JP4500946B2 - Negative reaction force transmission structure in girder bridge - Google Patents

Negative reaction force transmission structure in girder bridge Download PDF

Info

Publication number
JP4500946B2
JP4500946B2 JP2006166931A JP2006166931A JP4500946B2 JP 4500946 B2 JP4500946 B2 JP 4500946B2 JP 2006166931 A JP2006166931 A JP 2006166931A JP 2006166931 A JP2006166931 A JP 2006166931A JP 4500946 B2 JP4500946 B2 JP 4500946B2
Authority
JP
Japan
Prior art keywords
reaction force
negative reaction
buffer member
transmission structure
force transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006166931A
Other languages
Japanese (ja)
Other versions
JP2007332686A (en
Inventor
勉 町
明夫 正司
智康 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Shiraishi Corp
Original Assignee
Oriental Shiraishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Shiraishi Corp filed Critical Oriental Shiraishi Corp
Priority to JP2006166931A priority Critical patent/JP4500946B2/en
Publication of JP2007332686A publication Critical patent/JP2007332686A/en
Application granted granted Critical
Publication of JP4500946B2 publication Critical patent/JP4500946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

この発明は、桁橋における負反力伝達構造に関し、さらに詳細には、地震時に主桁に生じる鉛直上向きの力(負反力)を下部工に伝達するための構造に関する。   The present invention relates to a negative reaction force transmission structure in a girder bridge, and more particularly to a structure for transmitting a vertically upward force (negative reaction force) generated in a main girder during an earthquake to a substructure.

桁橋は、長支間であったり、不等径間であった場合、橋軸方向地震時の上下変位を伴う桁の振動や、橋軸直角方向地震時のねじり変形などにより、地震時に支承を浮き上がらせるような鉛直上向きの力(負反力)が生じる場合がある。負反力によって支承が破損すると、構造系が急激に変化し、橋の各部に予期しがたい応力が発生する可能性がある。このようなことから、主桁に生じる負反力を確実に下部工に伝達する対処が必要となる。   If the girder bridge is a long span or an unequal span, it will be supported during an earthquake due to vibration of the girder accompanied by vertical displacement during a bridge axis earthquake or torsional deformation during a bridge axis perpendicular earthquake. There may be a vertical upward force (negative reaction force) that lifts up. If the bearing is damaged by the negative reaction force, the structural system will change suddenly, and unexpected stress may occur in each part of the bridge. For this reason, it is necessary to take measures to reliably transmit the negative reaction force generated in the main beam to the substructure.

従来、負反力を伝達する方法としては、次の方法があり、これらにはいくつかの問題点がある。
1)ペンデル支承で主桁を受ける方法(図7)
この方法は、主桁100と橋台101との間にロッカー102を配置して、その上下端をピン結合する方法であり、鋼桁では実績が多い。しかしながら、PC桁では実績がなく、適用した場合にはピンに作用する大きな反力をコンクリートで受けさせるため、大掛かりな補強が必要となる。
Conventionally, there are the following methods for transmitting the negative reaction force, and these have some problems.
1) How to receive the main girder with Pendel support (Figure 7)
This method is a method in which the rocker 102 is disposed between the main girder 100 and the abutment 101, and the upper and lower ends thereof are pin-coupled. However, PC girders have no track record, and when applied, a large reaction force acting on the pins is received by the concrete, so a large-scale reinforcement is required.

2)鉛直ケーブルで受ける方法(図8)
この方法は、同図(a)に示すように、主桁100を可動支承103で支持するとともに、鉛直ケーブル104の上下端を主桁100と橋台101に定着して負反力に抵抗する方法であり、PC桁で実績がある。しかしながら、主桁100の伸縮や水平変位を拘束しないように、主桁100及び橋台101に大きな箱抜き105を設ける必要があり、横桁PC鋼材の取り合いに配慮する必要がある。また、同図(b)に示すように、主桁の変形時には鉛直ケーブル104に二次応力が発生するため、その疲労耐久性等に問題がある。
2) Method using vertical cable (Fig. 8)
In this method, as shown in FIG. 5A, the main girder 100 is supported by the movable support 103, and the upper and lower ends of the vertical cable 104 are fixed to the main girder 100 and the abutment 101 to resist the negative reaction force. And has a track record in PC digits. However, in order not to restrict the expansion and contraction and horizontal displacement of the main girder 100, it is necessary to provide a large box opening 105 in the main girder 100 and the abutment 101, and it is necessary to consider the connection of the cross girder PC steel materials. Further, as shown in FIG. 4B, since secondary stress is generated in the vertical cable 104 when the main girder is deformed, there is a problem in its fatigue durability.

3)パラペットを貫通する突起を桁端に設ける方法(図9)
この方法は、同図(a)に示すように、主桁100を可動支承103で支持するとともに、橋台101のパラペット106に開口107を設け、また桁端には突起108を設け、突起108をその上下に隙間ができるように開口107に挿入する方法である。これにより、常時の状態では突起108がパラペット106に接触せず、地震時に同図(b)に示すように、パラペット106に当接することで負反力をパラペット106に伝達しようとするものである。しかしながら、この方法は、地震時に突起108がパラペット106に当接した場合、摩擦が生じて主桁100の水平変位を拘束したり、突起108やパラペット106に応力集中が起きてこれらの破損の要因となる。
3) A method of providing a protrusion penetrating the parapet at the end of the beam (Fig. 9)
In this method, as shown in FIG. 2A, the main girder 100 is supported by a movable support 103, an opening 107 is provided in the parapet 106 of the abutment 101, a projection 108 is provided at the end of the girder, and the projection 108 is provided. This is a method of inserting into the opening 107 so that a gap is formed above and below. As a result, the protrusion 108 does not come into contact with the parapet 106 in a normal state, and attempts to transmit the negative reaction force to the parapet 106 by coming into contact with the parapet 106 as shown in FIG. . However, in this method, when the projection 108 comes into contact with the parapet 106 at the time of an earthquake, friction is generated and the horizontal displacement of the main girder 100 is constrained, or stress concentration occurs on the projection 108 and the parapet 106 to cause the damage. It becomes.

4)パラペットを貫通する突起を桁端に設け、さらに突起上面とパラペットとの間に可動支承を設置する方法(図10)
この方法は、3)の方法に改良を加えたものである。すなわち、同図(a)に示すように、鉛直下向きの力(正反力)を支える通常の可動支承103に加え、桁端に設けた突起108の上面と開口107の内面との間に負反力を受けるための可動支承109を設ける方法である。しかしながら、この方法は、同図(b)に示すように、常時の状態においても主桁100の回転により負反力が作用することから、負反力用の可動支承109も正反力用の可動支承103と同等の変形性能を要求され、不経済となる。
4) A method of installing a movable support between the upper surface of the protrusion and the parapet, with a protrusion penetrating the parapet at the end of the beam.
This method is an improvement over the method of 3). That is, as shown in FIG. 5A, in addition to the normal movable support 103 that supports a vertically downward force (positive reaction force), a negative is provided between the upper surface of the projection 108 provided at the end of the girder and the inner surface of the opening 107. This is a method of providing a movable support 109 for receiving a reaction force. However, in this method, as shown in FIG. 5B, since the negative reaction force acts by the rotation of the main beam 100 even in the normal state, the negative reaction force movable support 109 is also used for the positive reaction force. Deformation performance equivalent to that of the movable support 103 is required, which is uneconomical.

この出願の発明に関連する先行技術情報としては次のようなものがある。
特開2004−92269号公報
Prior art information relating to the invention of this application includes the following.
JP 2004-92269 A

この発明は上記のような技術的背景に基づいてなされたものであって、次の目的を達成するものである。
この発明の目的は、常時の状態では主桁の水平変位や回転変位を拘束せず、地震時には主桁に生じる負反力をパラペットに伝達し、しかも応力を緩和して伝達することができる桁橋における負反力伝達構造を提供することにある。
The present invention has been made based on the technical background as described above, and achieves the following object.
The purpose of the present invention is to prevent the horizontal displacement and rotational displacement of the main girder in a normal state, transmit the negative reaction force generated in the main girder to the parapet during an earthquake, and relieve the stress and transmit the girder. It is to provide a negative reaction force transmission structure in a bridge.

この発明の別の目的は、地震時には大きな摩擦等が生じず、主桁の水平変位や回転変位を拘束することなく、主桁の変位に追随することができる桁橋における負反力伝達構造を提供することにある。   Another object of the present invention is a negative reaction force transmission structure in a girder bridge that can follow the displacement of the main girder without causing large friction or the like during an earthquake and without restraining the horizontal displacement or rotational displacement of the main girder. It is to provide.

この発明は上記課題を達成するために、次のような手段を採用している。
すなわち、この発明は、主桁端部が可動支承を介して橋台に支持される桁橋において、前記主桁に作用する負反力を前記橋台に伝達するための負反力伝達構造であって、
前記主桁端部の先端に突起が設けられ、この突起は前記橋台のパラペットに設けられた開口に該突起の上下に隙間が存するように貫通して配置され、
また、前記突起の上面に緩衝部材が設置され、この緩衝部材の上面と前記開口内面との間に隙間が設けられていることを特徴とする桁橋における負反力伝達構造にある。
The present invention employs the following means in order to achieve the above object.
That is, the present invention is a negative reaction force transmission structure for transmitting a negative reaction force acting on the main girder to the abutment in a girder bridge whose main girder end is supported by the abutment via a movable support. ,
A protrusion is provided at the tip of the main girder end, and this protrusion is disposed through an opening provided in a parapet of the abutment so that there is a gap above and below the protrusion,
Further, in the negative reaction force transmission structure in the girder bridge, a buffer member is provided on the upper surface of the projection, and a gap is provided between the upper surface of the buffer member and the inner surface of the opening.

より具体的には、前記緩衝部材はすべり機能を有するものが使用される。前記突起及び前記開口は、例えば、いずれも断面四角形のものとすることができる。前記緩衝部材はパッド型のものが用いられる。   More specifically, the buffer member has a sliding function. For example, both the protrusion and the opening may have a rectangular cross section. The buffer member is a pad type.

また、前記緩衝部材は鋼板とゴム層とを積層してなる積層ゴムからなるものが用いられ。前記緩衝部材にすべり機能を持たせるために、該緩衝部材の上面及び前記開口の内面にすべりプレートがそれぞれ設けられている構成を採ることができる。また、前記緩衝部材を所定位置に保持するために、前記突起にはその上面から突出する複数のアンカーバーが設けられるとともに、前記緩衝部材には前記アンカーバーが所定深さ位置まで挿入される挿入孔が設けられている構成を採ることもできる。前記可動支承は、すべりゴム支承を使用することができる。   The buffer member is made of laminated rubber formed by laminating a steel plate and a rubber layer. In order to give the buffer member a slip function, a configuration in which a slide plate is provided on the upper surface of the buffer member and the inner surface of the opening can be employed. In addition, in order to hold the buffer member in a predetermined position, the protrusion is provided with a plurality of anchor bars protruding from the upper surface thereof, and the buffer member is inserted into the anchor bar to a predetermined depth position. It is also possible to adopt a configuration in which holes are provided. As the movable bearing, a sliding rubber bearing can be used.

この発明によれば、突起上に設置した緩衝部材と開口内面との間に隙間を設けたので、常時の状態では突起及び緩衝部材は、主桁の水平変位や鉛直方向の回転変位を拘束することがない。他方、地震時には、主桁に作用する負反力は緩衝部材を介してパラペットに伝達されるので、応力が緩和され、突起やパラペットに損傷を与えることがない。   According to the present invention, since the gap is provided between the buffer member installed on the projection and the inner surface of the opening, the projection and the buffer member restrain the horizontal displacement of the main girder and the rotational displacement in the vertical direction in a normal state. There is nothing. On the other hand, in the event of an earthquake, the negative reaction force acting on the main girder is transmitted to the parapet via the buffer member, so that the stress is relieved and the protrusion and the parapet are not damaged.

また、緩衝部材にすべり機能を持たせることにより大きな摩擦が生じず、主桁の水平変位や回転変位を拘束することなく、主桁の変位に追随することができる。また、緩衝部材は、常時には力が作用せず、地震時のみ力が作用するので、簡易で経済的なものとすることができる。   Further, by providing the buffer member with a sliding function, a large friction does not occur, and the main girder can be displaced without restraining the horizontal displacement and rotational displacement of the main girder. In addition, the buffer member is not subjected to a force at all times and acts only during an earthquake, so that it can be made simple and economical.

この発明の実施形態を図面を参照しながら以下に説明する。図1〜図3は、この発明の実施形態を示し、図1は橋軸方向矢視による正面図、図2は橋軸直角方向矢視による断面図、図3は平面図である。橋台1は縦壁2と、この縦壁2の背面側部分から立ち上がるように形成されるパラペット(胸壁)3とを有している。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show an embodiment of the present invention. FIG. 1 is a front view as viewed in the direction of the bridge axis direction, FIG. 2 is a cross-sectional view as viewed in the direction perpendicular to the bridge axis, and FIG. The abutment 1 has a vertical wall 2 and a parapet (chest wall) 3 formed so as to rise from a back side portion of the vertical wall 2.

主桁4はPC桁からなり、この主桁4の端部である桁端4aと縦壁2との間には1対の可動支承5が設置されている。主桁4の鉛直荷重は可動支承5を介して橋台1に伝達される。可動支承5は、この実施形態では、すべりゴム支承からなっている。すべりゴム支承5は、周知のものであり、桁端4aの下面に固定された上側プレート6と、縦壁2の上面に固定された下側プレート7と、下側プレート7上に設置されたパッド型の積層ゴム8とからなっている。上側プレート6は積層ゴム8との間ですべりを生じ、これにより主桁4が水平変位可能となっている。すべりのための構造は、後述する緩衝部材で採用されているものとほぼ同様である。桁端4aを挟むように縦壁2上に設けられたブロック9は、主桁4の橋軸直角方向の移動を制限するための部材である。   The main girder 4 is composed of a PC girder, and a pair of movable supports 5 are installed between the girder end 4 a that is the end of the main girder 4 and the vertical wall 2. The vertical load of the main girder 4 is transmitted to the abutment 1 via the movable support 5. In this embodiment, the movable support 5 is a sliding rubber support. The sliding rubber support 5 is a well-known one, and is installed on the upper plate 6 fixed to the lower surface of the beam end 4 a, the lower plate 7 fixed to the upper surface of the vertical wall 2, and the lower plate 7. It consists of pad-type laminated rubber 8. The upper plate 6 slips between the laminated rubber 8, and thereby the main girder 4 can be displaced horizontally. The structure for sliding is substantially the same as that employed in the buffer member described later. The block 9 provided on the vertical wall 2 so as to sandwich the beam end 4a is a member for limiting the movement of the main beam 4 in the direction perpendicular to the bridge axis.

桁端4aには橋軸方向に延びる断面四角形の1対の突起10が、橋軸直角方向に間隔を置いて設けられている。他方、パラペット3には突起10に対応して、断面四角形の1対の開口11が設けられている。突起10はその上下に隙間が存するように開口11に配置され、パラペット3を貫通している。また、突起10の上面には緩衝部材12が設置され、この緩衝部材12の上面と開口11の内面との間には隙間Sが設けられている。なお、パラペット3の背面側には開口11を覆うように止水カバー25が設けられている。   A pair of protrusions 10 having a quadrangular cross section extending in the bridge axis direction are provided on the beam end 4a at intervals in the direction perpendicular to the bridge axis. On the other hand, the parapet 3 is provided with a pair of openings 11 having a square cross section corresponding to the protrusions 10. The protrusion 10 is disposed in the opening 11 so that there is a gap above and below the protrusion 10 and penetrates the parapet 3. A buffer member 12 is provided on the upper surface of the protrusion 10, and a gap S is provided between the upper surface of the buffer member 12 and the inner surface of the opening 11. A water stop cover 25 is provided on the back side of the parapet 3 so as to cover the opening 11.

図4,図5は緩衝部材12の詳細構造を示し、図4は橋軸方向矢視による断面図、図5は橋軸直角方向矢視による断面図である。緩衝部材12は、この実施形態では、パッド型の積層ゴムからなる。積層ゴム12は、ゴム層13と鋼板14,15,16とを交互に積層し加硫接着してなるもので、上下部の鋼板14,15は中間部の鋼板16よりも厚肉のものが使用される。   4 and 5 show the detailed structure of the buffer member 12, FIG. 4 is a cross-sectional view taken along the direction of the bridge axis, and FIG. 5 is a cross-sectional view taken along the direction perpendicular to the bridge axis. In this embodiment, the buffer member 12 is made of a pad-type laminated rubber. The laminated rubber 12 is formed by alternately laminating rubber layers 13 and steel plates 14, 15, and 16 and vulcanizing and bonding them. The upper and lower steel plates 14 and 15 are thicker than the middle steel plate 16. used.

緩衝部材12は、前記のようにパッド型のものであって、突起10の上面に据え置かれる形式のものである。このため、緩衝部材12を所定位置に保持する手段が設けられている。この保持手段として、突起10にはその上面から突出する複数本のアンカーバー17が設けられている。また、緩衝部材12にはその下面から上部鋼板15の上面に亘って、アンカーバー17の挿入孔18が設けられ、アンカーバー18は挿入孔18の所定深さ位置まで挿入されている。この所定深さ位置は、緩衝部材12に鉛直方向のたわみ変形を生じさせることができる一方、せん断変形を生じさせない深さ位置であり、具体的には、上部鋼板15の肉厚方向中間部である。   The buffer member 12 is of a pad type as described above, and is of a type that is placed on the upper surface of the protrusion 10. For this reason, a means for holding the buffer member 12 in a predetermined position is provided. As the holding means, the protrusion 10 is provided with a plurality of anchor bars 17 protruding from the upper surface thereof. Further, the buffer member 12 is provided with an insertion hole 18 of the anchor bar 17 from the lower surface to the upper surface of the upper steel plate 15, and the anchor bar 18 is inserted to a predetermined depth position of the insertion hole 18. The predetermined depth position is a depth position at which the buffer member 12 can be deflected in the vertical direction while not causing shear deformation. Specifically, at the intermediate portion in the thickness direction of the upper steel plate 15. is there.

緩衝部材12にはすべり機能が付与され、そのための構造として緩衝部材12の上部にすべりプレート19が設けられている。すべりプレート19は、具体的には、上部鋼板15に設けられた凹部に嵌め込まれている。このすべりプレート19として、テフロン(登録商標)プレートが使用されている。他方、突起10の上面と対向する開口11の内面にもすべりプレート20が設けられている。このすべりプレート20としては、ステンレスプレートが使用されている。すべりプレート20は取付けプレート21の下面に固定され、この取付けプレート21はパラペット3に埋め込まれるスタッドボルト22を介して開口11の内面に固定されている。   The cushioning member 12 is provided with a sliding function, and a sliding plate 19 is provided on the cushioning member 12 as a structure for that purpose. Specifically, the slip plate 19 is fitted in a recess provided in the upper steel plate 15. A Teflon (registered trademark) plate is used as the slide plate 19. On the other hand, a slide plate 20 is also provided on the inner surface of the opening 11 facing the upper surface of the protrusion 10. A stainless plate is used as the slide plate 20. The slide plate 20 is fixed to the lower surface of the mounting plate 21, and the mounting plate 21 is fixed to the inner surface of the opening 11 through stud bolts 22 embedded in the parapet 3.

上記のような構造によれば、緩衝部材12と開口11の内面との間に隙間Sが設けられているので、常時の状態では突起10及び緩衝部材12は主桁4の挙動を拘束しない。すなわち、主桁4は水平変位が可能であり、また鉛直方向の回転変位も可能である。他方、地震時には、図6に示すように、主桁4に作用する負反力は緩衝部材12を介してパラペット3に伝達される。このため、パラペット3に伝達される応力が緩和され、突起10やパラペット3に損傷を与えることがない。また、緩衝部材12にはすべりプレート19,20間ですべりが生じることから大きな摩擦が生じず、主桁の水平変位や回転変位を拘束することなく、主桁4の変位に追随することができる。また、緩衝部材12は、常時には力が作用せず、地震時のみ力が作用するので、簡易で経済的なものとすることができる。   According to the above structure, since the gap S is provided between the buffer member 12 and the inner surface of the opening 11, the protrusion 10 and the buffer member 12 do not restrain the behavior of the main beam 4 in a normal state. That is, the main girder 4 can be displaced horizontally and can also be rotated in the vertical direction. On the other hand, during an earthquake, as shown in FIG. 6, the negative reaction force acting on the main beam 4 is transmitted to the parapet 3 via the buffer member 12. For this reason, the stress transmitted to the parapet 3 is relieved, and the protrusion 10 and the parapet 3 are not damaged. Further, since the buffer member 12 slips between the slide plates 19 and 20, a large friction does not occur, and the displacement of the main girder 4 can be followed without restraining the horizontal displacement and rotational displacement of the main girder. . Further, the buffer member 12 does not always have a force, and only has a force when an earthquake occurs. Therefore, the buffer member 12 can be made simple and economical.

さらに、緩衝部材12は、その挿入孔18に挿入されたアンカーバー17によって突起10に保持されているので、地震時にせん断変形を生じることがなく、すべりプレート19,20間で即座にすべりを生じさせることができる。その一方、アンカーバー17は挿入孔18の所定深さ位置までの挿入であるので、鉛直方向のたわみ変形が可能であり、緩衝部材12の緩衝機能を損なうことがない。   Further, since the buffer member 12 is held by the protrusion 10 by the anchor bar 17 inserted into the insertion hole 18, no shear deformation occurs at the time of an earthquake, and slip occurs immediately between the slide plates 19 and 20. Can be made. On the other hand, since the anchor bar 17 is inserted up to a predetermined depth position of the insertion hole 18, it can be flexibly deformed in the vertical direction without impairing the buffer function of the buffer member 12.

上記実施形態は例示にすぎず、この発明は種々の改変が可能である。例えば、上記実施形態では突起及び開口をそれぞれ2つ設けたが、これに限らず1つあるいは3つ以上設ける態様もこの発明に包含される。   The above embodiment is merely an example, and various modifications can be made to the present invention. For example, in the above-described embodiment, two protrusions and two openings are provided. However, the present invention is not limited to this, and an aspect in which one or three or more openings are provided is also included in the present invention.

この発明の実施形態を示し、橋軸方向矢視による正面図である。It is a front view by showing an embodiment of this invention and a bridge axis direction arrow. 同実施形態の橋軸直角方向矢視による断面図である。It is sectional drawing by the bridge axis perpendicular direction arrow of the embodiment. 同実施形態の平面図である。It is a top view of the embodiment. 緩衝部材の詳細を示し、橋軸方向矢視による断面図である。It is sectional drawing which shows the detail of a buffer member and is a bridge-axis direction arrow view. 同緩衝部材の橋軸直角方向矢視による断面図である。It is sectional drawing by the bridge axis orthogonal direction arrow of the buffer member. 実施形態の作用を説明するための断面図である。It is sectional drawing for demonstrating the effect | action of embodiment. 従来例を示す図である。It is a figure which shows a prior art example. 別の従来例を示す図である。It is a figure which shows another prior art example. さらに別の従来例を示す図である。It is a figure which shows another prior art example. さらに別の従来例を示す図である。It is a figure which shows another prior art example.

符号の説明Explanation of symbols

1 橋台
2 縦壁
3 パラペット
4 主桁
4a 桁端
5 可動支承(すべりゴム支承)
6 上側プレート
7 下側プレート
8 積層ゴム
10 突起
11 開口
12 緩衝部材(積層ゴム)
13 ゴム層
14,15,16 鋼板
17 移動防止枠
19,20 すべりプレート
25 止水カバー
1 Abutment 2 Vertical wall 3 Parapet 4 Main girder 4a Girder end 5 Movable bearing (slip rubber bearing)
6 Upper plate 7 Lower plate 8 Laminated rubber 10 Protrusion 11 Opening 12 Buffer member (laminated rubber)
13 Rubber layer 14, 15, 16 Steel plate 17 Movement prevention frame 19, 20 Slip plate 25 Water stop cover

Claims (8)

主桁端部が可動支承を介して橋台に支持される桁橋において、前記主桁に作用する負反力を前記橋台に伝達するための負反力伝達構造であって、
前記主桁端部の先端に突起が設けられ、この突起は前記橋台のパラペットに設けられた開口に該突起の上下に隙間が存するように貫通して配置され、
また、前記突起の上面に緩衝部材が設置され、この緩衝部材の上面と前記開口内面との間に隙間が設けられていることを特徴とする桁橋における負反力伝達構造。
In a girder bridge whose main girder end is supported by an abutment via a movable support, a negative reaction force transmission structure for transmitting a negative reaction force acting on the main girder to the abutment,
A protrusion is provided at the tip of the main girder end, and this protrusion is disposed through an opening provided in a parapet of the abutment so that there is a gap above and below the protrusion,
A negative reaction force transmission structure in a girder bridge, wherein a buffer member is provided on the upper surface of the projection, and a gap is provided between the upper surface of the buffer member and the inner surface of the opening.
前記緩衝部材はすべり機能を有するものであることを特徴とする請求項1記載の桁橋における負反力伝達構造。   The negative reaction force transmission structure in a girder bridge according to claim 1, wherein the buffer member has a sliding function. 前記突起及び前記開口はいずれも断面四角形のものであることを特徴とする請求項1又は2記載の桁橋における負反力伝達構造。   The negative reaction force transmission structure in a girder bridge according to claim 1, wherein each of the protrusion and the opening has a rectangular cross section. 前記緩衝部材はパッド型のものであることを特徴とする請求項3記載の桁橋における負反力伝達構造。   4. The negative reaction force transmission structure in a girder bridge according to claim 3, wherein the buffer member is of a pad type. 前記緩衝部材は鋼板とゴム層とを積層してなる積層ゴムからなることを特徴とする請求項4記載の桁橋における負反力伝達構造。   5. The negative reaction force transmission structure in a girder bridge according to claim 4, wherein the buffer member is made of a laminated rubber formed by laminating a steel plate and a rubber layer. 前記緩衝部材にすべり機能を持たせるために、該緩衝部材の上面及び前記開口の内面にすべりプレートがそれぞれ設けられていることを特徴とする請求項2〜5のいずれか1記載の桁橋における負反力伝達構造。   The girder bridge according to any one of claims 2 to 5, wherein a slip plate is provided on an upper surface of the buffer member and an inner surface of the opening in order to give the buffer member a slip function. Negative reaction force transmission structure. 前記突起にはその上面から突出する複数のアンカーバーが設けられるとともに、前記緩衝部材には前記アンカーバーが所定深さ位置まで挿入される挿入孔が設けられていることを特徴とする請求項4,5又は6記載の桁橋における負反力伝達構造。   5. The projection is provided with a plurality of anchor bars protruding from an upper surface thereof, and the buffer member is provided with an insertion hole into which the anchor bar is inserted to a predetermined depth position. , 5 or 6 negative reaction force transmission structure in girder bridge. 前記可動支承は、すべりゴム支承であることを特徴とする請求項1〜7のいずれか1記載の桁橋における負反力伝達構造。   The negative reaction force transmission structure in a girder bridge according to any one of claims 1 to 7, wherein the movable bearing is a sliding rubber bearing.
JP2006166931A 2006-06-16 2006-06-16 Negative reaction force transmission structure in girder bridge Active JP4500946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166931A JP4500946B2 (en) 2006-06-16 2006-06-16 Negative reaction force transmission structure in girder bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166931A JP4500946B2 (en) 2006-06-16 2006-06-16 Negative reaction force transmission structure in girder bridge

Publications (2)

Publication Number Publication Date
JP2007332686A JP2007332686A (en) 2007-12-27
JP4500946B2 true JP4500946B2 (en) 2010-07-14

Family

ID=38932417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166931A Active JP4500946B2 (en) 2006-06-16 2006-06-16 Negative reaction force transmission structure in girder bridge

Country Status (1)

Country Link
JP (1) JP4500946B2 (en)

Also Published As

Publication number Publication date
JP2007332686A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
KR100731210B1 (en) Earthquake Isolation Bearing for Bridges Using Shape Memory Alloy
JP2011501050A (en) Seismic isolation structure
JP2007239306A (en) Method of mounting base isolation damper
JP4192225B2 (en) Shear panel type vibration control stopper
KR20100088180A (en) Displacement control device for lrb
JP2007262746A (en) Bridge fall preventing structure
JP4680877B2 (en) Horizontal bearing device
JP5166956B2 (en) Vibration control device
JP4915842B2 (en) Seismic isolation system
JP4500946B2 (en) Negative reaction force transmission structure in girder bridge
JPH11181793A (en) Structure for reinforcing structure footing
JP6267457B2 (en) Three-sided slide support device for structures
JPS59134230A (en) Earthquake-resistant pile
JP4383963B2 (en) Bolt break type buffer stopper device and bridge seismic isolation device
WO2013051702A1 (en) Seismic isolation support device for traveling crane
JP4292127B2 (en) Bridge bearing device
JP7050553B2 (en) Supporting equipment for structures
JP2006188898A (en) Aseismatic reinforcing method for existing structure, structure based on the aseismatic reinforcing method, and structure equipped with the structure
JP4360466B2 (en) Rubber bearing device
JP4404319B1 (en) Bearing device
KR100577967B1 (en) A bearing apparatus for structure
JP2013092009A (en) Structure vibration damping device and structure vibration damping method
JP5980665B2 (en) Tensile force resistance device for laminated rubber bearings
KR200222439Y1 (en) Bridge Bearing equipped with deck restrainer
JP4588909B2 (en) Anti-vibration control structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100323

R150 Certificate of patent or registration of utility model

Ref document number: 4500946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250