JP4497572B2 - Process for producing 13C-containing urea - Google Patents
Process for producing 13C-containing urea Download PDFInfo
- Publication number
- JP4497572B2 JP4497572B2 JP03324599A JP3324599A JP4497572B2 JP 4497572 B2 JP4497572 B2 JP 4497572B2 JP 03324599 A JP03324599 A JP 03324599A JP 3324599 A JP3324599 A JP 3324599A JP 4497572 B2 JP4497572 B2 JP 4497572B2
- Authority
- JP
- Japan
- Prior art keywords
- compound
- ammonia
- reaction
- containing urea
- iodide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Epoxy Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、13C含有尿素の製造法に関する。
【0002】
【従来の技術】
従来尿素の合成法としては、(1)尿から濃縮分離する方法、(2)シアン酸アンモニウム又はフェニル炭酸アンモニウムより製造する方法、(3)水に石灰窒素(CaCN2)を加え、二酸化炭素を通じ、得られたシアナミド(CNNH2)を硫酸酸性にして加温し製造する方法、(4)二酸化炭素及びアンモニアを石油中に通じて得られるカルバミン酸アンモニウム(NH2COONH4)を高圧下加熱して製造する方法、(5)二酸化炭素とアンモニアを直接150気圧、200℃で反応させる方法等が知られている(第十二改正日本薬局方解説書,1991年東京廣川書店刊行)。
【0003】
【発明が解決しようとする課題】
しかしながら、これらの方法を適用して本発明の13C含有尿素を製造しようとすると、次のような欠点が生ずる。即ち、上記(1)の方法では低収率で目的物が得られるに過ぎない。(2)又は(3)の方法による場合には、合成し難く、入手が困難な13C含有シアン酸アンモニウム、13C含有フェニル炭酸アンモニウム、13CNNH2等を使用しなければならない。(5)の方法による場合には、13CO2とアンモニアとが平衡反応のため、収率が悪く、高価で貴重な13CO2を浪費し易い。また(4)又は(5)の方法による場合には、高温、高圧下で反応させるため、安全性、操作性の面で問題がある。
【0004】
【課題を解決するための手段】
本発明の目的は、13C含有尿素を下記一般式(1)の化合物から、簡便且つ高収率、高純度で、しかも安全性よく製造し得る方法を提供することにある。
【0005】
即ち、本発明は、下記一般式(1)
【0006】
【化6】
【0007】
[式中R1、R2、R3及びR4はそれぞれ水素原子又は低級アルキル基を示す。C*は13Cを示す。]
で表わされる環状カーボネート誘導体とアンモニアとを反応させることを特徴とする13C含有尿素の製造法に係る。
【0008】
【発明の実施の形態】
本明細書において、低級アルキル基としては、例えばメチル、エチル、プロピル、イソプロピル、ブチル、tert−ブチル、ペンチル、ヘキシル基等の炭素数1〜6の直鎖又は分枝鎖状アルキル基を挙げることができる。
【0009】
本発明において出発原料として用いられる一般式(1)の化合物は、例えば下記反応式−1の方法に従って製造され得る。
【0010】
【化7】
【0011】
[式中R1、R2、R3、R4及びC*は前記に同じ。]
化合物(2)と化合物(3)との反応は、無溶媒下ルイス酸とオニウム塩又は、ルイス酸とルイス塩基の存在下に行なうことができる。
【0012】
ルイス酸としては、例えば塩化亜鉛、臭化亜鉛、沃化亜鉛、塩化第二鉄、塩化アルミニウム、沃化アルミニウム、四塩化チタン、三塩化クロム、三塩化モリブデン、五塩化モリブデン、六塩化タングステン、二塩化コバルト、二臭化ニッケル等のハロゲン化金属を挙げることができる。
【0013】
オニウム塩としては、例えば沃化テトラ−n−ブチルアンモニウム、臭化テトラ−n−ブチルアンモニウム、塩化テトラ−n−ブチルアンモニウム、沃化アセチル,トリメチルアンモニウム、沃化エチル,ジメチル,フェニルアンモニウム、沃化テトラエチルアンモミウム、沃化−n−ブチル,トリエチルアンモニウム、沃化トリ−n−ブチル,メチルアンモニウム、沃化トリ−n−デシル,メチルアンモニウム、沃化(1−フェネチル)トリメチルアンモニウム等のアミノ基上に置換基として炭素数1〜10の直鎖又は分枝鎖状アルキル基、低級アルカノイル基、フェニル基及びフェニル低級アルキル基なる群より選ばれた基を4個有するハロゲン化アンモニウム類、塩化テトラ−n−ブチルホスホニウム、臭化テトラ−n−ブチルホスホニウム、沃化テトラ−n−ブチルホスホニウム等の同一又は異なった低級アルキル基を4個有するハロゲン化ホスホニウム類、臭化テトラフェニルアンチモニウム等のフェニル基を4個有するハロゲン化アンチモニウム類、沃化トリエチルスルホニウム等の同一又は異なった低級アルキル基を3個有するハロゲン化スルホニウム類等を挙げることができる。
【0014】
ルイス塩基としては、例えばトリフェニルホスフィン、トリ−n−ブチルホスフィン等のリン化合物、トリエチルアミン等の三級アミン類等を挙げることができる。
【0015】
化合物(2)と化合物(3)との反応は、通常0℃〜室温付近、二酸化炭素圧が通常常圧〜10kg/cm2、好ましくは常圧〜7kg/cm2にて行なわれ、該反応は一般に1〜10時間程度で終了する。化合物(2)の使用量は、化合物(3)に対して少なくとも当量、好ましくは当量〜1.5当量とするのがよい。ルイス酸の使用量は、化合物(2)に対して通常0.001〜0.5倍モル、好ましくは0.001〜0.3倍モル量とするのがよい。またオニウム塩の使用量は、化合物(2)に対して通常0.01〜0.1倍モル量、好ましくは0.01〜0.07倍モル量とするのがよく、ルイス塩基の使用量としては、化合物(2)に対して通常0.01〜0.5倍モル量、好ましくは0.01〜0.1倍モル量とするのがよい。
【0016】
上記反応式−1によれば、高価で貴重な13CO2を浪費することなく、簡便に且つ高収率、高純度で、13C含有環状カーボネート誘導体(1)を得ることができる。
【0017】
本発明によれば、上記で得られる13C含有環状カーボネート誘導体(1)にアンモニアと反応させることにより、目的とする13C含有尿素を容易に製造することができる。
【0018】
本発明の方法は、オートクレーブ中適当な溶媒下、通常100〜180℃、好ましくは100〜150℃付近にて反応が進行し、一般に1〜15時間程度で該反応は終了する。アンモニアの使用量は、一般式(1)の化合物に対して通常大過剰量、好ましくは10〜30倍モル量とするのがよい。この反応で用いられる溶媒としては、例えばメタノール、エタノール、イソプロパノール等のアルコール類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類等を例示できる。
【0019】
本発明の反応系内には、触媒としてルイス酸や銅等を添加してもよい。ルイル酸としては、例えばn−ブチルチンオキシド等のアルキルチンオキシド類、アルミナムイソプロオキシド等のアルミナムアルコキンド類、酢酸銅等の銅化合物、塩化第二錫、蓚酸錫等の錫化合物等を例示できる。
【0020】
化合物(1)とアンモニアとの反応で、反応系内に中間体として
【0021】
【化8】
【0022】
が生成するが、これらは単離することなく、最終化合物である13C含有尿素に誘導され得る。
【0023】
また上記中間体の化合物(4)又は(5)を単離して、これらとアンモニアとを、前記化合物(1)とアンモニアとの反応と同様の条件下に反応させても、13C含有尿素を簡便に、且つ高収率、高純度で製造することができる。
【0024】
更に下記反応式−2に示す如く、上記中間体の化合物(4)又は(5)をカーバメイト誘導体に変換後、前記化合物(1)とアンモニアとの反応と同様の条件下に反応させても、13C含有尿素を製造することができる。
【0025】
【化9】
【0026】
[式中R1、R2、R3、R4及びC*は前記に同じ。R5は低級アルキル基を示す。]
化合物(4)又は化合物(5)と化合物(6)との反応及び化合物(7)とアンモニア(8)との反応は、いずれも前記化合物(1)とアンモニアとの反応と同様の条件下に行なわれる。13C含有カーバメイト誘導体(7)は従来の種々の方法で合成され得るが、本発明の方法によれば13C含有カーバメイト誘導体(7)を高収率、高純度で製造でき、また13C含有カーバメイト誘導体(7)とアンモニア(8)とを反応させることにより13C含有尿素を簡便に、且つ高収率、高純度で製造できる。
【0027】
【発明の効果】
本発明によれば、13C含有尿素を、上記一般式(1)の化合物から、簡便且つ高収率、高純度で、しかも安全性よく製造し得る。
【0028】
【実施例】
以下に参考例及び実施例を掲げて本発明をより一層明らかにする。
【0029】
参考例1
氷冷下、窒素気流を行ないながら、沃化テトラ−n−ブチルアンモニウム16.9g及び塩化亜鉛1.56gに、プロピレンオキシド200mlを加える。系内を減圧にし脱気を行なう。そこに、13C−二酸化炭素を1.5〜4.5kg/cm2で流入する。吸収が止まったら、リークし、再び系内を減圧にしてから13C−二酸化炭素を流入する。この操作を繰り返し、プロピレンオキシドに対して約0.9当量の13C−二酸化炭素を吸収させる。反応終了後、未反応のプロピレンオキシドを常圧又は減圧下に留去した後、減圧蒸留して、2−13C−4−メチル−1,3−ジオキソラン−2−オンを240.2g(13C−二酸化炭素からの収率91.6%,プロピレンオキシドからの収率81.5%)得る(4mmHgで90〜93℃)。
【0030】
実施例1
アンモニア48gを吹き込んだメタノール180mlに2−13C−4−メチル−1,3−ジオキソラン−2−オン12.0gを溶解し、オートクレーブ中で130℃、12時間反応する。反応後、冷却し、メタノール及びアンモニアを減圧留去する。残渣にアセトン60mlを加え、0℃で30分攪拌する。析出晶を濾取する。濾液のアセトンを減圧留去した後、プロピレングリコールを同じく減圧留去する(bp.80℃/0.5mmHg)。この残渣にアセトン10mlを加え、0℃で30分攪拌する。結晶を濾取する。先の結晶と合わせエタノールより再結晶して、13C含有尿素6.38gを得る。収率:89.8%
融点:133〜134℃、無色プリズム状。
【0031】
実施例2
封管中にメチルカーバメイト980mg及びメタノールに溶解したアンモニア(アンモニア/メタノール=191g/900ml)17mlを加え、130℃で15時間加熱する。反応液を取り出し、減圧濃縮後エタノールより再結晶して13C含有尿素720mgを得る。収率:91.5%
融点:133〜134℃、無色プリズム状。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing 13 C-containing urea.
[0002]
[Prior art]
Conventional urea synthesis methods include (1) a method of concentrating and separating from urine, (2) a method of producing from ammonium cyanate or ammonium phenyl carbonate, and (3) adding lime nitrogen (CaCN 2 ) to water and passing through carbon dioxide. , and the obtained cyanamide (CNNH 2) in sulfuric acid process for heating production, (4) the carbon dioxide and ammonia ammonium carbamate obtained through in petroleum (NH 2 COONH 4) were heated under high pressure (5) A method in which carbon dioxide and ammonia are directly reacted at 150 atm and 200 ° C. (12th revised Japanese Pharmacopoeia, 1991, published by Tokyo Yodogawa Shoten).
[0003]
[Problems to be solved by the invention]
However, when these methods are applied to produce the 13 C-containing urea of the present invention, the following disadvantages occur. In other words, the method (1) only provides the target product with a low yield. (2) in the case of the method or (3) a synthetic hard to Get ammonium difficult 13 C-containing cyanate, 13 C-containing phenyl ammonium carbonate, it must be used 13 CNNH 2 or the like. In the case of the method (5), since 13 CO 2 and ammonia are in an equilibrium reaction, the yield is poor, and expensive and valuable 13 CO 2 is easily wasted. In the case of the method (4) or (5), since the reaction is performed at a high temperature and a high pressure, there is a problem in terms of safety and operability.
[0004]
[Means for Solving the Problems]
An object of the present invention is to provide a method capable of producing a 13 C-containing urea from a compound represented by the following general formula (1) in a simple, high yield, high purity and safety.
[0005]
That is, the present invention provides the following general formula (1)
[0006]
[Chemical 6]
[0007]
[Wherein R 1 , R 2 , R 3 and R 4 each represent a hydrogen atom or a lower alkyl group. C * indicates 13 C. ]
A 13 C-containing urea is produced by reacting a cyclic carbonate derivative represented by the formula (II) with ammonia.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present specification, examples of the lower alkyl group include linear or branched alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, and hexyl groups. Can do.
[0009]
The compound of the general formula (1) used as a starting material in the present invention can be produced, for example, according to the method of the following reaction formula-1.
[0010]
[Chemical 7]
[0011]
[Wherein R 1 , R 2 , R 3 , R 4 and C * are the same as above. ]
The reaction of the compound (2) and the compound (3) can be carried out in the presence of a Lewis acid and an onium salt or a Lewis acid and a Lewis base in the absence of a solvent.
[0012]
Examples of Lewis acids include zinc chloride, zinc bromide, zinc iodide, ferric chloride, aluminum chloride, aluminum iodide, titanium tetrachloride, chromium trichloride, molybdenum trichloride, molybdenum pentachloride, tungsten hexachloride, two Mention may be made of metal halides such as cobalt chloride and nickel dibromide.
[0013]
Examples of onium salts include tetra-n-butylammonium iodide, tetra-n-butylammonium bromide, tetra-n-butylammonium chloride, acetyl iodide, trimethylammonium iodide, ethyl iodide, dimethyl, phenylammonium, and iodide. On amino groups such as tetraethylammonium iodide, n-butyl iodide, triethylammonium iodide, tri-n-butyl iodide, methylammonium iodide, tri-n-decyl iodide, methylammonium iodide, (1-phenethyl) trimethylammonium iodide, etc. An ammonium halide having four groups selected from the group consisting of a linear or branched alkyl group having 1 to 10 carbon atoms, a lower alkanoyl group, a phenyl group and a phenyl lower alkyl group as a substituent, n-butylphosphonium, tetra-n-butylphosphonium bromide Phosphoniums having four identical or different lower alkyl groups such as tetra-n-butylphosphonium iodide, antimonium halides having four phenyl groups such as tetraphenylantimonium bromide, iodine Mention may be made of halogenated sulfoniums having 3 identical or different lower alkyl groups such as triethylsulfonium.
[0014]
Examples of the Lewis base include phosphorus compounds such as triphenylphosphine and tri-n-butylphosphine, and tertiary amines such as triethylamine.
[0015]
The reaction between the compound (2) and the compound (3) is usually performed at 0 ° C. to around room temperature, and the carbon dioxide pressure is usually normal pressure to 10 kg / cm 2 , preferably normal pressure to 7 kg / cm 2 . Is generally completed in about 1 to 10 hours. The amount of compound (2) to be used is at least equivalent, preferably equivalent to 1.5 equivalents, relative to compound (3). The amount of the Lewis acid used is usually 0.001 to 0.5 times mol, preferably 0.001 to 0.3 times mol for the compound (2). The amount of the onium salt used is usually 0.01 to 0.1 times the molar amount, preferably 0.01 to 0.07 times the molar amount relative to the compound (2), and the amount of Lewis base used. Is usually 0.01 to 0.5 times the molar amount, preferably 0.01 to 0.1 times the molar amount relative to the compound (2).
[0016]
According to the above reaction formula-1, the 13 C-containing cyclic carbonate derivative (1) can be obtained easily and with high yield and high purity without wasting expensive and precious 13 CO 2 .
[0017]
According to the present invention, the desired 13 C-containing urea can be easily produced by reacting the 13 C-containing cyclic carbonate derivative (1) obtained above with ammonia.
[0018]
In the method of the present invention, the reaction proceeds usually at 100 to 180 ° C., preferably near 100 to 150 ° C. in a suitable solvent in an autoclave, and the reaction is generally completed in about 1 to 15 hours. The amount of ammonia used is usually a large excess amount, preferably 10 to 30 times the molar amount of the compound of the general formula (1). Examples of the solvent used in this reaction include alcohols such as methanol, ethanol and isopropanol, aromatic hydrocarbons such as benzene, toluene and xylene, and halogenated hydrocarbons such as dichloromethane, chloroform and carbon tetrachloride. it can.
[0019]
In the reaction system of the present invention, Lewis acid, copper or the like may be added as a catalyst. Examples of ruyl acid include alkyltin oxides such as n-butyltin oxide, aluminum alkoxides such as aluminum isoprooxide, copper compounds such as copper acetate, and tin compounds such as stannic chloride and tin oxalate. .
[0020]
As a reaction product between compound (1) and ammonia, an intermediate in the reaction system
[Chemical 8]
[0022]
These can be derived into the final compound 13 C-containing urea without isolation.
[0023]
Even if the intermediate compound (4) or (5) is isolated and reacted with ammonia under the same conditions as in the reaction between the compound (1) and ammonia, the 13 C-containing urea can be obtained. It can be produced simply and with high yield and high purity.
[0024]
Further, as shown in the following reaction formula-2, the intermediate compound (4) or (5) may be converted into a carbamate derivative and then reacted under the same conditions as the reaction of the compound (1) with ammonia. 13 C-containing urea can be produced.
[0025]
[Chemical 9]
[0026]
[Wherein R 1 , R 2 , R 3 , R 4 and C * are the same as above. R 5 represents a lower alkyl group. ]
The reaction between compound (4) or compound (5) and compound (6) and the reaction between compound (7) and ammonia (8) are all carried out under the same conditions as in the reaction between compound (1) and ammonia. Done. 13 C-containing carbamate derivative (7) can be synthesized by various conventional methods, can be prepared according to the method of the present invention 13 C containing carbamate derivative (7) yield, high purity, and 13 C containing By reacting the carbamate derivative (7) with ammonia (8), 13 C-containing urea can be easily produced in high yield and high purity.
[0027]
【The invention's effect】
According to the present invention, 13 C-containing urea can be easily produced from the compound of the above general formula (1) with high yield, high purity and safety.
[0028]
【Example】
Hereinafter, the present invention will be further clarified with reference examples and examples.
[0029]
Reference example 1
200 ml of propylene oxide is added to 16.9 g of tetra-n-butylammonium iodide and 1.56 g of zinc chloride while performing a nitrogen stream under ice cooling. Depressurize the system. Then, 13 C-carbon dioxide is introduced at 1.5 to 4.5 kg / cm 2 . When absorption stops, it leaks, and the system is depressurized again, and then 13 C-carbon dioxide is introduced. This operation is repeated to absorb about 0.9 equivalent of 13 C-carbon dioxide with respect to propylene oxide. After completion of the reaction, the atmospheric pressure or propylene oxide unreacted was distilled off under reduced pressure, and distilled under reduced pressure, 2-13 C-4-methyl-1,3-dioxolan-2-one 240.2g (13 (91.6% yield from C-carbon dioxide, 81.5% yield from propylene oxide)) (90-93 ° C. at 4 mmHg).
[0030]
Example 1
Methanol 180ml blown ammonia 48g was dissolved 2-13 C-4-methyl-1,3-dioxolan-2-one 12.0 g, 130 ° C. in an autoclave, for 12 hours. After the reaction, the mixture is cooled and methanol and ammonia are distilled off under reduced pressure. Add 60 ml of acetone to the residue and stir at 0 ° C. for 30 minutes. The precipitated crystals are collected by filtration. After the acetone in the filtrate was distilled off under reduced pressure, propylene glycol was also distilled off under reduced pressure (bp. 80 ° C./0.5 mmHg). Add 10 ml of acetone to the residue and stir at 0 ° C. for 30 minutes. The crystals are collected by filtration. Combined with the previous crystals, recrystallized from ethanol to obtain 6.38 g of 13 C-containing urea. Yield: 89.8%
Melting point: 133-134 ° C., colorless prism shape.
[0031]
Example 2
In a sealed tube, 980 mg of methyl carbamate and 17 ml of ammonia (ammonia / methanol = 191 g / 900 ml) dissolved in methanol are added and heated at 130 ° C. for 15 hours. The reaction solution is taken out, concentrated under reduced pressure, and recrystallized from ethanol to obtain 720 mg of 13 C-containing urea. Yield: 91.5%
Melting point: 133-134 ° C., colorless prism shape.
Claims (1)
で表わされる化合物と13C−二酸化炭素とを0℃〜室温付近で反応させる第一工程、及び第一工程で得られる一般式
で表わされる環状カーボネート誘導体とアンモニアとを溶媒下100〜150℃で反応させる第二工程を備えた13C含有尿素の製造法であって、
第一工程においては、13C−二酸化炭素に対して一般式(2)の化合物を少なくとも当量使用する、
13C含有尿素の製造法。General formula
And a general formula obtained in the first step, wherein 13 C-carbon dioxide is reacted at 0 ° C. to around room temperature.
A process for producing 13 C-containing urea comprising a second step of reacting a cyclic carbonate derivative represented by formula (II) with ammonia in a solvent at 100 to 150 ° C,
In the first step, at least an equivalent amount of the compound of the general formula (2) is used with respect to 13 C-carbon dioxide.
A method for producing 13 C-containing urea.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03324599A JP4497572B2 (en) | 1999-02-10 | 1999-02-10 | Process for producing 13C-containing urea |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03324599A JP4497572B2 (en) | 1999-02-10 | 1999-02-10 | Process for producing 13C-containing urea |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000229934A JP2000229934A (en) | 2000-08-22 |
JP4497572B2 true JP4497572B2 (en) | 2010-07-07 |
Family
ID=12381107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03324599A Expired - Lifetime JP4497572B2 (en) | 1999-02-10 | 1999-02-10 | Process for producing 13C-containing urea |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4497572B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2638837C1 (en) * | 2016-07-08 | 2017-12-18 | Акционерное общество "Производственное объединение Электрохимический завод" (АО "ПО ЭХЗ") | Method of producing 13c-urea |
CN115160284A (en) * | 2022-08-10 | 2022-10-11 | 嘉兴学院 | Synthetic method of cyclic carbonate |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2873282A (en) * | 1952-04-05 | 1959-02-10 | Jefferson Chem Co Inc | Catalytic process for producing alkylene carbonates |
US2773070A (en) * | 1952-10-31 | 1956-12-04 | Jefferson Chem Co Inc | Catalytic process for producing alkylene carbonates |
JPS4827314B2 (en) * | 1971-04-05 | 1973-08-21 | ||
JP3568225B2 (en) * | 1994-01-19 | 2004-09-22 | 三井化学株式会社 | Method for producing alkylene carbonate |
ES2120903B1 (en) * | 1996-11-12 | 1999-05-16 | Isomed S L | METHOD AND KIT FOR THE DETECTION OF HELICOBACTER PYLORI. |
-
1999
- 1999-02-10 JP JP03324599A patent/JP4497572B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000229934A (en) | 2000-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI646100B (en) | Method for synthesizing rapamycin derivatives | |
EA012588B1 (en) | Improved synthesis scheme for lacosamide | |
JP2797024B2 (en) | Sulfonium compound | |
HUT73014A (en) | Process for the preparation on n-(4-hydroxyphenyl)-retinamide | |
JP4497572B2 (en) | Process for producing 13C-containing urea | |
JP4667575B2 (en) | Process for producing 1,3-dialkylimidazolium iodine salt | |
JP2764100B2 (en) | Method for producing organic phosphonium salt | |
JP3046258B2 (en) | Method for producing 1-chlorocarbonyl-4-piperidinopiperidine or hydrochloride thereof | |
JP2895959B2 (en) | Method for producing sulfonium salt | |
JPH03176435A (en) | Synthetic preparation of perfluoroalkyl- bromide | |
EP2694522B1 (en) | Industrial process for the preparation of n-alkyl-n-trialkylsilylamides | |
EP0225778B1 (en) | Improved synthesis and purification of alpha-d-propoxyphene hydrochloride | |
JP2000095730A (en) | Production of halogenated phenylmalonic ester | |
JPS6112649A (en) | Preparation of aromatic carboxylic acid ester | |
JPH11322643A (en) | Production of chloroalkyne and alkynylamine | |
JP3474009B2 (en) | Method for producing ester compound effective as electron donating compound for Ziegler-Natta catalyst | |
JP3013760B2 (en) | Method for producing 4-hydroxy-2-pyrrolidone | |
WO2003101921A1 (en) | Method of synthesizing cf3-chf-cf2-nr2 | |
JP4572433B2 (en) | Process for producing N-acetylhomopiperazines | |
KR20000009216A (en) | New manufacturing method of acechlorophenac | |
JPS6126902B2 (en) | ||
WO1992014735A1 (en) | A PROCESS FOR THE PREPARATION OF 1,3a,8-TRIMETHYL-1,2,3,3a,8,8a-HEXAHYDRO-PYRROLE[2,3-b]INDOL-5(3aS,8aR)-HEPTYLCARBAMATE | |
JPS6351148B2 (en) | ||
JPH1180104A (en) | Production of n-trialkylmethylcarbonyl-2-alkyl-3,4-difluoroaniline | |
JPH0262549B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090603 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100324 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100413 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |