JP4495798B2 - Method for forming transparent conductive film - Google Patents

Method for forming transparent conductive film Download PDF

Info

Publication number
JP4495798B2
JP4495798B2 JP16983599A JP16983599A JP4495798B2 JP 4495798 B2 JP4495798 B2 JP 4495798B2 JP 16983599 A JP16983599 A JP 16983599A JP 16983599 A JP16983599 A JP 16983599A JP 4495798 B2 JP4495798 B2 JP 4495798B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
indium
coating solution
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16983599A
Other languages
Japanese (ja)
Other versions
JP2001002954A (en
Inventor
明政 矢島
篤也 芳仲
宏樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP16983599A priority Critical patent/JP4495798B2/en
Publication of JP2001002954A publication Critical patent/JP2001002954A/en
Application granted granted Critical
Publication of JP4495798B2 publication Critical patent/JP4495798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示素子やタッチパネル等の各種エレクトロニクス素子に好適に用いられる透明導電膜形成用塗布液および透明導電膜の形成方法に関するものである。
【0002】
【従来の技術】
従来より、透明導電膜は液晶表示素子、タッチパネル、電磁波シールド材、赤外線反射膜等に広く使用されている。
透明導電膜としては錫をドープした酸化インジウム膜(ITO)が、優れた電気特性とエッチングによる加工の容易さからもっとも広く使用されており、これは蒸着法やスパッタ法,焼成法(塗布熱分解法とも言う)等により形成されていた。
【0003】
【発明が解決しようとする課題】
透明導電膜の形成方法の中で蒸着法およびスパッタ法は、気相中で目的物質を基板に堆積させて膜を成長させるものであり、真空容器を使用するため装置が大がかりで高価なうえ原料の使用効率が悪くて生産性が低い。また大面積の成膜も困難であった。
これに対し焼成法は、スピンコート法やディップコート法、印刷法などにより基材に目的物質の前駆物質を塗布し、これを焼成(熱分解)することで膜を形成するものであり、装置が簡単で生産性に優れ、大面積の成膜が容易であるという利点があるが、通常焼成時に400℃から500℃の高温処理を必要とするため基材が限られてしまうという問題点を有していた。
【0004】
そこで、特開平9−86967号公報には、ITO微粒子がシリケートマトリックス中に分散した膜を200℃以下で成膜する技術が提案されている。しかし、この技術はエッチング等によるパターンニングが困難であり液晶表示素子等の用途には適していなかった。
【0005】
このような問題を解決するため、本発明者らは先に特願平10−79691号の中で200℃付近で成膜可能な蟻酸インジウムと有機錫化合物を溶媒に溶解した透明導電膜形成用塗布液を提案している。
しかしながら、蟻酸インジウムは溶媒に対する溶解性が悪いため、塗布液の調製が難しく、また、種々の用途に対応できるだけの広範な濃度範囲での調製も難しいものであった。
【0006】
本発明の目的は、以上のような問題点を解消し、広範な種類の基板を使用することができ、200℃程度の低温での焼成でも透明導電膜を形成でき、且つ塗布液の調製が容易で種々の用途に対応できるだけの広範な濃度範囲で調製することができる透明導電膜形成用塗布液および透明導電膜の形成方法を提供することにある。
【0007】
【課題を解決するための手段】
即ち、本発明は、必須成分として蟻酸インジウム、有機錫化合物および有機アミンを溶媒に溶解してなる透明導電膜形成用塗布液を基板上に塗布し、190℃〜350℃の温度範囲で熱処理することにより透明導電膜を形成する透明導電膜の形成方法である。
また、本発明は、必須成分として蟻酸インジウム、有機錫化合物、有機アミンおよびニトロ化合物を溶媒に溶解してなる透明導電膜形成用塗布液を基板上に塗布し、190℃〜350℃の温度範囲で熱処理することにより透明導電膜を形成する透明導電膜の形成方法である
また、本発明は、熱処理の前に、蟻酸インジウムおよび有機錫化合物が熱分解しない温度で予備乾燥する前記の透明導電膜の形成方法である。
【0008】
【発明の実施の形態】
本発明の塗布液に使用する蟻酸インジウムは、In(OCOH)3で表される化合物であり、200℃程度に加熱すると熱分解して結晶性の酸化インジウムとなるので、焼成法による塗布液の成分として適している。
また、透明導電膜は膜の特性として硬度の高いものが好ましいが、蟻酸インジウムを使用して得られる透明導電膜は、200℃程度で熱分解する蟻酸インジウム以外のインジウム化合物を使用した場合に比べて硬度の高い良好な透明導電膜となる。
【0009】
本発明の塗布液に使用する有機錫化合物としては、200℃程度若しくはそれ以下の温度で熱分解して結晶性の酸化錫となるものであればどのような化合物でもよいが、例えば、錫のアルコキシド、錫の有機酸塩(例えばカルボン酸塩)、および錫の各種有機錯体等を挙げることができる。
このような有機錫化合物としてとくに好ましいのは、例えば、テトライソプロポキシ錫、テトラt−ブトキシ錫、蟻酸錫(II)、ジn−ブチル錫ジ蟻酸塩等を挙げることができる。
良好な導電性を得る点で最も好ましいのはテトラt−ブトキシ錫である。
【0010】
本発明の塗布液中のインジウムと錫の元素数比率は、最終的に形成された透明導電膜中のインジウムと錫の比となるので、透明導電膜を得るに当たって所望とする透明導電膜中のインジウムと錫の比となるように、塗布液に使用する蟻酸インジウムおよび有機錫化合物の割合を選択すればよい。
【0011】
本発明に使用する有機アミンとしてはとくに限定されるものではなく、種々の有機アミンを使用することができるが、例えば、n−ブチルアミン、ジ−n−ブチルアミン、ジエチルアミン、ピロリジン、ピペリジン、1,1,3,3−テトラメチルグアニジン等の有機アミンを挙げることができ、これらの有機アミンは、単独で使用してもよいし、2種類以上を混合して使用することもできる。
本発明に使用する蟻酸インジウムは各種溶媒に対して難溶性であるが、該有機アミンの添加は、このような蟻酸インジウムを種々の溶媒に可溶化させる効果を発揮する。このような効果の作用機構は定かではないが、有機アミンがインジウム原子に配位して化合物の溶解性を高めるためと考えられる。
本発明に使用する上記有機アミンの好ましい添加量は、インジウムに対して、(有機アミンの全量として)0.2〜5当量、より好ましくは0.5〜3当量がよい。
上記量未満では蟻酸インジウムの溶解性が必ずしも十分でない場合があり、上記量を超えるとインジウムに配位しないアミンが液中に増えるため、塗布液の安定性が損なわれやすい。
【0012】
本発明では、下記で説明するようなニトロ化合物も必要に応じて使用することができる。
すなわち、本発明に使用するニトロ化合物は無機ニトロ化合物でも有機ニトロ化合物でもよく、とくに限定されるものではないが、例えば、硝酸、ニトロセルロース、2,4−ジニトロトルエン、硝酸グアニジン等を挙げることができ、これらのニトロ化合物は、単独で使用してもよいし、2種類以上を混合して使用することもできる。
これらニトロ化合物の添加は塗布液の熱分解を促進し、同温度であればより不純物の少ない透明導電膜を得る効果を発揮する。同様に、同程度の不純物の透明導電膜であればより低温度で得ることのできる効果を発揮する。
このような効果の作用機構は定かではないが、塗布液を加熱した際に、ニトロ化合物が酸素供給源となり蟻酸インジウムの酸化熱分解を促進させるためではないかと考えられる。
本発明に使用する上記ニトロ化合物の好ましい添加量はインジウムに対して、(ニトロ化合物の全量として)0.05〜5当量、より好ましくは0.2〜1当量がよい。
上記量未満ではニトロ化合物添加の効果が必ずしも十分でない場合があり、上記量を超えると蟻酸インジウムが加水分解されやすくなるため、塗布液の安定性が損なわれやすい。
【0013】
本発明に使用する溶媒としては、上記有機アミンの存在下、蟻酸インジウムと上記有機酸錫化合物の両方の化合物を溶解、好ましくは室温付近で溶解でき、且つ熱処理時に蟻酸インジウム、上記有機錫化合物と反応しない、若しくは反応し難いものであれば任意に選ぶことができる。尚、ここで言う「溶解」よは溶解させようとする温度における溶解度が概ね5(g/100g)以上であることを意味する。
このような溶媒としは有機極性溶媒が好ましく、例えば、N,N−ジメチルホルムアミド(DMF)、ホルムアミド、エタノール、2−プロパノール、1−プロパノール等を挙げることができ、これらの溶媒は単独でも、2種類以上を混合して用いても差し支えない。
【0014】
本発明の塗布液における、蟻酸インジウムと上記有機錫化合物の濃度は、蟻酸インジウムと有機錫化合物の比率が上記の通りであるので、ここでは蟻酸インジウムと上記有機錫化合物の合計量の濃度で表すことにする。蟻酸インジウムと上記有機錫化合物の合計量の濃度は、従来の焼成法による透明導電膜形成用塗布液中のインジウム化合物と錫化合物の濃度と同程度とすれば支障ないが、例えば、概ね5〜30重量%であればよく、良好な成膜性を得る点で好ましくは5〜15重量%とするのがよい。
【0015】
本発明の透明導電膜の形成方法は、上記塗布液を基板上に塗布し、熱処理することにより透明導電膜を形成するものである。
ここに使用する基板としては、熱処理温度に耐え、且つ使用する溶媒に対して耐性のあるものであれば任意に選ぶことができ、従来透明導電膜の形成に使用されている基板を使用することができる。例えば、無アルカリガラス基板などのガラス基板は透明導電膜の基板として普及しており、これを使用できる。
【0016】
本発明の透明導電膜形成方法における熱処理は、大気中、本発明に使用する上記蟻酸インジウムと有機錫化合物の有効な熱分解が可能な温度で行えばよいが、広範な種類の基板を使用可能であるという本発明の効果を得るためには、好ましくは大気中190℃〜350℃、より好ましくは190℃〜250℃の温度範囲で行うのがよい。
このような温度範囲では上記のガラス基板だけでなく、ポリイミド、ポリアリレート、ポリアリールスルホン、ポリアリーレンスルフィド等の材料も基板として好ましく使用できる。
【0017】
尚、本発明の透明導電膜形成方法は、比較的低温で熱処理することができるが、基板材料の選択に制限が無いなど、高温(例えば、従来使用されてきた400℃〜500℃等)での熱処理に絶え得る基板が使用可能であれば、このような高温で熱処理するにあたり何ら支障は無く、この場合、得られる透明導電膜はより低い抵抗値が得られるので、上記本発明の塗布液は従来法のような高温での熱処理での使用に際しても優れた効果を発揮する。
【0018】
また、本発明の透明導電膜形成方法は、熱処理の前に100℃程度、具体的には80〜120℃程度の蟻酸インジウムおよび有機錫化合物が熱分解しない温度で予備乾燥した方がより平滑な膜面を得ることができるので好ましい。
【0019】
【実施例】
以下、実施例および比較例により本発明をさらに説明する。
実施例1
蟻酸インジウム(5.00g)、1,1,3,3−テトラメチルグアニジン(0.35g)およびn−ブチルアミン(1.98g)を、DMF(45.00g)および2−プロパノール(1.80g)混合溶媒に分散(全有機アミン量はインジウムに対して1.5当量)させ、60℃で2時間加熱撹拌して透明溶液を得た。
この溶液を室温まで冷却した後、t−ブトキシ錫(IV)を加えて塗布液とした。t−ブトキシ錫(IV)の添加量は、塗布液中のインジウムと錫の元素含有比率が90:10となるように調節した。
この塗布液を、洗浄した無アルカリガラス基板上にスピンコート法で塗布し、室温で10分間乾燥させた後、大気中で200℃で40分間熱処理して透明導電膜を得た。得られた膜の特性を表1に示す。
【0020】
実施例2
塗布液を基板に塗布した後、100℃で10分間乾燥させた他は実施例1と同様に実施した。得られた膜の特性を表1に示す。
【0021】
実施例3
蟻酸インジウム(5.00g)を、DMF(35.00g)および2−プロパノール(1.80g)混合溶媒に分散させ、61%硝酸(1.01g)を加え(全ニトロ化合物量はインジウムに対して0.6当量)て60℃で30分間加熱撹拌した。
さらに、1,1,3,3−テトラメチルグアニジン(0.35g)およびn−ブチルアミン(1.98g)をDMF(10.00g)に溶解したものを加え(全有機アミン量はインジウムに対して1.5当量)て60℃で2時間加熱撹拌して透明溶液を得た。
この溶液を室温まで冷却した後、t−ブトキシ錫(IV)を加えて塗布液とした。t−ブトキシ錫(IV)の添加量は、塗布液中のインジウムと錫の元素含有比率が90:10となるように調節した。
この塗布液を、洗浄した無アルカリガラス基板上にスピンコート法で塗布し、100℃で10分間乾燥させた後、大気中で200℃で40分間熱処理して透明導電膜を得た。得られた膜の特性を表1に示す。
【0022】
実施例4
有機アミンをジエチルアミン1.5当量に代えた他は実施例3と同様に実施した。得られた膜の特性を表1に示す。
【0023】
実施例5
有機アミンをピロリジン1.5当量に代えた他は実施例3と同様に実施した。得られた膜の特性を表1に示す。
【0024】
実施例6
有機アミンをn−ブチルアミン0.7当量に代えた他は実施例3と同様に実施した。得られた膜の特性を表1に示す。
【0025】
実施例7
有機アミンをn−ブチルアミン2.7当量に代えた他は実施例3と同様に実施した。得られた膜の特性を表1に示す。
【0026】
実施例8
有機アミンをn−ブチルアミン0.3当量に代えた他は実施例3と同様に実施した。得られた膜の特性を表1に示す。
【0027】
実施例9
有機アミンをn−ブチルアミン4.5当量に代えた他は実施例3と同様に実施した。得られた膜の特性を表1に示す。
【0028】
実施例10
ニトロ化合物を2,4−ジニトロトルエン0.6当量に代えた他は実施例3と同様に実施した。得られた膜の特性を表1に示す。
【0029】
実施例11
ニトロ化合物を硝酸グアニジン0.6当量に代えた他は実施例3と同様に実施した。得られた膜の特性を表1に示す。
【0030】
実施例12
ニトロ化合物を硝酸0.3当量に代えた他は実施例3と同様に実施した。得られた膜の特性を表1に示す。
【0031】
実施例13
ニトロ化合物を硝酸0.9当量に代えた他は実施例3と同様に実施した。得られた膜の特性を表1に示す。
【0032】
実施例14
ニトロ化合物を硝酸0.07当量に代えた他は実施例3と同様に実施した。得られた膜の特性を表1に示す。
【0033】
実施例15
ニトロ化合物を硝酸4.5当量に代えた他は実施例3と同様に実施した。得られた膜の特性を表1に示す。
【0034】
実施例16
DMF35.00gをエタノール35.00gに代え、DMF10.00gをエタノール10.00gに代えた他は実施例3と同様に実施した。得られた膜の特性を表1に示す。
【0035】
実施例17
蟻酸インジウム5.00gを蟻酸インジウム12.00gに代えた他は実施例3と同様にして実施した。得られた膜の特性を表1に示す。
【0036】
比較例1
2−エチルヘキサン酸インジウムおよび2−エチルヘキサン酸錫を、10重量%となるようにキシレンに溶解させて塗布液とした。
この塗布液を無アルカリガラス基板上にスピンコート法で塗布し、100℃で10分間乾燥させた後、大気中で200℃で60分間熱処理したが、インジウムおよび錫化合物の熱分解が起こらず、透明導電膜は得られなかった。
【0037】
比較例2
蟻酸インジウム(5.00g)および塗布液中のインジウムと錫の元素含有比率が90:10となるようにt−ブトキシ錫(IV)を、DMF(45.00g)および2−プロパノール(1.80g)混合溶媒に分散させ塗布液としたが、この塗布液は蟻酸インジウムが完全には溶解せず固形物が分散したものであった。
この塗布液を、洗浄した無アルカリガラス基板上にスピンコート法で塗布し、100℃で10分間乾燥させた後、大気中で200℃で40分間熱処理したが、ITO膜はザラザラしており、指で擦ると剥がれ落ちるものであった。
【0038】
比較例3
蟻酸インジウム(12.00g)および塗布液中のインジウムと錫の元素含有比率が90:10となるようにt−ブトキシ錫(IV)を、DMF(50.00g)溶媒に分散させ塗布液としたが、この塗布液は蟻酸インジウムが完全には溶解せず固形物が分散したものであった。
この塗布液を、洗浄した無アルカリガラス基板上にスピンコート法で塗布し、100℃で10分間乾燥させた後、大気中で200℃で40分間熱処理したが、ITO膜はザラザラしており、指で擦ると剥がれ落ちるものであった。
【0039】
【表1】

Figure 0004495798
【0040】
【発明の効果】
本発明の効果は、広範な種類の基板を使用可能な200℃程度の低温での焼成でも透明導電膜を形成でき、且つ塗布液の調製が容易で種々の用途に対応できるだけの広範な濃度範囲で調製することができる透明導電膜形成用塗布液および透明導電膜の形成方法を提供したことにある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coating solution for forming a transparent conductive film and a method for forming a transparent conductive film, which are suitably used for various electronic devices such as liquid crystal display devices and touch panels.
[0002]
[Prior art]
Conventionally, transparent conductive films have been widely used for liquid crystal display elements, touch panels, electromagnetic shielding materials, infrared reflective films and the like.
As the transparent conductive film, tin-doped indium oxide film (ITO) is most widely used because of its excellent electrical characteristics and ease of processing by etching. This method includes vapor deposition, sputtering, and baking (coating pyrolysis). Etc.).
[0003]
[Problems to be solved by the invention]
Among the methods for forming transparent conductive films, the vapor deposition method and the sputtering method are intended to grow a film by depositing a target substance on a substrate in the gas phase. The efficiency of use is poor and productivity is low. In addition, it was difficult to form a film with a large area.
On the other hand, the firing method is to form a film by applying a precursor of a target substance to a substrate by spin coating, dip coating, printing, etc., and firing (thermally decomposing) it. Has the advantage that it is simple, excellent in productivity, and easy to form a film with a large area, but usually requires a high temperature treatment of 400 ° C. to 500 ° C. at the time of firing, so that the base material is limited. Had.
[0004]
Japanese Patent Application Laid-Open No. 9-86967 proposes a technique for forming a film in which ITO fine particles are dispersed in a silicate matrix at 200 ° C. or lower. However, this technique is difficult to pattern by etching or the like, and is not suitable for applications such as liquid crystal display elements.
[0005]
In order to solve such problems, the present inventors previously described in Japanese Patent Application No. 10-79691 for forming a transparent conductive film in which indium formate and an organic tin compound that can be formed at around 200 ° C. are dissolved in a solvent. A coating solution is proposed.
However, since indium formate has poor solubility in a solvent, it is difficult to prepare a coating solution, and it is also difficult to prepare in a wide concentration range that can be used for various applications.
[0006]
The object of the present invention is to solve the above-mentioned problems, to use a wide variety of substrates, to form a transparent conductive film even at a low temperature of about 200 ° C., and to prepare a coating solution. An object of the present invention is to provide a coating solution for forming a transparent conductive film and a method for forming the transparent conductive film, which can be prepared in a wide concentration range that can be easily adapted to various uses.
[0007]
[Means for Solving the Problems]
That is, in the present invention, a transparent conductive film forming coating solution obtained by dissolving indium formate, an organic tin compound, and an organic amine as essential components in a solvent is applied on a substrate and heat-treated at a temperature range of 190 ° C to 350 ° C. It is the formation method of the transparent conductive film which forms a transparent conductive film by this.
Further, the present invention applies a transparent conductive film-forming coating solution obtained by dissolving indium formate, an organic tin compound, an organic amine and a nitro compound as essential components onto a substrate, and a temperature range of 190 ° C. to 350 ° C. It is a formation method of the transparent conductive film which forms a transparent conductive film by heat-processing by .
Moreover, this invention is the formation method of the said transparent conductive film which pre-drys at the temperature which an indium formate and an organotin compound do not thermally decompose before heat processing.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Indium formate used in the coating solution of the present invention is a compound represented by In (OCOH) 3 and is thermally decomposed to crystalline indium oxide when heated to about 200 ° C. Suitable as an ingredient.
In addition, the transparent conductive film preferably has a high hardness as a film characteristic, but the transparent conductive film obtained using indium formate is more in comparison with the case where an indium compound other than indium formate which is thermally decomposed at about 200 ° C. is used. Therefore, it becomes a good transparent conductive film with high hardness.
[0009]
The organic tin compound used in the coating solution of the present invention may be any compound as long as it is thermally decomposed at a temperature of about 200 ° C. or lower to form crystalline tin oxide. Examples thereof include alkoxides, tin organic acid salts (for example, carboxylates), and various organic complexes of tin.
Particularly preferable examples of such an organic tin compound include tetraisopropoxytin, tetra-t-butoxytin, tin (II) formate, and di-n-butyltin diformate.
Most preferred is tetra-t-butoxy tin in terms of obtaining good conductivity.
[0010]
The ratio of the number of elements of indium and tin in the coating liquid of the present invention is the ratio of indium and tin in the finally formed transparent conductive film. Therefore, in obtaining the transparent conductive film, What is necessary is just to select the ratio of the indium formate and organotin compound used for a coating liquid so that it may become a ratio of an indium and a tin.
[0011]
The organic amine used in the present invention is not particularly limited, and various organic amines can be used. For example, n-butylamine, di-n-butylamine, diethylamine, pyrrolidine, piperidine, 1,1 , 3,3-tetramethylguanidine and the like, and these organic amines may be used alone or in combination of two or more.
Indium formate used in the present invention is poorly soluble in various solvents, but the addition of the organic amine exhibits the effect of solubilizing such indium formate in various solvents. Although the mechanism of action of such an effect is not clear, it is considered that the organic amine coordinates with the indium atom to increase the solubility of the compound.
The preferable addition amount of the organic amine used in the present invention is 0.2 to 5 equivalents (more preferably 0.5 to 3 equivalents) with respect to indium (as the total amount of the organic amine).
If the amount is less than the above amount, the solubility of indium formate may not always be sufficient. If the amount exceeds the above amount, amine that does not coordinate to indium increases in the solution, and thus the stability of the coating solution tends to be impaired.
[0012]
In the present invention, a nitro compound as described below can be used as necessary.
That is, the nitro compound used in the present invention may be an inorganic nitro compound or an organic nitro compound, and is not particularly limited. Examples thereof include nitric acid, nitrocellulose, 2,4-dinitrotoluene, and guanidine nitrate. These nitro compounds may be used alone or in combination of two or more.
The addition of these nitro compounds accelerates the thermal decomposition of the coating solution, and exhibits the effect of obtaining a transparent conductive film with fewer impurities at the same temperature. Similarly, an effect that can be obtained at a lower temperature is exhibited if the transparent conductive film has the same level of impurities.
Although the mechanism of action of such an effect is not clear, it is considered that when the coating solution is heated, the nitro compound becomes an oxygen supply source and promotes oxidative thermal decomposition of indium formate.
The preferable addition amount of the nitro compound used in the present invention is 0.05 to 5 equivalents, more preferably 0.2 to 1 equivalent, relative to indium (as the total amount of the nitro compound).
If the amount is less than the above amount, the effect of adding the nitro compound may not always be sufficient. If the amount exceeds the above amount, indium formate tends to be hydrolyzed, so that the stability of the coating solution tends to be impaired.
[0013]
As a solvent used in the present invention, both indium formate and the above-mentioned organic acid tin compound can be dissolved in the presence of the above-mentioned organic amine, preferably in the vicinity of room temperature. Any one that does not react or is difficult to react can be selected. Here, “dissolving” means that the solubility at the temperature to be dissolved is approximately 5 (g / 100 g) or more.
Such a solvent is preferably an organic polar solvent, and examples thereof include N, N-dimethylformamide (DMF), formamide, ethanol, 2-propanol, 1-propanol, and the like. A mixture of more than one type may be used.
[0014]
The concentration of indium formate and the organic tin compound in the coating solution of the present invention is represented by the concentration of the total amount of indium formate and the organic tin compound because the ratio of indium formate and the organic tin compound is as described above. I will decide. The concentration of the total amount of indium formate and the organic tin compound is not limited as long as the concentration of the indium compound and the tin compound in the coating solution for forming a transparent conductive film by the conventional baking method is the same, but for example, about 5 to 5 It may be 30% by weight, and is preferably 5 to 15% by weight from the viewpoint of obtaining good film formability.
[0015]
In the method for forming a transparent conductive film of the present invention, the transparent conductive film is formed by applying the above-mentioned coating solution on a substrate and performing a heat treatment.
The substrate used here can be arbitrarily selected as long as it can withstand the heat treatment temperature and is resistant to the solvent to be used, and a substrate conventionally used for forming a transparent conductive film should be used. Can do. For example, glass substrates such as non-alkali glass substrates are widely used as substrates for transparent conductive films, and can be used.
[0016]
The heat treatment in the transparent conductive film forming method of the present invention may be performed in the atmosphere at a temperature at which effective thermal decomposition of the indium formate and the organotin compound used in the present invention is possible, but a wide variety of substrates can be used. In order to obtain the effect of the present invention, it is preferably carried out in the air at a temperature range of 190 ° C to 350 ° C, more preferably 190 ° C to 250 ° C.
In such a temperature range, not only the above glass substrate but also materials such as polyimide, polyarylate, polyarylsulfone, polyarylene sulfide and the like can be preferably used as the substrate.
[0017]
In addition, although the transparent conductive film formation method of this invention can heat-process at comparatively low temperature, there is no restriction | limiting in the selection of board | substrate material, for example, high temperature (for example, 400 degreeC-500 degreeC etc. conventionally used). If a substrate that can be used for the heat treatment is usable, there is no problem in the heat treatment at such a high temperature, and in this case, the obtained transparent conductive film can have a lower resistance value. Exhibits excellent effects when used in heat treatment at a high temperature as in the conventional method.
[0018]
In addition, the transparent conductive film forming method of the present invention is smoother when pre-dried at a temperature at which indium formate and organotin compounds at about 100 ° C., specifically about 80 to 120 ° C., are not thermally decomposed before the heat treatment. Since a film surface can be obtained, it is preferable.
[0019]
【Example】
The present invention will be further described below with reference to examples and comparative examples.
Example 1
Indium formate (5.00 g), 1,1,3,3-tetramethylguanidine (0.35 g) and n-butylamine (1.98 g) were added to DMF (45.00 g) and 2-propanol (1.80 g). The mixture was dispersed in a mixed solvent (total organic amine amount was 1.5 equivalents with respect to indium), and heated and stirred at 60 ° C. for 2 hours to obtain a transparent solution.
After this solution was cooled to room temperature, t-butoxytin (IV) was added to prepare a coating solution. The amount of t-butoxytin (IV) added was adjusted so that the element content ratio of indium and tin in the coating solution was 90:10.
This coating solution was applied onto a washed alkali-free glass substrate by a spin coating method, dried at room temperature for 10 minutes, and then heat-treated at 200 ° C. for 40 minutes in the air to obtain a transparent conductive film. Table 1 shows the characteristics of the obtained film.
[0020]
Example 2
The same procedure as in Example 1 was performed except that the coating solution was applied to the substrate and then dried at 100 ° C. for 10 minutes. Table 1 shows the characteristics of the obtained film.
[0021]
Example 3
Indium formate (5.00 g) is dispersed in a mixed solvent of DMF (35.00 g) and 2-propanol (1.80 g), and 61% nitric acid (1.01 g) is added (the total amount of nitro compounds is based on indium). 0.6 equivalents) and heated and stirred at 60 ° C. for 30 minutes.
Further, 1,1,3,3-tetramethylguanidine (0.35 g) and n-butylamine (1.98 g) dissolved in DMF (10.00 g) were added (the total amount of organic amine was based on indium). 1.5 equivalents) and heated and stirred at 60 ° C. for 2 hours to obtain a transparent solution.
After this solution was cooled to room temperature, t-butoxytin (IV) was added to prepare a coating solution. The amount of t-butoxytin (IV) added was adjusted so that the element content ratio of indium and tin in the coating solution was 90:10.
This coating solution was applied on a washed alkali-free glass substrate by spin coating, dried at 100 ° C. for 10 minutes, and then heat-treated at 200 ° C. for 40 minutes in the air to obtain a transparent conductive film. Table 1 shows the characteristics of the obtained film.
[0022]
Example 4
The same procedure as in Example 3 was performed except that the organic amine was replaced with 1.5 equivalents of diethylamine. Table 1 shows the characteristics of the obtained film.
[0023]
Example 5
The same procedure as in Example 3 was performed except that the organic amine was replaced with 1.5 equivalents of pyrrolidine. Table 1 shows the characteristics of the obtained film.
[0024]
Example 6
The same operation as in Example 3 was conducted except that the organic amine was changed to 0.7 equivalent of n-butylamine. Table 1 shows the characteristics of the obtained film.
[0025]
Example 7
The same procedure as in Example 3 was performed except that the organic amine was changed to 2.7 equivalents of n-butylamine. Table 1 shows the characteristics of the obtained film.
[0026]
Example 8
The same procedure as in Example 3 was performed except that the organic amine was changed to 0.3 equivalent of n-butylamine. Table 1 shows the characteristics of the obtained film.
[0027]
Example 9
The same procedure as in Example 3 was performed except that the organic amine was replaced with 4.5 equivalents of n-butylamine. Table 1 shows the characteristics of the obtained film.
[0028]
Example 10
The same procedure as in Example 3 was performed except that the nitro compound was replaced with 0.6 equivalent of 2,4-dinitrotoluene. Table 1 shows the characteristics of the obtained film.
[0029]
Example 11
The same procedure as in Example 3 was performed except that the nitro compound was replaced with 0.6 equivalent of guanidine nitrate. Table 1 shows the characteristics of the obtained film.
[0030]
Example 12
The same procedure as in Example 3 was performed except that the nitro compound was replaced with 0.3 equivalent of nitric acid. Table 1 shows the characteristics of the obtained film.
[0031]
Example 13
The same procedure as in Example 3 was performed except that the nitro compound was replaced with 0.9 equivalent of nitric acid. Table 1 shows the characteristics of the obtained film.
[0032]
Example 14
The same procedure as in Example 3 was performed except that the nitro compound was replaced with 0.07 equivalent of nitric acid. Table 1 shows the characteristics of the obtained film.
[0033]
Example 15
The same procedure as in Example 3 was performed except that the nitro compound was replaced with 4.5 equivalents of nitric acid. Table 1 shows the characteristics of the obtained film.
[0034]
Example 16
The same procedure as in Example 3 was performed except that 35.00 g of DMF was replaced with 35.00 g of ethanol and 10.00 g of DMF was replaced with 10.00 g of ethanol. Table 1 shows the characteristics of the obtained film.
[0035]
Example 17
The same procedure as in Example 3 was conducted except that 5.00 g of indium formate was replaced with 12.00 g of indium formate. Table 1 shows the characteristics of the obtained film.
[0036]
Comparative Example 1
Indium 2-ethylhexanoate and tin 2-ethylhexanoate were dissolved in xylene so as to be 10% by weight to obtain a coating solution.
This coating solution was applied on a non-alkali glass substrate by a spin coating method, dried at 100 ° C. for 10 minutes, and then heat-treated at 200 ° C. for 60 minutes in the atmosphere, but thermal decomposition of indium and tin compounds did not occur, A transparent conductive film was not obtained.
[0037]
Comparative Example 2
Indium formate (5.00 g) and t-butoxytin (IV) were mixed with DMF (45.00 g) and 2-propanol (1.80 g) so that the content ratio of indium and tin in the coating solution was 90:10. ) Dispersed in a mixed solvent to prepare a coating solution, but this coating solution was a solution in which indium formate was not completely dissolved but solid matter was dispersed.
This coating solution was applied on a washed alkali-free glass substrate by a spin coating method, dried at 100 ° C. for 10 minutes, and then heat-treated at 200 ° C. for 40 minutes in the atmosphere, but the ITO film was rough. It was peeled off when rubbed with a finger.
[0038]
Comparative Example 3
Indium formate (12.00 g) and t-butoxytin (IV) were dispersed in DMF (50.00 g) solvent so that the elemental content ratio of indium and tin in the coating solution was 90:10 to obtain a coating solution. However, in this coating solution, indium formate was not completely dissolved but solid matter was dispersed.
This coating solution was applied on a washed alkali-free glass substrate by a spin coating method, dried at 100 ° C. for 10 minutes, and then heat-treated at 200 ° C. for 40 minutes in the atmosphere, but the ITO film was rough. It was peeled off when rubbed with a finger.
[0039]
[Table 1]
Figure 0004495798
[0040]
【The invention's effect】
The effect of the present invention is that a transparent conductive film can be formed even by baking at a low temperature of about 200 ° C. where a wide variety of substrates can be used, and a coating solution can be easily prepared, and a wide concentration range capable of responding to various applications. And a method for forming a transparent conductive film, which can be prepared by the method.

Claims (3)

必須成分として蟻酸インジウム、有機錫化合物および有機アミンを溶媒に溶解してなる透明導電膜形成用塗布液を基板上に塗布し、190℃〜350℃の温度範囲で熱処理することにより透明導電膜を形成することを特徴とする透明導電膜の形成方法A transparent conductive film is formed by applying a coating solution for forming a transparent conductive film obtained by dissolving indium formate, an organic tin compound, and an organic amine in a solvent as essential components on a substrate and heat-treating it in a temperature range of 190 ° C to 350 ° C. A method for forming a transparent conductive film, comprising: forming a transparent conductive film . 必須成分として蟻酸インジウム、有機錫化合物、有機アミンおよびニトロ化合物を溶媒に溶解してなる透明導電膜形成用塗布液を基板上に塗布し、190℃〜350℃の温度範囲で熱処理することにより透明導電膜を形成することを特徴とする透明導電膜の形成方法Transparent by applying a coating solution for forming a transparent conductive film in which indium formate, organic tin compound, organic amine and nitro compound are dissolved in a solvent as essential components on a substrate and heat-treating in a temperature range of 190 ° C to 350 ° C. A method for forming a transparent conductive film, comprising forming a conductive film . 熱処理の前に、蟻酸インジウムおよび有機錫化合物が熱分解しない温度で予備乾燥する請求項1または2に記載の透明導電膜の形成方法。The method for forming a transparent conductive film according to claim 1 or 2, wherein, prior to the heat treatment, preliminary drying is performed at a temperature at which the indium formate and the organic tin compound are not thermally decomposed.
JP16983599A 1999-06-16 1999-06-16 Method for forming transparent conductive film Expired - Fee Related JP4495798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16983599A JP4495798B2 (en) 1999-06-16 1999-06-16 Method for forming transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16983599A JP4495798B2 (en) 1999-06-16 1999-06-16 Method for forming transparent conductive film

Publications (2)

Publication Number Publication Date
JP2001002954A JP2001002954A (en) 2001-01-09
JP4495798B2 true JP4495798B2 (en) 2010-07-07

Family

ID=15893813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16983599A Expired - Fee Related JP4495798B2 (en) 1999-06-16 1999-06-16 Method for forming transparent conductive film

Country Status (1)

Country Link
JP (1) JP4495798B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7416695B2 (en) 2001-06-15 2008-08-26 Kaneka Corporation Semiconductive polymide film and process for production thereof
JP4635421B2 (en) 2003-09-02 2011-02-23 Tdk株式会社 Conductive film for transfer and method for forming transparent conductive film using the same
JP4542369B2 (en) * 2004-05-21 2010-09-15 株式会社Adeka Coating liquid for forming transparent conductive film and method for forming transparent conductive film
JP5082132B2 (en) * 2005-01-19 2012-11-28 三菱マテリアル株式会社 Indium tin oxide precursor, indium tin oxide film thereof, and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319713A (en) * 1986-07-11 1988-01-27 日本曹達株式会社 Paste-like composition for formation of transparent conductive film and formation method of transparent conductive film
JPH05114314A (en) * 1991-10-21 1993-05-07 Matsushita Electric Ind Co Ltd Transparent conductive membrane moulding method
JPH09237518A (en) * 1995-12-28 1997-09-09 Dainippon Printing Co Ltd Composition for forming colored transparent conductive film, its formation, and display device
JPH117849A (en) * 1997-06-17 1999-01-12 Fuji Kagaku Kk Transparent conductive film forming agent, conductive base board and manufacture of this base board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319713A (en) * 1986-07-11 1988-01-27 日本曹達株式会社 Paste-like composition for formation of transparent conductive film and formation method of transparent conductive film
JPH05114314A (en) * 1991-10-21 1993-05-07 Matsushita Electric Ind Co Ltd Transparent conductive membrane moulding method
JPH09237518A (en) * 1995-12-28 1997-09-09 Dainippon Printing Co Ltd Composition for forming colored transparent conductive film, its formation, and display device
JPH117849A (en) * 1997-06-17 1999-01-12 Fuji Kagaku Kk Transparent conductive film forming agent, conductive base board and manufacture of this base board

Also Published As

Publication number Publication date
JP2001002954A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP4495798B2 (en) Method for forming transparent conductive film
JPS6332736B2 (en)
US3658568A (en) Method of forming metal oxide coatings on refractory substrates
WO2010064719A1 (en) Method for producing transparent conductive film, transparent conductive film, transparent conductive substrate and device comprising same
JP2718023B2 (en) Method for forming transparent conductive film
JP3338966B2 (en) Coating solution for forming transparent conductive film
JPS6236046A (en) Formation of tin oxide film
JP4161086B2 (en) Transparent conductive film forming coating liquid and transparent conductive film forming method
EP0357263B1 (en) Liquid coating composition and method for forming a fluorine-doped tin oxide coating on glass
JP4365918B2 (en) Coating liquid for forming transparent conductive film and method for forming transparent conductive film using the same
JP2001035273A (en) Adjusting method for sheet resistance value of transparent conductive film and forming method for the transparent conductive film
JP4099911B2 (en) Transparent conductive film forming substrate and forming method
EP1464630B1 (en) Aqueous coating liquid for forming a magnesium oxide film
JP2003308729A (en) Conductive composition, conductive film and its formation method
JP2002133956A (en) Adjusting method for sheet resistance value of transparent conductive film and forming method for transparent conductive film
JP2827226B2 (en) Method for forming transparent conductive film
JP4542369B2 (en) Coating liquid for forming transparent conductive film and method for forming transparent conductive film
JPS6222312A (en) Formation of transparent conducting film
JPH067444B2 (en) Composition for forming transparent conductive film containing organoindium sol
JPS5930723A (en) Manufacture of transparent tin oxide film
JP2959014B2 (en) Method for manufacturing transparent electrode substrate
JPH05290621A (en) Indium-tin oxide paste baked at high temperature
JPH06150741A (en) Formation of transparent conductive film
JP2718025B2 (en) Method for forming transparent conductive film
JPH07118230B2 (en) Paste-like composition for forming transparent conductive film and method for forming transparent conductive film

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees