波バイアス電圧の管90への適用を考慮すると、管90をエンクロージャ4の壁から電気的に分離させることが必要である。このような分離は、ガスを搬送する管内にプラズマが発生されないようにするため、必要である。このバイアスは、周期的な洗浄サイクルの間だけでなく、通常の動作中にも、適用される。高周波バイアスは、外面(もしくは処理側面)を洗浄するために、周期的にガス注入管に適用される。エッチングプロセスの間、汚れが、管の表面に堆積される。長期的な粒子汚染を最小限にする為に、注入管の外面(チャンバ内の全表面に加えて)は、洗浄サイクル中、洗浄されなくてはならない。高周波バイアスは、DCセルフバイアス(結果として起こる、シースを横切る標準電圧差)を発生させる。これは、注入管の表面に供給される標準イオンエネルギーに影響を与える。
【0034】
管が導電部材で形成されている場合、キャパシタは、セルフバイアスによる供給を可能にすることが必要とされる。
高周波バイアス適用中に注入管の内部容積中でのプラズマ発生を防ぐため、誘電表面領域の使用によって機能停止を最小にするような管内の構造を使用することが、可能である。1つの例は、処理ガスを上部電極注入板に供給するために半導体産業で使用されてきた、ガスの流れの通路中の誘電材料(水晶)でできた毛細管バンドルである。
【0035】
図9の(A)並びに(B)は、注入管90に高周波電圧を供給するための配置を詳細まで示している。図9は、1つの注入管90の入口領域の、(A)が断面図であり、(B)が底面図である。この注入管90を介して、処理ガスは、供給され、高周波バイアスが印加される。このアセンブリは、上壁12内にある。処理ガスは、標準的なガスラインから供給され、示されているように、標準的なフィッティングを用いてガス注入システムに適合される。誘電挿入部96は、フィッティング102を導電ベースリング104から隔離する。このベースリング104は、入口部分92を囲む。高周波電圧は、ベースリング104を用いてユニットを形成する高周波内部コンダクタ110、マッチングネットワーク、高周波結合面108の夫々の出力で形成された標準的な結合フランジを介して、リング104に印加される。ガス注入高周波バイアスアセンブリへの高周波供給量は、内部コンダクタ110、外部コンダクタ114、これらコンダクタの間に挿入された誘電体116から構成される標準的な供給量である。内部コンダクタ110は、ベースリング104に取着されている。このベースリングは、ガス注入管90に直接的に接触している。外部コンダクタ114は、指示板120と一体的である。誘電挿入部96,116は、外部コンダクタ114、この支持板120を、内部コンダクタ110、リング104から隔離している。
【0036】
本発明に係われば、図8に示された配置の注入管による、領域10内の処理ガスの分配は、各管90の、ガス入口の圧力、ガスの流速、注入ノズル(94’)の全領域の内1以上を適当に選択することによって、制御され得る。この制御に影響を与えるのに必要とされる関係が、図8、図10、図11の(A)及び(B)を参照して説明される。
図8に示されるように、処理ガスは、一連の注入管90を介して領域10に入る。注入管90の出口部分94は、エンクロージャの壁12の下で互いに選択された垂直距離を置いて配置され、同じ水平面に横たわっている。壁12は、ポンプマニホルド板を構成している。しかしながら、全ての注入管90が同じ水平面に横たわる必要はない。実際、ウエハの平面に対しこれらの垂直な空間を変化させることは、効果的である。
【0037】
注入管90は、1つの水平方向に(空間dを備えて)均等に並んでいる。図10に示されるように、各管90の出口部分94は、領域10全体に渡って水平方向に2Lの長さを有する。前述されたように、管90及びこの空間dの数は、選択された処理目的を果たすために、変化され得る。同様に、長さ2Lは、所望の処理目的に基づいて、選択される。各注入管90は、全長に沿って即ち入口及び出口部分に沿って、断面領域Aを有する。各管90の出口部分94には、夫々に断面領域Aを有した複数のN注入ノズル(図9の(A)及び(B)において参照符号94’)が設けられている。かくして、1つの管90の複数の注入ノズルは、全出口領域A2T=NAを有する。注入ノズルは、隣接した注入ノズルの中心線の間に空間Δ1を備え、均一に離れて配置されている。ガスは、各端即ち各入口部分において内圧P並びに容積流速Qで、管90の両端に供給されている。また、これは、図10で念入りに考察されている。各管90の断面領域が一定である必要は、もしくは、注入ノズルが均等に配置される必要は、ない。注入ノズルを密集させることは、付加的なガスの注入制御に効果的であり得る。
【0038】
注入システムが、処理ガスを大容積のチャンバ領域10へ注入するようにデザインされている。このチャンバ領域10中は、真空圧Pで保持されている。ガスは亜音速の速度即ち、M=v/a<0.3−0.5で導入される。ここで、Mはマッハ数を、vは、各入口オリフィスにおけるガス速度全体を、そして、aは、局所的な音速を示している。
【0039】
本発明に係われば、管90の出口部分94の長さ全体に渡ってのガス出口速度の分配即ち勾配が、管90の両端での、流速Q及び入口総圧力Ptの適当な選択によって、制御され得る。形成された特殊な勾配は、基板表面全体に渡ってのプラズマアシスト処理の均一性に影響を及ぼす。
注入管90内への流速Qが高いとき、出口速度の分配は、速度が管の外側部分の長さの真中で最も高くなり端部に向かって徐々に減速していくように、得られる。あるいは、流速Qが低いとき、速度分配は、最も高い速度が管の外側部分94の端において果たされるようにされる。かくして、入口体積流速Qを調節することによって、管90の出口部分の長さに沿った速度の分配、もしくはスパンワイズ速度分配を、制御することが可能である。
【0040】
明らかにするために、“高い流速”並びに“低い流速”という用語が、規定される。“高い流速”という用語は、ガス運動量が注入管におけるガスとチャンバ圧力との間の圧力差に対し大きいことを示す。同様に、“低い流速”という用語は、相対的なガス運動量が小さいことを意味する。高い流速の場合、横圧力の勾配が、“高い”運動量の流体を充分に曲げ、隣接した注入ノズルを介してこれを加速する。かくして、優れた機構が、管90の出口部分94の長さの中心点で、淀んだ圧力に対しガスを減速する。この中心点では、運動量がキャンセルされ充分な圧力差が果たされ得る。出口部分の中心点の淀んだ流れは、単に、注入管の両端で処理ガスを導入した結果である。低い流速の場合、ガス運動量は、入口の圧力とチャンバ領域10の圧力との間の圧力差の影響を受けて、注入管の出口部分の両端の開口部を介してガスが出て行く傾向があるようなものである。ガスが、連続注入ノズル94’を介して排出されるにつれて、管90の外側部分94内の圧力が減少する。比較的精密なアプローチを例に取って、上述の説明は、比較的判りやすいように実証され得る。図10に示された調整されたシステムのための運動量の横方向均衡を考察する。流れが安定し2次元であると仮定し、粘性の状態を無視すると、運動量の横方向均衡は、以下となる。
【0041】
【数1】
Figure 0004505145
放射状圧力勾配は、2つの項目によって、釣り合わされる。1つ目は、ストリームワイズ運動量(Z方向における)の放射状運動量(rの方向における)への移動を示す。2つ目は、放射状の流れの放射状の加速を示す。注入管のデザインは、図10を参照すると、ρ、Q、Pt、P,A,A2t、Δ1、Lを含むパラメータの各々のセット次第である。このパラメータリストが、N=2L/Δ1及びA=A2T/Nによって、注入ノズル94’の数Nとこれらの断面領域Aを除外していることに注意したい。圧縮率の効果(M<0.3にふさわしい仮定)を無視すると、運動量の放射状均衡は、以下の関係式を利用して、寸法付けされない。
【0042】
【数2】
Figure 0004505145
ここでは、ΔP=Pt−Pは、局所的な密度を示す。ρ0は、淀んだ状態の密度を示す。放射状の長さ及び速度のスケールは、連続性の効果によって、得られる。かくして、運動量の、寸法付けされていない放射状均衡は、得られる。
【0043】
【数3】
Figure 0004505145
これは、寸法付けされていないパラメータを識別する。
【0044】
【数4】
Figure 0004505145
>>1のとき、これは、高い流速に対応する。高い流速において、圧力勾配は、ストリームワイズ運動量と、かくして、注入管の外側部分の中心点即ち真ん中の出口における比較的速い速度とを、実質的に変化させるのに不十分である。逆に、B<<1は、低い流速に対応する。低い流速においては、逆が正しい。結果的な速度分配は、図11の(A)及び(B)に示されている。
【0045】
このように、B=1である場合、ガス出口速度は、管90の出口部分94の長さに沿って一定である。多くのプロセスにとって、これは、好ましい出口速度分配である。しかしながら、B≠1が好ましい状況もあり得る。例えば、領域10に生じさせられた高周波電界は、領域10の中心縦軸に垂直な放射方向における強度が、変化し得る。このような場合、図11の(A)及び(B)の一方に示された形状を有しているガスの流速の変化は、基板表面に渡って均一な処理結果を生じさせるために、高周波領域の変化を補正するのに使用され得る。
【0046】
の定義を緻密に考察することによって、注入管90をデザインするための見識が提供される。例えば、B>>1という状況は、他のパラメータ全てを一定に保つ間、以下の動作のいずれかを行うことによって、果たされ得る。増加Q(ガス運動量ρVの増加)、ΔPの減少(回転力の減少)、A2Tの減少(比較的大きい粘性(流れの抵抗)の提供)。
【0047】
代表的には、固定された関係は、P、入口の圧力及び流速のための所定の値の間で出る。しかしながら、入口の総圧力並びに総流速を個々に制御することも可能である。これは、絞りバルブを用いての、システムにおける総圧力損失を調節することを必要とする。例えば、ターボ分子ポンプの絞りバルブの上流は、チャンバの圧力を調節できる。注入管の圧力レギュレータの上流は、総圧力を制御し得る。
以前リストアップされた個々の寸法パラメータのリストを考慮すると、寸法付けされていない均一性u=u/ΔPが取る以下の形は、パラメータの均一性u=P(z=0)―P(z=L)を規定するのに充分である。
【0048】
【数5】
Figure 0004505145
以下のような漸近的限界を考慮する。後述される4つのパラメータがゼロであり、即ち、注入ノズルの数は、大きく(Δ1/L→0)、圧力差は、絶対値(ΔP/P→0)に対して小さく、各注入ノズル領域Aは、注入管断面領域(A/A→0)に対して小さく、注入管は、この直径(A/L→0)に対して長く、B〜1のための基準となる状況は、Δl=1.0cm、L=50cm、N=100、A=1.77cm、A=0.0079cm、P=500mTorr、Pt=600mTorr、Q=160sccm(もしくはQtot=320sccm)である。
【0049】
本発明によって可能な様々の変形例は、ガス注入ノズル94’においてガスの流れが妨げられるのを可能にするのが好ましい。注入ノズル94’全体に渡る圧力の割合(即ち、注入ノズルの出口に渡る周囲チャンバ圧力に対する注入管内圧力の全圧力の割合)が、充分に大きく、注入ノズルは、“詰まった”状態になる。この状態において、容積の流速は、逆圧(もしくはチャンバ圧力)の更なる減少もしくは入口の総圧力増加のいずれかによって、変わらない状態である。実際は、質量は、入口の総圧力を増加させる(かくしてガスの密度に影響を与える)ことによってのみ、更に増加され得る。注入ノズル出口における体積の流速は、不変であり、注入ノズルの出口領域は、一定である。これは、出口の速度が一定であることを意味する。しかしながら、チャンバに入る質量の分配に影響を与えるために、注入管90の注入ノズル94’に再分配し得る。かくして、質量分配は、図11の(A)及び(B)のいずれかの方法で行われるように(behave)、デザインされ得る。例えば、注入ノズル94’は、注入管90の末端に向かって束になっており、図11の(B)に類似した質量分配が、得られる。逆に、注入ノズル94’が注入管の中心に向かって束になっている場合、図11の(A)に類似した質量分配が、得られる。更に、注入面から離れると(ほぼ10乃至20の注入ノズルの直径)、速度の分配は、これらの分配の形状に類似するように成される。
【0050】
ガス注入管の使用に関して、幾つかの効果がある。具体的には、ガス注入管の高周波バイアスは、外面の周期的な洗浄を可能にする。分けられた垂直面並びに/もしくは水平面で隣接した管の様々の配置は、改良されたプロセスの制御、入口の質量分配のための選択可能な注入ノズル分配、超音波もしくは亜音速の注入能力、質量再分配亜音速注入のための注入管におけるガス運動量の調節のために、各注入管が、異なった縦の長さで基板に位置付けられるのを可能にする。
【0051】
図1並びに図2を参照して上述されたように、本発明に係わるプラズマ源は、プロセス実行中に領域10からガスを連続的に回収する複数のポンプ18を有する。各ポンプ18は、主に、領域10の関連部分で機能する。高速での処理は、所望される数の表面化学反応を起こすために高いガス処理能力を必要とする。処理は、高いガスの処理能力及び高いプラズマ密度を必要とする。本明細書で開示された本実施形態で使用される多数のポンプは、大面積の基板のために高い処理速度を果たすのに必要とされる高いポンプ能力を提供する。各ポンプは、図1の参照符号22で示された、スロットル制御バルブに適合されている。このバルブは、このポンプのポンプ送り速度を制御し得る。各ポンプ18のポンプ送り速度を個々に制御することにより、ポンプ送り速度の、幅広い様々の形態(profile)が可能になる。各ポンプ18は、プラズマプロセス装置で現在使用されている所定のタイプのポンプで構成され得る。単に非限定的な例については、各ポンプ18は、逆ポンプを備えたもしくは備えない、ターボ分子ポンプ、もしくはターボポンプであり得る。
【0052】
図1及び図2に示されるように、本発明に関わる装置には、16(4×4)のポンプ18が設けられ得る。各ポンプは、上壁12に配置された1000リッター/秒のターボポンプであり得る。処理ガスは、注入ノズルから処理ガスが出る速度によって発生された運動量によって、注入管90の注入ノズル94’から基板の方へ導入され得る。基板と相互作用した後、使用されない処理ガスと変わり易い反応物とが、ポンプ18を介して、除去される。入ってくる処理ガスを用いて反応物の相互作用を最小限にする為に、外部圧力勾配が、反応物が外壁とこれに続いて上方のポンプへ流れるようバイアスをかけるように、確立される。これは、ポンプ18のポンプ送り速度を減少させることによって、果たされる。ポンプ18は、例えばこれらポンプのバルブを僅かに近づけることによって板12の中心に近接しており、これらポンプの伝導性を低下させる。このように、比較的低いチャンバ圧力が、チャンバハウジング2、2’の壁に向かって、果たされ得る。
【0053】
上述された説明は本発明独自の実施形態を参照しており、多くの改良が、本発明の精神から逸脱することなくなされ得ることを理解されるだろう。添付の請求項は、これらの改良点が本発明の精神と実際の範囲内に納まるように、カバーするよう意図されている。
本発明に係わるプラズマ源は、被処理基板、被処理ウエハを保持するための従来のチャックを有し得る。チャックは、従来のプラズマ源の代表的なものである。このプラズマ源は、基板を保持するのに加えて、高周波バイアスを適用可能にし、基盤を加熱可能にする。かくして、大面積に対しプロセスを実施するために、本チャックは、多数のセグメントから構成され得る。
【0054】
かくして、本明細書で開示された実施形態は、説明されたような全態様においてこれに限定せずに考察されている。本発明の範囲は、前述された説明ではなく、添付された請求項によって示されている。全ての変更は、請求項と同じ範囲及び意味内に収まり、かくして本明細書内に収まるように意図されている。
【図面の簡単な説明】
【図1】 図1は、本発明に関わる大面積プラズマ源の第1の実施形態の斜視図である。
【図2】 図2は、本発明に関わるプラズマ源の第2の実施形態を示す、図1に類似した図である。
【図3】 図3は、図1に示された実施形態の一つの部品の一部分が、分解された形で示された幾つかの部材と共に示された、詳細な斜視図である。
【図4】 図4は、図1の4−4線に沿って切り取られた断面の正面図である。
【図5】 図5は、図1に示された源の構成部品の第2の実施形態を示す、図3に類似した図である。
【図6】 図6は、図1に示された源の構成部品の第3の実施形態を示す、図3に類似した図である。
【図7】 図7の(A)は、図6の実施形態の修正された形状を示す、図6に類似した図であり、(B)は、(A)に示された構造の一部分の断面の詳細図である。
【図8】 図8は、チャンバハウジング内で上を向いたときの、図1に示された源の実施形態の断面の平面図である。
【図9】 図9の(A)並びに(B)は、夫々に、図1に示された実施形態の構成部品の、正面の断面詳細図並びに底部平面詳細図である。
【図10】 図10は、図8に示された構成部品の動作の原則を説明する、正面の絵図である。
【図11】 図11の(A)並びに(B)は、図10に示された構成部品の動作の異なるモードを示す速度分配図である。

Claims (12)

  1. 大面積の基板にプラズマアシストプロセスを行うために使用される大面積プラズマ源内でプラズマ領域を囲むチャンバハウジングであって、
    プラズマ領域に対応する空間を囲むほぼ垂直に延びた壁を構成し、複数の開口部と、空間を囲む電気的シールドを形成する導電部材とを有するハウジング部材と、
    周囲端を夫々有し、夫々が各開口部を閉じるように配置された、複数の誘電部材と、
    前記ハウジング部材と、前記各誘電部材の各々の周囲端との間にハーメチックシールを形成するシール手段とを具備し、
    前記ハウジング部材は、複数の凹部を有し、各凹部に前記各開口部が形成されており、また、前記シール手段は、各誘電部材の周囲端と凹部との間に配置され、
    前記壁は、複数の平らな側面を有した多角形の形をしており、
    前記側面の各々は、1つの開口部を有しており、
    記導電部材は、前記壁の上端と下端との間で、これらに固定されるように延びている金属バーであり、これらの金属バーの各々は、各開口部を横切るように延びている、チャンバハウジング。
  2. 前記金属バーと誘電部材との間に介在された弾性部材を更に具備する請求項のチャンバハウジング。
  3. 大面積の基板にプラズマアシストプロセスを行うために使用される大面積プラズマ源内でプラズマ領域を囲むチャンバハウジングであって、
    プラズマ領域に対応する空間を囲むほぼ垂直に延びた壁を構成し、複数の開口部と、空間を囲む電気的シールドを形成する導電部材とを有するハウジング部材と、
    周囲端を夫々有し、夫々が各開口部を閉じるように配置された、複数の誘電部材と、
    前記ハウジング部材と、前記各誘電部材の各々の周囲端との間にハーメチックシールを形成するシール手段とを具備し、
    前記ハウジング部材は、複数の凹部を有し、各凹部に前記各開口部が形成されており、また、前記シール手段は、各誘電部材の周囲端と凹部との間に配置され、
    前記壁は、複数の平らな側面を有した多角形の形をしており、
    前記各側面は、複数の開口部を有し、
    前記導電部材は、前記壁の上端と下端との間に延び、開口部の間に配置された前記壁の一部により構成されている、チャンバハウジング。
  4. 前記誘電部材の夫々は、開口部中へと延びた突出部を有している、請求項のチャンバハウジング。
  5. 前記平らな側面は、垂直に延びている、請求項1または3のチャンバハウジング。
  6. 前記壁は、角錐台の形状をしている、請求項1または3のチャンバハウジング。
  7. 前記シール手段は、各誘電部材に対して、誘電部材とこれに対応する凹部との間の境界面に配置された2つの環状シートを有し、前記シールは、境界面に沿って互いに離れるように配置され、また、前記壁は、境界面と連通した第1の端及び境界面から離れた第2の端を備えた通路を有し、そして、前記ハウジングは、更に、前記シールのいずれか1つからの流体の漏れをモニターするように前記通路の第2の端に接続された圧力モニター手段を具備する、請求項1または3のチャンバハウジング。
  8. プラズマ領域の大面積の基板にプラズマアシストプロセスを行うために使用される大面積プラズマ源であって、
    請求項1または3のチャンバハウジングと、
    このハウジングを囲み、プラズマ領域に高周波領域を発生させるように機能するコイルと、
    前記ハウジングとプラズマ領域を囲むエンクロージャ部材と、
    このエンクロージャ部材を通って延び、イオン化可能な処理ガスをプラズマ領域内へ注入するガス注入手段と、
    プラズマ領域内で被処理基板を支持するための基板支持手段と、
    プラズマ領域中を低い圧力で維持するように、プラズマ領域からガスをポンプ送りするために配置された少なくとも1つのポンプ
    とを具備している、プラズマ源。
  9. 前記ガス注入手段は、少なくとも1つの入口部分と出口部分とを備えた少なくとも1つのガス注入管を有し、前記入口部分は、イオン化可能な処理ガスの供給を受け、前記出口部分は、前記入口部分からプラズマ領域へ搬送されるイオン化可能な処理ガスが通る複数の注入ノズルを備えており、前記基板支持手段に支持された基板に対して平行に延びている、請求項のプラズマ源。
  10. 少なくとも1つの前記ガス注入管は、2つの入口部分を有し、これら2つの入口部分の間に、前記出口部分は、位置されている、請求項のプラズマ源。
  11. 少なくとも1つの前記ガス注入管の出口部分は、前記2つの入口部分の間に、直線状に延びている請求項10のプラズマ源。
  12. 少なくとも1つの前記ガス注入管は、基板支持手段に支持された基板に対して平行な平面内で互いに離れるように配置された複数のガス注入管である、請求項11のプラズマ源。
JP2000592463A 1998-12-30 1999-12-10 大面積プラズマ源および大面積プラズマ源内でプラズマ領域を囲むチャンバハウジング Expired - Fee Related JP4505145B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11445498P 1998-12-30 1998-12-30
US60/114,454 1998-12-30
PCT/US1999/027928 WO2000040771A1 (en) 1998-12-30 1999-12-10 Large area plasma source

Publications (2)

Publication Number Publication Date
JP2002534785A JP2002534785A (ja) 2002-10-15
JP4505145B2 true JP4505145B2 (ja) 2010-07-21

Family

ID=22355308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000592463A Expired - Fee Related JP4505145B2 (ja) 1998-12-30 1999-12-10 大面積プラズマ源および大面積プラズマ源内でプラズマ領域を囲むチャンバハウジング

Country Status (7)

Country Link
US (2) US6530342B1 (ja)
EP (1) EP1147242A4 (ja)
JP (1) JP4505145B2 (ja)
KR (1) KR100687971B1 (ja)
CN (1) CN1156603C (ja)
TW (1) TW452882B (ja)
WO (1) WO2000040771A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6530342B1 (en) * 1998-12-30 2003-03-11 Tokyo Electron Limited Large area plasma source
US6811611B2 (en) * 2000-03-02 2004-11-02 Tokyo Electron Limited Esrf source for ion plating epitaxial deposition
US6719848B2 (en) * 2001-08-16 2004-04-13 First Solar, Llc Chemical vapor deposition system
JP3714924B2 (ja) 2002-07-11 2005-11-09 東京エレクトロン株式会社 プラズマ処理装置
US7374867B2 (en) * 2003-10-06 2008-05-20 Intel Corporation Enhancing photoresist performance using electric fields
US8357242B2 (en) 2007-05-03 2013-01-22 Jewett Russell F Crystalline film devices, apparatuses for and methods of fabrication
US20050194099A1 (en) * 2004-03-03 2005-09-08 Jewett Russell F.Jr. Inductively coupled plasma source using induced eddy currents
JP2013191593A (ja) * 2012-03-12 2013-09-26 Tokyo Electron Ltd プラズマ処理装置
TW201408811A (zh) * 2012-08-28 2014-03-01 Univ St Johns 多流向原子層沈積系統
KR102023704B1 (ko) * 2018-03-19 2019-09-20 한국기계연구원 플라즈마 반응기 일체형 진공 펌프
EP3807444A1 (en) * 2018-06-12 2021-04-21 AGC Glass Europe Method for preparing catalytic nanoparticles, catalyst surfaces, and/or catalysts
JP7316863B2 (ja) * 2019-07-19 2023-07-28 東京エレクトロン株式会社 第一導電性部材と第二導電性部材の接合構造と接合方法、及び基板処理装置
US20210066054A1 (en) * 2019-08-28 2021-03-04 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor processing apparatus for generating plasma
US11499231B2 (en) * 2020-04-09 2022-11-15 Applied Materials, Inc. Lid stack for high frequency processing
CA3237115A1 (en) * 2021-11-05 2023-05-11 Brian Campbell Ceramic fibers for shielding in vacuum chamber systems and methods for using same

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864960A (en) * 1973-10-02 1975-02-11 Nasa Vacuum leak detector
US4277939A (en) * 1979-04-09 1981-07-14 Hughes Aircraft Company Ion beam profile control apparatus and method
US5051659A (en) * 1991-01-30 1991-09-24 The United States Of America As Represented By The Secretary Of The Navy Bulk plasma generation
JPH04348508A (ja) * 1991-05-27 1992-12-03 Toshiba Corp 静止誘導電気機器
US5234529A (en) * 1991-10-10 1993-08-10 Johnson Wayne L Plasma generating apparatus employing capacitive shielding and process for using such apparatus
TW293983B (ja) * 1993-12-17 1996-12-21 Tokyo Electron Co Ltd
DE69506619T2 (de) * 1994-06-02 1999-07-15 Applied Materials Inc Induktiv gekoppelter Plasmareaktor mit einer Elektrode zur Erleichterung der Plasmazündung
US5883016A (en) 1994-06-08 1999-03-16 Northeastern University Apparatus and method for hydrogenating polysilicon thin film transistors by plasma immersion ion implantation
US5874014A (en) * 1995-06-07 1999-02-23 Berkeley Scholars, Inc. Durable plasma treatment apparatus and method
TW283250B (en) * 1995-07-10 1996-08-11 Watkins Johnson Co Plasma enhanced chemical processing reactor and method
US5653811A (en) 1995-07-19 1997-08-05 Chan; Chung System for the plasma treatment of large area substrates
JPH09129397A (ja) * 1995-10-26 1997-05-16 Applied Materials Inc 表面処理装置
JP2937907B2 (ja) * 1995-11-28 1999-08-23 日本電気株式会社 プラズマ発生装置
TW327236B (en) * 1996-03-12 1998-02-21 Varian Associates Inductively coupled plasma reactor with faraday-sputter shield
JPH1074600A (ja) * 1996-05-02 1998-03-17 Tokyo Electron Ltd プラズマ処理装置
JPH1018043A (ja) * 1996-07-03 1998-01-20 Applied Materials Inc プラズマ蒸着システム用スロット付rfコイル
JPH1064886A (ja) * 1996-08-20 1998-03-06 Sony Corp ドライエッチング装置およびドライエッチング方法
TW403959B (en) * 1996-11-27 2000-09-01 Hitachi Ltd Plasma treatment device
JPH10284299A (ja) * 1997-04-02 1998-10-23 Applied Materials Inc 高周波導入部材及びプラズマ装置
US5903106A (en) * 1997-11-17 1999-05-11 Wj Semiconductor Equipment Group, Inc. Plasma generating apparatus having an electrostatic shield
US6330822B1 (en) * 1998-08-10 2001-12-18 Mtd Products Inc Tire testing apparatus and method
US6530342B1 (en) * 1998-12-30 2003-03-11 Tokyo Electron Limited Large area plasma source
TW518686B (en) * 1999-12-29 2003-01-21 Tokyo Electron Ltd System for automatic control of the wall bombardment to control wall deposition
TW584905B (en) * 2000-02-25 2004-04-21 Tokyo Electron Ltd Method and apparatus for depositing films
US6811611B2 (en) * 2000-03-02 2004-11-02 Tokyo Electron Limited Esrf source for ion plating epitaxial deposition

Also Published As

Publication number Publication date
JP2002534785A (ja) 2002-10-15
EP1147242A1 (en) 2001-10-24
USRE40195E1 (en) 2008-04-01
KR20010089723A (ko) 2001-10-08
CN1156603C (zh) 2004-07-07
WO2000040771A1 (en) 2000-07-13
TW452882B (en) 2001-09-01
KR100687971B1 (ko) 2007-02-27
CN1334885A (zh) 2002-02-06
US6530342B1 (en) 2003-03-11
EP1147242A4 (en) 2007-05-02

Similar Documents

Publication Publication Date Title
JP4505145B2 (ja) 大面積プラズマ源および大面積プラズマ源内でプラズマ領域を囲むチャンバハウジング
US9455133B2 (en) Hollow cathode device and method for using the device to control the uniformity of a plasma process
US8327796B2 (en) Plasma processing apparatus and plasma processing method
JP5631088B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP5702968B2 (ja) プラズマ処理装置及びプラズマ制御方法
JP7386238B2 (ja) 電極アレイ
JP4502639B2 (ja) シャワープレート、プラズマ処理装置、及び、製品の製造方法
JP2009212454A (ja) 蓋部品、処理ガス拡散供給装置、及び基板処理装置
JP4775641B2 (ja) ガス導入装置
US20200126816A1 (en) Substrate processing apparatus
US7744720B2 (en) Suppressor of hollow cathode discharge in a shower head fluid distribution system
JP4426632B2 (ja) プラズマ処理装置
JP2016174060A (ja) プラズマ処理装置
US20080257498A1 (en) Plasma processing apparatus
US8604696B2 (en) Plasma excitation module
JP5686996B2 (ja) プラズマ処理装置
US20210327690A1 (en) Method for generating and processing a uniform high density plasma sheet
JP2650465B2 (ja) 乾式薄膜加工装置
JP2020188194A (ja) プラズマ処理装置
KR102638030B1 (ko) 플라즈마 처리 장치와 그 제조 방법, 및 플라즈마 처리 방법
JP5324137B2 (ja) プラズマ処理装置及びプラズマ処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees