JP4498564B2 - 試料識別方法およびその装置 - Google Patents

試料識別方法およびその装置 Download PDF

Info

Publication number
JP4498564B2
JP4498564B2 JP2000242887A JP2000242887A JP4498564B2 JP 4498564 B2 JP4498564 B2 JP 4498564B2 JP 2000242887 A JP2000242887 A JP 2000242887A JP 2000242887 A JP2000242887 A JP 2000242887A JP 4498564 B2 JP4498564 B2 JP 4498564B2
Authority
JP
Japan
Prior art keywords
sample
reference object
identification
spectrum
trace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000242887A
Other languages
English (en)
Other versions
JP2002055045A5 (ja
JP2002055045A (ja
Inventor
賢一 赤尾
ちひろ 神
徹 坂巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP2000242887A priority Critical patent/JP4498564B2/ja
Publication of JP2002055045A publication Critical patent/JP2002055045A/ja
Publication of JP2002055045A5 publication Critical patent/JP2002055045A5/ja
Application granted granted Critical
Publication of JP4498564B2 publication Critical patent/JP4498564B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は試料識別方法およびその装置、特に一の未知試料中に含まれる複数成分の分類手法に関する。
【0002】
【従来の技術】
従来より食品をはじめ、医薬品、繊維、化成品、鉱物、土壌等の成分分析のため、例えばFTIRを用いたKBr錠剤法が用いられる。
このKBr錠剤法では、試料をKBr結晶の粉末と混ぜて圧力をかけて錠剤をつくり、これをFTIRで赤外スペクトル測定する。そして、使用者は、測定した赤外スペクトルのピークの形状を見て、未知試料の識別等を行っている。
ところで、最近、覚醒剤をはじめとする各種薬物が巷で氾濫しており、結果として、それを取り締まる警察や税関では、押収した薬物を迅速に、かつ正確に識別する必要がある。
【0003】
すなわち、覚醒剤(一般的にはメタアンフェタミンのみを覚醒剤という)と麻薬(ヘロイン、コカイン等)では規制する法律が異なる。さらに覚醒剤の場合、不純物の割合によって覚醒剤取締法か、覚醒剤原材料取締法かの適用法令の区分がなされているからである。
また、試料としては、前記覚醒剤等の薬物に限られず、リサイクルのための分別を行なうため、例えば試料がプラスチックか否かを識別し、該プラスチックに含まれるであろう可塑剤の識別や定量が行える技術の開発も強く望まれている。
従来は、このような種々の試料の識別や、不純物の識別、定量についても、前記FTIRを用いたKBr錠剤法が用いられる。
【0004】
【発明が解決しようとする課題】
しかしながら、試料には微量成分や吸収ピークが微弱な成分もあり、このような試料を扱うには高い測定精度が要求される。
このため、従来、一般的な試料を想定した精度では、前述のような成分の測定に用いるには、面倒であった。
しかも、測定したスペクトルを分析する使用者にも、高度な分析能力が必要となるので、分析精度の向上の難しさの要因となる。また、熟練者であっても大変な分析であり、面倒であった。
【0005】
この結果、分析が困難な成分であっても、基準物の識別は勿論、その不純物の詳細な識別、定量分析をも容易にかつ正確に行える技術の開発が強く望まれていたものの、従来はこれを解決することのできる適切な技術が存在しなかった。
本発明は前記従来技術の課題に鑑みなされたものであり、その目的は未知試料の中の基準物の識別、並びに該基準物に含まれる不純物の識別及び定量を、容易に且つ正確に行える試料識別方法およびその装置を提供することにある。
【0006】
【課題を解決するための手段】
前記目的を達成するために本発明にかかる試料識別方法は、測定工程と、基準物識別工程と、不純物定量工程と、不純物識別工程と、を備えることを特徴とする。
ここで、前記測定工程は、未知試料のスペクトル測定を行なう。
また、前記基準物識別工程は、前記測定工程で得た測定結果に基準物識別指標を適用し、該未知試料中の基準物の識別を行なう。
【0007】
前記不純物定量工程は、あらかじめ前記基準物に含まれるであろう不純物毎に、基準物と不純物を種々の濃度で混合した標準試料を測定して作成しておいた検量線に、前記測定工程で得た測定結果を当てはめ、該基準物識別工程で識別された基準物に含まれるであろう不純物の定量を行なう。
前記不純物識別工程は、前記定量工程で得た定量結果に基づいて前記基準物識別工程で識別された基準物に含まれるであろう不純物の識別を行なう。
【0008】
なお、本発明において、前記基準物識別工程は、前記基準物識別指標として該基準物の標準スペクトルを用い、該標準のスペクトル形状と前記未知試料のスペクトル形状との相関に基づいて、未知試料中の基準物の識別を行なうことが好適である。
また、本発明において、前記不純物定量工程は、前記未知試料のスペクトルデータから、前記基準物識別工程で識別された基準物に含まれるであろう不純物のピーク高さを基準物のピーク高さを基準に求め、求めたピーク高さ比をその不純物の検量線に当てはめ、定量を行なうことも好適である。
【0009】
また、本発明において、前記不純物識別工程は、前記不純物定量工程で得た定量結果に基づいて、基準物に含まれるであろう不純物の中から少なくとも最多不純物名を検索し、その定量結果と共に出力することも好適である。
また、前記目的を達成するために本発明にかかる試料識別装置は、測定手段と、データ記憶手段と、基準物識別ライブラリと、基準物識別手段と、定量ライブラリと、不純物定量手段と、不純物識別手段と、を備えることを特徴とする。
ここで、前記測定手段は、未知試料のスペクトル測定を行なう。
【0010】
また、前記データ記憶手段は、前記測定手段で得た未知試料のスペクトルデータを記憶する。
前記基準物識別ライブラリは、基準物識別指標を記憶する。
前記基準物識別手段は、前記データ記憶手段の未知試料のスペクトルデータに前記基準物識別ライブラリの基準物識別指標を適用し、前記未知試料中の基準物の識別を行なう。
【0011】
前記定量ライブラリは、あらかじめ前記基準物に含まれるであろう不純物毎に、基準物と不純物を種々の濃度で混合した標準試料を測定して作成しておいた検量線を記憶する。
前記不純物定量手段は、前記測定手段で得た測定結果を、前記定量ライブラリの検量線に当てはめ、該基準物識別手段で識別された基準物に含まれるであろう不純物の定量を行なう。
【0012】
前記不純物識別手段は、前記不純物定量手段で得た定量結果に基づいて前記基準物識別工程で識別された基準物に含まれるであろう不純物の識別を行なう。
なお、本発明において、前記基準物識別手段は、前記基準物識別指標として該基準物の標準スペクトルを用い、該標準のスペクトル形状と前記未知試料のスペクトル形状との相関に基づいて、未知試料中の基準物の識別を行なうことが好適である。
【0013】
また、本発明において、前記不純物定量手段は、前記未知試料のスペクトルデータから、前記基準物識別手段で識別された基準物に含まれるであろう不純物のピーク高さを前記基準物のピーク高さを基準に求め、求めたピーク高さ比をその不純物の検量線に当てはめ、定量を行なうことも好適である。
さらに、本発明において、前記不純物識別手段は、前記不純物定量工程で得た定量結果に基づいて、基準物に含まれるであろう不純物の中から少なくとも最多不純物名を検索し、その定量結果と共に出力することも好適である。
【0014】
ここにいう不純物とは、例えば基準物が覚醒剤(メタアンフェタミン)(以下、Maという)の場合は、カフェインソディウムベンゾエイト(以下、アンナカという)、アンタフェタミン(以下、Apという)、エフェドリン(以下、Epという)、ジメチルアンタフェタミン(以下、DMAという)等をいう。
また、基準物がプラスチックの場合は、例えば該プラスチックに含まれるであろう可塑剤等を不純物という。
【0015】
【発明の実施の形態】
以下、図面に基づき本発明の好適な一実施形態について説明する。
第一実施形態
図1には本発明の第一実施形態にかかる試料識別装置の概略構成が示されている。
なお、本実施形態では、検索対象として覚醒剤、麻薬等の薬物を想定し、覚醒剤に含まれるであろう不純物としてのアンナカ、Ap、Ep、DMAの定量を行い、その定量結果に基づいて最多不純物名とその定量値を出力する場合について説明する。
【0016】
同図に示す試料識別装置10は、測定手段14と、コンピュータ16を含む。
ここで、前記測定手段14は、例えば拡散反射測定装置(FTIR)からなり、試料ホルダ17に充填された試料22の赤外スペクトル測定を行なう。
すなわち、光源18からの赤外光L1は、試料照射手段20により試料ホルダ17の試料22に照射される。試料22からの拡散反射光L2は、反射鏡24により集光され、検出器26により検出される。
【0017】
そして、検出器26の出力はAD変換され、コンピュータ16に入力される。
前記コンピュータ16は、CPU(基準物識別手段、不純物定量手段、不純物識別手段)28と、HDD30を含む。
前記HDD30は、データ記憶手段32と、基準物識別ライブラリ33と、定量ライブラリ36を含む。
ここで、前記データ記憶手段32は、測定手段14で得た未知試料のスペクトルデータを記憶している。
【0018】
前記基準物識別ライブラリ33は、基準物識別指標として、覚醒剤(Ma)、麻薬等を測定して得られた各基準物の標準スペクトルデータを記憶している。
前記HDD30は、覚醒剤(Ma)に固有のピーク波数情報を記憶している。
また、このHDD30は、覚醒剤(Ma)に含まれるであろう不純物に固有のピーク波数情報、例えばアンナカ、Ap、Ep,DMAに固有のピーク波数情報を記憶している。
【0019】
前記定量ライブラリ36は、覚醒剤に含まれるであろう不純物としてのアンナカ、Ap、Ep,DMA毎に、定量分析のための検量線を記憶している。
ここで、本実施形態では、検量線は、各不純物毎に、基準物(Ma)と不純物を種々の濃度、例えば95対5%、90対10%、85対15%、80対20%、75対25%、70対30%、65対35%、60対40%等の割合で混合した各標準試料のスペクトルを測定し、不純物の測定値/基準物の測定値を縦軸に、濃度を横軸にとってグラフ化したものを用いている。
【0020】
ここにいう測定値とは、定量可能なものであれば任意のものを用いることができ、例えば吸光度、KM値、拡散反射光の強度等が挙げられる。
そして、基準物識別手段としてのCPU28は、データ記憶手段32の未知試料のスペクトルデータに、基準物識別ライブラリ33の基準物識別指標を適用し、未知試料中の基準物を識別する。
すなわち、CPU28は、まず、基準物識別ライブラリ33の各標準スペクトルの形状と、データ記憶手段32の未知試料のスペクトルの形状の比較を行ない、相関係数を求める。
【0021】
そして、最も相関係数が高い標準スペクトルを検索することにより、未知試料中の基準物が覚醒剤か、麻薬か、あるいはその他かを識別することができる。
覚醒剤と識別された場合、不純物定量手段としてのCPU28は、データ記憶手段32の未知試料のスペクトルデータから不純物の定量情報を取出す。
すなわち、CPU28は、未知試料のスペクトルデータよりHDD30に記憶されている不純物に固有のピーク波数でのピーク高さ、例えばアンナカに固有のピーク波数でのピーク高さと、Maに固有のピーク波数でのピーク強度を読み取る。
【0022】
そして、これらの比を求め、定量ライブラリ36のアンナカの検量線に当てはめ、アンナカの濃度を求める。
このような不純物の定量をAp,Ep,DMAの各不純物についても行なう。
全ての不純物の定量が終了した後、CPU28は、前記定量結果に基づいて最多不純物を検索する。これにより、最多不純物がアンナカか、Apか、Epか、DMAかを識別することができる。
最多不純物の識別後、CPU28は、定量結果に基づいて最多不純物名とその定量値を、出力手段としてのディスプレイ40に画面表示したり、プリンタ42に印刷する。
【0023】
本発明の第一実施形態にかかる試料識別装置10は、概略以上のように構成され、以下にその作用について図2に示すフローチャートを参照しつつ説明する。
まず、試料ホルダに試料を充填する(S10)。
前記試料22の充填後、試料ホルダ17を本実施形態にかかる試料識別装置10にセットし、測定を開始する(S12)。
得られた未知試料の測定データは、コンピュータ16のCPU28に入力され、データ処理された後、HDD30のデータ記憶手段32に赤外スペクトルデータとして記憶される。
【0024】
つぎに、測定したスペクトルから基準物の識別を行なう(S14)。
ここで、通常は、熟練者が測定したスペクトルデータの形状を見て、識別等を行なうのが一般的であるが、このような作業は非常に専門的であるので、面倒であった。
この問題を解決するために、あらかじめ基準物のみの標準スペクトル、不純物のみの標準スペクトルを蓄えておき、未知試料のスペクトル形状と最も相関の高い標準スペクトルが何かを検索し、未知試料中の基準物や不純物の識別を行なう方法も考えられる。
【0025】
しかしながら、この場合、未知試料中の基準物や不純物の識別までは行なえるが、定量は困難である。
そこで、基準物と不純物の混合比が95対5%、90対10%…等というように、例えば5%間隔で変えられた各標準試料を測定して標準スペクトルを蓄えておけば、未知試料のスペクトル形状と最も相関係数の高い標準スペクトルを検索することにより、未知試料の基準物の識別と、不純物の簡易な定量を行なう方法も考えられる。
【0026】
しかしながら、このような検索方法を用いた場合、不純物の定量結果は、5%、10%、…等というように標準試料中の不純物の混合比の間隔でしか得られず、それ以下での定量結果が得られないので、特に微量成分を扱う場合には定量精度の改善が望まれる。
そこで、本実施形態では、CPU28が以下の一連の処理を行なうこととした。
すなわち、CPU28は、図3に示されるように、未知試料のスペクトルIの形状と基準物識別ライブラリの覚醒剤、麻薬等の基準物の標準スペクトルIIの形状を比較し、これらの相関係数を求める。
【0027】
そして、最も相関係数の高い標準スペクトルを検索し、未知試料中の基準物が覚醒剤か、麻薬か、あるいはその他かを識別する。
ここで、麻薬と識別された場合は、その麻薬の名前を、例えばコカインか、ヘロインか等を表示する。また、その他の薬剤、例えば風邪薬やうどん粉等と識別された場合は、該当なしと表示する。
【0028】
一方、覚醒剤と識別された場合は、各不純物の特定のピークを用いて、本実施形態において特徴的な検量線から不純物の定量が行われる(s16)。
すなわち、本実施形態では、覚醒剤と識別された場合は、図4に示されるように、CPU28は、未知試料のスペクトルデータより覚醒剤(Ma)に含まれるであろう不純物A、例えばアンナカに固有のピーク波数σでのピーク高さHを読み取る。また、基準物(Ma)に固有のピーク波数σでのピーク高さHを読み取り、これらの吸光度比(H/H)を求める。
【0029】
これを覚醒剤に含まれるであろう他の不純物B,C,D、例えばAp,Ep,DMAについても行なう。
その後、CPU28は、これらの吸光度比を定量ライブラリ36の各不純物の検量線に当てはめて、不純物の濃度を求める。
すなわち、前述のようにして得られた不純物Aと基準物Maの吸光度比(H/H)を、例えば図5(A)に示すような不純物Aの検量線に当てはめ、不純物Aの濃度を求める。
【0030】
また、前述のようにして得られた不純物Bと基準物Maの吸光度比(H/H)を、例えば同図(B)に示すような不純物Bの検量線に当てはめ、不純物Bの濃度を求める。
また、前述のようにして得られた不純物Cと基準物Maの吸光度比(H/H)を、例えば同図(C)に示すような不純物Cの検量線に当てはめ、不純物Cの濃度を求める。
【0031】
また、前述のようにして得られた不純物Dと基準物Maの吸光度比(H/H)を、例えば同図(D)に示すような不純物Dの検量線に当てはめ、不純物Dの濃度を求める。
このようにして覚醒剤に含まれるであろう各不純物A,B,C,Dの定量後、CPU28は、前述のようにして得られた定量結果から最多不純物名を検索し、その最多不純物名と定量値を%表示する(S18)。
例えば、図6に示すような結果をディスプレイに表示する。またプリンタで図7に示す結果を印刷することも好ましい。
【0032】
なお、各不純物の定量値が所定の値以下の場合は、100%Ma等と表示することも好ましい。
このように本実施形態では、不純物の定量に、あらかじめMaに含まれるであろう不純物毎に、基準物と不純物を種々の濃度で混合した標準試料を測定して作成しておいた検量線を用いている。
【0033】
すなわち、例えばアンナカの定量を行なうには、基準物(Ma)とアンナカを種々の濃度、例えば95対5%、90対10%、85対15%、80対20%、75対25%、70対30%、65対35%、60対40%で混合した各標準試料の吸光度スペクトルを測定し、アンナカの吸光度/Maの吸光度の比を縦軸に、濃度を横軸にとってグラフにしたアンナカの検量線を用いる。
【0034】
また、例えばApの定量を行なうには、基準物(Ma)とApを、例えば前記アンナカと同様の種々の濃度で混合した各標準試料の吸光度スペクトルを測定し、Apの吸光度/Maの吸光度を縦軸に、濃度を横軸にとってグラフにしたApの検量線を用いるのである。
つまり、不純物Aの定量を行なうには、Maと不純物Aを種々の濃度で混合した各標準試料の吸光度スペクトルを測定し、不純物Aの吸光度/Maの吸光度の比を縦軸に、濃度を横軸にとってグラフにした不純物Aの検量線を用いるのである。
【0035】
この結果、本実施形態では、不純物の濃度が異なる標準試料の標準スペクトルを複数用意しておき、未知試料のスペクトルの形状に最も近い標準スペクトルを検索し、その検索された標準スペクトルに用いられた標準試料中の不純物の濃度を、未知試料中の不純物の濃度とした場合に比較し、より詳細な濃度が得られる。
また、本実施形態では、熟練者がスペクトル解析を行った場合に比較し、一の未知試料の中に含まれる複数成分の分類を容易に、かつ正確に行なうことができる。
【0036】
さらに、通常、各成分のピークが重なり合う可能性のある試料を測定する際は、前処理としてカラム等による分離が行われるが、本実施形態のように基準物に含まれる不純物の種類がほぼ特定可能な場合には、カラム等による物理的な分離を行なうことなく、一本のスペクトルデータから自動的に複数成分を容易に分類することが可能となる。
本発明の試料識別装置は、前記各構成に限定されるものではなく、発明の要旨の範囲内で種々の変形が可能である。
【0037】
例えば、前記構成では、基準物として覚醒剤を想定し、覚醒剤に含まれるであろう不純物の識別と定量を行った例について説明したが、他の試料、例えば麻薬の識別、該麻薬に含まれる不純物の識別、定量を行なうようにしてもよい。
また、前記覚醒剤、麻薬等の薬物に限定されず、例えば基準物としてプラスチックを想定し、該プラスチックに含まれる可塑剤等の識別、定量を行なうようにしてもよい。
【0038】
また、前記構成では、基準物、不純物の測定値として吸光度を用いた例について説明したが、本発明の試料識別方法およびその装置は、これに限定されるものではなく、定量可能なものであれば任意のものを用いることができる。例えば、拡散反射光の強度、KM値等を用いることも好ましい。
また、前記構成では、最多不純物名とその濃度を出力した例について説明したが、ディスプレイに表示ないしプリンタに印字する不純物名とその濃度の順番は、例えばCPU28により自由に変更可能であり、例えば濃度の高い順、低い順等というように、表示の順番の並べ替えを行なわせることも好ましい。
【0039】
また、以下に示すような試料識別方法を用いることも好ましい。
第二実施形態
図8には本発明の第二実施形態にかかる試料識別装置の概略構成が示されている。
なお、本実施形態では、基準物として覚醒剤が識別された場合は、濃度の高いと思われる順に不純物の識別と定量を行なう場合について説明する。
また、前記第一実施形態に対応する部分には符号100を加えて示し、説明を省略する。
【0040】
図8において、定量ライブラリ136は、最多不純物用の検量線、次多不純物用の検量線等を記憶している。
ここで、最多不純物用の検量線は、Maと最多不純物との濃度を所定の間隔で変えて調製した標準試料を測定して作成されている。
次多不純物用の検量線は、まず、Maと最多不純物を最多不純物の定量結果に近い混合比で混合した試料を用意し、その試料と次多不純物の混合比を所定の間隔で変えて調製した標準試料を測定して作成されている。
【0041】
そして、未知試料のスペクトル測定後は、図9に示すように、CPU128が、基準物識別ライブラリ133の標準スペクトルの中から、データ記憶手段132の未知試料のスペクトル形状と最も高い相関を示すものを選び、未知試料の基準物が覚醒剤か、麻薬か、あるいはその他かを識別する(S114)。
ここで、覚醒剤が識別された場合は、CPU128は、未知試料のスペクトルデータより各不純物に固有のピーク波数でのピーク強度を読み取り、その最大ピーク強度の大小により最多不純物の定量と識別を行なう(S120)。
【0042】
▲1▼最多不純物の識別後、その定量を前記最多不純物用の検量線を用いて行なう。
その後、CPU128は、未知試料のスペクトルデータからその他の不純物に固有のピーク波数でのピーク強度を読み取り、次多不純物の識別を行なう。
▲2▼次多不純物の識別後、その定量を前記次多不純物用の検量線を用いて行なう。
なお、本実施形態では、基準物としてのMaをX、不純物を濃度の高いと思われる順にA、B、C,Dと仮定した場合は、以下の検量線を用いる。
【0043】
▲1▼最多不純物Aの検量線
X+(5%)A,

X+(Aの混合比を5%間隔で変えたもの)

X+(40%)A
の標準試料を測定して作成された検量線を用いる。
【0044】
▲2▼次多不純物Bの検量線
前記不純物Aの定量値が4%とした場合、標準試料中のAの濃度を前記定量結果の4%に最も近い5%に固定して
X+5%A+(5%)B,

X+5%A+(Bの混合比を5%間隔で変えたもの)

X+5%A+(40%)B
の標準試料を測定して作成された検量線を用いる。
【0045】
▲3▼次多不純物Cの検量線
前記不純物Bの定量値が9%とした場合、標準試料中のAの濃度を前記定量結果の4%に最も近い5%、Bの濃度を前記定量結果の9%に最も近い10%に固定して
X+5%A+10%B+(5%)C,

X+5%A+10%B+(Cの混合比を5%間隔で変えたもの)

X+5%A+10%B+(40%)C
の標準試料を測定して作成された検量線を用いる。
【0046】
そして、このような工程を所望の回数、例えば最少不純物の定量を終えるまで、前記S120の処理を繰り返す。
この結果、本実施形態では、未知試料のスペクトルから各不純物に固有のピーク強度から各不純物の濃度を予測し、濃度順に不純物の識別と定量を行なうことができる。
また、不純物の定量は、前段までの不純物をほぼ同様に近い割合で含み、定量を行なう不純物の割合を変えて調製した各標準試料から作成された検量線を用いるので、不純物の定量がより詳細に行える。
【0047】
さらに、前記第一実施形態と同様、カラム等の物理的な分離を行なうことなく、一本のスペクトルデータから未知試料の中に含まれる複数成分を自動的に分類でき、第二実施形態では、さらに複数成分の階層化が自動的に可能となる。
したがって、そのような表示方法の工夫をしないで、単に成分名とその濃度値を横並びや一覧で表示した場合に比較し、検索結果が見やすいものとなる。
【0048】
【発明の効果】
以上説明したように本発明にかかる試料識別方法および装置によれば、不純物定量工程(手段)により、あらかじめ基準物に含まれるであろう不純物毎に、基準物と不純物を種々の濃度で混合した標準試料を測定して作成しておいた検量線に、測定工程(手段)で得た測定結果を当てはめ、基準物識別工程(手段)で識別された基準物に含まれるであろう不純物の定量を行ない、不純物識別工程(手段)により、定量工程(手段)で得た定量結果に基づいて基準物識別工程(手段)で識別された基準物に含まれるであろう不純物の識別を行なうこととしたので、未知試料中の基準物の識別、並びに該基準物に含まれる不純物の識別及び定量を容易に且つ正確に行える。
【図面の簡単な説明】
【図1】本発明の第一実施形態にかかる試料識別装置の概略構成の説明図である。
【図2】 図1に示した装置での処理内容を示すフローチャートである。
【図3】 図1に示した装置での基準物識別工程の説明図である。
【図4】図1に示した装置での不純物定量工程の説明図である。
【図5】図1に示した装置での不純物定量工程の説明図である。
【図6】図1に示した装置で得られた検索結果の画面表示例である。
【図7】図1に示した装置で得られた検索結果の印刷例である。
【図8】本発明の第二実施形態にかかる試料識別装置の概略構成の説明図である。
【図9】図8に示した装置での処理内容を示すフローチャートである。
【符号の説明】
10,110…試料識別装置
14,114…測定手段
28,128…CPU(基準物識別手段、不純物定量手段、不純物識別手段)
32,132…データ記憶手段
33,133…基準物識別ライブラリ
36,136…定量ライブラリ
40,140…ディスプレイ
42,142…プリンタ

Claims (8)

  1. 未知試料のスペクトル測定を行なう測定工程と、
    前記測定工程で得た未知試料のスペクトルと、基準物識別指標として基準物と前記基準物に含まれるであろう微量物質の混合比を変えて各標準試料を測定して得られた標準スペクトルのうち最も相関係数の高い標準スペクトルを検索することにより、該未知試料中の前記基準物の識別を行なう基準物識別工程と、
    あらかじめ前記基準物に含まれるであろう微量物質毎に、基準物と微量物質を種々の濃度で混合した標準試料を測定して作成しておいた検量線に、前記測定工程で得た測定結果を当てはめ、該基準物識別工程で識別された基準物に含まれるであろう微量物質の定量を行なう微量物質定量工程と、
    前記定量工程で得た定量結果に基づいて前記基準物識別工程で識別された基準物に含まれるであろう微量物質の識別を行なう微量物質識別工程と、
    を備えたことを特徴とする試料識別方法。
  2. 請求項1記載の試料識別方法において、
    前記基準物識別工程は、前記基準物識別指標として該基準物の標準スペクトルを用い、該標準のスペクトル形状と前記未知試料のスペクトル形状との相関に基づいて、未知試料中の基準物の識別を行なうことを特徴とする試料識別方法。
  3. 請求項1又は2記載の試料識別方法において、
    前記微量物質定量工程は、前記未知試料のスペクトルデータから、前記基準物識別工程で識別された基準物に含まれるであろう微量物質のピーク高さを基準物のピーク高さを基準に求め、
    求めたピーク高さ比をその微量物質の検量線に当てはめ、定量を行なうことを特徴とする試料識別方法。
  4. 請求項1〜3のいずれかに記載の試料識別方法において、
    前記微量物質識別工程は、前記微量物質定量工程で得た定量結果に基づいて、基準物に含まれるであろう微量物質の中から少なくとも最多微量物質名を検索し、その定量結果と共に出力することを特徴とする試料識別方法。
  5. 未知試料のスペクトル測定を行なう測定手段と、
    前記測定手段で得た未知試料のスペクトルデータを記憶するデータ記憶手段と、
    前記データ記憶手段の未知試料のスペクトルと、基準物識別指標として基準物と前記基準物に含まれるであろう微量物質の混合比を変えて各標準試料を測定して得られた標準スペクトルを記憶する基準物識別ライブラリと、
    前記データ記憶手段の未知試料のスペクトルデータと前記標準スペクトルのうち最も相関係数の高い前記標準スペクトルを検索することにより前記未知試料中の基準物の識別を行なう基準物識別手段と、
    あらかじめ前記基準物に含まれるであろう微量物質毎に、基準物と微量物質を種々の濃度で混合した標準試料を測定して作成しておいた検量線を記憶する定量ライブラリと、
    前記測定手段で得た測定結果を、前記定量ライブラリの検量線に当てはめ、該基準物識別手段で識別された基準物に含まれるであろう微量物質の定量を行なう微量物質定量手段と、
    前記微量物質定量手段で得た定量結果に基づいて前記基準物識別工程で識別された基準物に含まれるであろう微量物質の識別を行なう微量物質識別手段と、
    を備えたことを特徴とする試料識別装置。
  6. 請求項5記載の試料識別装置において、
    前記基準物識別手段は、前記基準物識別指標として該基準物の標準スペクトルを用い、該標準のスペクトル形状と前記未知試料のスペクトル形状との相関に基づいて、未知試料中の基準物の識別を行なうことを特徴とする試料識別装置。
  7. 請求項5又は6記載の試料識別装置において、
    前記微量物質定量手段は、前記未知試料のスペクトルデータから、前記基準物識別手段で識別された基準物に含まれるであろう微量物質のピーク高さを前記基準物のピーク高さを基準に求め、
    求めたピーク高さ比をその微量物質の検量線に当てはめ、定量を行なうことを特徴とする試料識別装置。
  8. 請求項5〜7のいずれかに記載の試料識別装置において、
    前記微量物質識別手段は、前記微量物質定量工程で得た定量結果に基づいて、基準物に含まれるであろう微量物質の中から少なくとも最多微量物質名を検索し、その定量結果と共に出力することを特徴とする試料識別装置。
JP2000242887A 2000-08-10 2000-08-10 試料識別方法およびその装置 Expired - Fee Related JP4498564B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000242887A JP4498564B2 (ja) 2000-08-10 2000-08-10 試料識別方法およびその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000242887A JP4498564B2 (ja) 2000-08-10 2000-08-10 試料識別方法およびその装置

Publications (3)

Publication Number Publication Date
JP2002055045A JP2002055045A (ja) 2002-02-20
JP2002055045A5 JP2002055045A5 (ja) 2007-09-13
JP4498564B2 true JP4498564B2 (ja) 2010-07-07

Family

ID=18733829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000242887A Expired - Fee Related JP4498564B2 (ja) 2000-08-10 2000-08-10 試料識別方法およびその装置

Country Status (1)

Country Link
JP (1) JP4498564B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8536529B2 (en) * 2010-10-13 2013-09-17 The Boeing Company Non-contact surface chemistry measurement apparatus and method
JP7069537B2 (ja) * 2016-05-02 2022-05-18 株式会社島津製作所 スペクトルデータ処理装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260682A (ja) * 1995-03-07 1995-10-13 Iseki & Co Ltd 穀物品質測定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151545A (ja) * 1990-08-03 1992-05-25 Hitachi Ltd 知識ベースを具備した測定分析装置
JPH05180759A (ja) * 1991-10-12 1993-07-23 Shimadzu Corp 定性分析方法
JPH0688793A (ja) * 1992-09-04 1994-03-29 Kobe Steel Ltd 発光分析による鋼の成分分析方法
JPH09119897A (ja) * 1995-10-24 1997-05-06 Nippon Soken Inc 吸着種検出装置
DE19601950C1 (de) * 1996-01-10 1997-04-03 Lla Umwelttechnische Analytik Verfahren zur Erkennung von Materialsorten, insbesondere Kunststoffsorten
JPH09218153A (ja) * 1996-02-14 1997-08-19 Fuji Oil Co Ltd 安定剤の品質検査方法
JP3495185B2 (ja) * 1996-04-23 2004-02-09 株式会社ニレコ 米の食味値測定方法および装置
JPH1038807A (ja) * 1996-07-23 1998-02-13 Hamamatsu Photonics Kk プラスチックの判別方法およびプラスチックの判別装置
US5798526A (en) * 1997-01-24 1998-08-25 Infrasoft International Llc Calibration system for spectrographic analyzing instruments

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260682A (ja) * 1995-03-07 1995-10-13 Iseki & Co Ltd 穀物品質測定方法

Also Published As

Publication number Publication date
JP2002055045A (ja) 2002-02-20

Similar Documents

Publication Publication Date Title
Murphy et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC
Morillas et al. Feasibility of a handheld near infrared device for the qualitative analysis of bloodstains
Coppey et al. Providing illicit drugs results in five seconds using ultra-portable NIR technology: An opportunity for forensic laboratories to cope with the trend toward the decentralization of forensic capabilities
EP3236245B1 (en) Sample-analyzing system
JP5856741B2 (ja) アフラトキシン定量方法、アフラトキシン定量装置、および、プログラム
US20050203353A1 (en) Multiple purpose, portable apparatus for measurement, analysis and diagnosis
EP2434291B1 (de) Verfahren zur automatisierten Bestimmung eines Analyts
JP6831094B2 (ja) 未知試料判定方法、未知試料判定装置及び未知試料判定プログラム
CN108398416A (zh) 一种基于激光拉曼光谱的混合物成分测定方法
JP2008536144A (ja) 混合物をスペクトル分析する方法および装置
Pederson et al. Pocket-size near-infrared spectrometer for narcotic materials identification
JP3707010B2 (ja) クロマトグラフ/質量分析装置における汎用多成分一斉同定・定量方法
Chen et al. Discrimination of Chinese yellow wine from different origins based on flavor fingerprint
Zhang et al. Mixture analysis using reverse searching and non-negative least squares
Eliaerts et al. Comparison of spectroscopic techniques combined with chemometrics for cocaine powder analysis
Ma et al. Raman spectroscopy for pharmaceutical quantitative analysis by low-rank estimation
JP4953175B2 (ja) クロマトグラフ/質量分析装置における定量精度向上方法
JP4498564B2 (ja) 試料識別方法およびその装置
WO2021261202A1 (ja) データ生成方法及び装置、並びに、識別器の生成方法及び装置
Zaukuu et al. Rapid and non-destructive detection of ponceau 4R red colored pork
JP2004309250A (ja) クロマトグラフ用データ処理装置
Cheng et al. Exploration of compressive sensing in the classification of frozen fish based on two-dimensional correlation spectrum
Miller et al. Computer assisted structural interpretation of fluorescence spectra
US7811824B2 (en) Method and apparatus for monitoring the properties of a biological or chemical sample
JP2004053283A (ja) クロマトグラフデータ処理装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4498564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees