JP4496479B2 - Current drive control method and current drive control circuit - Google Patents

Current drive control method and current drive control circuit Download PDF

Info

Publication number
JP4496479B2
JP4496479B2 JP2005141218A JP2005141218A JP4496479B2 JP 4496479 B2 JP4496479 B2 JP 4496479B2 JP 2005141218 A JP2005141218 A JP 2005141218A JP 2005141218 A JP2005141218 A JP 2005141218A JP 4496479 B2 JP4496479 B2 JP 4496479B2
Authority
JP
Japan
Prior art keywords
voltage
current value
output control
current
decrease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005141218A
Other languages
Japanese (ja)
Other versions
JP2006319753A (en
Inventor
幸徳 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005141218A priority Critical patent/JP4496479B2/en
Publication of JP2006319753A publication Critical patent/JP2006319753A/en
Application granted granted Critical
Publication of JP4496479B2 publication Critical patent/JP4496479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electronic Switches (AREA)

Description

本発明は電流駆動制御方法および電流駆動制御回路に関し、詳しくは出力制御電圧を印加してから電流が時間とともに変化する負荷に対し、出力制御電圧の台形斜辺のエッジ部分を正弦波近似する電流駆動制御方法および電流駆動制御回路に関する。 The present invention relates to a current drive control method and a current drive control circuit. More specifically, the present invention relates to a current drive that approximates a trapezoid hypotenuse edge portion of an output control voltage to a sine wave with respect to a load whose current changes with time after an output control voltage is applied. The present invention relates to a control method and a current drive control circuit.

従来技術として、図7に例示するように、通信用IC(Integrated Circuit)等において電圧の台形状の出力波形の一部(エッジ部分)を正弦波で近似することにより、ノイズを低減するようにした技術がすでに知られている(例えば、特許文献1,特許文献2参照)。この従来技術では、図8に示すように、電圧の台形斜辺の傾きを固定して制御するようにしていた。
特開2004-289597号公報 特開平9-261016号公報
As illustrated in FIG. 7, as a conventional technique, noise is reduced by approximating a part (edge part) of a trapezoidal output waveform of a voltage with a sine wave in a communication IC (Integrated Circuit) or the like. This technique is already known (for example, see Patent Document 1 and Patent Document 2). In this prior art, as shown in FIG. 8, the inclination of the trapezoid hypotenuse of the voltage is fixed and controlled.
JP 2004-289597 A JP-A-9-261016

しかし、上述した従来技術では、電圧を印加してから電流が時間とともに変化する負荷(例えば、ランプ等のラッシュ電流が流れる負荷)を駆動素子を通じて電流駆動するような場合、電圧の台形斜辺の傾きが緩やか(垂直線から離れる方向の傾きを緩やかという)になるに従って、台形斜辺のエッジ部分の正弦波近似によるノイズ低減効果が大きくなる。このため、図8に示すように、電圧の台形斜辺の傾きを通常使用電圧でノイズを低減できる傾きに固定すると、負荷にかかる電圧が高くなればなるほど電圧の台形斜辺の傾き時間ΔTが長くなり、台形斜辺の傾き時間ΔTの間に駆動素子に流れる電流が増えて駆動素子の発熱量が増大し、発熱によって駆動素子が焼き切れて故障するおそれが生じるという課題があった。したがって、ランプ等の負荷を制御する場合には、電圧の台形斜辺の傾きをできるだけ急(垂直線に近づく方向の傾きを急という)にすることが望ましいという要請が生じていた。 However, in the above-described conventional technique, when a load whose current changes with time after voltage application (for example, a load through which a rush current such as a lamp flows) is driven through a drive element, the slope of the trapezoidal hypotenuse of the voltage Becomes more gradual (the inclination in the direction away from the vertical line is called gradual), the noise reduction effect by the sinusoidal approximation of the edge portion of the trapezoid hypotenuse increases. For this reason, as shown in FIG. 8, when the slope of the trapezoid slope of the voltage is fixed to a slope that can reduce noise with the normal use voltage, the slope time ΔT of the trapezoid slope of the voltage becomes longer as the voltage applied to the load becomes higher. However, there is a problem that the current flowing through the drive element increases during the inclination time ΔT of the trapezoid hypotenuse and the amount of heat generated by the drive element increases, and the drive element may burn out due to heat generation, causing a failure. Therefore, when controlling a load such as a lamp, a demand has arisen that it is desirable to make the slope of the trapezoidal hypotenuse of the voltage as steep as possible (the slope in the direction approaching the vertical line is steep).

一方、図9に示すように、発熱によって駆動素子が焼き切れることがないように、最大電圧時に合わせて電圧の台形斜辺の傾きを急に決定すると、電圧の台形斜辺の傾き時間ΔTが短くなるので、通常使用電圧時に台形斜辺のエッジ部分を正弦波近似したことによるノイズ低減効果が減殺されるという課題があった。このため、電圧の台形斜辺の傾きをノイズ低減効果が得られる程度に緩やかにする必要があるという要請が生じていた。 On the other hand, as shown in FIG. 9, when the slope of the trapezoidal hypotenuse of the voltage is suddenly determined in accordance with the maximum voltage so that the drive element is not burned out due to heat generation, the slope time ΔT of the trapezoidal hypotenuse of the voltage is shortened. Therefore, there is a problem that the noise reduction effect due to approximation of the edge portion of the trapezoid hypotenuse at the normal operating voltage is reduced. For this reason, there has been a demand for the slope of the trapezoidal hypotenuse of the voltage to be moderate enough to obtain a noise reduction effect.

上記のように、駆動素子の故障防止のために電圧の台形斜辺の傾きをできるだけ急にすることが望ましいという要請と、電圧の台形斜辺の傾きをノイズ低減効果が得られる程度に緩やかにする必要があるという要請との相反する2つの要請があり、これらの要請を共に満たす解決策が望まれていた。 As described above, it is desirable to make the slope of the trapezoidal slope of the voltage as steep as possible to prevent failure of the drive element, and it is necessary to make the slope of the trapezoidal slope of the voltage gentle enough to obtain a noise reduction effect. There were two requests that conflicted with the request that there was, and a solution that would satisfy both of these requests was desired.

そこで、本発明の課題は、出力制御電圧のサチュレーションまでの時間(傾き時間ΔT)を駆動素子の発熱限界を考慮した最大許容時間以内のほぼ一定時間に設定することにより、発熱による駆動素子の故障を防止すると同時に、台形斜辺のエッジ部分を正弦波近似したことによるノイズ低減効果が最大限に発揮されるようにした電流駆動制御方法を提供することにある。 Accordingly, an object of the present invention is to set the time until the saturation of the output control voltage (slope time ΔT) to a substantially constant time within the maximum allowable time considering the heat generation limit of the drive element, thereby causing the drive element failure due to heat generation. It is another object of the present invention to provide a current drive control method that maximizes the noise reduction effect due to the sinusoidal approximation of the edge portion of the trapezoid hypotenuse.

また、本発明の他の課題は、上記電流駆動制御方法を実現するようにした電流駆動制御回路を提供することにある。 Another object of the present invention is to provide a current drive control circuit which realizes the current drive control method.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

請求項1記載の電流駆動制御方法は、出力制御電圧を印加してから電流が時間とともに変化する負荷を、駆動素子を通じて電流駆動する電流駆動制御方法において、前記出力制御電圧の台形斜辺のエッジ部分を正弦波近似するとともに、前記台形斜辺の傾きを電源電圧に応じて可変に制御し前記台形斜辺の傾き時間が前記駆動素子の発熱限界を考慮した最大許容時間以内のほぼ一定時間となるように設定することを特徴とする。請求項1記載の電流駆動制御方法によれば、出力制御電圧の台形斜辺のエッジ部分を正弦波近似することにより、ノイズ低減効果を得ることができる。同時に、台形斜辺の傾きを電源電圧に応じて可変に制御しノイズの発生源となる出力制御電圧の台形斜辺の傾き時間を駆動素子の発熱限界を考慮した最大許容時間以内のほぼ一定時間となるように設定したことにより、駆動素子の発熱に起因する故障を未然に防止することができる。 The current drive control method according to claim 1, wherein a load whose current changes with time after application of the output control voltage is driven through a drive element, the edge portion of the trapezoidal hypotenuse of the output control voltage. And the slope of the trapezoid hypotenuse is variably controlled according to the power supply voltage so that the tilt time of the trapezoid hypotenuse is substantially constant within the maximum allowable time considering the heat generation limit of the drive element. It is characterized by setting. According to the current drive control method of the first aspect, the noise reduction effect can be obtained by approximating the edge portion of the trapezoid hypotenuse of the output control voltage with a sine wave. At the same time, the slope of the trapezoid hypotenuse is variably controlled according to the power supply voltage, and the slope of the trapezoid hypotenuse of the output control voltage, which is the source of noise, is almost constant within the maximum allowable time considering the heat generation limit of the drive element. By setting as described above, it is possible to prevent a failure due to heat generation of the drive element.

請求項2記載の電流駆動制御方法は、出力制御電圧を印加してから電流が時間とともに変化する負荷を、充電回路の充電電圧に基づいて駆動素子を通じて電流駆動する電流駆動制御方法において、前記出力制御電圧の増減開始時点からの経過時間に基づいて定電流値を決定する第1の定電流値決定ステップと、定電流回路に流れる電流値を前記定電流値に切り換える第1の定電流値切換えステップと、基準時間の経過後、前記出力制御電圧の増減開始時点からの経過時間が第1の正弦波近似時間区間内であるかどうかを判定する第1の判定ステップと、前記出力制御電圧の増減開始時点からの経過時間が第1の正弦波近似時間区間内でなくなると前記充電回路に流れる電流値を一定傾き用電流値に設定する一定傾き用電流値設定ステップと、前記出力制御電圧が前記電源電圧の所定割合になったことを検出する電圧割合検出ステップと、前記出力制御電圧の増減開始時点からの経過時間に基づいて前記定電流値を決定する第2の定電流値決定ステップと、定電流回路に流れる電流値を前記定電流値に切り換える第2の定電流値切換えステップと、基準時間の経過後、前記出力制御電圧の増減開始時点からの経過時間が第2の正弦波近似時間区間内であるかどうかを判定する第2の判定ステップと、前記出力制御電圧の増減開始時点からの経過時間が第2の正弦波近似時間区間内でなくなると前記充電回路に流れる電流値をリーク電流相当電流値に設定するリーク電流相当電流値設定ステップとを含むことを特徴とする。請求項2記載の電流駆動制御方法によれば、ノイズ源となる出力制御電圧の台形斜辺の傾き制御の開始・終了時に正弦波近似を基準時間ごとに経過時間の目標値に向けて制御することにより、出力制御電圧の台形斜辺のエッジ部分を正弦波に近似できると同時に、出力制御電圧の台形斜辺の傾き時間をほぼ一定時間とすることができるので、ノイズおよび発熱量ともに小さくすることができるという効果がある。 The current drive control method according to claim 2, wherein a load whose current changes with time after an output control voltage is applied is driven through a drive element based on a charge voltage of a charging circuit. A first constant current value determining step for determining a constant current value based on an elapsed time from the start of increase / decrease of the control voltage, and a first constant current value switching for switching the current value flowing through the constant current circuit to the constant current value; A first determination step for determining whether an elapsed time from the start of increase / decrease in the output control voltage is within a first sine wave approximate time interval after elapse of a reference time; and A constant-inclination current value setting step for setting a current value flowing through the charging circuit to a constant-inclination current value when the elapsed time from the start of increase / decrease is not within the first approximate sine wave approximate time section; A voltage ratio detection step for detecting that the output control voltage has reached a predetermined ratio of the power supply voltage, and a second constant value for determining the constant current value based on an elapsed time from the start of increase / decrease in the output control voltage. A current value determining step, a second constant current value switching step for switching the current value flowing through the constant current circuit to the constant current value, and an elapsed time from the start of increase / decrease of the output control voltage after a lapse of a reference time. A second determination step for determining whether or not the current value is within the approximate sine wave approximate time interval, and the charging circuit when the elapsed time from the increase / decrease start time of the output control voltage is not within the second approximate sine wave approximate time interval. And a leakage current equivalent current value setting step of setting the current value flowing through the current value to a leakage current equivalent current value. According to the current drive control method of the second aspect, the sine wave approximation is controlled toward the target value of the elapsed time for each reference time at the start / end of the slope control of the trapezoid hypotenuse of the output control voltage serving as a noise source. Thus, the trapezoid hypotenuse edge portion of the output control voltage can be approximated to a sine wave, and at the same time, the slope time of the trapezoid hypotenuse of the output control voltage can be made almost constant, so that both noise and heat generation can be reduced. There is an effect.

請求項3記載の電流駆動制御方法は、出力制御電圧を印加してから電流が時間とともに変化する負荷を、充電回路の充電電圧に基づいて駆動素子を通じて電流駆動する電流駆動制御方法において、前記出力制御電圧の増減開始時点からの増減電圧に基づいて定電流値を決定する第1の定電流値決定ステップと、定電流回路に流れる電流値を前記定電流値に切り換える第1の定電流値切換えステップと、出力制御電圧の増減変動が基準電圧を越えた後、前記出力制御電圧の増減開始時点からの増減電圧が第1の正弦波近似電圧区間内であるかどうかを判定する第1の判定ステップと、前記出力制御電圧の増減開始時点からの増減電圧が第1の正弦波近似電圧区間内でなくなると前記充電回路に流れる電流値を一定傾き用電流値に設定する一定傾き用電流値設定ステップと、前記出力制御電圧が前記電源電圧の所定割合になったことを検出する電圧割合検出ステップと、前記出力制御電圧の増減開始時点からの増減電圧に基づいて前記定電流値を決定する第2の定電流値決定ステップと、定電流回路に流れる電流値を前記定電流値に切り換える第2の定電流値切換えステップと、出力制御電圧の増減変動が基準電圧を越えた後、前記出力制御電圧の増減開始時点からの増減電圧が第2の正弦波近似電圧区間内であるかどうかを判定する第2の判定ステップと、前記出力制御電圧の増減開始時点からの経過時間が第2の正弦波近似電圧区間内でなくなると前記充電回路に流れる電流値をリーク電流相当電流値に設定するリーク電流相当電流値設定ステップとを含むことを特徴とする。請求項3記載の電流駆動制御方法によれば、ノイズ源となる出力制御電圧の台形斜辺の傾き制御の開始・終了時に正弦波近似を基準電圧ごとに増減電圧の目標値に向けて制御することにより、出力制御電圧の台形斜辺のエッジ部分を正弦波に近似できると同時に、出力制御電圧の台形斜辺の傾き時間をほぼ一定時間とすることができるので、ノイズおよび発熱量ともに小さくすることができるという効果がある。 The current drive control method according to claim 3, wherein a load whose current changes with time after an output control voltage is applied is driven through a drive element based on a charge voltage of a charging circuit. A first constant current value determining step for determining a constant current value based on an increase / decrease voltage from the start of increase / decrease of the control voltage, and a first constant current value switching for switching the current value flowing in the constant current circuit to the constant current value And a first determination for determining whether the increase / decrease voltage from the start point of the increase / decrease of the output control voltage is within the first approximate sine wave voltage section after the increase / decrease fluctuation of the output control voltage exceeds the reference voltage. Step, and when the increase / decrease voltage from the start of increase / decrease of the output control voltage is not within the first sine wave approximate voltage section, the current value flowing through the charging circuit is set to a constant slope current value. Current value setting step, voltage ratio detection step for detecting that the output control voltage has reached a predetermined ratio of the power supply voltage, and the constant current value based on the increase / decrease voltage from the start of increase / decrease of the output control voltage A second constant current value determining step for determining the current value, a second constant current value switching step for switching the current value flowing through the constant current circuit to the constant current value, and after the fluctuation of the output control voltage exceeds the reference voltage A second determination step for determining whether the increase / decrease voltage from the increase / decrease start time of the output control voltage is within a second sinusoidal approximate voltage interval, and the elapsed time from the increase / decrease start point of the output control voltage And a leakage current equivalent current value setting step of setting a current value flowing through the charging circuit to a leakage current equivalent current value when it is not within the second sinusoidal approximate voltage section. According to the current drive control method of the third aspect, the sine wave approximation is controlled toward the target value of the increase / decrease voltage for each reference voltage at the start / end of the slope control of the trapezoid hypotenuse of the output control voltage serving as a noise source. Thus, the trapezoid hypotenuse edge portion of the output control voltage can be approximated to a sine wave, and at the same time, the slope time of the trapezoid hypotenuse of the output control voltage can be made almost constant, so that both noise and heat generation can be reduced. There is an effect.

請求項4記載の電流駆動制御方法は、請求項1ないし請求項3のいずれか1項に記載の電流駆動制御方法において、前記負荷が、ランプであることを特徴とする。請求項4記載の電流駆動制御方法によれば、ランプの電流駆動に用いられる駆動素子の発熱による故障を大幅に低減することができる。 The current drive control method according to claim 4 is the current drive control method according to any one of claims 1 to 3, wherein the load is a lamp. According to the current drive control method of the fourth aspect, failure due to heat generation of the drive element used for current drive of the lamp can be greatly reduced.

請求項5記載の電流駆動制御方法は、請求項1ないし請求項4のいずれか1項に記載の電流駆動制御方法において、前記駆動素子が、電界効果トランジスタであることを特徴とする。請求項5記載の電流駆動制御方法によれば、駆動素子である電界効果トランジスタの発熱による故障を大幅に低減することができる。 The current drive control method according to claim 5 is the current drive control method according to any one of claims 1 to 4, wherein the drive element is a field effect transistor. According to the current drive control method of the fifth aspect, failure due to heat generation of the field effect transistor as the drive element can be greatly reduced.

請求項6記載の電流駆動制御回路は、出力制御電圧を印加してから電流が時間とともに変化する負荷と、電源電圧が印加された電流検出用抵抗と、前記負荷と前記電流検出用抵抗との間に接続され、前記負荷を電流駆動する駆動素子と、前記電流検出用抵抗の電圧に基づいて電流を検出する電流検出回路と、前記出力制御電圧が前記電源電圧の所定割合になったことを検出する電圧割合検出回路と、前記出力制御電圧の台形斜辺のエッジ部分を正弦波近似するとともに、前記台形斜辺の傾きを電源電圧に応じて可変に制御して前記台形斜辺の傾き時間を前記駆動素子の発熱限界を考慮した最大許容時間以内に制御する電流値を設定する傾き制御回路と、前記傾き制御回路からの電流値に基づいて電流を切り換える定電流回路と、前記定電流回路からの定電流により充電される充電回路と、前記電流検出回路の検出電圧と前記充電回路の充電電圧との差分電圧で前記駆動素子を制御するコンパレータとを有することを特徴とする。請求項6記載の電流駆動制御回路によれば、出力制御電圧の台形斜辺のエッジ部分を正弦波近似することにより、ノイズ低減効果を得ることができる。同時に、台形斜辺の傾きを電源電圧に応じて可変に制御しノイズの発生源である出力制御電圧の台形斜辺の傾き時間を駆動素子の発熱限界を考慮した最大許容時間以内のほぼ一定時間となるように設定したことにより、駆動素子の発熱に起因する故障を未然に防止することができる。 The current drive control circuit according to claim 6 includes: a load in which the current changes with time after the output control voltage is applied; a current detection resistor to which a power supply voltage is applied; and the load and the current detection resistor. A drive element that is connected in between and that drives the load with current, a current detection circuit that detects current based on the voltage of the current detection resistor, and the output control voltage is a predetermined ratio of the power supply voltage. A voltage ratio detection circuit to detect and an edge portion of the trapezoid hypotenuse of the output control voltage are approximated by a sine wave, and the tilt time of the trapezoid hypotenuse is controlled by variably controlling the slope of the trapezoid hypotenuse according to a power supply voltage. A slope control circuit for setting a current value to be controlled within the maximum allowable time considering the heat generation limit of the element, a constant current circuit for switching current based on the current value from the slope control circuit, and the constant current circuit A charging circuit which is charged by the constant current from, and having a comparator for controlling the drive device at a differential voltage between the detection voltage and the charging voltage of the charging circuit of the current detection circuit. According to the current drive control circuit of the sixth aspect, the noise reduction effect can be obtained by approximating the edge portion of the trapezoid hypotenuse of the output control voltage with a sine wave. At the same time, the slope of the trapezoid hypotenuse is variably controlled according to the power supply voltage, and the slope of the trapezoid hypotenuse of the output control voltage, which is the source of noise, is almost constant within the maximum allowable time considering the heat generation limit of the drive element. By setting as described above, it is possible to prevent a failure due to heat generation of the drive element.

請求項7記載の電流駆動制御回路は、出力制御電圧を印加してから電流が時間とともに変化する負荷と、電源電圧が印加された電流検出用抵抗と、前記負荷と前記電流検出用抵抗との間に接続され、前記負荷を電流駆動する駆動素子と、前記電流検出用抵抗の電圧に基づいて電流を検出する電流検出回路と、前記出力制御電圧が前記電源電圧の所定割合になったことを検出する電圧割合検出回路と、前記出力制御電圧の増減開始時点からの経過時間に基づいて定電流値を決定し、前記定電流値に切り換え、基準時間の経過後、前記出力制御電圧の増減開始時点からの経過時間が第1の正弦波近似時間区間内であれば繰り返し、前記出力制御電圧の増減開始時点からの経過時間が第1の正弦波近似時間区間内でなくなると定電流値を一定傾き用電流値に設定し、前記出力制御電圧が前記電源電圧の所定割合になったことを検出し、前記出力制御電圧の増減開始時点からの経過時間に基づいて定電流値を決定し、前記定電流値に切り換え、基準時間の経過後、前記出力制御電圧の増減開始時点からの経過時間が第2の正弦波近似時間区間内であれば繰り返し、前記出力制御電圧の増減開始時点からの経過時間が第2の正弦波近似時間区間内でなくなると定電流値を一定傾き用電流値に設定することにより、前記出力制御電圧の台形斜辺のエッジ部分を正弦波近似するとともに、前記台形斜辺の傾きを電源電圧に応じて可変に制御して前記台形斜辺の傾き時間を前記駆動素子の発熱限界を考慮した最大許容時間以内に制御する電流値を設定する傾き制御回路と、前記傾き制御回路からの電流値に基づいて電流を切り換える定電流回路と、前記定電流回路からの定電流により充電される充電回路と、前記電流検出回路の検出電圧と前記充電回路の充電電圧との差分電圧で前記駆動素子を制御するコンパレータとを有することを特徴とする。請求項7記載の電流駆動制御回路によれば、ノイズ源となる出力制御電圧の台形斜辺の傾き制御の開始・終了時に正弦波近似を基準時間ごとに経過時間の目標値に向けて制御することにより、出力制御電圧の台形斜辺のエッジ部分を正弦波に近似できると同時に、出力制御電圧の台形斜辺の傾き時間をほぼ一定時間とすることができるので、ノイズおよび発熱量ともに小さくすることができるという効果がある。 The current drive control circuit according to claim 7 includes: a load in which the current changes with time after the output control voltage is applied; a current detection resistor to which a power supply voltage is applied; and the load and the current detection resistor. A drive element that is connected in between and that drives the load with current, a current detection circuit that detects current based on the voltage of the current detection resistor, and the output control voltage is a predetermined ratio of the power supply voltage. A constant current value is determined based on a voltage ratio detection circuit to detect and an elapsed time from the start of increase / decrease of the output control voltage, and is switched to the constant current value. After a reference time elapses, the increase / decrease of the output control voltage starts. If the elapsed time from the time is within the first sine wave approximate time interval, the constant current value is constant when the elapsed time from the start of increase / decrease of the output control voltage is not within the first sine wave approximate time interval. For tilt Set the current value, detects that the output control voltage has reached a predetermined ratio of the power supply voltage, determines a constant current value based on the elapsed time from the start of increase or decrease of the output control voltage, the constant current After the lapse of a reference time, if the elapsed time from the start of increase / decrease of the output control voltage is within the second sine wave approximate time interval, the elapsed time from the start of increase / decrease of the output control voltage is repeated. By setting the constant current value to a constant slope current value when the second sinusoidal approximate time interval is not reached, the trapezoid hypotenuse edge portion of the output control voltage is approximated to a sinusoidal wave, and the slope of the trapezoid hypotenuse is A slope control circuit that variably controls the power supply voltage to control the slope time of the trapezoid hypotenuse within a maximum allowable time in consideration of the heat generation limit of the drive element, and a power supply from the slope control circuit. A constant current circuit that switches a current based on a value; a charging circuit that is charged by a constant current from the constant current circuit; and a driving voltage that is a difference voltage between a detection voltage of the current detection circuit and a charging voltage of the charging circuit. And a comparator for controlling. According to the current drive control circuit of the seventh aspect, the sine wave approximation is controlled toward the target value of the elapsed time for each reference time at the start / end of the slope control of the trapezoid hypotenuse of the output control voltage serving as a noise source. Thus, the trapezoid hypotenuse edge portion of the output control voltage can be approximated to a sine wave, and at the same time, the slope time of the trapezoid hypotenuse of the output control voltage can be made almost constant, so that both noise and heat generation can be reduced. There is an effect.

請求項8記載の電流駆動制御方法は、出力制御電圧を印加してから電流が時間とともに変化する負荷と、電源電圧が印加された電流検出用抵抗と、前記負荷と前記電流検出用抵抗との間に接続され、前記負荷を電流駆動する駆動素子と、前記電流検出用抵抗の電圧に基づいて電流を検出する電流検出回路と、前記出力制御電圧が前記電源電圧の所定割合になったことを検出する電圧割合検出回路と、前記出力制御電圧の増減開始時点からの増減電圧に基づいて定電流値を決定し、前記定電流値に切り換え、出力制御電圧の増減変動が基準電圧を越えた後、前記出力制御電圧の増減開始時点からの増減電圧が第1の正弦波近似電圧区間内であれば繰り返し、前記出力制御電圧の増減開始時点からの増減電圧が第1の正弦波近似電圧区間内でなくなると定電流値を一定傾き用電流値に設定し、前記出力制御電圧が前記電源電圧の所定割合になったことを検出し、前記出力制御電圧の増減開始時点からの増減電圧に基づいて定電流値を決定し、前記定電流値に切り換え、出力制御電圧の増減変動が基準電圧を越えた後、前記出力制御電圧の増減開始時点からの増減電圧が第2の正弦波近似電圧区間内であれば繰り返し、前記出力制御電圧の増減開始時点からの経過時間が第2の正弦波近似電圧区間内でなくなると定電流値を一定傾き用電流値に設定することにより、前記出力制御電圧の台形斜辺のエッジ部分を正弦波近似するとともに、前記台形斜辺の傾きを電源電圧に応じて可変に制御して前記台形斜辺の傾き時間を前記駆動素子の発熱限界を考慮した最大許容時間以内に制御する電流値を設定する傾き制御回路と、前記傾き制御回路からの電流値に基づいて電流を切り換える定電流回路と、前記定電流回路からの定電流により充電される充電回路と、前記電流検出回路の検出電圧と前記充電回路の充電電圧との差分電圧で前記駆動素子を制御するコンパレータとを有することを特徴とする。請求項8記載の電流駆動制御回路によれば、ノイズ源となる出力制御電圧の台形斜辺の傾き制御の開始・終了時に正弦波近似を基準電圧ごとに増減電圧の目標値に向けて制御することにより、出力制御電圧の台形斜辺のエッジ部分を正弦波に近似できると同時に、出力制御電圧の台形斜辺の傾き時間をほぼ一定時間とすることができるので、ノイズおよび発熱量ともに小さくすることができるという効果がある。 The current drive control method according to claim 8 includes: a load in which the current changes with time after the output control voltage is applied; a current detection resistor to which a power supply voltage is applied; and the load and the current detection resistor. A drive element that is connected in between and that drives the load with current, a current detection circuit that detects current based on the voltage of the current detection resistor, and the output control voltage is a predetermined ratio of the power supply voltage. A constant current value is determined based on a voltage ratio detection circuit to detect and an increase / decrease voltage from the start of increase / decrease of the output control voltage, and after switching to the constant current value, an increase / decrease fluctuation of the output control voltage exceeds a reference voltage If the increase / decrease voltage from the increase / decrease start point of the output control voltage is within the first sinusoidal approximate voltage interval, the increase / decrease voltage from the increase / decrease start point of the output control voltage is within the first sinusoidal approximate voltage interval. Not Then, the constant current value is set to a constant slope current value, and it is detected that the output control voltage has reached a predetermined ratio of the power supply voltage, and is determined based on the increase / decrease voltage from the start of increase / decrease of the output control voltage. After the current value is determined and switched to the constant current value, and the fluctuation of the output control voltage exceeds the reference voltage, the voltage increase / decrease from the start of the increase / decrease of the output control voltage is within the second sine wave approximate voltage section. If there is a repetition, if the elapsed time from the start of increase / decrease in the output control voltage is not within the second approximated sine wave approximate voltage section, a constant current value is set to a constant slope current value, thereby generating a trapezoid of the output control voltage. The edge of the hypotenuse is approximated by a sine wave, and the slope of the trapezoid hypotenuse is variably controlled according to the power supply voltage so that the tilt time of the trapezoid hypotenuse is controlled within the maximum allowable time considering the heat generation limit of the drive element. Current A slope control circuit that sets the current, a constant current circuit that switches current based on a current value from the slope control circuit, a charging circuit that is charged by a constant current from the constant current circuit, and a detection voltage of the current detection circuit And a comparator for controlling the driving element with a differential voltage between the charging voltage of the charging circuit and the charging voltage of the charging circuit. According to the current drive control circuit of claim 8, the sine wave approximation is controlled toward the target value of the increase / decrease voltage for each reference voltage at the start / end of the slope control of the trapezoid hypotenuse of the output control voltage that becomes a noise source. Thus, the trapezoid hypotenuse edge portion of the output control voltage can be approximated to a sine wave, and at the same time, the slope time of the trapezoid hypotenuse of the output control voltage can be made almost constant, so that both noise and heat generation can be reduced. There is an effect.

請求項9記載の電流駆動制御回路は、前記負荷が、ランプである請求項6ないし請求項8のいずれか1項に記載の電流駆動制御回路において、前記負荷が、ランプであることを特徴とする。請求項9記載の電流駆動制御回路によれば、ランプの電流駆動に用いられる駆動素子の発熱による故障を大幅に低減することができる。 9. The current drive control circuit according to claim 9, wherein the load is a lamp, wherein the load is a lamp. To do. According to the current drive control circuit of the ninth aspect, failure due to heat generation of the drive element used for the current drive of the lamp can be greatly reduced.

請求項10記載の電流駆動制御回路は、請求項6ないし請求項9のいずれか1項に記載の電流駆動制御回路において、前記駆動素子が、電界効果トランジスタであることを特徴とする。請求項10記載の電流駆動制御回路によれば、駆動素子である電界効果トランジスタの発熱による故障を大幅に低減することができる。 A current drive control circuit according to a tenth aspect is the current drive control circuit according to any one of the sixth to ninth aspects, wherein the drive element is a field effect transistor. According to the current drive control circuit of the tenth aspect, failure due to heat generation of the field effect transistor as the drive element can be greatly reduced.

出力制御電圧を印加してから電流が時間とともに変化する負荷に対し、出力制御電圧の台形斜辺のエッジ部分を正弦波近似するとともに、台形斜辺の傾きを電源電圧に応じて可変に制御し台形斜辺の傾き時間を駆動素子の発熱限界を考慮した最大許容時間以内のほぼ一定時間となるように設定する。 For a load whose current changes with time after the output control voltage is applied, the trapezoid hypotenuse edge of the output control voltage is approximated by a sine wave, and the trapezoid hypotenuse slope is variably controlled according to the power supply voltage. Is set to be a substantially constant time within the maximum allowable time considering the heat generation limit of the driving element.

以下、本発明の実施例について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1に係る電流駆動制御回路を示すブロック図である。本実施例1に係る電流駆動制御回路は、電源電圧(バッテリ電圧)Vaが印加された電流検出用抵抗R1と、電流検出用抵抗R1の電圧に基づいて電流iを検出する電流検出回路CO1と、電源,グランド間に直列に接続された抵抗R2およびR3と、出力制御電圧Vbが電源電圧Vaの所定割合になったことを検出する電圧割合検出回路CO2と、電圧割合検出回路CO2の出力に基づいて出力制御電圧Vbの台形斜辺の傾き制御を行う傾き制御回路10と、傾き制御回路10に接続された計時用のタイマ振動子20と、制御電源電圧Vccに一端が接続され傾き制御回路10により電流が切り換えられる定電流回路30と、定電流回路30とグランドとの間に介挿されたコンデンサ(充電回路)C1と、電流検出回路CO1の検出電圧とコンデンサC1の充電電圧との差分電圧を出力するコンパレータCO3と、コンパレータCO3からの差分電圧に応じて電流iを制御する駆動素子40と、駆動素子40を通過する電流iによって駆動されるランプ(負荷)50とから構成されている。 FIG. 1 is a block diagram illustrating a current drive control circuit according to the first embodiment of the present invention. The current drive control circuit according to the first embodiment includes a current detection resistor R1 to which a power supply voltage (battery voltage) Va is applied, and a current detection circuit CO1 that detects a current i based on the voltage of the current detection resistor R1. The resistors R2 and R3 connected in series between the power source and the ground, the voltage ratio detection circuit CO2 for detecting that the output control voltage Vb has reached a predetermined ratio of the power supply voltage Va, and the output of the voltage ratio detection circuit CO2 Based on the inclination control circuit 10 for controlling the inclination of the trapezoidal hypotenuse of the output control voltage Vb, the timer oscillator 20 for timing connected to the inclination control circuit 10, and the inclination control circuit 10 having one end connected to the control power supply voltage Vcc. A constant current circuit 30 whose current is switched by the capacitor, a capacitor (charging circuit) C1 interposed between the constant current circuit 30 and the ground, and a detection voltage of the current detection circuit CO1. A comparator CO3 that outputs a differential voltage from the charging voltage of the capacitor C1, a drive element 40 that controls the current i according to the differential voltage from the comparator CO3, and a lamp (load) that is driven by the current i that passes through the drive element 40 50).

電流検出回路CO1は、一対の入力端子が電流検出用抵抗R1の両端に接続されており、事前に分かっている電流検出用抵抗R1の抵抗値から電流iを検知する。 The current detection circuit CO1 has a pair of input terminals connected to both ends of the current detection resistor R1, and detects the current i from the resistance value of the current detection resistor R1 known in advance.

電圧割合検出回路CO2は、一方の入力端子が電源電圧Vaを分圧する抵抗R2と抵抗R3との接続点に接続され、他方の入力端子に出力制御電圧Vbが印加されているので、出力制御電圧Vbが電源電圧Vaに対して所定割合(R3/(R2+R3))となったことを検出する。ここでいう所定割合とは、図3中に示す出力制御電圧Vbの台形斜辺の第2エッジを正弦波近似する第2の正弦波近似時間区間の開始時点を決定するものであり、例えば、0.7(70%),0.8(80%)等の値にあらかじめ設定されている。 In the voltage ratio detection circuit CO2, one input terminal is connected to a connection point between the resistor R2 and the resistor R3 that divides the power supply voltage Va, and the output control voltage Vb is applied to the other input terminal. It is detected that Vb has become a predetermined ratio (R3 / (R2 + R3)) with respect to the power supply voltage Va. The predetermined ratio here determines the start time point of the second sine wave approximate time interval that approximates the second edge of the trapezoid hypotenuse of the output control voltage Vb shown in FIG. .7 (70%), 0.8 (80%), etc. are preset.

定電流回路30は、一端に制御電源電圧Vccを印加され、他端がコンデンサC1に接続されている。 The constant current circuit 30 has a control power supply voltage Vcc applied to one end and the other end connected to the capacitor C1.

コンデンサC1は、定電流回路30からの定電流を充電する充電回路の役目をする。 The capacitor C1 serves as a charging circuit that charges the constant current from the constant current circuit 30.

コンパレータCO3は、電流検出用抵抗R1の電流iに応じた検出電圧を電流検出回路CO1を介してフィードバックし、コンデンサC1の充電電圧との差分電圧で、駆動素子40を制御する。 The comparator CO3 feeds back a detection voltage corresponding to the current i of the current detection resistor R1 via the current detection circuit CO1, and controls the drive element 40 with a differential voltage from the charging voltage of the capacitor C1.

駆動素子40は、例えば、電界効果トランジスタ(FET:Field Effect Transistor)で形成され、より具体的には、金属酸化膜半導体電界効果トランジスタ(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)で形成されている The drive element 40 is formed of, for example, a field effect transistor (FET), more specifically, a metal oxide semiconductor field effect transistor (MOSFET).

ランプ50は、出力制御電圧Vbを印加してから電流iが時間とともに変化する負荷である。詳しくは、ランプ50は、通電開始時には低温度でインピーダンスが低く大電流(ラッシュ電流)が流れるが、時間とともに温度が上がりインピーダンスが高くなって電流iが低下するような負荷である。ランプ50のような負荷の場合、何らかの対策をとらなければ、通電開始時のラッシュ電流によって駆動素子40が焼き切れるおそれが高い。 The lamp 50 is a load in which the current i changes with time after the output control voltage Vb is applied. Specifically, the lamp 50 is a load at which, when energization starts, the impedance is low and a large current (rush current) flows at a low temperature, but the temperature increases with time and the impedance increases and the current i decreases. In the case of a load such as the lamp 50, the drive element 40 is likely to be burned out by a rush current at the start of energization unless some measures are taken.

図2は、傾き制御回路10における処理を説明するフローチャートである。 FIG. 2 is a flowchart for explaining processing in the inclination control circuit 10.

図3は、本発明の実施例1に係る電流駆動制御方法を説明する図である。この電流駆動制御方法では、傾き制御回路10は、タイマ振動子20からのクロックを計時して、出力制御電圧Vbの台形斜辺のエッジ部分を正弦波近似するとともに、台形斜辺の傾きを電源電圧Vaに応じて可変に制御し台形斜辺の傾き時間ΔTを駆動素子40の発熱限界を考慮した最大許容時間以内のほぼ一定時間となるように設定する。出力制御電圧Vbの台形斜辺のエッジ部分を正弦波近似する手順としては、出力制御電圧Vbの増減開始時点からの経過時間に基づいて定電流値を決定し、コンデンサC1に流す定電流値を切り換え、基準時間dt(第1または第2の正弦波近似時間区間を複数に分割する一定時間とする)の経過後、出力制御電圧Vbの増減開始時点からの経過時間が第1の正弦波近似時間区間(例えば、出力制御電圧Vbが電源電圧Vaの30%,20%等となることが想定される時間)内であるかどうかを判定し、経過時間が第1の正弦波近似時間区間内であれば繰り返す。そして、出力制御電圧Vbの増減開始時点からの経過時間が第1の正弦波近似時間区間内でなくなると、定電流値を一定傾き用電流値に設定する。一定傾き用電流値は、図3中の一定の傾き区間に相当するものであり、第1の正弦波近似時間区間,一定の傾き区間の時間および第2の正弦波近似時間区間の和が、出力制御電圧Vbの台形斜辺の傾き時間ΔTとなり、駆動素子40の発熱限界を考慮した最大許容時間以内のほぼ一定時間となるように設定される。次に、出力制御電圧Vbが電源電圧Vaの所定割合(R3/(R2+R3):例えば、70%,80%等)になったことを検出する。出力制御電圧Vbが電源電圧Vaの所定割合になると、出力制御電圧Vbの増減開始時点からの経過時間に基づいて定電流値を決定し、この定電流値に定電流回路30を切り換え、基準時間dtの経過後、出力制御電圧Vbの増減開始時点からの経過時間が第2の正弦波近似時間区間(例えば、出力制御電圧Vbが電源電圧Vaの100%近傍となることが想定される時間)内であるかどうかを判定し、経過時間が第2の正弦波近似時間区間内であれば繰り返す。そして、出力制御電圧Vbの増減開始時点からの経過時間が第2の正弦波近似時間区間内でなくなると、定電流値をコンデンサC1のリーク電流相当電流値に設定する。なお、図3では、出力制御電圧Vbの台形斜辺の第1のエッジ部分(立上がりエッジ部分)についての電流駆動制御方法について説明したが、出力制御電圧Vbの台形斜辺の第2のエッジ部分(立下がりエッジ部分)についても同様に制御することができる。 FIG. 3 is a diagram for explaining the current drive control method according to the first embodiment of the present invention. In this current drive control method, the inclination control circuit 10 measures the clock from the timer oscillator 20 and approximates the edge portion of the trapezoid hypotenuse of the output control voltage Vb as a sine wave, and the slope of the trapezoid hypotenuse is set to the power supply voltage Va. Accordingly, the slope time ΔT of the trapezoid hypotenuse is set so as to be a substantially constant time within the maximum allowable time considering the heat generation limit of the drive element 40. The procedure for approximating the trapezoid hypotenuse edge of the output control voltage Vb as a sine wave is to determine a constant current value based on the elapsed time from the start of increase / decrease of the output control voltage Vb, and to switch the constant current value that flows to the capacitor C1. After the elapse of the reference time dt (a fixed time for dividing the first or second approximated sine wave approximate time section into a plurality of times), the elapsed time from the start of increase / decrease of the output control voltage Vb is the first approximated sine wave time It is determined whether it is within a section (for example, a time when the output control voltage Vb is assumed to be 30%, 20%, etc. of the power supply voltage Va), and the elapsed time is within the first sine wave approximate time section. Repeat if there is. When the elapsed time from the increase / decrease start time of the output control voltage Vb is not within the first approximate sine wave approximate time section, the constant current value is set to the constant slope current value. The constant slope current value corresponds to the constant slope section in FIG. 3, and the sum of the first sine wave approximate time section, the constant slope section time, and the second sine wave approximate time section is: The slope time ΔT of the trapezoidal hypotenuse of the output control voltage Vb is set to be a substantially constant time within the maximum allowable time considering the heat generation limit of the drive element 40. Next, it is detected that the output control voltage Vb has reached a predetermined ratio (R3 / (R2 + R3): for example, 70%, 80%, etc.) of the power supply voltage Va. When the output control voltage Vb reaches a predetermined ratio of the power supply voltage Va, a constant current value is determined based on an elapsed time from the start of increase / decrease of the output control voltage Vb, the constant current circuit 30 is switched to this constant current value, and a reference time After elapse of dt, the elapsed time from the start of increase / decrease of the output control voltage Vb is a second approximate sine wave time interval (for example, the time when the output control voltage Vb is assumed to be close to 100% of the power supply voltage Va). If the elapsed time is within the second sine wave approximate time interval, the process is repeated. When the elapsed time from the start of increase / decrease of the output control voltage Vb is not within the second sine wave approximate time interval, the constant current value is set to the leakage current equivalent current value of the capacitor C1. In FIG. 3, the current drive control method for the first edge portion (rising edge portion) of the trapezoidal hypotenuse of the output control voltage Vb has been described. However, the second edge portion (rising edge) of the trapezoid hypotenuse of the output control voltage Vb has been described. The same control can be performed for the falling edge portion.

次に、このように構成された実施例1に係る電流駆動制御回路の動作について、図1ないし図3を参照しながら説明する。 Next, the operation of the current drive control circuit according to the first embodiment configured as described above will be described with reference to FIGS.

まず、傾き制御回路10は、出力制御電圧Vbの増減開始時点からの経過時間より定電流値(回路的にあらかじめ設計された値)を決定し(ステップS101)、定電流回路30に流れる電流を定電流値に切り換える(ステップS102)。 First, the slope control circuit 10 determines a constant current value (a value designed in advance in terms of circuit) from the elapsed time from the start of increase / decrease of the output control voltage Vb (step S101), and the current flowing through the constant current circuit 30 is determined. Switching to a constant current value (step S102).

すると、定電流回路30に流れる定電流によってコンデンサC1が充電され、コンパレータCO3は、コンデンサC1の充電電圧と電流検出回路CO1の検出電圧との差分電圧によって制御されて、出力制御電圧Vbの増減分が次第に大きくなる正弦波近似された出力制御電圧Vbを発生する。この出力制御電圧Vbを印加されたランプ50が駆動され、電流値が変化しながら発光する。 Then, the capacitor C1 is charged by the constant current flowing through the constant current circuit 30, and the comparator CO3 is controlled by the differential voltage between the charging voltage of the capacitor C1 and the detection voltage of the current detection circuit CO1, thereby increasing or decreasing the output control voltage Vb. Generates an output control voltage Vb approximated to a sine wave. The lamp 50 to which the output control voltage Vb is applied is driven and emits light while changing the current value.

次に、傾き制御回路10は、タイマ振動子20からのクロックに基づいて、出力制御電圧Vbの増減開始時点からの経過時間が第1の正弦波近似時間区間内であるかどうかを判定し(ステップS103)、第1の正弦波近似時間区間内であれば(ステップS103:YES)、ステップS101に制御を戻す。 Next, the inclination control circuit 10 determines whether or not the elapsed time from the increase / decrease start time of the output control voltage Vb is within the first sine wave approximate time interval based on the clock from the timer oscillator 20 ( If it is within the first sine wave approximate time interval (step S103) (step S103: YES), the control is returned to step S101.

出力制御電圧Vbの増減開始時点からの経過時間が第1の正弦波近似時間区間でなくなると(ステップS103:NO)、傾き制御回路10は、一定傾き用電流値に設定する(ステップS104)。これにより、出力制御電圧Vbが一定の傾きで増加する一定の傾き区間が開始する。 When the elapsed time from the start of increase / decrease of the output control voltage Vb is not the first approximate sine wave time interval (step S103: NO), the slope control circuit 10 sets the current value for constant slope (step S104). As a result, a constant slope section in which the output control voltage Vb increases with a constant slope starts.

次に、傾き制御回路10は、出力制御電圧Vbと電圧割合検出回路CO2から電源電圧Vaを所定割合(R3/(R2+R3))で分圧した電圧とを入力し、差分電圧に基づいて出力制御電圧Vbが電源電圧Vaの所定割合になったかどうかを検出する(ステップS105)。 Next, the gradient control circuit 10 receives the output control voltage Vb and the voltage obtained by dividing the power supply voltage Va at a predetermined ratio (R3 / (R2 + R3)) from the voltage ratio detection circuit CO2, and performs output control based on the differential voltage. It is detected whether or not the voltage Vb has reached a predetermined ratio of the power supply voltage Va (step S105).

出力制御電圧Vbが電源電圧Vaの所定割合になったのであれば(ステップS105:YES)、傾き制御回路10は、出力制御電圧Vbの増減開始時点からの経過時間より定電流値を決定し(ステップS106)、定電流回路30に流れる電流を定電流値に切り換える(ステップS107)。 If the output control voltage Vb has reached a predetermined ratio of the power supply voltage Va (step S105: YES), the slope control circuit 10 determines a constant current value from the elapsed time from the start of increase / decrease of the output control voltage Vb ( In step S106, the current flowing through the constant current circuit 30 is switched to a constant current value (step S107).

すると、定電流回路30に流れる定電流によってコンデンサC1が充電され、コンパレータCO3は、コンデンサC1の充電電圧と電流検出回路CO1の検出電圧との差分電圧によって制御されて、出力制御電圧Vbの増減分が次第に小さくなる正弦波近似された出力制御電圧Vbを発生する。この出力制御電圧Vbを印加されたランプ50が駆動され、電流値が変化しながら発光する。 Then, the capacitor C1 is charged by the constant current flowing through the constant current circuit 30, and the comparator CO3 is controlled by the differential voltage between the charging voltage of the capacitor C1 and the detection voltage of the current detection circuit CO1, thereby increasing or decreasing the output control voltage Vb. The output control voltage Vb approximated to a sine wave is generated. The lamp 50 to which the output control voltage Vb is applied is driven and emits light while changing the current value.

次に、傾き制御回路10は、出力制御電圧Vbの増減開始時点からの経過時間が第2の正弦波近似時間区間内であるかどうかを判定し(ステップS108)、第2の正弦波近似時間区間内であれば(ステップS108:YES)、ステップS106に制御を戻す。 Next, the slope control circuit 10 determines whether or not the elapsed time from the increase / decrease start time of the output control voltage Vb is within the second sine wave approximation time interval (step S108), and the second sine wave approximation time. If it is within the section (step S108: YES), the control is returned to step S106.

出力制御電圧Vbの増減開始時点からの経過時間が第2の正弦波近似時間区間でなくなると(ステップS108:NO)、傾き制御回路10は、コンデンサC1のリーク電流相当電流値に設定する(ステップS109)。 When the elapsed time from the start of increase / decrease in the output control voltage Vb is not the second approximate sine wave approximate time interval (step S108: NO), the slope control circuit 10 sets the current value corresponding to the leakage current of the capacitor C1 (step S108). S109).

すると、図3に示すように、コンデンサC1の充電電圧が一定に保たれるので、一定の出力制御電圧Vb(=Va)が発生する。この出力制御電圧Vbと電流検出回路CO1で検出された電流iとの差分電圧に比例した電圧で駆動素子40が制御され、ランプ50を駆動する。 Then, as shown in FIG. 3, since the charging voltage of the capacitor C1 is kept constant, a constant output control voltage Vb (= Va) is generated. The drive element 40 is controlled by a voltage proportional to the differential voltage between the output control voltage Vb and the current i detected by the current detection circuit CO1, and the lamp 50 is driven.

本実施例1によれば、図10に示すように、従来の制御に比べて、同じ出力制御電圧Vbの値であっても、出力制御電圧Vbの台形斜辺のエッジ部分を正弦波近似するとともに、台形斜辺の傾き時間ΔTを駆動素子40の発熱限界を考慮した最大許容時間以内のほぼ一定時間となるように設定し、かつ台形斜辺の傾きを電源電圧Vaに応じて急にしたことにより、傾き時間ΔTが短くなる。これに伴い、従来に比べて、電力W(t)の時間幅も狭くなり、電力スペクトラム(|Cj|)の平均値も下がるので、使用する駆動素子40を小さくできるという効果が生じる。なお、電力スペクトラム(|Cj|)は、下式群によって求めることができる。ただし、IおよびIIは電力Pをサンプリングして変換した行列を示し、fftはフーリエ変換を示す。 According to the first embodiment, as shown in FIG. 10, the edge portion of the trapezoid hypotenuse of the output control voltage Vb is approximated by a sine wave even if the value of the output control voltage Vb is the same as in the conventional control. By setting the slope time ΔT of the trapezoid hypotenuse to be a substantially constant time within the maximum allowable time considering the heat generation limit of the drive element 40 and making the slope of the trapezoid hypotenuse steep according to the power supply voltage Va, The tilt time ΔT is shortened. Along with this, the time width of the power W (t) becomes narrower and the average value of the power spectrum (| Cj |) 2 also decreases, so that the drive element 40 to be used can be made smaller. The power spectrum (| Cj |) 2 can be obtained by the following equation group. However, I and II show the matrix which sampled and converted electric power P, and fft shows a Fourier-transform.

Figure 0004496479
Figure 0004496479

図4は、本発明の実施例2に係る電流駆動制御回路を示すブロック図である。本実施例2に係る電流駆動制御回路は、図1に示した実施例1に係る電流駆動制御回路において、タイマ振動子20を取り除いたものである。したがって、その他の特に言及しない部分については、図1に示した実施例1に係る電流駆動制御回路における対応する部分と同様に構成されているので、対応する部分には同一符号を付してそれらの詳しい説明を割愛する。 FIG. 4 is a block diagram showing a current drive control circuit according to the second embodiment of the present invention. The current drive control circuit according to the second embodiment is obtained by removing the timer oscillator 20 from the current drive control circuit according to the first embodiment shown in FIG. Therefore, other parts not specifically mentioned are configured in the same manner as the corresponding parts in the current drive control circuit according to the first embodiment shown in FIG. I will omit the detailed explanation.

図5は、傾き制御回路10における処理を説明するフローチャートである。 FIG. 5 is a flowchart for explaining processing in the tilt control circuit 10.

図6は、本発明の実施例2に係る電流駆動制御方法を説明する図である。この電流駆動制御方法では、傾き制御回路10は、出力制御電圧Vbの台形斜辺のエッジ部分を正弦波近似するとともに、台形斜辺の傾きを電源電圧Vaに応じて可変に制御し台形斜辺の傾き時間ΔTを駆動素子40の発熱限界を考慮した最大許容時間以内のほぼ一定時間となるように設定する。出力制御電圧Vbの台形斜辺のエッジ部分を正弦波近似する手順としては、出力制御電圧Vbの増減開始時点からの増減電圧に基づいて定電流値を決定し、コンデンサC1に流す定電流値を切り換え、出力制御電圧Vbの増減変動が基準電圧dV(第1または第2の正弦波近似電圧区間を複数に分割した電圧)を越えた後、出力制御電圧Vbの増減開始時点からの増減電圧が第1の正弦波近似電圧区間(例えば、電源電圧Vaの30%,20%等となるまでの区間)内であるかどうかを判定し、増減電圧が第1の正弦波近似電圧区間内であれば繰り返す。そして、出力制御電圧Vbの増減開始時点からの増減電圧が第1の正弦波近似電圧区間内でなくなると、定電流値を一定傾き用電流値に設定する。一定傾き用電流値は、図6中の一定の傾き区間に相当するものであり、第1の正弦波近似電圧区間の時間,一定の傾き区間の時間および第2の正弦波近似電圧区間の時間の和が、出力制御電圧Vbの台形斜辺の傾き時間ΔTとなり、駆動素子40の発熱限界を考慮した最大許容時間以内のほぼ一定時間となるように設定される。次に、出力制御電圧Vbが電源電圧Vaの所定割合(R3/(R2+R3):例えば、70%,80%等)になったことを検出する。出力制御電圧Vbが電源電圧Vaの所定割合になると、出力制御電圧Vbの増減開始時点からの増減電圧に基づいて定電流値を決定し、この定電流値に定電流回路30を切り換え、出力制御電圧Vbの増減変動が基準電圧dVを越えた後、出力制御電圧Vbの増減開始時点からの増減電圧が第2の正弦波近似電圧区間(例えば、出力制御電圧Vbが電源電圧Vaの100%近傍となるまでの電圧区間)内であるかどうかを判定し、増減電圧が第2の正弦波近似電圧区間内であれば繰り返す。そして、出力制御電圧Vbの増減開始時点からの増減電圧が第2の正弦波近似電圧区間内でなくなると、定電流値をコンデンサC1のリーク電流相当電流値に設定する。なお、図6では、出力制御電圧Vbの台形斜辺の第1のエッジ部分(立上がりエッジ部分)についての電流駆動制御方法について説明したが、出力制御電圧Vbの台形斜辺の第2のエッジ部分(立下がりエッジ部分)についても同様に制御することができる。 FIG. 6 is a diagram for explaining a current drive control method according to the second embodiment of the present invention. In this current drive control method, the slope control circuit 10 approximates the edge portion of the trapezoid hypotenuse of the output control voltage Vb with a sine wave, and also variably controls the slope of the trapezoid hypotenuse according to the power supply voltage Va, thereby making the slope time of the trapezoid hypotenuse. ΔT is set to be a substantially constant time within the maximum allowable time considering the heat generation limit of the drive element 40. The procedure for approximating the edge of the trapezoidal hypotenuse of the output control voltage Vb as a sine wave is to determine a constant current value based on the increase / decrease voltage from the start of increase / decrease of the output control voltage Vb, and to switch the constant current value flowing through the capacitor C1. After the increase / decrease fluctuation of the output control voltage Vb exceeds the reference voltage dV (a voltage obtained by dividing the first or second sine wave approximate voltage section into a plurality), the increase / decrease voltage from the start of increase / decrease of the output control voltage Vb is It is determined whether it is within one sine wave approximate voltage section (for example, a section until 30%, 20%, etc. of the power supply voltage Va), and if the increase / decrease voltage is within the first sine wave approximate voltage section repeat. Then, when the increase / decrease voltage from the start of increase / decrease of the output control voltage Vb is not within the first sine wave approximate voltage section, the constant current value is set to the constant slope current value. The constant slope current value corresponds to the constant slope section in FIG. 6, and is the time of the first sine wave approximate voltage section, the time of the constant slope section, and the time of the second sine wave approximate voltage section. Is the slope time ΔT of the trapezoid hypotenuse of the output control voltage Vb, and is set to be a substantially constant time within the maximum allowable time considering the heat generation limit of the drive element 40. Next, it is detected that the output control voltage Vb has reached a predetermined ratio (R3 / (R2 + R3): for example, 70%, 80%, etc.) of the power supply voltage Va. When the output control voltage Vb reaches a predetermined ratio of the power supply voltage Va, a constant current value is determined based on the increase / decrease voltage from the start of increase / decrease of the output control voltage Vb, the constant current circuit 30 is switched to this constant current value, and output control is performed. After the increase / decrease fluctuation of the voltage Vb exceeds the reference voltage dV, the increase / decrease voltage from the start of the increase / decrease of the output control voltage Vb is in the second sine wave approximate voltage section (for example, the output control voltage Vb is near 100% of the power supply voltage Va) Whether or not the increase / decrease voltage is within the second approximate sinusoidal voltage interval. When the increase / decrease voltage from the start of increase / decrease of the output control voltage Vb is not within the second approximated sine wave approximate voltage section, the constant current value is set to the leak current equivalent current value of the capacitor C1. 6 illustrates the current drive control method for the first edge portion (rising edge portion) of the trapezoidal hypotenuse of the output control voltage Vb. However, the second edge portion (rising edge) of the trapezoid hypotenuse of the output control voltage Vb has been described. The same control can be performed for the falling edge portion.

次に、このように構成された実施例2に係る電流駆動制御回路の動作について、図4ないし図6を参照しながら説明する。 Next, the operation of the current drive control circuit according to the second embodiment configured as described above will be described with reference to FIGS.

まず、傾き制御回路10は、出力制御電圧Vbの増減開始時点からの増減電圧より定電流値(回路的にあらかじめ設計された値)を決定し(ステップS201)、定電流回路30に流れる電流を定電流値に切り換える(ステップS202)。 First, the slope control circuit 10 determines a constant current value (a circuit predesigned value) from the increase / decrease voltage from the start of increase / decrease of the output control voltage Vb (step S201), and the current flowing through the constant current circuit 30 is determined. Switching to a constant current value (step S202).

すると、定電流回路30に流れる定電流によってコンデンサC1が充電され、コンパレータCO3は、コンデンサC1の充電電圧と電流検出回路CO1の検出電圧との差分電圧によって制御され、出力制御電圧Vbの増減分が次第に大きくなる正弦波近似された出力制御電圧Vbが発生する。この出力制御電圧Vbを印加されたランプ50が駆動され、電流値が変化しながら発光する。 Then, the capacitor C1 is charged by the constant current flowing through the constant current circuit 30, and the comparator CO3 is controlled by the differential voltage between the charging voltage of the capacitor C1 and the detection voltage of the current detection circuit CO1, and the increase / decrease amount of the output control voltage Vb is increased. A gradually increasing output control voltage Vb approximated to a sine wave is generated. The lamp 50 to which the output control voltage Vb is applied is driven and emits light while changing the current value.

次に、傾き制御回路10は、出力制御電圧Vbが第1の正弦波近似電圧区間内であるかどうかを判定し(ステップS203)、第1の正弦波近似電圧区間内であれば(ステップS203:YES)、ステップS201に制御を戻す。 Next, the slope control circuit 10 determines whether the output control voltage Vb is within the first sine wave approximate voltage interval (step S203), and if it is within the first sine wave approximate voltage interval (step S203). : YES), control is returned to step S201.

出力制御電圧Vbが第1の正弦波近似電圧区間でなければ(ステップS203:NO)、傾き制御回路10は、一定傾き用電流値に設定する(ステップS204)。これにより、出力制御電圧Vbが一定の傾きで増加する一定の傾き区間が開始する。 If the output control voltage Vb is not the first approximate sine wave voltage section (step S203: NO), the slope control circuit 10 sets the current value for constant slope (step S204). As a result, a constant slope section in which the output control voltage Vb increases with a constant slope starts.

次に、傾き制御回路10は、出力制御電圧Vbと電圧割合検出回路CO2から電源電圧Vaを所定割合(R3/(R2+R3))で分圧した電圧とを入力し、差分電圧に基づいて出力制御電圧Vbが電源電圧Vaの所定割合になったかどうかを検出する(ステップS205)。 Next, the gradient control circuit 10 receives the output control voltage Vb and the voltage obtained by dividing the power supply voltage Va at a predetermined ratio (R3 / (R2 + R3)) from the voltage ratio detection circuit CO2, and performs output control based on the differential voltage. It is detected whether or not the voltage Vb has reached a predetermined ratio of the power supply voltage Va (step S205).

出力制御電圧Vbが電源電圧Vaの所定割合になったのであれば(ステップS205:YES)、傾き制御回路10は、出力制御電圧Vbにより定電流値を決定し(ステップS206)、定電流回路30に流れる電流を定電流値に切り換える(ステップS207)。 If the output control voltage Vb has reached a predetermined ratio of the power supply voltage Va (step S205: YES), the slope control circuit 10 determines a constant current value based on the output control voltage Vb (step S206), and the constant current circuit 30. Is switched to a constant current value (step S207).

すると、定電流回路30に流れる定電流によってコンデンサC1が充電され、コンパレータCO3は、コンデンサC1の充電電圧と電流検出回路CO1の検出電圧との差分電圧によって制御されて、出力制御電圧Vbの増減分が次第に小さくなる正弦波近似された出力制御電圧Vbを発生する。この出力制御電圧Vbを印加されたランプ50が駆動され、電流値が変化しながら発光する。 Then, the capacitor C1 is charged by the constant current flowing through the constant current circuit 30, and the comparator CO3 is controlled by the differential voltage between the charging voltage of the capacitor C1 and the detection voltage of the current detection circuit CO1, thereby increasing or decreasing the output control voltage Vb. The output control voltage Vb approximated to a sine wave is generated. The lamp 50 to which the output control voltage Vb is applied is driven and emits light while changing the current value.

次に、傾き制御回路10は、出力制御電圧Vbが第2の正弦波近似電圧区間内であるかどうかを判定し(ステップS208)、第2の正弦波近似電圧区間内であれば(ステップS208:YES)、ステップS206に制御を戻す。 Next, the slope control circuit 10 determines whether or not the output control voltage Vb is within the second sine wave approximate voltage interval (step S208), and if it is within the second sine wave approximate voltage interval (step S208). : YES), control is returned to step S206.

出力制御電圧Vbが第2の正弦波近似電圧区間でなくなると(ステップS208:NO)、傾き制御回路10は、コンデンサC1のリーク電流相当電流値に設定する(ステップS209)。 When the output control voltage Vb is not in the second sinusoidal approximate voltage section (step S208: NO), the slope control circuit 10 sets the current value corresponding to the leakage current of the capacitor C1 (step S209).

すると、図6に示すように、コンデンサC1の充電電圧が一定に保たれるので、一定の出力制御電圧Vb(=Va)が発生する。この出力制御電圧Vbと電流検出回路CO1で検出された電流iとの差分電圧に比例した電圧で駆動素子40が制御され、ランプ50を駆動する。 Then, as shown in FIG. 6, since the charging voltage of the capacitor C1 is kept constant, a constant output control voltage Vb (= Va) is generated. The drive element 40 is controlled by a voltage proportional to the differential voltage between the output control voltage Vb and the current i detected by the current detection circuit CO1, and the lamp 50 is driven.

本実施例2によれば、実施例1の場合と同様の効果(図10参照)が得られるのに加えて、タイマ振動子20が不要となるので、その分、部品点数が削減され回路系が簡単になるとともに制御も容易になるという効果がある。 According to the second embodiment, the same effect as in the first embodiment (see FIG. 10) can be obtained, and the timer vibrator 20 is not required. This has the effect of simplifying the control and facilitating the control.

以上、本発明の各実施例を説明したが、これらはあくまでも例示にすぎず、本発明はこれらに限定されるものではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて、当業者の知識に基づく種々の変更が可能である。 The embodiments of the present invention have been described above. However, these are merely examples, and the present invention is not limited to them, and the knowledge of those skilled in the art can be used without departing from the spirit of the claims. Various modifications based on this are possible.

本発明の実施例1に係る電流駆動制御回路を示す回路ブロック図。1 is a circuit block diagram showing a current drive control circuit according to Embodiment 1 of the present invention. 図1中の傾き制御回路の処理を示すタイミングチャート。2 is a timing chart showing processing of the tilt control circuit in FIG. 1. 本実施例1に係る電流駆動制御方法を説明する波形図。FIG. 4 is a waveform diagram illustrating a current drive control method according to the first embodiment. 本発明の実施例2に係る電流駆動制御回路を示す回路ブロック図。The circuit block diagram which shows the current drive control circuit which concerns on Example 2 of this invention. 図4中の傾き制御回路の処理を示すタイミングチャート。5 is a timing chart showing processing of the inclination control circuit in FIG. 本実施例2に係る電流駆動制御方法を説明する波形図。FIG. 6 is a waveform diagram illustrating a current drive control method according to the second embodiment. 従来の電流駆動制御回路の電流駆動制御方法を説明する出力制御電圧の波形図。The waveform diagram of the output control voltage explaining the current drive control method of the conventional current drive control circuit. 出力制御電圧と駆動素子の発熱との関係を説明する図。The figure explaining the relationship between an output control voltage and the heat_generation | fever of a drive element. 出力制御電圧とノイズ低減効果との関係を説明する図。The figure explaining the relationship between an output control voltage and a noise reduction effect. 従来の電流駆動制御方法と本発明の電流駆動制御方法とにおける傾き時間,電力,ノイズ量を比較して示す図。The figure which compares and shows the ramp time, electric power, and noise amount in the conventional current drive control method and the current drive control method of this invention.

符号の説明Explanation of symbols

10 傾き制御回路
20 タイマ振動子
30 定電流回路
40 駆動素子
50 ランプ(負荷)
C1 コンデンサ
CO1 電流検出回路
CO2 電圧検出回路
CO3 コンパレータ
R1 電流検出用抵抗
10 Tilt Control Circuit 20 Timer Vibrator 30 Constant Current Circuit 40 Drive Element 50 Lamp (Load)
C1 Capacitor CO1 Current detection circuit CO2 Voltage detection circuit CO3 Comparator R1 Current detection resistor

Claims (10)

出力制御電圧を印加してから電流が時間とともに変化する負荷を、駆動素子を通じて電流駆動する電流駆動制御方法において、
前記出力制御電圧の台形斜辺のエッジ部分を正弦波近似するとともに、前記台形斜辺の傾きを電源電圧に応じて可変に制御し前記台形斜辺の傾き時間が前記駆動素子の発熱限界を考慮した最大許容時間以内のほぼ一定時間となるように設定することを特徴とする電流駆動制御方法。
In a current drive control method of driving a load whose current changes with time after applying an output control voltage through a drive element,
The trapezoid hypotenuse edge portion of the output control voltage is approximated by a sine wave, and the trapezoid hypotenuse slope is variably controlled according to the power supply voltage, and the trapezoid hypotenuse slope time is the maximum allowable considering the heat generation limit of the driving element. A current drive control method, wherein the current drive control method is set so as to be a substantially constant time within a time.
出力制御電圧を印加してから電流が時間とともに変化する負荷を、充電回路の充電電圧に基づいて駆動素子を通じて電流駆動する電流駆動制御方法において、
前記出力制御電圧の増減開始時点からの経過時間に基づいて定電流値を決定する第1の定電流値決定ステップと、
前記充電回路に流れる電流値を前記定電流値に切り換える第1の定電流値切換えステップと、
基準時間の経過後、前記出力制御電圧の増減開始時点からの経過時間が第1の正弦波近似時間区間内であれば前記第1の定電流値決定ステップに制御を戻す第1の判定ステップと、
前記出力制御電圧の増減開始時点からの経過時間が前記第1の正弦波近似時間区間内でなくなると前記充電回路に流れる電流値を一定傾き用電流値に設定する一定傾き用電流値設定ステップと、
前記出力制御電圧が前記電源電圧の所定割合になったことを検出する電圧割合検出ステップと、
前記出力制御電圧の増減開始時点からの経過時間に基づいて定電流値を決定する第2の定電流値決定ステップと、
前記充電回路に流れる電流値を前記定電流値に切り換える第2の定電流値切換えステップと、
基準時間の経過後、前記出力制御電圧の増減開始時点からの経過時間が第2の正弦波近似時間区間内であれば前記第2の定電流値決定ステップに制御を戻す第2の判定ステップと、
前記出力制御電圧の増減開始時点からの経過時間が前記第2の正弦波近似時間区間内でなくなると前記充電回路に流れる電流値をリーク電流相当電流値に設定するリーク電流相当電流値設定ステップと
を含むことを特徴とする電流駆動制御方法。
In a current drive control method of driving a current whose current changes with time after applying an output control voltage through a drive element based on a charge voltage of a charging circuit,
A first constant current value determining step for determining a constant current value based on an elapsed time from the start of increase / decrease of the output control voltage;
A first constant current value switching step of switching a current value flowing through the charging circuit to the constant current value;
A first determination step for returning control to the first constant current value determination step if the elapsed time from the start of increase / decrease in the output control voltage is within the first approximate sine wave approximate time section after the elapse of the reference time; ,
A constant slope current value setting step of setting a current value flowing through the charging circuit to a constant slope current value when the elapsed time from the start of increase / decrease of the output control voltage is not within the first sine wave approximate time section; ,
A voltage ratio detection step for detecting that the output control voltage has reached a predetermined ratio of the power supply voltage;
A second constant current value determining step for determining a constant current value based on an elapsed time from the start of increase / decrease of the output control voltage;
A second constant current value switching step of switching a current value flowing through the charging circuit to the constant current value;
A second determination step for returning the control to the second constant current value determination step if the elapsed time from the start of increase / decrease of the output control voltage is within the second approximate sine wave approximate time interval after the elapse of the reference time; ,
A leakage current equivalent current value setting step for setting a current value flowing through the charging circuit to a leakage current equivalent current value when an elapsed time from the start of increase / decrease of the output control voltage is not within the second sine wave approximate time interval; A current drive control method comprising:
出力制御電圧を印加してから電流が時間とともに変化する負荷を、充電回路の充電電圧に基づいて駆動素子を通じて電流駆動する電流駆動制御方法において、
前記出力制御電圧の増減開始時点からの増減電圧に基づいて定電流値を決定する第1の定電流値決定ステップと、
前記充電回路に流れる電流値を前記定電流値に切り換える第1の定電流値切換えステップと、
出力制御電圧の増減変動が基準電圧を越えた後、前記出力制御電圧の増減開始時点からの増減電圧が第1の正弦波近似電圧区間内であれば前記第1の定電流値決定ステップに制御を戻す第1の判定ステップと、
前記出力制御電圧の増減開始時点からの増減電圧が前記第1の正弦波近似電圧区間内でなくなると前記充電回路に流れる電流値を一定傾き用電流値に設定する一定傾き用電流値設定ステップと、
前記出力制御電圧が前記電源電圧の所定割合になったことを検出する電圧割合検出ステップと、
前記出力制御電圧の増減開始時点からの増減電圧に基づいて定電流値を決定する第2の定電流値決定ステップと、
前記充電回路に流れる電流値を前記定電流値に切り換える第2の定電流値切換えステップと、
出力制御電圧の増減変動が基準電圧を越えた後、前記出力制御電圧の増減開始時点からの増減電圧が第2の正弦波近似電圧区間内であれば前記第2の定電流値決定ステップに制御を戻す第2の判定ステップと、
前記出力制御電圧の増減開始時点からの増減電圧が前記第2の正弦波近似電圧区間内でなくなると前記充電回路に流れる電流値をリーク電流相当電流値に設定するリーク電流相当電流値設定ステップと
を含むことを特徴とする電流駆動制御方法。
In a current drive control method of driving a current whose current changes with time after applying an output control voltage through a drive element based on a charge voltage of a charging circuit,
A first constant current value determining step for determining a constant current value based on an increase / decrease voltage from the start of increase / decrease of the output control voltage;
A first constant current value switching step of switching a current value flowing through the charging circuit to the constant current value;
After the increase / decrease fluctuation of the output control voltage exceeds the reference voltage, if the increase / decrease voltage from the start of increase / decrease of the output control voltage is within the first sine wave approximate voltage section, control is performed to the first constant current value determination step. A first determination step of returning
A constant slope current value setting step of setting a current value flowing through the charging circuit to a constant slope current value when the increase / decrease voltage from the start of increase / decrease of the output control voltage is not within the first sine wave approximate voltage section; ,
A voltage ratio detection step for detecting that the output control voltage has reached a predetermined ratio of the power supply voltage;
A second constant current value determining step for determining a constant current value based on the increase / decrease voltage from the increase / decrease start time of the output control voltage;
A second constant current value switching step of switching a current value flowing through the charging circuit to the constant current value;
After the fluctuation of the output control voltage exceeds the reference voltage, if the increase / decrease voltage from the start of increase / decrease of the output control voltage is within the second sinusoidal approximate voltage section, control is performed to the second constant current value determination step. A second determination step for returning
A leakage current equivalent current value setting step of setting a current value flowing through the charging circuit to a leakage current equivalent current value when the increase / decrease voltage from the start of increase / decrease of the output control voltage is not within the second sinusoidal approximate voltage section; A current drive control method comprising:
前記負荷が、ランプである請求項1ないし請求項3のいずれか1項に記載の電流駆動制御方法。 The current drive control method according to claim 1, wherein the load is a lamp. 前記駆動素子が、電界効果トランジスタである請求項1ないし請求項4のいずれか1項に記載の電流駆動制御方法。 The current drive control method according to claim 1, wherein the drive element is a field effect transistor. 出力制御電圧を印加してから電流が時間とともに変化する負荷と、
電源電圧が印加された電流検出用抵抗と、
前記負荷と前記電流検出用抵抗との間に接続され、前記負荷を電流駆動する駆動素子と、
前記電流検出用抵抗の電圧に基づいて電流を検出する電流検出回路と、
前記出力制御電圧が前記電源電圧の所定割合になったことを検出する電圧割合検出回路と、
前記出力制御電圧の台形斜辺のエッジ部分を正弦波近似するとともに、前記台形斜辺の傾きを電源電圧に応じて可変に制御し前記台形斜辺の傾き時間が前記駆動素子の発熱限界を考慮した最大許容時間以内のほぼ一定時間となるように設定するための電流値を出力する傾き制御回路と、
前記傾き制御回路からの電流値に基づいて電流を切り換える定電流回路と、
前記定電流回路からの定電流により充電される充電回路と、
前記電流検出回路の検出電圧と前記充電回路の充電電圧との差分電圧で前記駆動素子を制御するコンパレータと
を有することを特徴とする電流駆動制御回路。
A load whose current changes with time after applying the output control voltage; and
A current detection resistor to which a power supply voltage is applied;
A driving element connected between the load and the current detection resistor and driving the load with current;
A current detection circuit for detecting a current based on the voltage of the current detection resistor;
A voltage ratio detection circuit for detecting that the output control voltage has reached a predetermined ratio of the power supply voltage;
The trapezoid hypotenuse edge portion of the output control voltage is approximated by a sine wave, and the trapezoid hypotenuse slope is variably controlled according to the power supply voltage, and the trapezoid hypotenuse slope time is the maximum allowable considering the heat generation limit of the driving element. An inclination control circuit for outputting a current value for setting so as to be a substantially constant time within the time;
A constant current circuit that switches current based on a current value from the slope control circuit;
A charging circuit charged with a constant current from the constant current circuit;
A current drive control circuit comprising: a comparator that controls the drive element with a differential voltage between a detection voltage of the current detection circuit and a charge voltage of the charging circuit.
出力制御電圧を印加してから電流が時間とともに変化する負荷と、
電源電圧が印加された電流検出用抵抗と、
前記負荷と前記電流検出用抵抗との間に接続され、前記負荷を電流駆動する駆動素子と、
前記電流検出用抵抗の電圧に基づいて電流を検出する電流検出回路と、
前記出力制御電圧が前記電源電圧の所定割合になったことを検出する電圧割合検出回路と、
前記出力制御電圧の増減開始時点からの経過時間に基づいて定電流値を決定し、前記定電流値に切り換え、基準時間の経過後、前記出力制御電圧の増減開始時点からの経過時間が第1の正弦波近似時間区間内であれば繰り返し、前記出力制御電圧の増減開始時点からの経過時間が前記第1の正弦波近似時間区間内でなくなると定電流値を一定傾き用電流値に設定し、前記出力制御電圧が前記電源電圧の所定割合になったことが検出されると、前記出力制御電圧の増減開始時点からの経過時間に基づいて定電流値を決定し、前記定電流値に切り換え、基準時間の経過後、前記出力制御電圧の増減開始時点からの経過時間が第2の正弦波近似時間区間内であれば繰り返し、前記出力制御電圧の増減開始時点からの経過時間が前記第2の正弦波近似時間区間内でなくなると定電流値をリーク電流相当電流値に設定することにより、前記出力制御電圧の台形斜辺のエッジ部分を正弦波近似するとともに、前記台形斜辺の傾きを電源電圧に応じて可変に制御し前記台形斜辺の傾き時間が前記駆動素子の発熱限界を考慮した最大許容時間以内のほぼ一定時間となるように設定するための電流値を出力する傾き制御回路と、
前記傾き制御回路からの電流値に基づいて電流を切り換える定電流回路と、
前記定電流回路からの定電流により充電される充電回路と、
前記電流検出回路の検出電圧と前記充電回路の充電電圧との差分電圧で前記駆動素子を制御するコンパレータと
を有することを特徴とする電流駆動制御回路。
A load whose current changes with time after applying the output control voltage; and
A current detection resistor to which a power supply voltage is applied;
A driving element connected between the load and the current detection resistor and driving the load with current;
A current detection circuit for detecting a current based on the voltage of the current detection resistor;
A voltage ratio detection circuit for detecting that the output control voltage has reached a predetermined ratio of the power supply voltage;
A constant current value is determined based on an elapsed time from the start point of increase / decrease of the output control voltage, switched to the constant current value, and after a lapse of a reference time, an elapsed time from the start point of increase / decrease of the output control voltage is first. If the elapsed time from the start of increase / decrease of the output control voltage is not within the first sine wave approximation time interval, the constant current value is set to a constant slope current value. When it is detected that the output control voltage has reached a predetermined ratio of the power supply voltage, a constant current value is determined based on an elapsed time from the start of increase / decrease of the output control voltage, and switched to the constant current value When the elapsed time from the start of increase / decrease of the output control voltage is within the second sine wave approximate time interval after the elapse of the reference time, the elapsed time from the start of increase / decrease of the output control voltage is repeated. Sine wave approximation By setting the constant current value to the current value corresponding to the leakage current when it is not within the interval, the trapezoid hypotenuse edge of the output control voltage is approximated to a sine wave, and the slope of the trapezoid hypotenuse is variable according to the power supply voltage. And a slope control circuit that outputs a current value for setting the slope of the trapezoid hypotenuse to be substantially constant time within a maximum allowable time in consideration of the heat generation limit of the drive element;
A constant current circuit that switches current based on a current value from the slope control circuit;
A charging circuit charged with a constant current from the constant current circuit;
A current drive control circuit comprising: a comparator that controls the drive element with a differential voltage between a detection voltage of the current detection circuit and a charge voltage of the charging circuit.
出力制御電圧を印加してから電流が時間とともに変化する負荷と、
電源電圧が印加された電流検出用抵抗と、
前記負荷と前記電流検出用抵抗との間に接続され、前記負荷を電流駆動する駆動素子と、
前記電流検出用抵抗の電圧に基づいて電流を検出する電流検出回路と、
前記出力制御電圧が前記電源電圧の所定割合になったことを検出する電圧割合検出回路と、
前記出力制御電圧の増減開始時点からの増減電圧に基づいて定電流値を決定し、前記定電流値に切り換え、出力制御電圧の増減変動が基準電圧を越えた後、前記出力制御電圧の増減開始時点からの増減電圧が第1の正弦波近似電圧区間内であれば繰り返し、前記出力制御電圧の増減開始時点からの増減電圧が前記第1の正弦波近似電圧区間内でなくなると定電流値を一定傾き用電流値に設定し、前記出力制御電圧が前記電源電圧の所定割合になったことが検出されると、前記出力制御電圧の増減開始時点からの増減電圧に基づいて定電流値を決定し、前記定電流値に切り換え、出力制御電圧の増減変動が基準電圧を越えた後、前記出力制御電圧の増減開始時点からの増減電圧が第2の正弦波近似電圧区間内であれば繰り返し、前記出力制御電圧の増減開始時点からの増減電圧が前記第2の正弦波近似電圧区間内でなくなると定電流値をリーク電流相当電流値に設定することにより、前記出力制御電圧の台形斜辺のエッジ部分を正弦波近似するとともに、前記台形斜辺の傾きを電源電圧に応じて可変に制御し前記台形斜辺の傾き時間が前記駆動素子の発熱限界を考慮した最大許容時間以内のほぼ一定時間となるように設定するための電流値を出力する傾き制御回路と、
前記傾き制御回路からの電流値に基づいて電流を切り換える定電流回路と、
前記定電流回路からの定電流により充電される充電回路と、
前記電流検出回路の検出電圧と前記充電回路の充電電圧との差分電圧で前記駆動素子を制御するコンパレータと
を有することを特徴とする電流駆動制御回路。
A load whose current changes with time after applying the output control voltage; and
A current detection resistor to which a power supply voltage is applied;
A driving element connected between the load and the current detection resistor and driving the load with current;
A current detection circuit for detecting a current based on the voltage of the current detection resistor;
A voltage ratio detection circuit for detecting that the output control voltage has reached a predetermined ratio of the power supply voltage;
A constant current value is determined based on the increase / decrease voltage from the starting point of the increase / decrease of the output control voltage, switched to the constant current value, and the increase / decrease of the output control voltage starts to increase / decrease after the fluctuation of the output control voltage exceeds the reference voltage If the increase / decrease voltage from the time point is within the first sine wave approximate voltage section, the constant current value is repeated when the increase / decrease voltage from the start point of increase / decrease of the output control voltage is not within the first sine wave approximate voltage section. When the current value for constant inclination is set, and it is detected that the output control voltage reaches a predetermined ratio of the power supply voltage, the constant current value is determined based on the increase / decrease voltage from the start of increase / decrease of the output control voltage. Then, after switching to the constant current value and the fluctuation of the output control voltage exceeds the reference voltage, if the increase / decrease voltage from the start of increase / decrease of the output control voltage is within the second sine wave approximate voltage section, it is repeated, The output control power When the increase / decrease voltage from the start of increase / decrease of the output is not within the second approximated sine wave voltage section, the constant current value is set to the leakage current equivalent current value, whereby the trapezoid hypotenuse edge portion of the output control voltage is set to the sine wave. In addition to approximation, the slope of the trapezoid hypotenuse is variably controlled according to the power supply voltage, and the tilt time of the trapezoid hypotenuse is set to be a substantially constant time within the maximum allowable time considering the heat generation limit of the drive element. A slope control circuit that outputs a current value of
A constant current circuit that switches current based on a current value from the slope control circuit;
A charging circuit charged with a constant current from the constant current circuit;
A current drive control circuit comprising: a comparator that controls the drive element with a differential voltage between a detection voltage of the current detection circuit and a charge voltage of the charging circuit.
前記負荷が、ランプである請求項6ないし請求項8のいずれか1項に記載の電流駆動制御回路。 The current drive control circuit according to claim 6, wherein the load is a lamp. 前記駆動素子が、電界効果トランジスタである請求項6ないし請求項9のいずれか1項に記載の電流駆動制御回路。 The current drive control circuit according to claim 6, wherein the drive element is a field effect transistor.
JP2005141218A 2005-05-13 2005-05-13 Current drive control method and current drive control circuit Expired - Fee Related JP4496479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005141218A JP4496479B2 (en) 2005-05-13 2005-05-13 Current drive control method and current drive control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005141218A JP4496479B2 (en) 2005-05-13 2005-05-13 Current drive control method and current drive control circuit

Publications (2)

Publication Number Publication Date
JP2006319753A JP2006319753A (en) 2006-11-24
JP4496479B2 true JP4496479B2 (en) 2010-07-07

Family

ID=37539998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005141218A Expired - Fee Related JP4496479B2 (en) 2005-05-13 2005-05-13 Current drive control method and current drive control circuit

Country Status (1)

Country Link
JP (1) JP4496479B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989312B2 (en) * 2007-05-25 2012-08-01 旭化成エレクトロニクス株式会社 Inductive load drive circuit
JP5160268B2 (en) * 2008-03-04 2013-03-13 カルソニックカンセイ株式会社 Switching circuit and waveform optimization method
JP4557082B2 (en) * 2008-07-18 2010-10-06 株式会社デンソー Driving transistor control circuit
JP5035391B2 (en) * 2010-01-12 2012-09-26 株式会社デンソー Signal output circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138570A (en) * 1998-08-28 2000-05-16 Denso Corp Electric load driver
JP2001054298A (en) * 1999-08-05 2001-02-23 Denso Corp Power control apparatus for automobile
JP2003069403A (en) * 2001-08-24 2003-03-07 Denso Corp Driver for electric load
JP2003078401A (en) * 2001-08-31 2003-03-14 Denso Corp Controller of power mos transistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19527736C1 (en) * 1995-07-28 1996-11-14 Texas Instruments Deutschland Control circuit for MOSFET in series with switched load
JP3503098B2 (en) * 1996-01-24 2004-03-02 アンデン株式会社 Load drive circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138570A (en) * 1998-08-28 2000-05-16 Denso Corp Electric load driver
JP2001054298A (en) * 1999-08-05 2001-02-23 Denso Corp Power control apparatus for automobile
JP2003069403A (en) * 2001-08-24 2003-03-07 Denso Corp Driver for electric load
JP2003078401A (en) * 2001-08-31 2003-03-14 Denso Corp Controller of power mos transistor

Also Published As

Publication number Publication date
JP2006319753A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP6170119B2 (en) System and method for driving a power switch
TWI429335B (en) Discharge device and integrated circuit device for specical purpose
CN112583389A (en) Gate driver circuit and method of driving transistor
JP5229495B2 (en) Switching device and control method thereof
JP4496479B2 (en) Current drive control method and current drive control circuit
JP6056128B2 (en) Driving circuit
JP3520795B2 (en) Discharge lamp lighting device
JP2010523071A (en) Capacitive member charging method and charging device
TW200924563A (en) Discharge lamp lighting apparatus
JP6252231B2 (en) LED lighting device
JP3440667B2 (en) Discharge lamp lighting device
JP5991939B2 (en) Semiconductor device driving circuit and semiconductor device driving apparatus
JP2008067593A (en) Gate drive circuit for insulated gate semiconductor switching elements
JP6254616B2 (en) Driver circuit for flash tube
KR101173273B1 (en) Apparatus for controlling cooling device and cooling system
KR102045404B1 (en) Smart pra pre-charging system
JP2006296118A (en) Charger
JP2009081139A (en) Control method of start-up period of metal halide lamp, and stabilization circuit
JP4609277B2 (en) How to charge the boot capacitor
JP2007215152A (en) Control circuit, load system making practical use of it, and modulatable triangular wave generator
US20090267535A1 (en) Ac power source apparatus
JP5583285B2 (en) Starter driving method and driving apparatus
CN113381386A (en) Electrical switching system including constant power controller and related methods
JP4650623B2 (en) Discharge lamp lighting device
JP4307238B2 (en) PWM drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4496479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees