JP4497014B2 - Method for manufacturing polarization separating element - Google Patents

Method for manufacturing polarization separating element Download PDF

Info

Publication number
JP4497014B2
JP4497014B2 JP2005106253A JP2005106253A JP4497014B2 JP 4497014 B2 JP4497014 B2 JP 4497014B2 JP 2005106253 A JP2005106253 A JP 2005106253A JP 2005106253 A JP2005106253 A JP 2005106253A JP 4497014 B2 JP4497014 B2 JP 4497014B2
Authority
JP
Japan
Prior art keywords
film
liquid material
group
thin film
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005106253A
Other languages
Japanese (ja)
Other versions
JP2006285017A (en
Inventor
龍一 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005106253A priority Critical patent/JP4497014B2/en
Publication of JP2006285017A publication Critical patent/JP2006285017A/en
Application granted granted Critical
Publication of JP4497014B2 publication Critical patent/JP4497014B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polarising Elements (AREA)

Description

本発明は、微細パターンの形成方法、及び該微細パターンの形成方法を用いた偏光分離素子の製造方法に関する。   The present invention relates to a method for forming a fine pattern and a method for manufacturing a polarization separation element using the method for forming a fine pattern.

室温にて被加工材表面に膜を形成後、型材により型押しし、該被加工材表面の該膜からなるパターンを形成し、これをレジストとして前記被加工材を加工する技術は、ナノインプリントリソグラフィー技術として公知である。   A technique for forming a film on the surface of the workpiece at room temperature, then embossing with a mold, forming a pattern made of the film on the surface of the workpiece, and processing the workpiece using this as a resist is nanoimprint lithography. Known in the art.

しかしこれまでは、レジスト形成材料として熱可塑性ポリマー、例えばPMMAが用いられていた。そのため、型押し時に加熱が必要であり、型押し後の冷却の際、温度変化により型押し後の転写パターンの位置精度又は線幅精度が低下するという問題があった。また、加熱−冷却という工程であるため作業性が低下したり、転写工程における型材にレジストが付着よることにより転写パターンの精度が低下するという問題があった。   However, until now, thermoplastic polymers such as PMMA have been used as resist forming materials. For this reason, heating is required at the time of die pressing, and there has been a problem that the position accuracy or line width accuracy of the transferred pattern after the die pressing is lowered due to a temperature change during cooling after the die pressing. In addition, since the process is a heating-cooling process, there are problems that workability is lowered and the accuracy of the transfer pattern is lowered due to the resist adhering to the mold material in the transfer process.

上記の問題を解決するため、〔RnSi(OH)4-n〕(但し、Rはアルキル基、nは0〜3の整数)で示されるシロキサン成分と溶媒の混合物を主成分とする溶液を用い、SOG(spin on glass)を用いてナノインプリテンィングリソグラフィーを実施することにより、高精度のパターンが得られる方法が開示されている(特許文献1)。
特開2003−100609号公報
To solve the above problems, [R n Si (OH) 4- n ] (where, R represents an alkyl radical, n is an integer of 0 to 3) as a main component a mixture of siloxane component and a solvent represented by the solution A method of obtaining a high-precision pattern by performing nano-implementing lithography using SOG (spin on glass) is disclosed (Patent Document 1).
Japanese Patent Laid-Open No. 2003-100609

しかしながら従来の技術では、型材へのSOGの付着が確認されることがあり、従来の課題を完全に解決するには至っていなかった。   However, in the conventional technology, the adhesion of SOG to the mold material may be confirmed, and the conventional problems have not been completely solved.

そこで、本発明の目的は、型材との離型性に優れた液体材料をインプリンティングリソグラフィー法に適用することにより、高精度のパターンが得られる微細パターンの形成方法、及び該微細パターンの形成方法を用いた偏光分離素子の製造方法を提供することを目的とする。   Therefore, an object of the present invention is to apply a liquid material excellent in releasability with a mold material to an imprinting lithography method, thereby forming a fine pattern, and a method for forming the fine pattern. An object of the present invention is to provide a method for manufacturing a polarization separation element using the above.

本発明者等は鋭意検討した結果、特定の官能基を付与した籠型ポリシルセスキオキサンが、複数の転写工程におけるパターン転写特性の再現性が良好で、複数回の利用に耐え得る液体材料として用いることができるとの知見を得た。   As a result of diligent study, the present inventors have found that a reed-type polysilsesquioxane having a specific functional group has a good reproducibility of pattern transfer characteristics in a plurality of transfer processes and can withstand multiple uses. The knowledge that it can be used as is obtained.

本発明はかかる知見に基づきなされたものであり、下記一般式(1)で示される籠型ポリシルセスキオキサンを含む液体材料を被加工材料表面に塗布して液体材料膜を形成する工程と、該液体材料膜を仮硬化させて仮硬化膜を形成する工程と、微細パターンが形成された型材により該仮硬化膜に該型材のパターンを転写する工程と、該被加工材料表面を完全硬化させる工程と、を備えた微細パターンの形成方法を提供するものである。   The present invention has been made on the basis of such knowledge, and a step of forming a liquid material film by applying a liquid material containing a saddle type polysilsesquioxane represented by the following general formula (1) to the surface of a work material; A step of temporarily curing the liquid material film to form a temporary cured film, a step of transferring the pattern of the mold material to the temporary cured film by a mold material on which a fine pattern is formed, and a complete curing of the surface of the work material And a step of forming a fine pattern.

Figure 0004497014
(式中、R1〜R9すべて同時に又はそれぞれ独立に、メタクリル基、エポキシ基、メチル基、フルオロアルキル基、CF3(CF2)n−R10を意味する。ここで、R10は炭素数1ないし12個の非置換または置換二価炭化水素基を意味し、nは0〜10の整数を意味する。)
Figure 0004497014
(Wherein R 1 to R 9 all simultaneously or independently represent a methacryl group, an epoxy group, a methyl group, a fluoroalkyl group, or CF 3 (CF 2 ) n—R 10 , where R 10 is carbon. (It means several 1 to 12 unsubstituted or substituted divalent hydrocarbon groups, and n means an integer of 0 to 10.)

また、本発明は、基板上に金属薄膜を形成する工程と、上記一般式(1)で示される籠型ポリシルセスキオキサンを含む液体材料を該金属薄膜表面に塗布して液体材料膜を形成する工程と、該液体材料膜を仮硬化させて仮硬化膜を形成する工程と、微細パターンが形成された型材により該仮硬化膜に該型材のパターンを転写する工程と、該被加工材料表面を完全硬化させる工程と、該金属薄膜をエッチングする工程と、を備えた偏光分離素子の製造方法を提供するものである。   The present invention also includes a step of forming a metal thin film on a substrate, and a liquid material containing a saddle-type polysilsesquioxane represented by the general formula (1) is applied to the surface of the metal thin film to form a liquid material film. A step of forming, a step of temporarily curing the liquid material film to form a temporary cured film, a step of transferring a pattern of the mold material to the temporary cured film by a mold material on which a fine pattern is formed, and the material to be processed The present invention provides a method for manufacturing a polarization separation element, comprising: a step of completely curing a surface; and a step of etching the metal thin film.

本発明は記述の通り、下記一般式(1)で示される籠型構造のポリシルセスキオキサンを含む液体材料を被加工材料表面に塗布して液体材料膜を形成する工程と、該液体材料膜を仮硬化させて仮硬化膜を形成する工程と、微細パターンが形成された型材により該仮硬化膜に該型材のパターンを転写する工程と、該被加工材料表面を完全硬化させる工程と、を備えた微細パターンの形成方法である。   As described above, the present invention includes a step of applying a liquid material containing a polysilsesquioxane having a cage structure represented by the following general formula (1) to the surface of a work material to form a liquid material film, and the liquid material A step of temporarily curing the film to form a temporary cured film, a step of transferring the pattern of the mold material to the temporary cured film with a mold material on which a fine pattern is formed, a step of completely curing the surface of the work material, Is a fine pattern forming method.

Figure 0004497014
(式中、R1〜R9すべて同時に又はそれぞれ独立に、メタクリル基、エポキシ基、メチル基、フルオロアルキル基、CF3(CF2)n−R10を意味する。ここで、R10は炭素数1ないし12個の非置換または置換二価炭化水素基を意味し、nは0〜10の整数を意味する。)
Figure 0004497014
(Wherein R 1 to R 9 all simultaneously or independently represent a methacryl group, an epoxy group, a methyl group, a fluoroalkyl group, or CF 3 (CF 2 ) n—R 10 , where R 10 is carbon. (It means several 1 to 12 unsubstituted or substituted divalent hydrocarbon groups, and n means an integer of 0 to 10.)

[籠型ポリシルセスキオキサンの合成]
上記一般式(1)で示される籠型ポリシルセスキオキサンの合成に使用されるアルコキシシランとしては、例えば、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等を挙げることができる。
[Synthesis of vertical polysilsesquioxane]
Examples of the alkoxysilane used for the synthesis of the cage polysilsesquioxane represented by the general formula (1) include 3-glycidoxypropyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyl. Examples include trimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, and the like.

ここで、アルコキシシランを適宜選択することにより、得られる籠型ポリシルセスキオキサンの特定の特性を向上させることができる。具体的には、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシランを用いた場合は、籠型ポリシルセスキオキサンの重合性が向上し、これにより、液体材料の成膜性が向上する。   Here, the specific characteristic of the cage type | mold polysilsesquioxane obtained can be improved by selecting an alkoxysilane suitably. Specifically, when 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, or 3-methacryloxypropyltrimethoxysilane is used, a cage-type polysilsesquioxy is used. The polymerizability of sun is improved, thereby improving the film formability of the liquid material.

また、3,3,3−トリフルオロプロピルトリメトキシシランを用いた場合は、籠型ポリシルセスキオキサンの離型性が向上する。これらをまとめて表1に示す。   In addition, when 3,3,3-trifluoropropyltrimethoxysilane is used, the releasability of the cage polysilsesquioxane is improved. These are summarized in Table 1.

Figure 0004497014
Figure 0004497014

次に、前述したような複数種のアルコキシシランと、水および必要に応じて、メタノール、エタノール、イソプロピルアルコール等のアルコール類、ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル類、アセトン、メチルイソブチルケトン等のケトン類、トルエンなどの炭化水素類にそれぞれ代表される希釈溶剤とを所定の割合で混合し、混合液を得る。   Next, a plurality of types of alkoxysilanes as described above, water and alcohols such as methanol, ethanol and isopropyl alcohol as necessary, ethers such as diethyl ether and tetrahydrofuran (THF), acetone, methyl isobutyl ketone, etc. A dilute solvent typified by hydrocarbons such as ketones and toluene is mixed at a predetermined ratio to obtain a mixed solution.

次に、得られた混合液に、撹拌しつつ、酸触媒、塩基触媒等の加水分解および重縮合触媒を添加する。なお、これらの触媒は、予め反応に用いる溶剤もしくは水に加えておいても良い。   Next, a hydrolysis and polycondensation catalyst such as an acid catalyst and a base catalyst is added to the obtained mixed solution while stirring. These catalysts may be added in advance to the solvent or water used for the reaction.

酸触媒(固体酸触媒を含む)としては、例えば、硫酸、硝酸、リン酸などの無機酸、有機スルホン酸(例えば、ベンゼンスルホン酸、p−トルエンスルホン酸、ナフタレンスルホン酸、メタンスルホン酸、エタンスルホン酸等)等の有機酸等が挙げられ、塩基触媒としては、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等の無機塩基、第三アミン(トリメチルアミン、トリエチルアミン、トリブチルアミン、トリエタノールアミン、ピリジン等)、水酸化テトラメチルアンモニウム、コリン等の有機塩基等が挙げられる。このうち塩基としての活性が高くかつ後処理の際に除去しやすい水酸化ナトリウム、水酸化カリウム、水酸化テトラアルキルアンモニウムが好ましい。   Examples of the acid catalyst (including a solid acid catalyst) include inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, and organic sulfonic acids (for example, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, methanesulfonic acid, ethane). Organic acids such as sulfonic acid, etc., and examples of the base catalyst include inorganic bases such as ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, tertiary amines (trimethylamine, triethylamine, tributylamine) , Triethanolamine, pyridine and the like), organic bases such as tetramethylammonium hydroxide, choline and the like. Of these, sodium hydroxide, potassium hydroxide, and tetraalkylammonium hydroxide, which have a high activity as a base and are easily removed during post-treatment, are preferred.

加水分解触媒を添加した後、撹拌しつつ、所定の温度で加温し、アルコキシシランを縮重合させる。上記所定の温度(反応温度)は、5〜140℃であるのが好ましく、特に30〜60℃であるのがより好ましい。反応温度が高すぎると、硬化反応基の反応が起こる恐れがあり、逆に低すぎると反応の進行が著しく遅くなる。また、反応時間は、1〜48時間であるのが好ましく、特に3〜18時間であるのがより好ましい。反応時間が長すぎると、硬化反応基の反応が起こる恐れがあり、逆に短すぎると反応が完結しない。なお、必要に応じて、中和、希釈溶剤の除去、乾燥等の処理を施す。   After adding the hydrolysis catalyst, the alkoxysilane is polycondensed by heating at a predetermined temperature while stirring. The predetermined temperature (reaction temperature) is preferably 5 to 140 ° C, and more preferably 30 to 60 ° C. If the reaction temperature is too high, the reaction of the curing reactive group may occur. Conversely, if the reaction temperature is too low, the progress of the reaction is remarkably slowed. The reaction time is preferably 1 to 48 hours, and more preferably 3 to 18 hours. If the reaction time is too long, the reaction of the curing reactive group may occur. Conversely, if the reaction time is too short, the reaction is not completed. If necessary, treatments such as neutralization, removal of diluted solvent, and drying are performed.

上記のような方法を用いることにより、上記一般式(1)で示される籠型構造を有するポリシルセスキオキサン(ポリシロキサン材料)を得ることができる。上記一般式(1)で示される籠型ポリシルセスキオキサンは、上述したアルコキシシランに応じて種々の機能を発揮する。   By using the method as described above, a polysilsesquioxane (polysiloxane material) having a cage structure represented by the general formula (1) can be obtained. The cage polysilsesquioxane represented by the general formula (1) exhibits various functions according to the alkoxysilane described above.

具体的には、上記一般式(1)のR1〜R9がメタクリル基、エポキシ基、メチル基等の重合性基である場合、液体材料の成膜性が向上する。上記一般式(1)のR1〜R9がフルオロアルキル基、CF3(CF2)n−R10(R10は炭素数1ないし12個の非置換または置換二価炭化水素基、nは0〜10の整数である)等の離型性基である場合、液体材料の離型性が向上する。これらをまとめて表2に示す。 Specifically, when R 1 to R 9 in the general formula (1) are polymerizable groups such as a methacryl group, an epoxy group, and a methyl group, the film formability of the liquid material is improved. In the general formula (1), R 1 to R 9 are fluoroalkyl groups, CF 3 (CF 2 ) n—R 10 (R 10 is an unsubstituted or substituted divalent hydrocarbon group having 1 to 12 carbon atoms, and n is In the case of a releasable group such as 0 to 10), the releasability of the liquid material is improved. These are summarized in Table 2.

Figure 0004497014
Figure 0004497014

上記式(1)で示す籠型ポリシルセスキオキサンを用いる際、式中のR1〜R9の官能基が一種類のものを複数混合して用いてもよく、R1〜R9の官能基が2種類以上のものを単独で用いてもよい。さらに、R1〜R9の官能基が2種類以上のものを混合して用いてもよい。 When using a cage polysilsesquioxane represented by Formula (1), the functional groups of R 1 to R 9 in the formula may be used to more mixing one kind of thing, the R 1 to R 9 Two or more types of functional groups may be used alone. Further, two or more functional groups of R 1 to R 9 may be used in combination.

[液体材料の調製]
次に、上記工程で得られたポリシロキサン材料を含む液体材料を調製する。上記工程で得られたポリシロキサン材料をそのまま液体材料として用いてもよいし、必要に応じてジエチレングリコールエチルエーテルアセテート等の溶剤等を添加してもよい。
[Preparation of liquid material]
Next, a liquid material containing the polysiloxane material obtained in the above step is prepared. The polysiloxane material obtained in the above step may be used as a liquid material as it is, or a solvent such as diethylene glycol ethyl ether acetate may be added as necessary.

また、液体材料には、必要に応じて、硬化剤(重合開始剤)を添加してもよい。これにより、後述するような塗膜の硬化を容易に行うことができる。このような硬化剤としては、例えば、ベンゾフェノン、1−ヒドロキシシクロへキシルフェニルケトン、(チオフェノキシフェニル)ジフェニルサルフォニウムヘキサフルオロホスフェート、ビス(ジフェニルサルフォニウム)ジフェニルチオエーテルヘキサフルオロホスフェイト等の光重合開始剤、アゾビスイソブチロニトリル、アゾビスメチルブチロニトリル等の熱重合開始剤等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。   Moreover, you may add a hardening | curing agent (polymerization initiator) to a liquid material as needed. Thereby, hardening of a coating film which is mentioned later can be performed easily. Examples of such a curing agent include light such as benzophenone, 1-hydroxycyclohexyl phenyl ketone, (thiophenoxyphenyl) diphenylsulfonium hexafluorophosphate, bis (diphenylsulfonium) diphenylthioether hexafluorophosphate, and the like. Examples of the polymerization initiator include thermal polymerization initiators such as azobisisobutyronitrile and azobismethylbutyronitrile, and one or more of these can be used in combination.

また、液体材料に対して、必要に応じてろ過処理を施してもよい。これにより、液体材料に含まれる不純物を取り除くことができ、均一な膜厚の配向膜を効率良く形成することができる。   Moreover, you may perform a filtration process with respect to a liquid material as needed. Thereby, impurities contained in the liquid material can be removed, and an alignment film having a uniform thickness can be efficiently formed.

[分離偏光素子の製造方法]
本実施形態では、ガラス基板表面上に100〜140nmのピッチを有するワイヤーグリッドタイプのアルミニウムの微細パターンを形成する例を説明する。微細パターンの形成方法は、液体材料に上記一般式(1)で示される籠型ポリシルセスキオキサンを含む液体材料を用いるほかは、従来公知のインプリントリソグラフィー法を適用することができる。特に、本実施形態では、上記一般式(1)で示される籠型ポリシルセスキオキサンを含む液体材料を用いるため、ナノオーダーの微細パターンを形成するナノインプリントリソグラフィーに適用することが可能である。
[Method for Manufacturing Separated Polarizing Element]
In the present embodiment, an example will be described in which a fine pattern of wire grid type aluminum having a pitch of 100 to 140 nm is formed on the surface of a glass substrate. As a method for forming a fine pattern, a conventionally known imprint lithography method can be applied except that a liquid material containing a cage polysilsesquioxane represented by the general formula (1) is used as the liquid material. In particular, in this embodiment, since the liquid material containing the cage polysilsesquioxane represented by the general formula (1) is used, it can be applied to nanoimprint lithography that forms a nano-order fine pattern.

スパッタ法等により、ガラス基板にアルミニウム薄膜を形成する。このガラス基板をスピンコーターにセットし、そのアルミニウム薄膜の表面に上述の液体材料を塗布する。そして、まず600〜800rpm、4〜6秒の条件でスピンコートを行い、引き続き1000〜1400rpm、15〜25秒の条件でスピンコートを行う。これにより、アルミニウム薄膜の表面に液体材料の膜を形成する。   An aluminum thin film is formed on the glass substrate by sputtering or the like. This glass substrate is set on a spin coater, and the above-mentioned liquid material is applied to the surface of the aluminum thin film. Then, first, spin coating is performed under conditions of 600 to 800 rpm and 4 to 6 seconds, and subsequently spin coating is performed under conditions of 1000 to 1400 rpm and 15 to 25 seconds. Thus, a liquid material film is formed on the surface of the aluminum thin film.

このガラス基板を、100〜200℃に加熱したホットプレート等の熱源にて3〜5分乾燥する。乾燥後、ガラス基板の表面にメタルハイドレートランプ等の光源にて3〜10分間光照射し、液体材料膜を仮硬化させる。   This glass substrate is dried for 3 to 5 minutes with a heat source such as a hot plate heated to 100 to 200 ° C. After drying, the surface of the glass substrate is irradiated with light with a light source such as a metal hydrate lamp for 3 to 10 minutes to temporarily cure the liquid material film.

次に、表面に所定の微細パターンが形成された型材を用い、仮硬化した膜に20〜30kgf/cm2の圧力で5〜15分間プレスを行う。 Next, using a mold having a predetermined fine pattern formed on the surface, the temporarily cured film is pressed at a pressure of 20 to 30 kgf / cm 2 for 5 to 15 minutes.

型を取り除いた後、空気雰囲気、常圧で、150〜250℃、2〜4時間加熱を行い、膜を完全硬化させることにより、100〜140nmのピッチを有するSiO2の微細パターンが形成されたガラス基板を得る。 After removing the mold, heating was performed at 150 to 250 ° C. for 2 to 4 hours in an air atmosphere and normal pressure to completely cure the film, whereby a fine pattern of SiO 2 having a pitch of 100 to 140 nm was formed. A glass substrate is obtained.

そして、ドライエッチング法等により、アルミニウム薄膜をエッチングすることにより、100〜140nmのピッチを有するワイヤーグリッドタイプの偏光板を得ることができる。   Then, a wire grid type polarizing plate having a pitch of 100 to 140 nm can be obtained by etching the aluminum thin film by a dry etching method or the like.

なお、本実施形態においては分離偏光素子として偏光板を製造した例を示したが、これに限定されず、例えば、回析光学素子、反射防止膜(モスアイ)等の製造にも適用することができる。   In the present embodiment, an example in which a polarizing plate is manufactured as a separation polarizing element has been shown. However, the present invention is not limited to this. For example, the present invention can be applied to manufacturing a diffraction optical element, an antireflection film (moth eye), and the like. it can.

(1)籠型シルセスキオキサンの合成
1L容スリ付三つ口フラスコに、1Nの水酸化ナトリウム水溶液22.5g(水として1.2mol含有)、テトラヒドロフラン600ml及び表1に示すアルコキシシランの混合物120mmolを加え、60℃で3時間撹拌した後、放冷した。その溶液に1Nの塩酸水溶液22.5mlを添加し、テトラヒドロフランを留去した。そして、トルエン50mlを添加して、溶媒相と水相を分離し、溶媒相を分取して水相を廃棄した。分取した溶媒相を蒸留水と飽和塩化ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで脱水することにより、籠型ポリシルセスキオキサンを得た。
(1) Synthesis of vertical silsesquioxane A mixture of 1N sodium hydroxide aqueous solution 22.5 g (containing 1.2 mol as water), tetrahydrofuran 600 ml and alkoxysilane shown in Table 1 in a 1 L three-necked flask equipped with a thread 120 mmol was added, and the mixture was stirred at 60 ° C. for 3 hours, and then allowed to cool. To the solution was added 22.5 ml of a 1N hydrochloric acid aqueous solution, and tetrahydrofuran was distilled off. And 50 ml of toluene was added, the solvent phase and the water phase were isolate | separated, the solvent phase was fractionated, and the water phase was discarded. The separated solvent phase was washed with distilled water and a saturated aqueous solution of sodium chloride, and dehydrated with anhydrous magnesium sulfate to obtain a cage polysilsesquioxane.

このとき、表1に示すアルコキシシランの組み合わせを適宜変更することにより、8種類の籠型ポリシルセスキオキサンを調製した。   At this time, eight types of caged polysilsesquioxanes were prepared by appropriately changing the combinations of alkoxysilanes shown in Table 1.

Figure 0004497014
Figure 0004497014

(2)コーティング液の調製
(1)で得られた1〜8の籠型ポリシルセスキオキサン1.00部に、ジエチレングリコールエチルエーテルアセテート2.00部をそれぞれ混合した。混合した溶液を、ポアサイズ0.2μmのフィルターを用いて濾過した。得られた濾過液に、光重合剤A又はBを0.01部添加し、所望のコーティング液を得た。
(2) Preparation of coating liquid 2.00 parts of diethylene glycol ethyl ether acetate was mixed with 1.00 parts of the 1-8 vertical polysilsesquioxane obtained in (1). The mixed solution was filtered using a filter having a pore size of 0.2 μm. 0.01 parts of photopolymerizer A or B was added to the obtained filtrate to obtain a desired coating solution.

なお、1〜5については、光重合開始剤Aとして、(チオフェノキシフェニル)ジフェニルスルホニウムヘキサフルオロフォスフェートと、ビス(ジフェニルスルホニウム)ジフェニルチオエーテルヘキサフルオロフォスフェートとの混合物の、50%プロピレンカーボネート溶液(Gelest社製、コードOMPH076)を添加した。一方、6〜8については、光重合開始剤Bとして、ベンゾフェノン(東京化成社製)を添加した。   In addition, about 1-5, as a photoinitiator A, a 50% propylene carbonate solution of a mixture of (thiophenoxyphenyl) diphenylsulfonium hexafluorophosphate and bis (diphenylsulfonium) diphenylthioether hexafluorophosphate ( Gelest, code OMPH076) was added. On the other hand, about 6-8, benzophenone (made by Tokyo Chemical Industry Co., Ltd.) was added as the photoinitiator B.

(3)ナノインプリンティングリソグラフィー
アルミ基板をスピンコーターにセットし、そのアルミ基板の表面に上記のコーティング液を塗布した。そして、まず700rpm、5秒の条件でスピンコートを行い、引き続き1200rpm、20秒の条件でスピンコートを行った。これにより、アルミ基板の表面にコーティング液の膜を形成した。このアルミ基板を、150℃に加熱したホットプレートにて3〜5分乾燥した。乾燥後、アルミ基板の表面にメタルハイドレートランプにて5分間光照射し、膜を仮硬化させた。次に、表面に所定の微細パターンが形成されたSiO2/Si製の型を用い、仮硬化した膜に25kgf/cm2の圧力で10分間プレスした。型を取り除いた後、空気雰囲気、常圧で、200℃、3時間加熱を行い、膜を完全硬化させ、所望のパターンが形成されたアルミ基板を得た。そして、ドライエッチング法により、アルミニウム薄膜をエッチングすることにより、100nmのピッチを有するワイヤーグリッドタイプの偏光板を得た。
(3) Nanoimprinting lithography An aluminum substrate was set on a spin coater, and the above coating solution was applied to the surface of the aluminum substrate. First, spin coating was performed under conditions of 700 rpm and 5 seconds, and subsequently, spin coating was performed under conditions of 1200 rpm and 20 seconds. As a result, a coating liquid film was formed on the surface of the aluminum substrate. This aluminum substrate was dried on a hot plate heated to 150 ° C. for 3 to 5 minutes. After drying, the surface of the aluminum substrate was irradiated with light for 5 minutes with a metal hydrate lamp to temporarily cure the film. Next, using a SiO 2 / Si mold having a predetermined fine pattern formed on the surface, the temporarily cured film was pressed at a pressure of 25 kgf / cm 2 for 10 minutes. After removing the mold, heating was performed at 200 ° C. for 3 hours in an air atmosphere and normal pressure to completely cure the film to obtain an aluminum substrate on which a desired pattern was formed. And the aluminum thin film was etched by the dry etching method, and the wire grid type polarizing plate which has a pitch of 100 nm was obtained.

本発明に係る微細パターンの形成方法に用いられる液体材料は離型性に優れているため型材に液体材料が付着することなく、その結果、欠損が少ない微細パターンを得ることができた。また、硬化に伴う寸法収縮が少ないため、型押し後の転写パターンの位置精度や線幅精度の高い高精度のパターンを得ることができた。   Since the liquid material used in the method for forming a fine pattern according to the present invention is excellent in releasability, the liquid material does not adhere to the mold material, and as a result, a fine pattern with few defects can be obtained. In addition, since there is little dimensional shrinkage accompanying curing, a highly accurate pattern with high positional accuracy and line width accuracy of the transferred pattern after embossing can be obtained.

更に、上記一般式(1)で示される籠型ポリシルセスキオキサンの官能基を変更することにより、種々の機能を付与することができる結果、適用範囲を広げることができる。   Furthermore, by changing the functional group of the cage polysilsesquioxane represented by the general formula (1), various functions can be imparted, and as a result, the application range can be expanded.

Claims (2)

基板上に金属薄膜を形成する工程と、
下記一般式(1)で示される籠型ポリシルセスキオキサンを含む液体材料を該金属薄膜表面に塗布して液体材料膜を形成する工程と、
該液体材料膜を仮硬化させて仮硬化膜を形成する工程と、
微細パターンが形成された型材により該仮硬化膜に該型材のパターンを転写する工程と、
該被加工材料表面を完全硬化させる工程と、
該金属薄膜をエッチングする工程と、
を備えた偏光分離素子の製造方法。
Figure 0004497014

(式中、R1〜R9すべて同時に又はそれぞれ独立に、メタクリル基、エポキシ基、メチル基、フルオロアルキル基、CF3(CF2)n−R10を意味する。ここで、R10は炭素数1ないし12個の非置換または置換二価炭化水素基を意味し、nは0〜10の整数を意味する。)
Forming a metal thin film on the substrate;
Applying a liquid material containing cage polysilsesquioxane represented by the following general formula (1) to the surface of the metal thin film to form a liquid material film;
Preliminarily curing the liquid material film to form a temporary cured film;
A step of transferring a pattern of the mold material to the temporarily cured film by a mold material on which a fine pattern is formed;
Fully curing the surface of the work material;
Etching the metal thin film;
A method of manufacturing a polarization separation element comprising:
Figure 0004497014

(Wherein R1 to R9 all simultaneously or independently represent a methacryl group, an epoxy group, a methyl group, a fluoroalkyl group, or CF3 (CF2) n-R10. Here, R10 has 1 to 12 carbon atoms. (It means an unsubstituted or substituted divalent hydrocarbon group, and n means an integer of 0 to 10.)
前記籠型ポリシルセスキオキサンは、その主成分が、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシランからなる群から選択される1種又は2種以上である、請求項記載の偏光分離素子の製造方法。 The main components of the cage polysilsesquioxane are 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3 , 3,3 is trifluoropropyl one or more members selected from the group consisting of trimethoxysilane, the method of manufacturing the polarization separating element according to claim 1, wherein.
JP2005106253A 2005-04-01 2005-04-01 Method for manufacturing polarization separating element Expired - Fee Related JP4497014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106253A JP4497014B2 (en) 2005-04-01 2005-04-01 Method for manufacturing polarization separating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106253A JP4497014B2 (en) 2005-04-01 2005-04-01 Method for manufacturing polarization separating element

Publications (2)

Publication Number Publication Date
JP2006285017A JP2006285017A (en) 2006-10-19
JP4497014B2 true JP4497014B2 (en) 2010-07-07

Family

ID=37407002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106253A Expired - Fee Related JP4497014B2 (en) 2005-04-01 2005-04-01 Method for manufacturing polarization separating element

Country Status (1)

Country Link
JP (1) JP4497014B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180344B (en) 2005-03-24 2012-01-11 株式会社普利司通 Compounding silica-reinforced rubber with low volatile organic compound (voc) emission
JP4679388B2 (en) * 2006-02-20 2011-04-27 パナック株式会社 Laminate having releasability and method for producing the same
JP4983262B2 (en) * 2007-01-10 2012-07-25 Jnc株式会社 Nanoimprinting composition
JP5189772B2 (en) 2007-02-09 2013-04-24 昭和電工株式会社 Fine pattern transfer material
US7915368B2 (en) * 2007-05-23 2011-03-29 Bridgestone Corporation Method for making alkoxy-modified silsesquioxanes
US8501895B2 (en) 2007-05-23 2013-08-06 Bridgestone Corporation Method for making alkoxy-modified silsesquioxanes and amino alkoxy-modified silsesquioxanes
JP2009010271A (en) * 2007-06-29 2009-01-15 Showa Denko Kk Method of forming micropattern and composition for micropattern formation
US20110129689A2 (en) * 2007-11-30 2011-06-02 Showa Denko K.K. Curable composition for transfer materials and method for forming micropattern using the curable composition
US8962746B2 (en) 2007-12-27 2015-02-24 Bridgestone Corporation Methods of making blocked-mercapto alkoxy-modified silsesquioxane compounds
US8513371B2 (en) 2007-12-31 2013-08-20 Bridgestone Corporation Amino alkoxy-modified silsesquioxanes and method of preparation
US8794282B2 (en) 2007-12-31 2014-08-05 Bridgestone Corporation Amino alkoxy-modified silsesquioxane adhesives for improved metal adhesion and metal adhesion retention to cured rubber
JP2010013513A (en) * 2008-07-02 2010-01-21 Fujifilm Corp Curable composition for nano inprint, cured product using the same, and member for liquid crystal display
JP2010155439A (en) * 2009-01-05 2010-07-15 Asahi Kasei Corp Method for manufacturing polymer sheet having irregular pattern
JP5448649B2 (en) * 2009-08-31 2014-03-19 東京応化工業株式会社 Photosensitive resin composition
US8642691B2 (en) 2009-12-28 2014-02-04 Bridgestone Corporation Amino alkoxy-modified silsesquioxane adhesives for improved metal adhesion and metal adhesion retention to cured rubber
JP5983151B2 (en) * 2011-07-29 2016-08-31 Dic株式会社 Dry etching resist material, resist film and patterned product
JP6084055B2 (en) * 2013-02-05 2017-02-22 東京応化工業株式会社 Pattern formation method by imprint
JP6772143B2 (en) 2014-12-31 2020-10-21 株式会社ブリヂストン Aminoalkoxy-modified silsesquioxane adhesive for bonding alloy steel to rubber
JP6779235B2 (en) * 2015-12-22 2020-11-04 リンテック株式会社 Curable composition, method of producing curable composition, cured product, method of using curable composition, and optical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131522A (en) * 1998-10-23 2000-05-12 Nippon Telegr & Teleph Corp <Ntt> Polarizer and its production and waveguide type optical device using the same
JP2000334881A (en) * 1999-05-28 2000-12-05 Konica Corp Cage-shaped silsesquioxane-containing film
JP2003100609A (en) * 2001-09-26 2003-04-04 Japan Science & Technology Corp Nano in-print lithography used under room temperature using sog
JP2004143449A (en) * 2002-09-30 2004-05-20 Nippon Steel Chem Co Ltd Cage-type silsesquioxan resin with functional group and method for producing the same
WO2004081085A1 (en) * 2003-03-11 2004-09-23 Chisso Petrochemial Corporation Polymer obtained with silsesquioxane derivative

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131522A (en) * 1998-10-23 2000-05-12 Nippon Telegr & Teleph Corp <Ntt> Polarizer and its production and waveguide type optical device using the same
JP2000334881A (en) * 1999-05-28 2000-12-05 Konica Corp Cage-shaped silsesquioxane-containing film
JP2003100609A (en) * 2001-09-26 2003-04-04 Japan Science & Technology Corp Nano in-print lithography used under room temperature using sog
JP2004143449A (en) * 2002-09-30 2004-05-20 Nippon Steel Chem Co Ltd Cage-type silsesquioxan resin with functional group and method for producing the same
WO2004081085A1 (en) * 2003-03-11 2004-09-23 Chisso Petrochemial Corporation Polymer obtained with silsesquioxane derivative

Also Published As

Publication number Publication date
JP2006285017A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4497014B2 (en) Method for manufacturing polarization separating element
TWI515513B (en) Resist underlayer film forming composition for nanoimprinting
CN101848915B (en) Epoxy group-containing organosiloxane compound, curable composition for transfer material, and fine pattern forming method using the composition
CN1802265B (en) Positive tone bi-layer imprint lithography method and compositions therefor
CN101918896B (en) Composition for mold sheet and method for preparing mold sheet using same
TWI676865B (en) Curable composition, photoresist material, photoresist film, laminate, pattern forming method, and molded body
JP5762245B2 (en) Composition for photo-curable nanoimprint, pattern formation method using the composition, and replica mold for nanoimprint having a cured product of the composition
WO2013060087A1 (en) Polyhedral oligomeric silsesquioxane compound containing mercapto polyfunctional group, its composition, and soft template for imprinting
JP5364207B2 (en) Inversion pattern forming method and material
CN101750895A (en) Silicon-containing (meth)acrylate light-cured stamping adhesive for ultraviolet nanometer-sized stamping and application thereof
JP2018125559A5 (en)
US20110140306A1 (en) Composition for an Etching Mask Comprising a Silicon-Containing Material
JP2010184485A (en) Mold for imprint, method for manufacturing mold for imprint, and method for reproducing mold for imprint
JP5332220B2 (en) Fine resin structure and manufacturing method thereof
JP2013545311A (en) Nanoscale photolithography
CN103279011A (en) Thiol-ene ultraviolet light curing nano imprinting material
JP2012169434A (en) Method of producing molding having fine pattern
JP6008628B2 (en) Pattern production method using photocurable nanoimprinting composition
JPWO2019172156A1 (en) Underlayer film forming composition for imprint, curable composition for imprint, kit
KR101650740B1 (en) Photopolymerizable composition for nanoimprint and method of preparing nanopatterned film using the same
KR20050114679A (en) Positive tone bi-layer imprint lithography method and compositions therefor
TW202104322A (en) Photocurable resin composition for imprinting, method for producing photocurable resin composition for imprinting, and method for producing pattern forming body
TWI389931B (en) Nano-imprint resist and nanoimprinting lithography method using the same
WO2010084918A1 (en) Application of benzocyclobutene resin to imprinting technique, and method for forming pattern using the technique
JP2006117846A (en) Resin composition for forming pattern and pattern forming process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees