JP2012061599A - Application of benzocyclobutene resin to imprint technology, and method for forming pattern by the technology - Google Patents

Application of benzocyclobutene resin to imprint technology, and method for forming pattern by the technology Download PDF

Info

Publication number
JP2012061599A
JP2012061599A JP2009011099A JP2009011099A JP2012061599A JP 2012061599 A JP2012061599 A JP 2012061599A JP 2009011099 A JP2009011099 A JP 2009011099A JP 2009011099 A JP2009011099 A JP 2009011099A JP 2012061599 A JP2012061599 A JP 2012061599A
Authority
JP
Japan
Prior art keywords
benzocyclobutene resin
pattern
mold
benzocyclobutene
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009011099A
Other languages
Japanese (ja)
Inventor
Kazuhiro Aoba
和広 青葉
Junko Katayama
淳子 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2009011099A priority Critical patent/JP2012061599A/en
Priority to PCT/JP2010/050719 priority patent/WO2010084918A1/en
Priority to TW99101634A priority patent/TW201031690A/en
Publication of JP2012061599A publication Critical patent/JP2012061599A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F30/08Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a pattern of a benzocyclobutene resin using a thermal imprint lithography technology.SOLUTION: The method includes a process of forming a layer containing the benzocyclobutene resin obtained by polymerizing divinyl siloxane-bisbenzocyclobutene represented by a formula (2) on a base plate, a process of pressing a mold to the benzocyclobutene resin-containing layer while heating and pressing the mold to form the pattern on the benzocyclobutene-containing layer, and a process of removing the benzocyclobutene-containing layer on which the pattern is formed from the mold after cooling wherein the heating temperature is 150 to 350°C.

Description

本発明は、ベンゾシクロブテン樹脂を用いた、熱インプリントよるパターン形成方法に関する。 The present invention relates to a method for forming a pattern by thermal imprinting using a benzocyclobutene resin.

近年、半導体デバイスの微細化に伴い、様々なリソグラフィー方式が提案され、開発が進められている。特に50nm以下のリソグラフィー技術に関しては、波長193nmのArFに液浸技術を組み合わせた液浸ArFエキシマレーザー方式、波長13.5nmの極端紫外線(EUV)露光方式、ビーム径が5nm以下の電子線(EB)露光方式の研究が進められている。しかしながら、光源波長の短波長化は、高額な新たな露光装置が必要となってしまい、さらに微細加工の有力な技術と考えられているEB方式も、スループットが小さく、ナノデバイスの量産は困難である。 In recent years, with the miniaturization of semiconductor devices, various lithography methods have been proposed and developed. In particular, for lithography technology of 50 nm or less, an immersion ArF excimer laser method combining ArF with a wavelength of 193 nm and an immersion technology, an extreme ultraviolet (EUV) exposure method with a wavelength of 13.5 nm, an electron beam (EB) with a beam diameter of 5 nm or less (EB) ) Research on exposure methods is ongoing. However, shortening the wavelength of the light source requires an expensive new exposure apparatus, and the EB method, which is considered to be a promising technology for fine processing, also has a low throughput and is difficult to mass-produce nanodevices. is there.

一方、Chouらにより、微細パターンの形成方法として、ナノインプリントリソグラフィーが提案された(特許文献1参照)。ナノインプリントリソグラフィーでは、所定のパターンが形成されたモールドを、表面に樹脂層が形成された基板に対して押しつけ、モールドのパターンを樹脂層に転写する。 On the other hand, Chou et al. Proposed nanoimprint lithography as a method for forming a fine pattern (see Patent Document 1). In nanoimprint lithography, a mold on which a predetermined pattern is formed is pressed against a substrate on which a resin layer is formed, and the mold pattern is transferred to the resin layer.

Chouらによって最初に提案されたナノインプリントリソグラフィーは、樹脂層に熱可塑性樹脂であるポリメタクリル酸メチル(PMMA)が用いられ、樹脂層を変形させる前に加熱して樹脂を軟化させておき、次いで、モールドを押しつけて樹脂層を変形させ、その後、樹脂層を冷却して固化させる工程を経ることから、「熱サイクルナノインプリント」と呼ばれている。しかしながら、「熱サイクルナノインプリント」には、樹脂層の昇温、冷却に時間を要するため、スループットが低いという問題や、温度差によりパターン寸法が変化するという問題があった。 The nanoimprint lithography originally proposed by Chou et al. Uses polymethyl methacrylate (PMMA), which is a thermoplastic resin, in the resin layer, and heats the resin layer before it is deformed, then softens the resin, Since the resin layer is deformed by pressing the mold, and then the resin layer is cooled and solidified, it is called “thermal cycle nanoimprint”. However, “thermal cycle nanoimprint” has a problem of low throughput and a problem that a pattern size changes due to a temperature difference because it takes time to raise and cool the resin layer.

一方、マルチチップモジュール、液晶表示素子等に用いられる有機材料、及びLSI等半導体素子のパッシベーション膜として、一般的に、ポリイミド系樹脂及びアクリル系樹脂が知られている。近年、それらの樹脂に代わり、光学的、電気的特性、耐プロセス性の良いベンゾシクロブテン樹脂の使用が研究されてきた(特許文献2参照)。 On the other hand, polyimide resins and acrylic resins are generally known as passivation films for organic materials used in multichip modules, liquid crystal display elements, and the like, and semiconductor elements such as LSIs. In recent years, the use of benzocyclobutene resins having good optical, electrical characteristics, and process resistance instead of these resins has been studied (see Patent Document 2).

前述のような用途では、ベンゾシクロブテン樹脂は、シリコンやガラス等の板上にその樹脂を成膜し、形成された樹脂層をパターニングして使用されている。ベンゾシクロブテン樹脂層のパターニングの方法としては、プラズマエッチング装置を用いるドライエッチングと、光反応剤を添加したネガ型感光性ベンゾシクロブテン樹脂配合組成物に、有機溶剤等のエッチング剤を用いエッチングするウエットエッチングが一般的である。 In the applications as described above, the benzocyclobutene resin is used by forming a film of the resin on a plate such as silicon or glass and patterning the formed resin layer. As a patterning method for the benzocyclobutene resin layer, dry etching using a plasma etching apparatus and negative photosensitive benzocyclobutene resin-containing composition to which a photoreactive agent is added are etched using an etching agent such as an organic solvent. Wet etching is common.

ドライエッチングの場合、基板上に形成されたベンゾシクロブテン樹脂層上にマスク材としてフォトレジストや金属等の層を形成し、ベンゾシクロブテン樹脂層を除去する箇所が露出するようにそのマスク材をパターニングし、OやCF等のエッチングガス雰囲気下で電極に高周波を印加しプラズマを発生させ、発生したプラズマをマスク材開口部のベンゾシクロブテン樹脂と反応させガス化し、開口部のベンゾシクロブテン樹脂を除去しパターニングするのが一般的であった。 In the case of dry etching, a layer of photoresist, metal, or the like is formed as a mask material on the benzocyclobutene resin layer formed on the substrate, and the mask material is exposed so that the portion where the benzocyclobutene resin layer is removed is exposed. Patterning is performed, and a high frequency is applied to the electrode in an etching gas atmosphere such as O 2 or CF 4 to generate plasma, and the generated plasma reacts with the benzocyclobutene resin in the opening of the mask material to gasify it, and benzocyclo in the opening Generally, the butene resin is removed and patterned.

また、従来のウエットエッチングでは、ビスアジド化合物等の感光剤を含有させネガ型の感光性にしたベンゾシクロブテン樹脂層を基板上に形成し、そのネガ型感光性ベンゾシクロブテン樹脂層をパターンが形成できるように露光し、露光部分を光反応により硬化させ、未露光のベンゾシクロブテン樹脂部分を有機溶剤等により除去しパターニングするのが一般的であった(特許文献3参照)。 Also, in conventional wet etching, a benzocyclobutene resin layer containing a photosensitizer such as a bisazide compound and made negative-type photosensitive is formed on a substrate, and the pattern is formed on the negative-type photosensitive benzocyclobutene resin layer In general, exposure was performed so that the exposed portion was cured by photoreaction, and the unexposed benzocyclobutene resin portion was removed with an organic solvent or the like and patterned (see Patent Document 3).

さらには、感光性ベンゾシクロブテン樹脂を用いずに、ウエットエッチングによりパターンを形成する方法もある。基板上に形成されたB−ステージ化したベンゾシクロブテン樹脂層上にフォトレジスト層を形成し、このフォトレジスト層をパターニング後、形成されたフォトレジストパターンをマスクとして、そのベンゾシクロブテン樹脂層を有機溶剤によるウエットエッチング処理し、最後に不要になったフォトレジストパターンを除去してパターン形成を行う(特許文献4参照)。 Furthermore, there is a method of forming a pattern by wet etching without using a photosensitive benzocyclobutene resin. A photoresist layer is formed on the B-staged benzocyclobutene resin layer formed on the substrate, and after patterning this photoresist layer, the benzocyclobutene resin layer is formed using the formed photoresist pattern as a mask. A wet etching process using an organic solvent is performed, and finally a photoresist pattern that is no longer necessary is removed to form a pattern (see Patent Document 4).

しかしながら、ベンゾシクロブテン樹脂層にフォトレジスト層を形成してプラズマエッチング又はウエットエッチングする方法は工程が煩雑であり、プラズマエッチングを行う場合は、マスク材とベンゾシクロテン樹脂のエッチング選択比が1〜1.5程度のため、プラズマエッチング時の膜減りを考慮し、フォトレジスト等のマスク材の厚みを1.5〜2倍程度にする必要があり、露光時間の増加やフォトレジストの解像度の低下などの欠点が存在する。ウエットエッチングを行う場合は、ベンゾシクロブテン樹脂層を横方法(膜面方向)および縦方向(膜の深さ方向)に等方性にエッチングするため、アスペクト比の高い、垂直なパターンは得られにくいとう欠点がある。 However, the method of forming a photoresist layer on the benzocyclobutene resin layer and performing plasma etching or wet etching has a complicated process, and when performing plasma etching, the etching selectivity between the mask material and the benzocycloten resin is 1 to 1. Since the thickness is about 1.5, it is necessary to increase the thickness of the mask material such as photoresist by about 1.5 to 2 times in consideration of the film thickness reduction during plasma etching, which increases the exposure time and decreases the resolution of the photoresist. There are disadvantages such as. When wet etching is performed, the benzocyclobutene resin layer is etched isotropically in the lateral direction (film surface direction) and in the vertical direction (film depth direction), so a vertical pattern with a high aspect ratio can be obtained. There is a difficult drawback.

一方、感光性ベンゾシクロブテン樹脂を用いたウエットエッチング方法では、感光性の光反応剤を添加したベンゾシクロブテン樹脂を使用するため、このベンゾシクロブテン樹脂は紫外線領域から可視領域にかけての光吸収を持ち、ゆえに着色することが多い。このような材料では、例えば液晶表示素子に使用する場合、バックライト光の透過を妨げ、光利用効率の低下をもたらす等の問題があった。 On the other hand, in the wet etching method using a photosensitive benzocyclobutene resin, a benzocyclobutene resin to which a photosensitive photoreactant is added is used. Therefore, this benzocyclobutene resin absorbs light from the ultraviolet region to the visible region. It is often held and therefore colored. In such a material, for example, when used for a liquid crystal display element, there is a problem that transmission of backlight light is prevented and light utilization efficiency is lowered.

米国特許第5772905号明細書US Pat. No. 5,772,905 特公平05−073756号公報Japanese Patent Publication No. 05-073756 特表平11−503248号公報Japanese National Patent Publication No. 11-503248 特開平11−016883号公報JP-A-11-016883

本発明は、熱インプリントリソグラフィー技術を用いて、ベンゾシクロブテン樹脂のパターンを形成する方法を提供することを目的とする。すなわち、感光性ベンゾシクロブテン、レジスト、現像液等を用いずに容易にベンゾシクロブテン樹脂のパターンを形成することができ、かつ寸法変化のない又は小さい、ベンゾシクロブテン樹脂のパターン形成方法を提供することである。 An object of this invention is to provide the method of forming the pattern of a benzocyclobutene resin using a thermal imprint lithography technique. That is, a method for forming a benzocyclobutene resin pattern, which can easily form a benzocyclobutene resin pattern without using photosensitive benzocyclobutene, a resist, a developer, or the like and has little or no dimensional change, is provided. It is to be.

本発明者らは鋭意研究した結果、ベンゾシクロブテン樹脂を含む層を、特定の加熱温度のもと、モールドを用いて加圧することにより上記の課題が達成できることを見いだし、本発明に至った。モールドとは、表面に凹凸のパターンが形成された、石英、シリコン、シリコンカーバイド(SiC)、ニッケル、タンタル等の材料からなる“型”である。 As a result of diligent research, the present inventors have found that the above-described problems can be achieved by pressurizing a layer containing a benzocyclobutene resin using a mold at a specific heating temperature, and the present invention has been achieved. The mold is a “mold” made of a material such as quartz, silicon, silicon carbide (SiC), nickel, or tantalum having an uneven pattern formed on the surface.

本発明は、下記式(1):
(式中、Rはそれぞれ独立に炭素原子数1乃至6のアルキル基、ビニル基又はフェニル基を表し、Rはそれぞれ独立に炭素原子数1乃至6のアルキル基又はメトキシ基を表し、Rはそれぞれ独立に炭素原子数1乃至6のアルキル基を表し、k及びmはそれぞれ独立に0又は1を表し、nは1乃至3の整数を表す。)
で表されるジビニルシロキサン−ビスベンゾシクロブテンを重合して得られるベンゾシクロブテン樹脂を含む層を基板上に形成する工程、
前記ベンゾシクロブテン樹脂を含む層に、加熱及び加圧しながらモールドを押しつけ、該ベンゾシクロブテン樹脂を含む層にパターンを形成する工程、及び
冷却後に、前記パターンが形成されたベンゾシクロブテン樹脂を含む層を前記モールドから離型する工程を有し、
前記加熱の温度が150℃乃至350℃であるインプリント方法である。
The present invention provides the following formula (1):
(In the formula, each R 1 independently represents an alkyl group having 1 to 6 carbon atoms, a vinyl group, or a phenyl group; each R 2 independently represents an alkyl group having 1 to 6 carbon atoms or a methoxy group; 3 independently represents an alkyl group having 1 to 6 carbon atoms, k and m each independently represents 0 or 1, and n represents an integer of 1 to 3.)
A step of forming on a substrate a layer containing a benzocyclobutene resin obtained by polymerizing divinylsiloxane-bisbenzocyclobutene represented by:
A step of forming a pattern on the layer containing the benzocyclobutene resin by pressing a mold against the layer containing the benzocyclobutene resin while heating and pressing, and a benzocyclobutene resin on which the pattern is formed after cooling Having a step of releasing the layer from the mold,
In the imprint method, the heating temperature is 150 ° C. to 350 ° C.

また本発明は、前記式(1)で表されるジビニルシロキサン−ビスベンゾシクロブテンとして、例えば下記式(2):

で表されるジビニルシロキサン−ビスベンゾシクロブテンを重合して得られるベンゾシクロブテン樹脂を含む層を基板上に形成する工程、
前記ベンゾシクロブテン樹脂を含む層に、加熱及び加圧しながらモールドを押しつけ、該ベンゾシクロブテン樹脂を含む層にパターンを形成する工程、及び
冷却後に、前記パターンが形成されたベンゾシクロブテン樹脂を含む層を前記モールドから離型する工程を有し、
前記加熱の温度が150℃乃至350℃であるインプリント方法である。
Moreover, this invention is a divinylsiloxane-bisbenzocyclobutene represented by said Formula (1), for example, following formula (2):

A step of forming on a substrate a layer containing a benzocyclobutene resin obtained by polymerizing divinylsiloxane-bisbenzocyclobutene represented by:
A step of forming a pattern on the layer containing the benzocyclobutene resin by pressing a mold against the layer containing the benzocyclobutene resin while heating and pressing, and a benzocyclobutene resin on which the pattern is formed after cooling Having a step of releasing the layer from the mold,
In the imprint method, the heating temperature is 150 ° C. to 350 ° C.

上記本発明において、前記加圧は、例えば1MPa乃至10MPaの条件で行われる。前記加熱の温度については、350℃を超えるとベンゾシクロブテン樹脂が分解するため、350℃以下で加熱する必要がある。逆に150℃より低い温度(例えば120℃)では、ベンゾシクロブテン樹脂を含む層に所望のパターンを形成することができない又は困難である。 In the said invention, the said pressurization is performed on the conditions of 1 MPa-10 MPa, for example. Regarding the heating temperature, if it exceeds 350 ° C., the benzocyclobutene resin is decomposed, so it is necessary to heat at 350 ° C. or less. Conversely, at a temperature lower than 150 ° C. (for example, 120 ° C.), it is difficult or difficult to form a desired pattern in the layer containing the benzocyclobutene resin.

前記ベンゾシクロブテン樹脂は、例えばBステージ化ベンゾシクロブテン樹脂である。ここで、Bステージ化とは、半硬化状態(硬化中間状態)にすることを意味する。この状態の樹脂は、加熱すると軟化し、ある種の溶剤に触れると膨潤もしくは溶融又は溶解する状態にある。ベンゾシクロブテン樹脂がこのような状態にあることにより、インプリント装置を用いて所望のパターンを形成することが容易になる。また、Bステージ化ベンゾシクロブテン樹脂は、プレポリマーであると換言することもできる。参考までに、熱硬化性樹脂の未硬化状態はAステージと表現され、熱硬化性樹脂の硬化工程の最終段階はCステージと表現される。Bステージとは、AステージでもCステージでもない状態である。 The benzocyclobutene resin is, for example, a B-staged benzocyclobutene resin. Here, the B-staging means a semi-cured state (cured intermediate state). The resin in this state softens when heated, and swells, melts, or dissolves when touched with a certain solvent. When the benzocyclobutene resin is in such a state, it becomes easy to form a desired pattern using the imprint apparatus. It can also be said that the B-staged benzocyclobutene resin is a prepolymer. For reference, the uncured state of the thermosetting resin is expressed as A stage, and the final stage of the curing process of the thermosetting resin is expressed as C stage. The B stage is a state that is neither the A stage nor the C stage.

前記モールドから離型する工程の後、必要に応じて、前記基板を250℃乃至350℃の温度で加熱する工程を更に有することができる。この加熱工程により、ベンゾシクロブテン樹脂の硬化(架橋)が進行し、三次元ポリマー化する。350℃を超える温度ではベンゾシクロブテン樹脂が分解するため、350℃以下で加熱する必要がある。 After the step of releasing from the mold, if necessary, the method may further include a step of heating the substrate at a temperature of 250 ° C. to 350 ° C. By this heating step, curing (crosslinking) of the benzocyclobutene resin proceeds and a three-dimensional polymer is formed. Since the benzocyclobutene resin is decomposed at a temperature exceeding 350 ° C., it is necessary to heat at 350 ° C. or less.

前記ベンゾシクロブテン樹脂を含む層は、例えば該ベンゾシクロブテン樹脂及びそれを溶解可能な有機溶剤を含むインプリント用膜形成組成物を前記基板上に塗布し、前記有機溶剤を蒸発させることにより形成される。その有機溶剤として、例えばトルエン、キシレン、メシチレン等のアルキル芳香族類、シクロペンタノン、シクロヘキサノン等の環状ケトン類、ジエチルエーテル、ジプロピレングリコールジメチルエーテル、テトラヒドロフラン(THF)等のエーテル類、酢酸ブチル、1−メチル−2−ピロリドン(NMP)、ジメチルスルホキシド(DMSO)が挙げられる。また、前記基板上への塗布は、スピンコート法、ディップ法、スプレー法等の公知の塗布法を採用することができる。 The layer containing the benzocyclobutene resin is formed, for example, by applying a film forming composition for imprinting containing the benzocyclobutene resin and an organic solvent capable of dissolving the benzocyclobutene resin on the substrate and evaporating the organic solvent. Is done. Examples of the organic solvent include alkyl aromatics such as toluene, xylene and mesitylene, cyclic ketones such as cyclopentanone and cyclohexanone, ethers such as diethyl ether, dipropylene glycol dimethyl ether and tetrahydrofuran (THF), butyl acetate, 1 -Methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO). In addition, a known coating method such as a spin coating method, a dip method, or a spray method can be employed for coating on the substrate.

本発明により、レジスト等のウエットエッチング用マスク及びエッチング液を用いず、簡便に、所望のパターンを形成することが可能となる。また感光性ベンゾシクロブテン樹脂を用いないので、光透過度が高く、透明性に優れたベンゾシクロブテン樹脂を得ることができる。 According to the present invention, a desired pattern can be easily formed without using a wet etching mask such as a resist and an etching solution. In addition, since no photosensitive benzocyclobutene resin is used, a benzocyclobutene resin having high light transmittance and excellent transparency can be obtained.

インプリント用モールドの断面SEM像を示す。The cross-sectional SEM image of the mold for imprint is shown. 実施例11のサンプルの断面SEM像を示す。The cross-sectional SEM image of the sample of Example 11 is shown.

以下に実施例を挙げて本発明を説明するが、本発明はこれらの例に限定されるものではない。 EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

ベンゾシクロブテン樹脂溶液(ザ・ダウ・ケミカル・カンパニー製、商品名:CYCLOTENE〔登録商標〕3022−35)を、4インチシリコン基板上にスピンコーターを用いて2500rpmにて30秒間塗布し、ホットプレート上で90℃にて90秒間ベークした。その後、4インチシリコン基板を、約3cm角サイズのチップに切断し、比較例1及び実施例1乃至実施例4で使用するサンプルを得た。得られたサンプル(チップ)には、ベンゾシクロブテン樹脂層が形成されている。 A benzocyclobutene resin solution (manufactured by The Dow Chemical Company, trade name: CYCLOTENE [registered trademark] 3022-35) was applied on a 4-inch silicon substrate at 2500 rpm for 30 seconds using a spin coater, and then hot plate Bake at 90 ° C. for 90 seconds. Thereafter, the 4-inch silicon substrate was cut into chips of about 3 cm square size, and samples used in Comparative Example 1 and Examples 1 to 4 were obtained. A benzocyclobutene resin layer is formed on the obtained sample (chip).

ベンゾシクロブテン樹脂溶液(ザ・ダウ・ケミカル・カンパニー製、商品名:CYCLOTENE〔登録商標〕3022−63)を、4インチシリコン基板上にスピンコーターを用いて1500rpmにて30秒間塗布し、ホットプレート上で90℃にて90秒間ベークした。その後、4インチシリコン基板を、約3cm角サイズのチップに切断し、実施例5乃至実施例7で使用するサンプルを得た。得られたサンプル(チップ)には、ベンゾシクロブテン樹脂層が形成されている。 A benzocyclobutene resin solution (manufactured by The Dow Chemical Company, trade name: CYCLOTENE [registered trademark] 3022-63) was applied on a 4-inch silicon substrate at 1500 rpm for 30 seconds using a spin coater, and then hot plate Bake at 90 ° C. for 90 seconds. Thereafter, the 4-inch silicon substrate was cut into chips of about 3 cm square size, and samples used in Examples 5 to 7 were obtained. A benzocyclobutene resin layer is formed on the obtained sample (chip).

ベンゾシクロブテン樹脂溶液(ザ・ダウ・ケミカル・カンパニー製、商品名:CYCLOTENE〔登録商標〕3022−35)をメシチレン(1,3,5−トリメチルベンゼン)にて10倍に希釈した樹脂溶液を作製し、この樹脂溶液を4インチシリコン基板上にスピンコーターを用いて3000rpmにて30秒間塗布し、ホットプレート上で90℃にて90秒間ベークした。その後、4インチシリコン基板を、約3cm角サイズのチップに切断し、実施例8乃至実施例11で使用するサンプルを得た。得られたサンプル(チップ)には、ベンゾシクロブテン樹脂層が形成されている。 A resin solution is prepared by diluting a benzocyclobutene resin solution (manufactured by The Dow Chemical Company, trade name: CYCLOTENE [registered trademark] 3022-35) 10 times with mesitylene (1,3,5-trimethylbenzene). This resin solution was applied on a 4-inch silicon substrate using a spin coater at 3000 rpm for 30 seconds, and baked on a hot plate at 90 ° C. for 90 seconds. Thereafter, the 4-inch silicon substrate was cut into chips of about 3 cm square size, and samples used in Examples 8 to 11 were obtained. A benzocyclobutene resin layer is formed on the obtained sample (chip).

ベンゾシクロブテン樹脂溶液(ザ・ダウ・ケミカル・カンパニー製、商品名:CYCLOTENE〔登録商標〕3022−35)を、4インチシリコン基板上にスピンコーターを用いて2000rpmにて30秒間塗布し、ホットプレート上で90℃にて90秒間ベークした。その後、4インチシリコン基板を、約3cm角サイズのチップに切断し、実施例12乃至実施例13で使用するサンプルを得た。得られたサンプル(チップ)には、ベンゾシクロブテン樹脂層が形成されている。 A benzocyclobutene resin solution (manufactured by The Dow Chemical Company, trade name: CYCLOTENE [registered trademark] 3022-35) was applied on a 4-inch silicon substrate at 2000 rpm for 30 seconds using a spin coater, and then hot plate Bake at 90 ° C. for 90 seconds. Thereafter, the 4-inch silicon substrate was cut into chips of about 3 cm square size, and samples used in Examples 12 to 13 were obtained. A benzocyclobutene resin layer is formed on the obtained sample (chip).

<パターン形成>
次に、インプリント装置(リソテックジャパン株式会社製、LTNIP−5000)を用いて、ベンゾシクロブテン樹脂層にパターンを形成した。すなわち、インプリント装置に、用意した上記チップを配置し、所定の加温、加圧条件(表1及び表2に記載)でモールドをベンゾシクロブテン樹脂層に押しつけてパターンを形成し、冷却後、インプリント装置からそのチップを取り出し、パターンが形成されたベンゾシクロブテン樹脂層をモールドから離型し、比較例1及び実施例1乃至実施例4の結果を得た。使用したモールドは、石英製のものである。
<Pattern formation>
Next, the pattern was formed in the benzocyclobutene resin layer using the imprint apparatus (the RISOTEC Japan company make, LTNIP-5000). That is, the prepared chip is placed in an imprint apparatus, a pattern is formed by pressing the mold against the benzocyclobutene resin layer under predetermined heating and pressing conditions (described in Tables 1 and 2), and after cooling Then, the chip was taken out from the imprint apparatus, and the benzocyclobutene resin layer on which the pattern was formed was released from the mold, and the results of Comparative Example 1 and Examples 1 to 4 were obtained. The mold used is made of quartz.

インプリント装置(明昌機工株式会社製、NM−0801HB)を用いて、上記同様の方法により、ベンゾシクロブテン樹脂層にパターンを形成した。すなわち、インプリント装置に、用意した上記チップを配置し、所定の加温、加圧条件(表3に記載)でモールドをベンゾシクロブテン樹脂層に押しつけてパターンを形成し、冷却後、インプリント装置からそのチップを取り出し、パターンが形成されたベンゾシクロブテン樹脂層をモールドから離型し、実施例5乃至実施例13の結果を得た。使用したモールドは、シリコン製のものである。 A pattern was formed on the benzocyclobutene resin layer by the same method as described above using an imprint apparatus (manufactured by Myeongchang Kiko Co., Ltd., NM-0801HB). That is, the prepared chip is placed in an imprint apparatus, a pattern is formed by pressing the mold against the benzocyclobutene resin layer under predetermined heating and pressure conditions (described in Table 3), and after cooling, imprinting is performed. The chip was taken out from the apparatus, and the benzocyclobutene resin layer on which the pattern was formed was released from the mold, and the results of Examples 5 to 13 were obtained. The mold used is made of silicon.

パターン形成の有無は、断面観察SEM(株式会社日立ハイテクノロジーズ製、S4800)にて、パターンの断面を観察して判断した。下記表1、表2及び表3に、パターンが形成された場合“○”、パターンが形成されなかった場合“×”で示す。表3に記載の加温条件1については、1℃/秒で昇温させた。 The presence or absence of pattern formation was judged by observing the cross section of the pattern with a cross-section observation SEM (manufactured by Hitachi High-Technologies Corporation, S4800). In Table 1, Table 2 and Table 3 below, “◯” is shown when the pattern is formed, and “X” is shown when the pattern is not formed. About the heating condition 1 of Table 3, it heated up at 1 degree-C / sec.



表2及び表3に示すとおり、実施例1乃至実施例13のようにインプリントの際の加熱を150℃以上で行ったサンプルは、パターン形成が可能であった。一方、表1に示す比較例1のように120℃でインプリントしたサンプルでは、パターン形成が不可能であった。実施例5乃至実施例13の結果を得るのに使用したモールド(シリコン製モールド)の断面SEM像を図1に、パターンが形成された実施例11のサンプルの断面SEM像を図2に示す。 As shown in Tables 2 and 3, the samples formed by heating at the time of imprinting at 150 ° C. or more as in Examples 1 to 13 were capable of pattern formation. On the other hand, in the sample imprinted at 120 ° C. as in Comparative Example 1 shown in Table 1, pattern formation was impossible. FIG. 1 shows a cross-sectional SEM image of the mold (silicon mold) used to obtain the results of Examples 5 to 13, and FIG. 2 shows a cross-sectional SEM image of the sample of Example 11 on which the pattern was formed.

<寸法精度の測定>
パターンが形成された実施例9乃至実施例11のサンプルのパターン寸法、及び使用したモールドのパターン寸法を測定した。測定には、断面観察SEM(株式会社日立ハイテクノロジーズ製、S4800)の測長機能を用い、各パターン配列の任意の箇所を3点選んで測定した。その結果を下記表4及び、表5乃至表7に示す。
<Measurement of dimensional accuracy>
The pattern dimensions of the samples of Examples 9 to 11 on which the pattern was formed and the pattern dimensions of the mold used were measured. For the measurement, the length measurement function of the cross-section observation SEM (manufactured by Hitachi High-Technologies Corporation, S4800) was used, and three arbitrary points of each pattern array were selected and measured. The results are shown in Table 4 and Tables 5 to 7.




表4乃至表7に示す結果から、使用したモールドのパターンサイズに対し、平均値でパターン幅は±3nm以内、パターン深さは±4nm以内であった。したがって、パターン誤差は±3%以内で寸法精度は非常に良かった。すなわち、寸法変化がほとんど無いインプリントが可能なことが示された。さらには、実施例9乃至実施例11のパターンサイズ平均値が幅:117nm、深さ:347nmであることから、アスペクト比は347/117=3.0となり、比較的大きなアスペクト比が得られるパターニングが可能であった。
From the results shown in Tables 4 to 7, the average pattern width was within ± 3 nm and the pattern depth was within ± 4 nm with respect to the pattern size of the mold used. Therefore, the pattern error was within ± 3% and the dimensional accuracy was very good. That is, it was shown that imprinting with almost no dimensional change is possible. Furthermore, since the average pattern size values of Examples 9 to 11 are width: 117 nm and depth: 347 nm, the aspect ratio is 347/117 = 3.0, and patterning that can obtain a relatively large aspect ratio. Was possible.

Claims (6)

下記式(1):
(式中、Rはそれぞれ独立に炭素原子数1乃至6のアルキル基、ビニル基又はフェニル基を表し、Rはそれぞれ独立に炭素原子数1乃至6のアルキル基又はメトキシ基を表し、Rはそれぞれ独立に炭素原子数1乃至6のアルキル基を表し、k及びmはそれぞれ独立に0又は1を表し、nは1乃至3の整数を表す。)
で表されるジビニルシロキサン−ビスベンゾシクロブテンを重合して得られるベンゾシクロブテン樹脂を含む層を基板上に形成する工程、
前記ベンゾシクロブテン樹脂を含む層に、加熱及び加圧しながらモールドを押しつけ、該ベンゾシクロブテン樹脂を含む層にパターンを形成する工程、及び
冷却後に、前記パターンが形成されたベンゾシクロブテン樹脂を含む層を前記モールドから離型する工程を有し、
前記加熱の温度が150℃乃至350℃であるインプリント方法。
Following formula (1):
(In the formula, each R 1 independently represents an alkyl group having 1 to 6 carbon atoms, a vinyl group, or a phenyl group; each R 2 independently represents an alkyl group having 1 to 6 carbon atoms or a methoxy group; 3 independently represents an alkyl group having 1 to 6 carbon atoms, k and m each independently represents 0 or 1, and n represents an integer of 1 to 3.)
A step of forming on a substrate a layer containing a benzocyclobutene resin obtained by polymerizing divinylsiloxane-bisbenzocyclobutene represented by:
A step of forming a pattern on the layer containing the benzocyclobutene resin by pressing a mold against the layer containing the benzocyclobutene resin while heating and pressing, and a benzocyclobutene resin on which the pattern is formed after cooling Having a step of releasing the layer from the mold,
The imprinting method wherein the heating temperature is 150 ° C. to 350 ° C.
下記式(2):

で表されるジビニルシロキサン−ビスベンゾシクロブテンを重合して得られるベンゾシクロブテン樹脂を含む層を基板上に形成する工程、
前記ベンゾシクロブテン樹脂を含む層に、加熱及び加圧しながらモールドを押しつけ、該ベンゾシクロブテン樹脂を含む層にパターンを形成する工程、及び
冷却後に、前記パターンが形成されたベンゾシクロブテン樹脂を含む層を前記モールドから離型する工程を有し、
前記加熱の温度が150℃乃至350℃であるインプリント方法。
Following formula (2):

A step of forming on a substrate a layer containing a benzocyclobutene resin obtained by polymerizing divinylsiloxane-bisbenzocyclobutene represented by:
A step of forming a pattern on the layer containing the benzocyclobutene resin by pressing a mold against the layer containing the benzocyclobutene resin while heating and pressing, and a benzocyclobutene resin on which the pattern is formed after cooling Having a step of releasing the layer from the mold,
The imprinting method wherein the heating temperature is 150 ° C. to 350 ° C.
請求項1又は請求項2において、前記加圧は1MPa乃至10MPaの条件で行われるインプリント方法。 3. The imprint method according to claim 1, wherein the pressurization is performed under a condition of 1 MPa to 10 MPa. 請求項1乃至請求項3のいずれか一項において、前記ベンゾシクロブテン樹脂はBステージ化ベンゾシクロブテン樹脂であるインプリント方法。 4. The imprinting method according to claim 1, wherein the benzocyclobutene resin is a B-staged benzocyclobutene resin. 請求項4において、前記モールドから離型する工程の後、更に前記基板を250℃乃至350℃の温度で加熱する工程を有するインプリント方法。 The imprint method according to claim 4, further comprising a step of heating the substrate at a temperature of 250 ° C. to 350 ° C. after the step of releasing from the mold. 請求項1乃至請求項5のいずれか一項において、前記ベンゾシクロブテン樹脂を含む層は、該ベンゾシクロブテン樹脂及びそれを溶解可能な有機溶剤を含むインプリント用膜形成組成物を前記基板上に塗布し、前記有機溶剤を蒸発させることにより形成されるインプリント方法。
6. The imprint film-forming composition containing the benzocyclobutene resin and an organic solvent capable of dissolving the benzocyclobutene resin on the substrate according to any one of claims 1 to 5. An imprint method formed by applying to the substrate and evaporating the organic solvent.
JP2009011099A 2009-01-21 2009-01-21 Application of benzocyclobutene resin to imprint technology, and method for forming pattern by the technology Pending JP2012061599A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009011099A JP2012061599A (en) 2009-01-21 2009-01-21 Application of benzocyclobutene resin to imprint technology, and method for forming pattern by the technology
PCT/JP2010/050719 WO2010084918A1 (en) 2009-01-21 2010-01-21 Application of benzocyclobutene resin to imprinting technique, and method for forming pattern using the technique
TW99101634A TW201031690A (en) 2009-01-21 2010-01-21 Application of benzocyclobutene for imprint technique and pattern forming method by the technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009011099A JP2012061599A (en) 2009-01-21 2009-01-21 Application of benzocyclobutene resin to imprint technology, and method for forming pattern by the technology

Publications (1)

Publication Number Publication Date
JP2012061599A true JP2012061599A (en) 2012-03-29

Family

ID=42355970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009011099A Pending JP2012061599A (en) 2009-01-21 2009-01-21 Application of benzocyclobutene resin to imprint technology, and method for forming pattern by the technology

Country Status (3)

Country Link
JP (1) JP2012061599A (en)
TW (1) TW201031690A (en)
WO (1) WO2010084918A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9853193B2 (en) 2014-06-04 2017-12-26 Dow Corning Corporation Imprinting process of hot-melt type curable silicone composition for optical devices
CN108516986B (en) * 2018-05-16 2020-11-17 西南科技大学 Benzocyclobutene-functionalized tetrakis (dimethylsiloxy) silane, method for preparing same, and method for preparing resin containing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731086A (en) * 1995-06-07 1998-03-24 Gebhardt; William F. Debossable films
DE19543540C1 (en) * 1995-11-22 1996-11-21 Siemens Ag Vertically integrated semiconductor component
JPH09241419A (en) * 1996-03-06 1997-09-16 Hitachi Ltd Solventless composition and multilayered wiring board and production thereof
KR100699712B1 (en) * 1998-11-24 2007-03-27 다우 글로벌 테크놀로지스 인크. A composition containing a cross-linkable matrix precursor and a poragen, and a porous matrix prepared therefrom
US6535105B2 (en) * 2000-03-30 2003-03-18 Avx Corporation Electronic device and process of making electronic device
JP5033003B2 (en) * 2007-05-16 2012-09-26 富士フイルム株式会社 Mold structure, imprint method using the same, magnetic recording medium and method for manufacturing the same

Also Published As

Publication number Publication date
WO2010084918A1 (en) 2010-07-29
TW201031690A (en) 2010-09-01

Similar Documents

Publication Publication Date Title
CN104246976B (en) The manufacture method of photocured product
JP4990479B2 (en) A novel planarization method for multilayer lithography processes
JP5542766B2 (en) Pattern formation method
KR101358255B1 (en) Hydrophobic mold of photo-curable type and manufacturing method for the same
EP1794655B1 (en) A material composition for nano- and micro-lithography
JP4963254B2 (en) Film-forming composition for nanoimprint, structure manufacturing method and structure
Carbaugh et al. Photolithography with polymethyl methacrylate (PMMA)
JP2007186570A (en) Photocurable resin composition and method for forming pattern
TW201038594A (en) Curable composition for nanoimprint and cured product
JP6737958B2 (en) Kit, laminate, method for producing laminate, method for producing cured product pattern, and method for producing circuit board
US20090068596A1 (en) Negative-tone,Ultraviolet Photoresists for Fabricating High Aspect Ratio Microstructures
WO2010084918A1 (en) Application of benzocyclobutene resin to imprinting technique, and method for forming pattern using the technique
Giammaria et al. Technological strategies for self-assembly of PS-b-PDMS in cylindrical sub-10 nm nanostructures for lithographic applications
KR101789921B1 (en) Method of manufacturing a nano thin-layer pattern structure
Youn et al. Microstructuring of SU-8 photoresist by UV-assisted thermal imprinting with non-transparent mold
EP1614004B1 (en) Positive tone bi-layer imprint lithography method and compositions therefor
JPWO2019172156A1 (en) Underlayer film forming composition for imprint, curable composition for imprint, kit
JP2011222834A (en) Baking apparatus, method for forming resist pattern, method for manufacturing photo mask, and method for manufacturing mold for nanoimprint
US20220026799A1 (en) Nanoimprint lithography process using low surface energy mask
JP5887871B2 (en) Film forming material and pattern forming method
Chung et al. Ultraviolet curing imprint lithography on flexible indium tin oxide substrates
US20050277066A1 (en) Selective etch process for step and flash imprint lithography
Zelsmann et al. Materials and processes in UV-assisted nanoimprint lithography
Watts et al. Methods for fabricating patterned features utilizing imprint lithography
Stacey et al. Compositions for dark-field polymerization and method of using the same for imprint lithography processes