WO2010084918A1 - Application of benzocyclobutene resin to imprinting technique, and method for forming pattern using the technique - Google Patents

Application of benzocyclobutene resin to imprinting technique, and method for forming pattern using the technique Download PDF

Info

Publication number
WO2010084918A1
WO2010084918A1 PCT/JP2010/050719 JP2010050719W WO2010084918A1 WO 2010084918 A1 WO2010084918 A1 WO 2010084918A1 JP 2010050719 W JP2010050719 W JP 2010050719W WO 2010084918 A1 WO2010084918 A1 WO 2010084918A1
Authority
WO
WIPO (PCT)
Prior art keywords
benzocyclobutene resin
pattern
forming
mold
imprinting
Prior art date
Application number
PCT/JP2010/050719
Other languages
French (fr)
Japanese (ja)
Inventor
和広 青葉
淳子 片山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Publication of WO2010084918A1 publication Critical patent/WO2010084918A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F30/08Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the present invention relates to a pattern forming method by thermal imprinting using a benzocyclobutene resin.
  • Nanoimprint lithography is a technique in which a mold on which a predetermined pattern is formed is pressed against a substrate on which a resin layer is formed, and the pattern of the mold is transferred to the resin layer.
  • thermoplastic resin which is a thermoplastic resin
  • thermal cycle nanoimprint Since the resin layer is deformed by pressing the mold, and then the resin layer is cooled and solidified, it is called “thermal cycle nanoimprint”.
  • thermal cycle nanoimprint has a problem of low throughput and a problem that a pattern size changes due to a temperature difference because it takes time to raise and cool the resin layer.
  • polyimide resins and acrylic resins are generally known as passivation films for organic materials used in multichip modules, liquid crystal display elements, and the like, and semiconductor elements such as LSIs.
  • semiconductor elements such as LSIs.
  • benzocyclobutene resins having good optical, electrical characteristics and process resistance has been studied in place of those resins (see Patent Document 2).
  • the benzocyclobutene resin is used by forming a resin layer on a plate made of silicon or glass and patterning the formed resin layer.
  • a patterning method for the benzocyclobutene resin layer dry etching using a plasma etching apparatus and negative photosensitive benzocyclobutene resin blended composition to which a photoreactive agent is added are etched using an etchant such as an organic solvent. Wet etching is generally used.
  • a layer of photoresist, metal, or the like is formed as a mask material on the benzocyclobutene resin layer formed on the substrate, and the mask material is exposed so that the portion where the benzocyclobutene resin layer is removed is exposed.
  • Patterning is performed, a high frequency is applied to the electrode in an etching gas atmosphere such as O 2 or CF 4 to generate plasma, and the generated plasma is reacted with benzocyclobutene resin in the mask material opening to be gasified, and the benzocyclo in the opening Generally, the butene resin is removed and patterned.
  • a negative photosensitive benzocyclobutene resin layer is formed on a substrate by containing a photosensitizer such as a bisazide compound, and the negative photosensitive benzocyclobutene resin layer is patterned.
  • a photosensitizer such as a bisazide compound
  • the exposed portion is cured by photoreaction, and the unexposed benzocyclobutene resin portion is removed with an organic solvent or the like and patterned (see Patent Document 3).
  • a method of forming a pattern by wet etching without using a photosensitive benzocyclobutene resin there is a method of forming a pattern by wet etching without using a photosensitive benzocyclobutene resin.
  • a photoresist layer is formed on a B-staged benzocyclobutene resin layer formed on a substrate, the photoresist layer is patterned, and then the benzocyclobutene is formed using the formed photoresist pattern as a mask.
  • This is a method in which a butene resin layer is wet-etched with an organic solvent, and finally a photoresist pattern that is no longer needed is removed to form a pattern (see Patent Document 4).
  • the method of forming a photoresist layer on the benzocyclobutene resin layer and performing plasma etching or wet etching has a complicated process, and when plasma etching is performed, the etching selectivity between the mask material and the benzocyclobutene resin is 1 to Since the thickness is about 1.5, it is necessary to increase the thickness of the mask material such as photoresist by about 1.5 to 2 times in consideration of the film reduction during plasma etching, which increases the exposure time and decreases the resolution of the photoresist There are disadvantages such as.
  • the benzocyclobutene resin layer is etched isotropically in the lateral direction (film surface direction) and in the vertical direction (film depth direction), so a vertical pattern with a high aspect ratio is obtained. There is a drawback that it is difficult.
  • the present invention has been made based on the above circumstances, and the problem to be solved is to provide a method for forming a pattern of a layer containing a benzocyclobutene resin using a thermal imprint lithography technique. It is to be. That is, a pattern of a layer containing a benzocyclobutene resin, which can easily form a benzocyclobutene resin pattern without using a photosensitive benzocyclobutene, a resist, a developer, or the like, and has little or no dimensional change. It is to provide a forming method.
  • R 1 independently represents an alkyl group having 1 to 6 carbon atoms, a vinyl group or a phenyl group
  • R 2 independently represents an alkyl group having 1 to 6 carbon atoms or a methoxy group.
  • R 3 each independently represents an alkyl group having 1 to 6 carbon atoms
  • k and m each independently represent 0 or 1
  • n represents an integer of 1 to 3.
  • a desired pattern can be easily formed without using a wet etching mask such as a resist and an etching solution.
  • a wet etching mask such as a resist and an etching solution.
  • the layer on which the pattern is formed by the pattern forming method according to the present invention does not use the photosensitive benzocyclobutene resin, the light transmittance is high and the transparency is excellent.
  • the cross-sectional SEM image of the mold for imprint is shown.
  • the cross-sectional SEM image of the sample used for the method of Example 11 is shown.
  • the present invention relates to divinylsiloxane-bisbenzocyclobutene represented by the above formula (1), For example, the following formula (2): Forming a layer containing a benzocyclobutene resin obtained by polymerizing divinylsiloxane-bisbenzocyclobutene represented by A step of forming a pattern on the layer containing the benzocyclobutene resin by pressing a mold against the layer containing the benzocyclobutene resin while heating and pressing, and after cooling, the benzocyclobutene resin on which the pattern is formed Having a step of releasing the containing layer from the mold,
  • the heating temperature is 150 ° C. to 350 ° C.
  • the benzocyclobutene resin is, for example, a B-staged benzocyclobutene resin.
  • the B-staging means a semi-cured state (cured intermediate state). The resin in this state softens when heated, and swells, melts, or dissolves when touched with a certain solvent.
  • the benzocyclobutene resin is in such a state, it becomes easy to form a desired pattern using the imprint apparatus.
  • the B-staged benzocyclobutene resin is a prepolymer.
  • the uncured state of the thermosetting resin is expressed as A stage
  • the final stage of the curing process of the thermosetting resin is expressed as C stage.
  • the B stage is a state that is neither the A stage nor the C stage.
  • the weight average molecular weight of the benzocyclobutene resin is usually 50,000 to 500,000, and 100,000 to 400,000.
  • the weight average molecular weight is a value obtained by using gel as a standard sample by gel permeation chromatography (GPC).
  • the layer containing the benzocyclobutene resin is formed, for example, by applying a film forming composition for imprinting containing the benzocyclobutene resin and an organic solvent capable of dissolving the benzocyclobutene resin on the substrate and evaporating the organic solvent. Is done.
  • organic solvent examples include alkyl aromatics such as toluene, xylene and mesitylene, cyclic ketones such as cyclopentanone and cyclohexanone, ethers such as diethyl ether, dipropylene glycol dimethyl ether and tetrahydrofuran (THF), butyl acetate, 1 -Methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO).
  • a known coating method such as a spin coating method, a dip method, or a spray method can be employed for coating on the substrate.
  • the pressurization is performed under conditions of, for example, 1 MPa to 10 MPa.
  • the heating temperature if it exceeds 350 ° C., the benzocyclobutene resin is decomposed, so it is necessary to heat at 350 ° C. or less.
  • a temperature lower than 150 ° C. for example, 120 ° C.
  • the cooling after the step of forming the pattern does not necessarily have to be lowered to room temperature. This is because the mold release may be performed at a temperature higher than room temperature. In this specification, 23 ° C. is regarded as room temperature.
  • the mold is a “mold” made of a material such as quartz, silicon, silicon carbide (SiC), nickel, tantalum or the like having an uneven pattern formed on the surface.
  • a mold which has been surface-treated by applying a commercially available release agent (for example, OPTOOL (registered trademark) HD) or a thin film formed on the surface can be used. By performing such treatment on the mold in advance, the benzocyclobutene resin can be easily released from the mold.
  • the step of releasing from the mold may further include a step of heating the substrate at a temperature of 250 ° C. to 350 ° C., if necessary.
  • a heating step curing (crosslinking) of the benzocyclobutene resin proceeds and a three-dimensional polymer is formed. Since the benzocyclobutene resin is decomposed at a temperature exceeding 350 ° C., it is necessary to heat at 350 ° C. or less.
  • Example 5 to Example 7 4 ml of benzocyclobutene resin solution (manufactured by The Dow Chemical Company, trade name: CYCLOTENE [registered trademark] 3022-63) was applied onto a 4-inch silicon substrate at 1500 rpm for 30 seconds using a spin coater, and hot Bake on plate for 90 seconds at 90 ° C. Thereafter, the 4-inch silicon substrate was cut into chips of about 3 cm square size, and samples used in Examples 5 to 7 were obtained. A benzocyclobutene resin layer is formed on the obtained sample (chip).
  • Example 8 to Example 11 A resin solution obtained by diluting 4 ml of a benzocyclobutene resin solution (manufactured by The Dow Chemical Company, trade name: CYCLOTENE [registered trademark] 3022-35) 10 times with mesitylene (1,3,5-trimethylbenzene) This resin solution was applied onto a 4-inch silicon substrate using a spin coater at 3000 rpm for 30 seconds, and baked on a hot plate at 90 ° C. for 90 seconds. Thereafter, the 4-inch silicon substrate was cut into chips of about 3 cm square size, and samples used in Examples 8 to 11 were obtained. A benzocyclobutene resin layer is formed on the obtained sample (chip).
  • CYCLOTENE registered trademark
  • Example 12 and Example 13 4 ml of benzocyclobutene resin solution (manufactured by The Dow Chemical Company, trade name: CYCLOTENE [registered trademark] 3022-35) was applied onto a 4-inch silicon substrate at 2000 rpm for 30 seconds using a spin coater, and hot Bake on plate for 90 seconds at 90 ° C. Thereafter, the 4-inch silicon substrate was cut into chips of about 3 cm square size, and samples used in Examples 12 and 13 were obtained. A benzocyclobutene resin layer is formed on the obtained sample (chip).
  • benzocyclobutene resin solution manufactured by The Dow Chemical Company, trade name: CYCLOTENE [registered trademark] 3022-35
  • a pattern was formed on the benzocyclobutene resin layer using an imprint apparatus (LTNIP-5000, manufactured by RISOTEC JAPAN CO., LTD.). That is, the prepared sample (chip) is placed in an imprint apparatus, a pattern is formed by pressing the mold against the benzocyclobutene resin layer under predetermined heating and pressing conditions (described in Table 1), and after cooling Then, the sample (chip) was taken out from the imprint apparatus, and the pattern-formed benzocyclobutene resin layer was released from the mold at about room temperature, and the results of Comparative Example 1 and Examples 1 to 4 were obtained. .
  • the mold used was made of quartz and surface-treated with a release agent (OPTOOL (registered trademark) HD) in advance.
  • a pattern was formed on the benzocyclobutene resin layer by the same method as described above using an imprint apparatus (NM-0801HB, manufactured by Meisho Kiko Co., Ltd.). That is, the prepared sample (chip) is placed in an imprint apparatus, and a pattern is formed by pressing the mold against the benzocyclobutene resin layer under predetermined heating and pressing conditions (described in Table 2). Then, the sample (chip) was taken out from the imprint apparatus, and the benzocyclobutene resin layer on which the pattern was formed was released from the mold at about room temperature, and the results of Examples 5 to 13 were obtained.
  • the mold used was made of silicon and surface-treated with a release agent (OPTOOL (registered trademark) HD) in advance.
  • FIG. 1 shows a cross-sectional SEM image of the mold (silicon mold) used to obtain the results of Examples 5 to 13
  • FIG. 2 shows a cross-sectional SEM image of the sample of Example 11 on which the pattern was formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Disclosed is a method for forming a pattern of a benzocyclobutene resin by using a thermal imprint lithography technique. Specifically disclosed is a method for forming a pattern by imprinting, which comprises: a step wherein a layer containing a benzocyclobutene resin that is obtained by polymerizing divinylsiloxane-bisbenzocyclobutene is formed on a substrate; a step wherein a mold is pressed against the layer containing a benzocyclobutene resin while being heated and pressurized, so that a pattern is formed in the layer containing a benzocyclobutene resin; and a step wherein the layer containing a benzocyclobutene resin is released from the mold after being cooled, said layer having been provided with the pattern. In the method for forming a pattern by imprinting, the heating temperature is within the range of 150-350°C.

Description

ベンゾシクロブテン樹脂のインプリント技術への適用及び当該技術によるパターン形成方法Application of benzocyclobutene resin to imprint technology and pattern formation method using the technology
 本発明は、ベンゾシクロブテン樹脂を用いた、熱インプリントによるパターン形成方法に関する。 The present invention relates to a pattern forming method by thermal imprinting using a benzocyclobutene resin.
 近年、半導体デバイスの微細化に伴い、様々なリソグラフィー方式が提案され、開発が進められている。特に50nm以下のリソグラフィー技術に関しては、波長193nmのArFエキシマレーザーに液浸技術を組み合わせた液浸ArFエキシマレーザー方式、波長13.5nmの極端紫外線(EUV)露光方式、及びビーム径が5nm以下の電子線(EB)露光方式の研究が進められている。しかしながら、光源波長の短波長化は、高額な新たな露光装置が必要となってしまい、さらに微細加工の有力な技術と考えられているEB露光方式は、スループットが小さく、ナノデバイスの量産は困難である。 In recent years, with the miniaturization of semiconductor devices, various lithography methods have been proposed and developed. In particular, for lithography technology of 50 nm or less, an immersion ArF excimer laser method combining an immersion technology with an ArF excimer laser with a wavelength of 193 nm, an extreme ultraviolet (EUV) exposure method with a wavelength of 13.5 nm, and an electron with a beam diameter of 5 nm or less. Research on the line (EB) exposure method is underway. However, shortening the wavelength of the light source requires an expensive new exposure apparatus, and the EB exposure method, which is considered to be a promising technology for fine processing, has a low throughput and is difficult to mass-produce nanodevices. It is.
 ここで、Chouらにより、微細パターンの形成方法として、ナノインプリントリソグラフィが提案された(特許文献1参照)。ナノインプリントリソグラフィとは、所定のパターンが形成されたモールドを、樹脂層が表面に形成された基板に対して押しつけ、モールドのパターンを樹脂層に転写する技術である。 Here, Chou et al. Proposed nanoimprint lithography as a method for forming a fine pattern (see Patent Document 1). Nanoimprint lithography is a technique in which a mold on which a predetermined pattern is formed is pressed against a substrate on which a resin layer is formed, and the pattern of the mold is transferred to the resin layer.
 Chouらによって最初に提案されたナノインプリントリソグラフィは、樹脂層に熱可塑性樹脂であるポリメタクリル酸メチル(PMMA)が用いられ、樹脂層を変形させる前に加熱して樹脂を軟化させる。そして、モールドを押しつけて樹脂層を変形させ、その後、樹脂層を冷却して固化させる工程を経ることから、「熱サイクルナノインプリント」と呼ばれている。しかしながら、「熱サイクルナノインプリント」には、樹脂層の昇温、冷却に時間を要するため、スループットが低いという問題や、温度差によりパターン寸法が変化するという問題があった。 In the nanoimprint lithography first proposed by Chou et al., Polymethyl methacrylate (PMMA), which is a thermoplastic resin, is used for the resin layer, and the resin is softened by heating before deforming the resin layer. Since the resin layer is deformed by pressing the mold, and then the resin layer is cooled and solidified, it is called “thermal cycle nanoimprint”. However, “thermal cycle nanoimprint” has a problem of low throughput and a problem that a pattern size changes due to a temperature difference because it takes time to raise and cool the resin layer.
 ところで、マルチチップモジュール、液晶表示素子等に用いられる有機材料、及びLSI等半導体素子のパッシベーション膜として、一般的に、ポリイミド系樹脂及びアクリル系樹脂が知られている。近年、それらの樹脂に代わり、光学的、電気的特性及び耐プロセス性の良いベンゾシクロブテン樹脂の使用が研究されてきた(特許文献2参照)。 Incidentally, polyimide resins and acrylic resins are generally known as passivation films for organic materials used in multichip modules, liquid crystal display elements, and the like, and semiconductor elements such as LSIs. In recent years, the use of benzocyclobutene resins having good optical, electrical characteristics and process resistance has been studied in place of those resins (see Patent Document 2).
 前述のような用途では、ベンゾシクロブテン樹脂は、シリコンやガラス等の板上にその樹脂層を形成し、形成された樹脂層をパターニングして使用されている。ベンゾシクロブテン樹脂層のパターニングの方法としては、プラズマエッチング装置を用いるドライエッチングと、光反応剤を添加したネガ型感光性ベンゾシクロブテン樹脂配合組成物に、有機溶剤等のエッチング剤を用いてエッチングするウエットエッチングが一般的である。 In the applications as described above, the benzocyclobutene resin is used by forming a resin layer on a plate made of silicon or glass and patterning the formed resin layer. As a patterning method for the benzocyclobutene resin layer, dry etching using a plasma etching apparatus and negative photosensitive benzocyclobutene resin blended composition to which a photoreactive agent is added are etched using an etchant such as an organic solvent. Wet etching is generally used.
 ドライエッチングの場合、基板上に形成されたベンゾシクロブテン樹脂層上にマスク材としてフォトレジストや金属等の層を形成し、ベンゾシクロブテン樹脂層を除去する箇所が露出するようにそのマスク材をパターニングし、O2、CF4等のエッチングガス雰囲気下で電極に高周波を印加しプラズマを発生させ、発生したプラズマをマスク材開口部のベンゾシクロブテン樹脂と反応させガス化し、開口部のベンゾシクロブテン樹脂を除去しパターニングするのが一般的であった。 In the case of dry etching, a layer of photoresist, metal, or the like is formed as a mask material on the benzocyclobutene resin layer formed on the substrate, and the mask material is exposed so that the portion where the benzocyclobutene resin layer is removed is exposed. Patterning is performed, a high frequency is applied to the electrode in an etching gas atmosphere such as O 2 or CF 4 to generate plasma, and the generated plasma is reacted with benzocyclobutene resin in the mask material opening to be gasified, and the benzocyclo in the opening Generally, the butene resin is removed and patterned.
 一方、従来のウエットエッチングでは、ビスアジド化合物等の感光剤を含有させて、ネガ型の感光性にしたベンゾシクロブテン樹脂層を基板上に形成し、そのネガ型感光性ベンゾシクロブテン樹脂層をパターンが形成できるように露光し、露光部分を光反応により硬化させ、未露光のベンゾシクロブテン樹脂部分を有機溶剤等により除去しパターニングするのが一般的であった(特許文献3参照)。 On the other hand, in conventional wet etching, a negative photosensitive benzocyclobutene resin layer is formed on a substrate by containing a photosensitizer such as a bisazide compound, and the negative photosensitive benzocyclobutene resin layer is patterned. In general, the exposed portion is cured by photoreaction, and the unexposed benzocyclobutene resin portion is removed with an organic solvent or the like and patterned (see Patent Document 3).
 さらには、感光性ベンゾシクロブテン樹脂を用いずに、ウエットエッチングによりパターンを形成する方法もある。該方法は、基板上に形成されたB-ステージ化したベンゾシクロブテン樹脂層上にフォトレジスト層を形成し、このフォトレジスト層をパターニング後、形成されたフォトレジストパターンをマスクとして、そのベンゾシクロブテン樹脂層を有機溶剤によるウエットエッチング処理し、最後に不要になったフォトレジストパターンを除去してパターン形成を行う方法である(特許文献4参照)。 Furthermore, there is a method of forming a pattern by wet etching without using a photosensitive benzocyclobutene resin. In this method, a photoresist layer is formed on a B-staged benzocyclobutene resin layer formed on a substrate, the photoresist layer is patterned, and then the benzocyclobutene is formed using the formed photoresist pattern as a mask. This is a method in which a butene resin layer is wet-etched with an organic solvent, and finally a photoresist pattern that is no longer needed is removed to form a pattern (see Patent Document 4).
 しかしながら、ベンゾシクロブテン樹脂層にフォトレジスト層を形成してプラズマエッチング又はウエットエッチングする方法は工程が煩雑であり、プラズマエッチングを行う場合は、マスク材とベンゾシクロブテン樹脂のエッチング選択比が1~1.5程度のため、プラズマエッチング時の膜減りを考慮し、フォトレジスト等のマスク材の厚みを1.5~2倍程度にする必要があり、露光時間の増加やフォトレジストの解像度の低下などの欠点が存在する。ウエットエッチングを行う場合は、ベンゾシクロブテン樹脂層を横方向(膜面方向)および縦方向(膜の深さ方向)に等方性にエッチングするため、アスペクト比の高い、垂直なパターンは得られ難いという欠点がある。 However, the method of forming a photoresist layer on the benzocyclobutene resin layer and performing plasma etching or wet etching has a complicated process, and when plasma etching is performed, the etching selectivity between the mask material and the benzocyclobutene resin is 1 to Since the thickness is about 1.5, it is necessary to increase the thickness of the mask material such as photoresist by about 1.5 to 2 times in consideration of the film reduction during plasma etching, which increases the exposure time and decreases the resolution of the photoresist There are disadvantages such as. When wet etching is performed, the benzocyclobutene resin layer is etched isotropically in the lateral direction (film surface direction) and in the vertical direction (film depth direction), so a vertical pattern with a high aspect ratio is obtained. There is a drawback that it is difficult.
 一方、感光性ベンゾシクロブテン樹脂を用いたウエットエッチング方法では、感光性の光反応剤を添加したベンゾシクロブテン樹脂を使用するため、このベンゾシクロブテン樹脂は紫外線領域から可視領域にかけての光吸収を持ち、ゆえに着色することが多い。このような材料では、例えば液晶表示素子に使用する場合、バックライト光の透過を妨げ、光利用効率の低下をもたらす等の問題があった。 On the other hand, in the wet etching method using a photosensitive benzocyclobutene resin, a benzocyclobutene resin to which a photosensitive photoreactant is added is used. Therefore, this benzocyclobutene resin absorbs light from the ultraviolet region to the visible region. It is often held and therefore colored. In such a material, for example, when used for a liquid crystal display element, there is a problem that transmission of backlight light is prevented and light utilization efficiency is lowered.
米国特許第5772905号明細書US Pat. No. 5,772,905 特公平05-073756号公報Japanese Patent Publication No. 05-073756 特表平11-503248号公報Japanese National Patent Publication No. 11-503248 特開平11-016883号公報JP-A-11-016883
 そこで、本発明は、上記の事情に基づいてなされたものであり、その解決しようとする課題は、熱インプリントリソグラフィ技術を用いて、ベンゾシクロブテン樹脂を含む層のパターンを形成する方法を提供することである。すなわち、感光性ベンゾシクロブテン、レジスト、及び現像液等を用いずに容易にベンゾシクロブテン樹脂のパターンを形成することができ、かつ寸法変化のない又は小さい、ベンゾシクロブテン樹脂を含む層のパターン形成方法を提供することである。 Therefore, the present invention has been made based on the above circumstances, and the problem to be solved is to provide a method for forming a pattern of a layer containing a benzocyclobutene resin using a thermal imprint lithography technique. It is to be. That is, a pattern of a layer containing a benzocyclobutene resin, which can easily form a benzocyclobutene resin pattern without using a photosensitive benzocyclobutene, a resist, a developer, or the like, and has little or no dimensional change. It is to provide a forming method.
 本発明者らは鋭意研究した結果、ベンゾシクロブテン樹脂を含む層を、特定の加熱温度のもと、モールドを用いて加圧することにより上記の課題が達成できることを見いだし、本発明に至った。 As a result of diligent research, the present inventors have found that the above-described problems can be achieved by pressurizing a layer containing a benzocyclobutene resin using a mold at a specific heating temperature, and the present invention has been achieved.
 すなわち本発明は、
 下記式(1):
Figure JPOXMLDOC01-appb-C000003
(式中、R1は互いに独立して炭素原子数1乃至6のアルキル基、ビニル基又はフェニル基を表し、R2は互いに独立して炭素原子数1乃至6のアルキル基又はメトキシ基を表し、R3は互いに独立して炭素原子数1乃至6のアルキル基を表し、k及びmは互いに独立して0又は1を表し、nは1乃至3の整数を表す。)
で表されるジビニルシロキサン-ビスベンゾシクロブテンを重合して得られるベンゾシクロブテン樹脂を含む層を基板上に形成する工程、
 前記ベンゾシクロブテン樹脂を含む層に、加熱及び加圧しながらモールドを押しつけて、該ベンゾシクロブテン樹脂を含む層にパターンを形成する工程、及び
 冷却後に、前記パターンが形成されたベンゾシクロブテン樹脂を含む層を前記モールドから離型する工程を有し、
 前記加熱の温度が150℃乃至350℃である、インプリントによるパターン形成方法である。
That is, the present invention
Following formula (1):
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 independently represents an alkyl group having 1 to 6 carbon atoms, a vinyl group or a phenyl group, and R 2 independently represents an alkyl group having 1 to 6 carbon atoms or a methoxy group. , R 3 each independently represents an alkyl group having 1 to 6 carbon atoms, k and m each independently represent 0 or 1, and n represents an integer of 1 to 3.)
Forming a layer containing a benzocyclobutene resin obtained by polymerizing divinylsiloxane-bisbenzocyclobutene represented by
A step of forming a pattern on the layer containing the benzocyclobutene resin by pressing a mold against the layer containing the benzocyclobutene resin while heating and pressing, and after cooling, the benzocyclobutene resin on which the pattern is formed Having a step of releasing the containing layer from the mold,
In the pattern forming method by imprinting, the heating temperature is 150 ° C. to 350 ° C.
 本発明により、レジスト等のウエットエッチング用マスク及びエッチング液を用いず、簡便に、所望のパターンを形成することが可能となる。また本発明のインプリントによるパターン形成方法によりパターンを形成された層は、感光性ベンゾシクロブテン樹脂を用いていないので、光透過度が高く、透明性に優れる。 According to the present invention, a desired pattern can be easily formed without using a wet etching mask such as a resist and an etching solution. In addition, since the layer on which the pattern is formed by the pattern forming method according to the present invention does not use the photosensitive benzocyclobutene resin, the light transmittance is high and the transparency is excellent.
インプリント用モールドの断面SEM像を示す。The cross-sectional SEM image of the mold for imprint is shown. 実施例11の方法に用いたサンプルの断面SEM像を示す。The cross-sectional SEM image of the sample used for the method of Example 11 is shown.
 本発明は、前記式(1)で表されるジビニルシロキサン-ビスベンゾシクロブテンとして、
 例えば下記式(2):
Figure JPOXMLDOC01-appb-C000004
で表されるジビニルシロキサン-ビスベンゾシクロブテンを重合して得られるベンゾシクロブテン樹脂を含む層を基板上に形成する工程、
 前記ベンゾシクロブテン樹脂を含む層に、加熱及び加圧しながらモールドを押しつけて、該ベンゾシクロブテン樹脂を含む層にパターンを形成する工程、及び
 冷却後に、前記パターンが形成されたベンゾシクロブテン樹脂を含む層を前記モールドから離型する工程を有し、
 前記加熱の温度が150℃乃至350℃である、インプリントによるパターン形成方法である。
 以下、本発明について詳細に説明する。
The present invention relates to divinylsiloxane-bisbenzocyclobutene represented by the above formula (1),
For example, the following formula (2):
Figure JPOXMLDOC01-appb-C000004
Forming a layer containing a benzocyclobutene resin obtained by polymerizing divinylsiloxane-bisbenzocyclobutene represented by
A step of forming a pattern on the layer containing the benzocyclobutene resin by pressing a mold against the layer containing the benzocyclobutene resin while heating and pressing, and after cooling, the benzocyclobutene resin on which the pattern is formed Having a step of releasing the containing layer from the mold,
In the pattern forming method by imprinting, the heating temperature is 150 ° C. to 350 ° C.
Hereinafter, the present invention will be described in detail.
 前記ベンゾシクロブテン樹脂は、例えばBステージ化ベンゾシクロブテン樹脂である。ここで、Bステージ化とは、半硬化状態(硬化中間状態)にすることを意味する。この状態の樹脂は、加熱すると軟化し、ある種の溶剤に触れると膨潤もしくは溶融又は溶解する状態にある。ベンゾシクロブテン樹脂がこのような状態にあることにより、インプリント装置を用いて所望のパターンを形成することが容易になる。また、Bステージ化ベンゾシクロブテン樹脂は、プレポリマーであると換言することもできる。
 参考までに、熱硬化性樹脂の未硬化状態はAステージと表現され、熱硬化性樹脂の硬化工程の最終段階はCステージと表現される。Bステージとは、AステージでもCステージでもない状態である。
The benzocyclobutene resin is, for example, a B-staged benzocyclobutene resin. Here, the B-staging means a semi-cured state (cured intermediate state). The resin in this state softens when heated, and swells, melts, or dissolves when touched with a certain solvent. When the benzocyclobutene resin is in such a state, it becomes easy to form a desired pattern using the imprint apparatus. It can also be said that the B-staged benzocyclobutene resin is a prepolymer.
For reference, the uncured state of the thermosetting resin is expressed as A stage, and the final stage of the curing process of the thermosetting resin is expressed as C stage. The B stage is a state that is neither the A stage nor the C stage.
 前記ベンゾシクロブテン樹脂の重量平均分子量は通常、50,000~500,000、また100,000~400,000である。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準試料としてポリスチレンを用いて得られる値である。 The weight average molecular weight of the benzocyclobutene resin is usually 50,000 to 500,000, and 100,000 to 400,000. The weight average molecular weight is a value obtained by using gel as a standard sample by gel permeation chromatography (GPC).
 前記ベンゾシクロブテン樹脂を含む層は、例えば該ベンゾシクロブテン樹脂及びそれを溶解可能な有機溶剤を含むインプリント用膜形成組成物を前記基板上に塗布し、前記有機溶剤を蒸発させることにより形成される。その有機溶剤として、例えばトルエン、キシレン、メシチレン等のアルキル芳香族類、シクロペンタノン、シクロヘキサノン等の環状ケトン類、ジエチルエーテル、ジプロピレングリコールジメチルエーテル、テトラヒドロフラン(THF)等のエーテル類、酢酸ブチル、1-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)が挙げられる。また、前記基板上への塗布は、スピンコート法、ディップ法、スプレー法等の公知の塗布法を採用することができる。 The layer containing the benzocyclobutene resin is formed, for example, by applying a film forming composition for imprinting containing the benzocyclobutene resin and an organic solvent capable of dissolving the benzocyclobutene resin on the substrate and evaporating the organic solvent. Is done. Examples of the organic solvent include alkyl aromatics such as toluene, xylene and mesitylene, cyclic ketones such as cyclopentanone and cyclohexanone, ethers such as diethyl ether, dipropylene glycol dimethyl ether and tetrahydrofuran (THF), butyl acetate, 1 -Methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO). In addition, a known coating method such as a spin coating method, a dip method, or a spray method can be employed for coating on the substrate.
 本発明において、前記加圧は、例えば1MPa乃至10MPaの条件で行われる。前記加熱の温度については、350℃を超えるとベンゾシクロブテン樹脂が分解するため、350℃以下で加熱する必要がある。逆に150℃より低い温度(例えば120℃)では、ベンゾシクロブテン樹脂を含む層に所望のパターンを形成することができない又は困難である。前記パターンを形成する工程後の冷却は、必ずしも室温まで降温させる必要はない。離型は、室温より高い温度で行ってもよいからである。本明細書では23℃を室温とみなす。 In the present invention, the pressurization is performed under conditions of, for example, 1 MPa to 10 MPa. Regarding the heating temperature, if it exceeds 350 ° C., the benzocyclobutene resin is decomposed, so it is necessary to heat at 350 ° C. or less. Conversely, at a temperature lower than 150 ° C. (for example, 120 ° C.), it is difficult or difficult to form a desired pattern in the layer containing the benzocyclobutene resin. The cooling after the step of forming the pattern does not necessarily have to be lowered to room temperature. This is because the mold release may be performed at a temperature higher than room temperature. In this specification, 23 ° C. is regarded as room temperature.
 本発明において、前記モールドとは、表面に凹凸のパターンが形成された、石英、シリコン、シリコンカーバイド(SiC)、ニッケル、タンタル等の材料からなる“型”である。本発明では、市販の離型剤(例えば、オプツール〔登録商標〕HD)を塗布することにより表面処理された又は表面に薄膜が形成されたモールドを用いることができる。このような処理を事前にモールドに対して行うことにより、ベンゾシクロブテン樹脂をモールドから離型しやすくなる。 In the present invention, the mold is a “mold” made of a material such as quartz, silicon, silicon carbide (SiC), nickel, tantalum or the like having an uneven pattern formed on the surface. In the present invention, a mold which has been surface-treated by applying a commercially available release agent (for example, OPTOOL (registered trademark) HD) or a thin film formed on the surface can be used. By performing such treatment on the mold in advance, the benzocyclobutene resin can be easily released from the mold.
 また本発明では、前記モールドから離型する工程の後、必要に応じて、前記基板を250℃乃至350℃の温度で加熱する工程を更に有することができる。この加熱工程により、ベンゾシクロブテン樹脂の硬化(架橋)が進行し、三次元ポリマー化する。350℃を超える温度ではベンゾシクロブテン樹脂が分解するため、350℃以下で加熱する必要がある。 In the present invention, after the step of releasing from the mold, it may further include a step of heating the substrate at a temperature of 250 ° C. to 350 ° C., if necessary. By this heating step, curing (crosslinking) of the benzocyclobutene resin proceeds and a three-dimensional polymer is formed. Since the benzocyclobutene resin is decomposed at a temperature exceeding 350 ° C., it is necessary to heat at 350 ° C. or less.
  以下に実施例を挙げて本発明を説明するが、本発明はこれらの例に限定されるものではない。
<比較例1及び実施例1乃至実施例4>
 ベンゾシクロブテン樹脂溶液(ザ・ダウ・ケミカル・カンパニー製、商品名:CYCLOTENE〔登録商標〕3022-35)4mlを、4インチシリコン基板上にスピンコーターを用いて2500rpmにて30秒間塗布し、ホットプレート上で90℃にて90秒間ベークした。その後、4インチシリコン基板を、約3cm角サイズのチップに切断し、比較例1及び実施例1乃至実施例4で使用するサンプルを得た。得られたサンプル(チップ)には、ベンゾシクロブテン樹脂層が形成されている。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
<Comparative Example 1 and Examples 1 to 4>
4 ml of a benzocyclobutene resin solution (manufactured by The Dow Chemical Company, trade name: CYCLOTENE [registered trademark] 3022-35) was applied onto a 4-inch silicon substrate at 2500 rpm for 30 seconds using a spin coater, and hot Bake on plate for 90 seconds at 90 ° C. Thereafter, the 4-inch silicon substrate was cut into chips of about 3 cm square size, and samples used in Comparative Example 1 and Examples 1 to 4 were obtained. A benzocyclobutene resin layer is formed on the obtained sample (chip).
<実施例5乃至実施例7>
 ベンゾシクロブテン樹脂溶液(ザ・ダウ・ケミカル・カンパニー製、商品名:CYCLOTENE〔登録商標〕3022-63)4mlを、4インチシリコン基板上にスピンコーターを用いて1500rpmにて30秒間塗布し、ホットプレート上で90℃にて90秒間ベークした。その後、4インチシリコン基板を、約3cm角サイズのチップに切断し、実施例5乃至実施例7で使用するサンプルを得た。得られたサンプル(チップ)には、ベンゾシクロブテン樹脂層が形成されている。
<Example 5 to Example 7>
4 ml of benzocyclobutene resin solution (manufactured by The Dow Chemical Company, trade name: CYCLOTENE [registered trademark] 3022-63) was applied onto a 4-inch silicon substrate at 1500 rpm for 30 seconds using a spin coater, and hot Bake on plate for 90 seconds at 90 ° C. Thereafter, the 4-inch silicon substrate was cut into chips of about 3 cm square size, and samples used in Examples 5 to 7 were obtained. A benzocyclobutene resin layer is formed on the obtained sample (chip).
<実施例8乃至実施例11>
 ベンゾシクロブテン樹脂溶液(ザ・ダウ・ケミカル・カンパニー製、商品名:CYCLOTENE〔登録商標〕3022-35)4mlをメシチレン(1,3,5-トリメチルベンゼン)にて10倍に希釈した樹脂溶液を調製し、この樹脂溶液を4インチシリコン基板上にスピンコーターを用いて3000rpmにて30秒間塗布し、ホットプレート上で90℃にて90秒間ベークした。その後、4インチシリコン基板を、約3cm角サイズのチップに切断し、実施例8乃至実施例11で使用するサンプルを得た。得られたサンプル(チップ)には、ベンゾシクロブテン樹脂層が形成されている。
<Example 8 to Example 11>
A resin solution obtained by diluting 4 ml of a benzocyclobutene resin solution (manufactured by The Dow Chemical Company, trade name: CYCLOTENE [registered trademark] 3022-35) 10 times with mesitylene (1,3,5-trimethylbenzene) This resin solution was applied onto a 4-inch silicon substrate using a spin coater at 3000 rpm for 30 seconds, and baked on a hot plate at 90 ° C. for 90 seconds. Thereafter, the 4-inch silicon substrate was cut into chips of about 3 cm square size, and samples used in Examples 8 to 11 were obtained. A benzocyclobutene resin layer is formed on the obtained sample (chip).
<実施例12及び実施例13>
 ベンゾシクロブテン樹脂溶液(ザ・ダウ・ケミカル・カンパニー製、商品名:CYCLOTENE〔登録商標〕3022-35)4mlを、4インチシリコン基板上にスピンコーターを用いて2000rpmにて30秒間塗布し、ホットプレート上で90℃にて90秒間ベークした。その後、4インチシリコン基板を、約3cm角サイズのチップに切断し、実施例12及び実施例13で使用するサンプルを得た。得られたサンプル(チップ)には、ベンゾシクロブテン樹脂層が形成されている。
<Example 12 and Example 13>
4 ml of benzocyclobutene resin solution (manufactured by The Dow Chemical Company, trade name: CYCLOTENE [registered trademark] 3022-35) was applied onto a 4-inch silicon substrate at 2000 rpm for 30 seconds using a spin coater, and hot Bake on plate for 90 seconds at 90 ° C. Thereafter, the 4-inch silicon substrate was cut into chips of about 3 cm square size, and samples used in Examples 12 and 13 were obtained. A benzocyclobutene resin layer is formed on the obtained sample (chip).
[パターン形成]
 インプリント装置(リソテックジャパン株式会社製、LTNIP-5000)を用いて、ベンゾシクロブテン樹脂層にパターンを形成した。すなわち、インプリント装置に、用意した上記サンプル(チップ)を配置し、所定の加温、加圧条件(表1に記載)でモールドをベンゾシクロブテン樹脂層に押しつけてパターンを形成し、冷却後、インプリント装置からそのサンプル(チップ)を取り出し、パターンが形成されたベンゾシクロブテン樹脂層を略室温にてモールドから離型し、比較例1及び実施例1乃至実施例4の結果を得た。使用したモールドは、石英製で、事前に離型剤(オプツール〔登録商標〕HD)で表面処理を行ったものである。
[Pattern formation]
A pattern was formed on the benzocyclobutene resin layer using an imprint apparatus (LTNIP-5000, manufactured by RISOTEC JAPAN CO., LTD.). That is, the prepared sample (chip) is placed in an imprint apparatus, a pattern is formed by pressing the mold against the benzocyclobutene resin layer under predetermined heating and pressing conditions (described in Table 1), and after cooling Then, the sample (chip) was taken out from the imprint apparatus, and the pattern-formed benzocyclobutene resin layer was released from the mold at about room temperature, and the results of Comparative Example 1 and Examples 1 to 4 were obtained. . The mold used was made of quartz and surface-treated with a release agent (OPTOOL (registered trademark) HD) in advance.
 インプリント装置(明昌機工株式会社製、NM-0801HB)を用いて、上記同様の方法により、ベンゾシクロブテン樹脂層にパターンを形成した。すなわち、インプリント装置に、用意した上記サンプル(チップ)を配置し、所定の加温、加圧条件(表2に記載)でモールドをベンゾシクロブテン樹脂層に押しつけてパターンを形成し、冷却後、インプリント装置からそのサンプル(チップ)を取り出し、パターンが形成されたベンゾシクロブテン樹脂層を略室温にてモールドから離型し、実施例5乃至実施例13の結果を得た。使用したモールドは、シリコン製で、事前に離型剤(オプツール〔登録商標〕HD)で表面処理を行ったものである。 A pattern was formed on the benzocyclobutene resin layer by the same method as described above using an imprint apparatus (NM-0801HB, manufactured by Meisho Kiko Co., Ltd.). That is, the prepared sample (chip) is placed in an imprint apparatus, and a pattern is formed by pressing the mold against the benzocyclobutene resin layer under predetermined heating and pressing conditions (described in Table 2). Then, the sample (chip) was taken out from the imprint apparatus, and the benzocyclobutene resin layer on which the pattern was formed was released from the mold at about room temperature, and the results of Examples 5 to 13 were obtained. The mold used was made of silicon and surface-treated with a release agent (OPTOOL (registered trademark) HD) in advance.
 パターン形成の有無は、断面観察SEM(株式会社日立ハイテクノロジーズ製、S4800)にて、パターンの断面を観察して判断した。その結果を下記表1及び表2に示す。パターンが形成された場合は“○”、パターンが形成されなかった場合は“×”を示す。表2に記載の加温条件1については、1℃/秒で昇温させた。 The presence or absence of pattern formation was determined by observing the cross section of the pattern with a cross-section observation SEM (manufactured by Hitachi High-Technologies Corporation, S4800). The results are shown in Tables 1 and 2 below. “◯” indicates that a pattern is formed, and “X” indicates that a pattern is not formed. About the heating condition 1 of Table 2, it heated up at 1 degree-C / sec.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1及び表2に示すとおり、実施例1乃至実施例13のようにインプリントの際の加熱を150℃以上で行ったサンプルは、パターン形成が可能であった。一方、表1に示す比較例1のように120℃でインプリントしたサンプルでは、パターン形成が不可能であった。実施例5乃至実施例13の結果を得るのに使用したモールド(シリコン製モールド)の断面SEM像を図1に、パターンが形成された実施例11のサンプルの断面SEM像を図2に示す。 As shown in Tables 1 and 2, the samples that were heated at the time of imprinting at 150 ° C. or higher as in Examples 1 to 13 were capable of pattern formation. On the other hand, in the sample imprinted at 120 ° C. as in Comparative Example 1 shown in Table 1, pattern formation was impossible. FIG. 1 shows a cross-sectional SEM image of the mold (silicon mold) used to obtain the results of Examples 5 to 13, and FIG. 2 shows a cross-sectional SEM image of the sample of Example 11 on which the pattern was formed.
[寸法精度の測定]
 パターンが形成された実施例9乃至実施例11のサンプルのパターン寸法、及び使用したモールドのパターン寸法を測定した。測定には、断面観察SEM(株式会社日立ハイテクノロジーズ製、S4800)の測長機能を用い、各パターン配列の任意の箇所を3点選んで測定した。その結果を下記表3に示す。
[Measurement of dimensional accuracy]
The pattern dimensions of the samples of Examples 9 to 11 on which the pattern was formed and the pattern dimensions of the mold used were measured. For the measurement, the length measurement function of the cross-section observation SEM (manufactured by Hitachi High-Technologies Corporation, S4800) was used, and three arbitrary points of each pattern array were selected and measured. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表3に示す結果から、使用したモールドのパターンサイズに対し、平均値でパターン幅は±3nm以内、パターン深さは±4nm以内であった。したがって、パターン誤差は±3%以内で寸法精度は非常に良かった。すなわち、寸法変化がほとんど無いインプリントが可能なことが示された。さらには、実施例9乃至実施例11のパターンサイズ平均値が幅:117nm、深さ:347nmであることから、アスペクト比は347/117=3.0となり、比較的大きなアスペクト比が得られるパターニングが可能であった。 From the results shown in Table 3, the average pattern width was within ± 3 nm and the pattern depth was within ± 4 nm relative to the pattern size of the mold used. Therefore, the pattern error was within ± 3% and the dimensional accuracy was very good. That is, it was shown that imprinting with almost no dimensional change is possible. Furthermore, since the pattern size average values of Examples 9 to 11 are width: 117 nm and depth: 347 nm, the aspect ratio is 347/117 = 3.0, and patterning that can obtain a relatively large aspect ratio. Was possible.

Claims (6)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は互いに独立して炭素原子数1乃至6のアルキル基、ビニル基又はフェニル基を表し、R2は互いに独立して炭素原子数1乃至6のアルキル基又はメトキシ基を表し、R3は互いに独立して炭素原子数1乃至6のアルキル基を表し、k及びmは互いに独立して0又は1を表し、nは1乃至3の整数を表す。)
    で表されるジビニルシロキサン-ビスベンゾシクロブテンを重合して得られるベンゾシクロブテン樹脂を含む層を基板上に形成する工程、
     前記ベンゾシクロブテン樹脂を含む層に、加熱及び加圧しながらモールドを押しつけて、該ベンゾシクロブテン樹脂を含む層にパターンを形成する工程、及び
     冷却後に、前記パターンが形成されたベンゾシクロブテン樹脂を含む層を前記モールドから離型する工程を有し、
     前記加熱の温度が150℃乃至350℃である、インプリントによるパターン形成方法。
    Following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 independently represents an alkyl group having 1 to 6 carbon atoms, a vinyl group or a phenyl group, and R 2 independently represents an alkyl group having 1 to 6 carbon atoms or a methoxy group. , R 3 each independently represents an alkyl group having 1 to 6 carbon atoms, k and m each independently represent 0 or 1, and n represents an integer of 1 to 3.)
    Forming a layer containing a benzocyclobutene resin obtained by polymerizing divinylsiloxane-bisbenzocyclobutene represented by
    A step of forming a pattern on the layer containing the benzocyclobutene resin by pressing a mold against the layer containing the benzocyclobutene resin while heating and pressing, and after cooling, the benzocyclobutene resin on which the pattern is formed Having a step of releasing the containing layer from the mold,
    The pattern formation method by imprinting, wherein the heating temperature is 150 ° C. to 350 ° C.
  2.  下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    で表されるジビニルシロキサン-ビスベンゾシクロブテンを重合して得られるベンゾシクロブテン樹脂を含む層を基板上に形成する工程、
     前記ベンゾシクロブテン樹脂を含む層に、加熱及び加圧しながらモールドを押しつけて、該ベンゾシクロブテン樹脂を含む層にパターンを形成する工程、及び
     冷却後に、前記パターンが形成されたベンゾシクロブテン樹脂を含む層を前記モールドから離型する工程を有し、
     前記加熱の温度が150℃乃至350℃である、インプリントによるパターン形成方法。
    Following formula (2):
    Figure JPOXMLDOC01-appb-C000002
    Forming a layer containing a benzocyclobutene resin obtained by polymerizing divinylsiloxane-bisbenzocyclobutene represented by
    A step of forming a pattern on the layer containing the benzocyclobutene resin by pressing a mold against the layer containing the benzocyclobutene resin while heating and pressing, and after cooling, the benzocyclobutene resin on which the pattern is formed Having a step of releasing the containing layer from the mold,
    The pattern formation method by imprinting, wherein the heating temperature is 150 ° C. to 350 ° C.
  3.  請求項1又は請求項2において、前記加圧は1MPa乃至10MPaの条件で行われる、インプリントによるパターン形成方法。 3. The pattern forming method by imprinting according to claim 1 or 2, wherein the pressing is performed under a condition of 1 MPa to 10 MPa.
  4.  請求項1乃至請求項3のいずれか一項において、前記ベンゾシクロブテン樹脂はBステージ化ベンゾシクロブテン樹脂である、インプリントによるパターン形成方法。 4. The pattern formation method by imprinting according to any one of claims 1 to 3, wherein the benzocyclobutene resin is a B-staged benzocyclobutene resin.
  5.  請求項4において、前記モールドから離型する工程の後、更に前記基板を250℃乃至350℃の温度で加熱する工程を有する、インプリントによるパターン形成方法。 5. The pattern forming method by imprinting according to claim 4, further comprising a step of heating the substrate at a temperature of 250 ° C. to 350 ° C. after the step of releasing from the mold.
  6.  請求項1乃至請求項5のいずれか一項において、前記ベンゾシクロブテン樹脂を含む層は、該ベンゾシクロブテン樹脂及びそれを溶解可能な有機溶剤を含むインプリント用膜形成組成物を前記基板上に塗布し、前記有機溶剤を蒸発させることにより形成される、インプリントによるパターン形成方法。 6. The imprint film-forming composition containing the benzocyclobutene resin and an organic solvent capable of dissolving the benzocyclobutene resin on the substrate according to any one of claims 1 to 5. A method of forming a pattern by imprinting, which is formed by applying to the substrate and evaporating the organic solvent.
PCT/JP2010/050719 2009-01-21 2010-01-21 Application of benzocyclobutene resin to imprinting technique, and method for forming pattern using the technique WO2010084918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009011099A JP2012061599A (en) 2009-01-21 2009-01-21 Application of benzocyclobutene resin to imprint technology, and method for forming pattern by the technology
JP2009-011099 2009-01-21

Publications (1)

Publication Number Publication Date
WO2010084918A1 true WO2010084918A1 (en) 2010-07-29

Family

ID=42355970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050719 WO2010084918A1 (en) 2009-01-21 2010-01-21 Application of benzocyclobutene resin to imprinting technique, and method for forming pattern using the technique

Country Status (3)

Country Link
JP (1) JP2012061599A (en)
TW (1) TW201031690A (en)
WO (1) WO2010084918A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015187909A1 (en) * 2014-06-04 2015-12-10 Dow Corning Corporation Imprinting process of hot-melt type curable silicone composition for optical devices
CN108516986A (en) * 2018-05-16 2018-09-11 西南科技大学 Benzocyclobutene functionalized four(Dimethylsilyl bis)Silane and preparation method thereof and preparation method comprising its resin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241419A (en) * 1996-03-06 1997-09-16 Hitachi Ltd Solventless composition and multilayered wiring board and production thereof
JPH11507601A (en) * 1995-06-07 1999-07-06 ザ デクスター コーポレイション Embossable membrane
JP2000500617A (en) * 1995-11-22 2000-01-18 シーメンス アクチエンゲゼルシヤフト Vertically integrated semiconductor device and method of manufacturing the same
JP2002530505A (en) * 1998-11-24 2002-09-17 ザ ダウ ケミカル カンパニー Composition containing crosslinkable matrix precursor and porogen, and porous matrix produced therefrom
JP2004500719A (en) * 2000-03-30 2004-01-08 エイブイエックス コーポレイション Electronic device and method for manufacturing electronic device
JP2008310944A (en) * 2007-05-16 2008-12-25 Fujifilm Corp Mold structure and imprint method using the same, and magnetic recording medium and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507601A (en) * 1995-06-07 1999-07-06 ザ デクスター コーポレイション Embossable membrane
JP2000500617A (en) * 1995-11-22 2000-01-18 シーメンス アクチエンゲゼルシヤフト Vertically integrated semiconductor device and method of manufacturing the same
JPH09241419A (en) * 1996-03-06 1997-09-16 Hitachi Ltd Solventless composition and multilayered wiring board and production thereof
JP2002530505A (en) * 1998-11-24 2002-09-17 ザ ダウ ケミカル カンパニー Composition containing crosslinkable matrix precursor and porogen, and porous matrix produced therefrom
JP2004500719A (en) * 2000-03-30 2004-01-08 エイブイエックス コーポレイション Electronic device and method for manufacturing electronic device
JP2008310944A (en) * 2007-05-16 2008-12-25 Fujifilm Corp Mold structure and imprint method using the same, and magnetic recording medium and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015187909A1 (en) * 2014-06-04 2015-12-10 Dow Corning Corporation Imprinting process of hot-melt type curable silicone composition for optical devices
CN106462056A (en) * 2014-06-04 2017-02-22 道康宁公司 Imprinting process of hot-melt type curable silicone composition for optical devices
US9853193B2 (en) 2014-06-04 2017-12-26 Dow Corning Corporation Imprinting process of hot-melt type curable silicone composition for optical devices
CN108516986A (en) * 2018-05-16 2018-09-11 西南科技大学 Benzocyclobutene functionalized four(Dimethylsilyl bis)Silane and preparation method thereof and preparation method comprising its resin
CN108516986B (en) * 2018-05-16 2020-11-17 西南科技大学 Benzocyclobutene-functionalized tetrakis (dimethylsiloxy) silane, method for preparing same, and method for preparing resin containing same

Also Published As

Publication number Publication date
JP2012061599A (en) 2012-03-29
TW201031690A (en) 2010-09-01

Similar Documents

Publication Publication Date Title
CN104246976B (en) The manufacture method of photocured product
JP4990479B2 (en) A novel planarization method for multilayer lithography processes
JP5542766B2 (en) Pattern formation method
EP1794655B1 (en) A material composition for nano- and micro-lithography
KR101358255B1 (en) Hydrophobic mold of photo-curable type and manufacturing method for the same
US7691275B2 (en) Use of step and flash imprint lithography for direct imprinting of dielectric materials for dual damascene processing
JP4963254B2 (en) Film-forming composition for nanoimprint, structure manufacturing method and structure
Carbaugh et al. Photolithography with polymethyl methacrylate (PMMA)
JP2005515617A (en) Replicated patterned structure using non-stick mold
KR20120039693A (en) Composition for forming resist underlayer film for nanoimprint lithography
KR20090031349A (en) Siloxane epoxy polymers for redistribution layer applications
WO2006057745A2 (en) Direct imprinting of etch barriers using step and flash imprint lithography
WO2018230488A1 (en) Kit, laminate, method for producing laminate, method for producing cured product pattern, and method of producing circuit board
WO2011021573A1 (en) Pattern forming method
JP2010182986A (en) Manufacturing method of substrate with metal pattern and the substrate
WO2010084918A1 (en) Application of benzocyclobutene resin to imprinting technique, and method for forming pattern using the technique
KR101789921B1 (en) Method of manufacturing a nano thin-layer pattern structure
Youn et al. Microstructuring of SU-8 photoresist by UV-assisted thermal imprinting with non-transparent mold
EP1614004B1 (en) Positive tone bi-layer imprint lithography method and compositions therefor
JPWO2019172156A1 (en) Underlayer film forming composition for imprint, curable composition for imprint, kit
TW201529677A (en) Resin composition, resist mask for dry etching, and pattern formation method
JP5887871B2 (en) Film forming material and pattern forming method
Takei Development of ultraviolet crosslinking glucose-based resist materials for advanced electronic device applications using nanoimprint lithography
Chung et al. Ultraviolet curing imprint lithography on flexible indium tin oxide substrates
Kreindl et al. Soft UV-NIL at the 12.5 nm Scale

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP