JP4495398B2 - Polishing pad replacement method, polishing pad dynamic viscoelasticity measuring device - Google Patents

Polishing pad replacement method, polishing pad dynamic viscoelasticity measuring device Download PDF

Info

Publication number
JP4495398B2
JP4495398B2 JP2003013006A JP2003013006A JP4495398B2 JP 4495398 B2 JP4495398 B2 JP 4495398B2 JP 2003013006 A JP2003013006 A JP 2003013006A JP 2003013006 A JP2003013006 A JP 2003013006A JP 4495398 B2 JP4495398 B2 JP 4495398B2
Authority
JP
Japan
Prior art keywords
polishing pad
polishing
dynamic viscoelasticity
elastic modulus
dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003013006A
Other languages
Japanese (ja)
Other versions
JP2004228265A (en
Inventor
一弥 宮崎
和則 石川
昭男 津曲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2003013006A priority Critical patent/JP4495398B2/en
Publication of JP2004228265A publication Critical patent/JP2004228265A/en
Application granted granted Critical
Publication of JP4495398B2 publication Critical patent/JP4495398B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,研磨パッドの交換方法および研磨パッドの動的粘弾性測定装置に関する。
【0002】
【従来の技術】
従来,半導体ウェハ等の被研磨物を研磨加工するためには,例えば不織布製あるいは発泡ウレタン製等の研磨パッドが用いられている。かかる研磨パッドは,樹脂材料などが使用されており温度依存性が高いので,研磨中の加工熱により研磨パッドの特性が変化し,研磨品質に影響を及ぼすことがある。また,研磨パッドは,研磨工程において長時間使用されることが多いため,疲労により研磨パッドの研磨特性が経時的に劣化してしまう。このため,研磨工程では,品質(研磨特性)が劣化した研磨パッドを,随時,交換する必要があるが,この交換時期が早すぎれば,研磨工程のコストアップを引き起こしてしまう一方,遅すぎれば,研磨品質の低下を招き不良品を生ずることとなってしまう。
【0003】
従って,研磨工程中に研磨パッドの劣化状態を的確に把握して,研磨パッドの品質を管理する必要がある。特に,近年では,研磨品質の向上および安定性の要求が強いため,研磨パッドの品質管理をより高いレベルで行うことが求められている。
【0004】
従来では,研磨パッドの品質管理のために,研磨パッドの硬度測定などが行われていた。しかし,略同一の硬度値を示す研磨パッドを用いて研磨しても,被研磨物の研磨品質にバラツキが生じることがあり,かかる硬度測定では研磨パッドの品質を正確に把握できなかった。
【0005】
このような問題を解決する方法として,研磨パッドの弾性率を測定することによって,研磨パッドの劣化状態を把握し,研磨パッドの交換時期を判断することが提案されている(例えば,特許文献1参照)。しかしながら,この方法では,研磨パッドを弾性体と捉えているために,研磨パッドの状態を十分に把握しているとは言えなかった。これは,研磨パッドは,実際には,弾性体というよりもむしろ粘弾性体としての物理的性質を有していると考えられるからである。
【0006】
そこで,このような研磨パッドの物理的性質に着目し,研磨パッドの粘弾性を測定して研磨パッドの品質を評価する手法が提案されている(例えば,特許文献2および3参照)。これらの方法では,研磨パッドの粘弾性のうち,静的粘弾性を測定している。即ち,研磨パッドに対して所定の応力又は歪みを加えて長時間の変化をみるというクリープ試験又は応力緩和試験により,研磨パッドの静的粘弾性を測定している。
【0007】
【特許文献1】
特開平10−315116号公報
【特許文献2】
特開平8−94508号公報
【特許文献3】
特開平10−288579号公報
【0008】
【発明が解決しようとする課題】
しかしながら,上記従来の研磨パッドの品質管理方法は,研磨パッドの静的粘弾性を評価基準とするので,研磨加工に実際に使用されている状態の研磨パッドの品質を評価するものではなかった。即ち,実際の研磨工程においては,例えば,研磨パッドは,その一部に被研磨物が押圧された状態で回転するため,押圧された被研磨物と干渉する部分が周期的に変化している。このように研磨加工時には研磨パッドは動的に状態変化しているので,研磨パッドの静的粘弾性を測定したとしても,研磨加工に実際に使用されている状態における研磨パッドの研磨特性を正確に判断できないという問題があった。
【0009】
本発明は,上記従来の研磨パッドの品質管理方法が有する上記問題点に鑑みてなされたものであり,本発明の目的は,研磨工程中に容易かつ正確に研磨パッドの品質を管理することの可能な,新規かつ改良された研磨パッドの交換方法,およびこれを実現するための研磨パッドの動的粘弾性測定装置を提供することである。
【0010】
【課題を解決するための手段】
上記課題を解決するため,本発明の第1の観点によれば,被研磨物の研磨加工に使用した後の研磨パッドの交換方法において:前記研磨パッドの良好状態又は不良状態を示す動的粘弾性値の基準範囲を予め設定しておき,前記研磨パッドの研磨特性の経時的な劣化状態を把握するために,前記研磨加工に使用された後に研磨装置に装着されたままの状態の前記研磨パッドに対して動的粘弾性測定を行い,前記測定された動的粘弾性値と前記動的粘弾性値の基準範囲に基づいて,前記研磨パッドの交換が必要であるか否かを判断することを特徴とする。
【0011】
かかる構成により,研磨パッドについて動的粘弾性に関する物性値を取得できる。かかる動的粘弾性に関する物性値は,実際に研磨加工に使用されている状態の研磨パッドの品質(研磨特性)と密接な相関がある。このため,かかる動的粘弾性を測定することによって,研磨パッドの品質を正確に把握,評価できる。従って,研磨パッドの交換時期や,不良品であるか否かなどを的確に判断できるので,研磨パッドの品質管理を好適に実行できる。よって,研磨パッドによって研磨される被研磨物の研磨品質を安定的に確保することができる。
【0012】
また,上記動的粘弾性測定は,少なくとも,動的弾性率または損失弾性率のいずれか一方若しくは双方を測定する,ように構成してもよい。かかる構成により,動的粘弾性を表す好適な物性値である動的弾性率及び/又は損失弾性率を測定して,研磨パッドの品質を正確に把握,評価できる。
【0013】
また,上記研磨パッドは,研磨装置に装着された状態で測定される,ように構成してもよい。かかる構成により,研磨加工の途中で,研磨パッドを研磨装置から取り外すことなく,研磨パッドの動的粘弾性を容易かつ迅速に測定できる。なお,この研磨装置は,装着された研磨パッドと被研磨物とを相互に押圧しながら相対運動させて,被研磨物を研磨加工する装置である。
【0014】
また,上記動的粘弾性測定は,研磨パッド上に載置された動的粘弾性測定装置によって行われる,ように構成してもよい。かかる構成により,研磨工程の途中で,研磨パッド上に動的粘弾性測定装置を載置するだけで,研磨パッドの動的粘弾性を容易かつ迅速に測定できる。
【0015】
また,上記課題を解決するため,本発明の別の観点によれば,上記の研磨パッドの交換方法に用いられる研磨パッドの動的粘弾性測定装置が提供される。この研磨パッドの動的粘弾性測定装置は,被研磨物の研磨加工に使用された後に研磨装置に装着されたままの状態の研磨パッド上に載置され;研磨パッドに対して周期的な振動を加えることにより,研磨パッドの動的粘弾性を測定することを特徴とする。
【0016】
かかる構成により,上記のような研磨パッドの動的粘弾性測定方法を好適に実現可能な研磨パッドの動的粘弾性測定装置を提供できる。この動的粘弾性測定装置は,研磨パッドに対して周期的振動(例えば正弦波振動)を与えることにより,当該研磨パッドに作用している周期的な応力及び/又は周期的な歪みを検出することができる。かかる動的粘弾性測定装置を研磨パッド上に載置するだけで,簡便かつ正確に研磨パッドの動的粘弾性を測定できる。これにより,実際に研磨加工に使用されている状態の研磨パッドの品質を正確に把握することができる。
【0017】
また,上記研磨パッドの動的粘弾性測定装置は,研磨パッド上に載置される筐体と;筐体内に配され,研磨パッドに対して周期的な振動を加える加振装置と;加振装置の振動によって研磨パッドに生じた歪み変形量を検出する変位センサと;を備える,ように構成してもよい。かかる構成により,筐体は,動的粘弾性測定装置の各装置を収納することができる。また,加振装置は,研磨パッドに対して周期的振動(例えば正弦波振動)を与えることにより,当該研磨パッドに対して周期的な応力を作用させ,周期的な歪みを生じさせることができる。また,変位センサは,研磨パッドに生じた周期的な歪み変形量を検出して,動的粘弾性を表す物性値の算出に必要なデータを出力することができる。
【0018】
また,上記研磨パッドは,研磨装置に装着されているように構成してもよい。かかる構成により,研磨工程の途中で,研磨パッド上に動的粘弾性測定装置を載置するだけで,研磨パッドの動的粘弾性を容易かつ迅速に測定できる。
【0019】
【発明の実施の形態】
以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。
【0020】
(第1の実施の形態)
まず,図1に基づいて,本発明の第1の実施形態にかかる研磨装置の概容について説明する。なお,図1は,本実施形態にかかる研磨装置10,および研磨パッドの品質管理装置40の概略的な構成を示す斜視図である。
【0021】
図1に示すように,本実施形態にかかる研磨装置10は,例えば,研磨テーブル14と,研磨パッド16と,基板保持部駆動手段18と,基板保持部20と,研磨剤供給ノズル24と,から構成されている。
【0022】
研磨テーブル14は,例えば,ステンレス鋼,セラミックスなどで形成された略円盤状のテーブルであり,上面に例えば平滑な水平面を有する。かかる研磨テーブル14は,例えばその下方の装置内に設けられたモータ12によって回転可能である。即ち,モータ12の駆動力がスピンドル26,変速機(図示せず。)等を介して伝達されると,研磨テーブル14は,例えば図1の太矢印の方向に所定の回転速度(例えば40rpm)で回転する。
【0023】
また,研磨パッド16は,例えば,表面の研磨布とその下側の弾力層などから構成された2層構造を有する。この研磨布は,例えば,不織布や発泡ウレタン等を材料とする人工皮革様の布であり,所定の摩擦抵抗と適度な硬さを有し,親水性,粘弾性,耐薬品性にも優れる。また,弾力層は,弾力性に富む材料で構成されており,基板30全体を略均一に研磨するため,押圧された基板30全体を弾力的に研磨布と接触させる機能を有する。なお,研磨パッド16は,かかる弾力層を必ずしも具備しなくてもよい。
【0024】
このような構成の研磨パッド16は,例えば,研磨テーブル14上に極力平坦になるように貼り付けるなどして装着される。このため,研磨パッド16は,研磨テーブル14の回転に伴って回転運動し,基板30に対して相対運動することができる。これにより,研磨パッド16は,被研磨物である半導体ウェハ等の基板30を研磨することができる。即ち,研磨パッド16は,例えばスラリー25を供給されながら,後述する基板保持部20によって押圧された基板30と機械的に干渉することにより,基板30の被研磨面を平坦加工または鏡面加工することができる。
【0025】
また,通常は,かかる研磨パッド16一枚で複数枚の基板30を研磨加工できる。しかし,研磨パッド16は,研磨する基板30の枚数が増加するにつれ経時的に疲労して,研磨特性が劣化してしまう。従って,基板30の研磨品質を維持するためには,研磨特性が所定基準以下に劣化した研磨パッド16を,随時交換する必要がある。
【0026】
基板保持部駆動手段18は,ロッド28を介して基板保持部20を加圧しながら回転させる機構であり,例えばモータおよびシリンダ(図示せず。)等からなる。即ち,例えば,加圧機構であるシリンダにより,基板30を保持した基板保持部20を研磨パッド16に対し例えば垂直方向に押圧するとともに,回転機構であるモータにより基板保持部20を,例えば図1の細矢印の方向に回転させることができる。
【0027】
また,基板保持部20は,例えば,全体が略円柱形状を有し,研磨テーブル14の上方に回転可能に設置される。かかる基板保持部20は,例えば,ロッド28を介して基板保持部駆動手段18に連結され,下面には基板30を保持するためのリング22を備えている。このため,基板保持部20は,例えば,被研磨面が研磨パッド16と対向するように基板30を保持することができる。さらに,基板保持部20は,このように保持した基板30の被研磨面を,回転させながら研磨パッド16に押圧することができる。これにより,研磨パッド16と基板30の被研磨面とが相互に干渉しながら相対運動するので,当該被研磨面が研磨される。このとき,例えば,基板30および研磨パッド16の双方が回転運動しているため,両者は複合的な方向にバランス良く擦り合わせられるので,被研磨面全体が均等に研磨される。
【0028】
また,研磨剤供給ノズル24は,基板30の研磨加工時に,例えば,回転する研磨パッド16上にスラリー25を供給することができる。スラリー25は,化学反応性物質を含む研磨剤であり,被研磨物に応じて多様な化学溶液や研磨砥粒が用いられる。具体的には,このスラリー25は,例えば,SiO系の超微粒子を純水に懸濁させたコロイダルシリカとアルカリ性溶液(例えばpH9〜11.5)で調合して構成できる。かかるスラリー25は,研磨加工時に基板30と研磨パッド16の間に入り込んで砥粒として機能して,基板30の被研磨面を高精度に平滑化する。
【0029】
また,かかる研磨装置10は,例えば,図1には示していないが,基板30を安定的に研磨するために,研磨パッド16の表面性状を常に同じ状態に保つ目的で当該表面の目立てを行うコンディショニング機構や,ダイヤモンド砥石やナイロンブラシ等で研磨パッド16の表面を擦るドレッシング機構などを具備してもよい。また,基板保持部20を上下移動させる昇降機構や,基板30を研磨パッド16に均等に加圧接触させるための加圧ポンプ,基板30を吸着保持するための減圧ポンプなどが設けられてもよい。
【0030】
以上のような構成の研磨装置10は,例えば,ウェハ製造工程において,基板30である半導体ウェハの被研磨面を高精度に研磨して鏡面化(即ち,ポリシング)することが可能である。また,研磨装置10は,例えば,ウェハ処理工程において,半導体デバイスの多層構造化に伴って半導体ウェハ表面に形成された凹凸面を,化学機械研磨(CMP:Chemical mechanical polishing)法により,化学作用と機械的研磨の複合作用により研磨して平滑化することも可能である。
【0031】
次に,さらに図1に基づいて,本実施形態にかかる特徴である研磨パッドの品質管理装置40について説明する。この研磨パッドの品質管理装置40は,例えば,研磨加工に用いられる研磨パッド16の品質を測定,評価および管理するための装置であり,かかる評価指標として動的粘弾性を測定することを特徴とする。
【0032】
ここで,この動的粘弾性について説明する。動的粘弾性は,物体に周期的に変化する歪みまたは応力を加えたときに観測される粘弾性である。この動的粘弾性は,例えば,弾性に相当する実数部と,粘性に相当する虚数部とを有する複素数として表され,それぞれ動的弾性率(貯蔵弾性率)E’,損失弾性率E’’とよばれる。また,これらの動的弾性率E’および損失弾性率E’’の和を複素数表示したものを複素弾性率E(=E’+E’’i)という。また,この損失弾性率E’’と動的弾性率E’との比(E’’/E’)を損失正接(tanδ)といい,例えばゴム材料における転がり抵抗,制振材における振動減衰性能などの評価に重要な物理量である。
【0033】
この動的粘弾性の測定において,被測定材料の温度の変化(温度分散)や,加える歪みまたは応力の周波数の変化(周波数分散)に応じた挙動を解析することにより,被測定材料の力学的性質を解明する多くの情報を得ることができる。このため,かかる動的粘弾性の測定は,実際の製造工程,加工工程中における被測定材料の評価手段,品質管理の手段として有効である。
【0034】
かかる観点から,本実施形態にかかる研磨パッドの品質管理装置40は,研磨パッド16に対して動的粘弾性測定を行うことにより,実際に使用されている研磨パッド16の状態を正確に評価しようとするものである。より詳細には,図1に示したような研磨装置10による研磨加工では,例えば,回転する研磨パッド16に対して,その全体ではなく部分的にのみ基板30が押圧される。このため,研磨加工中の研磨パッド16は,部分的に基板30が押圧・非押圧される状態が周期的に繰り返されて,動的に状態変化していることになる。従って,上記のような動的粘弾性は,このような研磨加工に実際に使用されている研磨パッド16の状態に好適に対応しているので,研磨加工に実際に使用されている状態における研磨パッド16の研磨特性を評価するための指標としては,従来のような静的粘弾性よりも優れる。
【0035】
そこで,本実施形態にかかる研磨パッドの品質管理装置40は,例えば,研磨装置10に装着されている状態の研磨パッド16に対して,動的粘弾性測定を行い,例えば,動的弾性率E’および損失弾性率E’’を測定する。一方で,予め,例えば,研磨パッド16の良好状態(交換が不要な状態),あるいは不良状態(交換が必要な状態)を示す動的弾性率E’および損失弾性率E’’の範囲(以下では,基準動的粘弾性値の範囲という場合もある。)を設定しておく。これにより,上記測定した動的弾性率E’または損失弾性率E’’の一方若しくは双方の値が,上記基準動的粘弾性値の範囲から外れる,あるいは含まれるか否かを判断することにより,研磨パッド16の状態が良好であるか,または不良であるかを評価することができる。この結果,研磨パッド16の交換時期を正確に判断することが可能となる。
【0036】
かかる動的粘弾性測定に基づく研磨パッドの品質管理を実現すべく,研磨パッドの品質管理装置40は,図1に示すように,例えば,研磨パッドの動的粘弾性測定装置50(以下では,測定装置50と略称する。)と,制御解析装置60と,情報処理装置70と,を備える。
【0037】
測定装置50は,例えば,研磨装置10が静止状態(即ち,回転テーブル14の回転が停止し研磨加工が行われていない状態)にあるときに,研磨装置10の研磨パッド16上に載置され,研磨パッド16の動的粘弾性を測定することができる。換言すると,測定装置50は,研磨装置10に常設されるのではなく,研磨パッド16の動的粘弾性を測定するときにだけ,研磨パッド16上にオプション的に取り付けられるものである。
【0038】
一方,制御解析装置60および情報処理装置70は,例えば,研磨装置10とは離隔して配置されており,ケーブル62などで接続された測定装置50との間で,各種の制御信号および測定データ等を送受信することができる。この制御解析装置60および情報処理装置70は,例えば協働して,上記測定装置50を制御するとともに,測定装置50の測定データを解析,表示等することができる。
【0039】
このように,研磨パッドの品質管理装置40は,例えば,測定装置50と,制御解析装置60および情報処理装置70とが,独立した構成となっており,比較的小型の測定装置50のみを研磨パッド16上に載置することができる。以下に,これらの各装置の詳細について説明する。
【0040】
まず,図2に基づいて,本実施形態にかかる特徴である研磨パッドの動的粘弾性測定装置50について詳細に説明する。なお,図2は,本実施形態にかかる研磨パッドの動的粘弾性測定装置50の概略的な構成を示す断面図である。また,図3は,本実施形態にかかる押圧棒54の先端部の形状例を示す断面図である。
【0041】
図2に示すように,測定装置50は,例えば,筐体51と,加振器52と,押圧棒54と,変位センサ56と,温度センサ58と,を主に備える。
【0042】
筐体51は,例えば150mm角の略立方体形状などを有し,例えば金属または合成樹脂などで形成されている。この筐体51の内部には,測定装置50の各機器が設置される。かかる筐体51は,測定時においては,例えば,その下面が研磨パッド16と直接接触するようにして研磨パッド16上に載置される。なお,この筐体51は,研磨装置10の研磨パッド16上に好適に載置できるように,その大きさ,形状等が設計されている。
【0043】
加振器52は,例えば基台部53を介して筐体51に固定されている。この加振器52は,内部にモータなどを備えており,例えば,制御解析装置60などからの制御信号に基づいて,周期的な振動を発生することができる。この加振器52が発した振動は,加振器52の例えば下部に取り付けられた押圧棒54に伝達される。本実施形態では,かかる加振器52が発生する周期的な振動は,例えば正弦波振動となるように構成されている。かかる正弦波振動を採用することで,研磨パッド16の動的粘弾性の測定処理および解析処理が,簡便かつ正確となる。
【0044】
押圧棒54は,例えば,研磨パッド16を押圧するための略棒状の押圧部材(治具)であり,例えば硬質な金属等で形成されている。かかる押圧棒54の先端部は,図3に示すように,例えば,略半球形状(図3(a)),略コーン形状(図3(b)),略平面形状(図3(c))などとすることができる。この先端部の形状は,例えば,研磨パッド16の材質,硬度,厚さなどに応じて決定される。かかる押圧棒54は,上記加振器52によって例えば研磨パッド16に対して略垂直方向(例えば上下方向)に周期的に振動させられる。この結果,押圧棒54は,例えば筐体51下面に設けられた貫通孔55から突出して,研磨パッド16の一部を周期的に押圧して変形させることができる。
【0045】
このような加振器52および押圧棒54は,本実施形態にかかる加振装置として構成されており,研磨パッド16に対して例えば正弦波振動を加えることができる。さらに,本実施形態では,かかる正弦波振動は,研磨パッド16に対して例えば正弦波応力が与えられるように制御される。これにより,加振器52および押圧棒54は,研磨パッド16に対して周期的に変化する例えば正弦波応力を加えることができ,この結果,例えば,研磨パッド16に部分的な正弦波歪みを生じさせることができる。
【0046】
変位センサ56は,例えば,押圧棒54の近傍に設置された非接触型の変位計などで構成される。この変位センサ56は,上記押圧棒54の例えば略垂直方向の変位量を検出することができる。これにより,変位センサ56は,例えば,上記押圧棒54の押圧によって研磨パッド16に生じた歪み変形量を検出することができる。
【0047】
温度センサ58は,例えば,筐体51下面の内側に設置される温度計などである。この温度センサ58は,例えば,研磨パッド16に対して正弦波振動が加えられる付近の温度を検出することができる。なお,この温度センサ58は,必ずしも具備されなくともよい。
【0048】
上記のような構成の測定装置50は,研磨パッド16に対して例えば正弦波振動(正弦波応力)を加えることにより,研磨パッド16に動的に変化する歪み(正弦波歪み)を生じさせ,さらに,かかる歪みを検出することにより,研磨パッド16の動的粘弾性を測定することができる。このとき,研磨装置10に装着されたままの状態の研磨パッド16上に,測定装置50を載置して動作させることで,当該研磨パッド16の動的粘弾性を測定できる。このため,研磨パッド16を研磨装置10から取り外すことなく迅速かつ容易に測定できるので,測定作業が効率的になる。
【0049】
次に,図4に基づいて,本実施形態にかかる制御解析装置60について詳細に説明する。なお,図4は,本実施形態にかかる制御解析装置60の概略的な構成を示すブロック図である。
【0050】
図4に示すように,制御解析装置60は,例えば,正弦波発生器61と,増幅器62と,応力検出回路63と,変位検出回路64と,振幅比較回路65と,位相差回路66と,温度検出回路67と,を備える。
【0051】
正弦波発生器61および増幅器62は,例えば,上記測定装置50の加振器52の動作を制御する制御部として機能する。
【0052】
詳細には,正弦波発生器61は,例えば,情報処理措置70からの制御指示信号に基づいて,例えば特定の周波数の正弦波信号を発生する。また,増幅器62は,この正弦波発生器61の出力である正弦波信号の振幅を調整した上で,加振器52に対して制御信号として出力する。これにより,加振器52は,入力された正弦波信号に応じた正弦波振動を発生することができる。この加振器52が発生した正弦波振動は,押圧棒54を介して研磨パッド16に正弦波応力として作用する。
【0053】
また,応力検出回路63,変位検出回路64,振幅比較回路65,位相差回路66および温度検出回路67は,例えば,測定装置50の測定データを解析する解析部として機能する。この解析処理は,例えば,研磨パッド16の動的弾性率E’および損失弾性率E’’などを算出するために必要な,研磨パッド16に作用する正弦波応力と正弦波歪みとの相関データを得る処理や,研磨パッド16の温度を得る処理などである。
【0054】
より詳細には,応力検出回路63は,例えば,増幅器52の出力である正弦波信号に基づいて,研磨パッド16に作用している正弦波応力を検出し,当該正弦波応力に相当する応力検出信号を生成する。一方,変位検出回路64は,例えば,変位センサ56が検出した押圧棒54の変位に基づいて,研磨パッド16に生じている正弦波歪みを検出し,当該正弦波歪みに相当する変位検出信号を生成する。これらの応力検出信号および変位検出信号は,それぞれ振幅比較回路65および位相差検出回路66に入力される。振幅比較回路65は,例えば,応力検出信号および変位検出信号の振幅を比較して,両者の振幅比に相当する振幅比較信号を生成する。また,位相差回路66は,例えば,略同一の周期で増減する応力検出信号および変位検出信号の位相を比較して,両者の位相差に相当する位相差信号を生成する。かかる振幅比較信号は動的弾性率E’を表し,位相差信号は損失弾性率と動的弾性率との比(E”/E’)である損失正接(tanδ)を表している。このため,情報処理装置70は,これらの振幅比較信号および位相差信号に基づいて,研磨パッド16の動的弾性率E’および損失弾性率E’’を得ることができる。また,温度検出回路67は,例えば,温度センサ58の検出データに基づいて,正弦波応力が加えられている付近の研磨パッド16の温度を表す温度検出信号を生成して,情報処理装置70に出力する。
【0055】
次に,本実施形態にかかる情報処理装置70について詳細に説明する。
【0056】
情報処理装置70は,図1に示したように,例えば,パーソナルコンピュータなどで構成される。この,情報処理装置70は,例えば,測定装置50および制御解析装置60に対する制御信号の発信処理や,制御解析装置60から入力された測定データおよび解析データ等に関する計算処理,作図,作表などの表示処理,記録処理など,研磨パッド16の動的粘弾性測定に関する各種処理を実行する。
【0057】
具体例を挙げると,この情報処理装置70は,例えば,オペレータ入力などに基づいて,研磨パッド16に加える正弦波振動の周期,振幅等を設定し,測定装置50および制御解析装置60の動作を指示することができる。また,この情報処理装置70は,例えば,上記制御解析装置60から入力された振幅比較信号および位相差信号に基づいて,研磨パッド16の動的弾性率E’および損失弾性率E’’を算出し,これらの経時変化をモニタなどにグラフ表示することもできる。
【0058】
なお,上記のような情報処理装置70の各種処理機能は,例えば,一般的なPCである情報処理装置70に対して,動的粘弾性測定に関する上記各種処理を規定するプログラムをインストールすることによって,実現可能に構成してもよい。
【0059】
次に,図5に基づいて,本実施形態にかかる研磨パッドの品質管理方法について説明する。なお,図5は,本実施形態にかかる研磨パッドの品質管理方法を示すフローチャートである。
【0060】
図5に示すように,まず,ステップS10では,研磨装置10により半導体ウェハなどの基板30が,例えば所定枚数だけ研磨加工される(ステップS10)。この研磨加工時には,研磨パッド16は,例えば,所定の複数枚数の基板30を研磨するまでは交換されることなく同一のものが継続して使用される。なお,このように所定の複数枚数の基板30の研磨加工が完了した場合だけではなく,例えば,研磨加工中にオペレータが研磨品質等の不良,異常を発見した場合などにも,ステップS12に進むようにしてもよい。即ち,本ステップで研磨加工される基板30の枚数は,必ずしも所定の枚数に固定されるものではなく,研磨パッド16の測定の必要性に応じて任意の枚数に変更することもできる。
【0061】
次いで,ステップS12では,上記測定装置50が研磨パッド16上に載置される(ステップS12)。このとき,例えば,研磨装置10は上記静止状態にあり,研磨加工は中断している。また,研磨パッド16は,例えば,研磨装置10の研磨テーブル14に装着されたままの状態である。
【0062】
さらに,ステップS14では,測定装置50によって研磨パッド16の動的粘弾性が測定される(ステップS14)。より詳細には,例えば,オペレータが上記情報処理装置70に測定条件を入力し測定開始を指示すると,例えば上記制御解析装置60が測定装置50の測定動作を開始するよう制御する。これにより,測定装置50は,例えば,研磨装置10に装着されている状態の研磨パッド16に対して正弦波応力を加えながら,かかる応力によって研磨パッド16に生じた正弦波歪みを検出する。このようにして,測定装置50は,研磨パッド16の動的粘弾性の算出に必要なデータを測定しながら,かかる測定データを制御解析装置60に出力する。さらに,制御解析装置60および情報処理装置70が,例えば,かかる測定データを解析,計算することにより,当該研磨パッド16の動的粘弾性を表す物性値である動的弾性率E’および損失弾性率E’’を得る。また,かかる動的粘弾性の測定中に,例えば,温度センサ58等により研磨パッド16の温度を測定することもできる。
【0063】
その後,ステップS16では,上記測定された動的粘弾性値に基づいて,研磨パッド16の品質の劣化具合が判断され,当該研磨パッド16の交換が必要であるか否かが判断される(ステップS16)。この交換の要否の判断は,例えば,測定された動的弾性率E’または損失弾性率E’’の一方若しくは双方が,予め設定された研磨パッド16の良好状態を示す動的弾性率E’または損失弾性率E’’の範囲(上記基準動的粘弾性値の範囲)内にあるか否かなどを判断基準とすることができる。より具体的には,例えば,動的弾性率E’の測定値が例えば1000[MPa]以下である場合には,当該研磨パッド16は不良状態にあり,交換が必要であると判断するように設定してもよい。
【0064】
また,かかる研磨パッド16交換の要否の判断は,例えば,オペレータにより行われても良いし,或いは情報処理装置70などが上記基準動的粘弾性値と測定した動的粘弾性値とを比較して,自動的に行うようにしてもよい。上記のような判断の結果,当該研磨パッド16の交換が必要であると判断された場合にはステップS18に進み,一方,必要でないと判断された場合にはステップS20に進む。
【0065】
次いで,ステップS18では,研磨パッド16が,交換される(ステップS18)。即ち,不良状態にあると判断された研磨パッド16が研磨装置10の研磨テーブル14から取り外され,良好状態にある新たな研磨パッド16が当該研磨テーブル14に装着される。
【0066】
さらに,ステップS20では,基板30の研磨加工を終了するか否かが判断される(ステップS20)。研磨加工を終了しない場合には,ステップS10に戻り,上記と同様にして,例えば所定枚数の基板30を研磨した後,測定装置50により研磨パッド16の動的粘弾性を測定して,品質評価が行われる。このようなフローを繰り返すことにより,研磨工程において研磨パッド16の品質を定期的に評価できる。一方,研磨加工を終了する場合には,研磨パッドの品質管理方法の全工程が終了する。
【0067】
以上のような,本実施形態にかかる研磨パッドの品質管理装置50および品質管理方法によれば,研磨パッド16に対して動的粘弾性測定を行うので,実際に研磨加工に使用されている状態の研磨パッド16の研磨特性(品質)を,正確に測定して,把握できる。
【0068】
また,かかる動的粘弾性の測定は,測定装置50を研磨パッド16上に載置するだけで実行可能であり,従来のように研磨パッド16を測定用試料室に入る程度の大きさの小片に加工する必要がない。このため,オペレータは,例えば,研磨加工途中において研磨パッド16の動的粘弾性を容易かつ迅速に測定して,研磨パッド16の研磨特性を正確に把握できる。この結果,当該研磨パッド16によって研磨された基板30の研磨品質等をも正確に把握できる。
【0069】
さらに,研磨パッド16の品質の適否基準として予め設定してある基準動的粘弾性値と,測定した動的粘弾性値とを比較することにより,当該研磨パッド16の交換の要否を客観的に判断することができる。即ち,研磨パッド16の交換時期を適正に判断できる。このため,交換時期が早すぎて,研磨パッド16の浪費によるコストアップを誘発することや,逆に,交換時期が遅すぎて,基板30の研磨品質が低下して不良品を生ずることを,好適に防止できる。
【0070】
また,研磨加工中に加工熱等により研磨パッド16の温度が変化した場合でも,温度センサ58の検出結果と研磨パッドの温度依存性を解析することにより,研磨パッド16の研磨特性等を正確に把握して対応することができる。このため,温度変化にも対応した研磨パッド16の品質管理を実現できる。
【0071】
このように本実施形態によれば,例えば,研磨工程において,実際に研磨加工に使用されている状態の研磨パッド16の品質を容易,迅速かつ正確に管理することができる。この結果,基板30などの被研磨物の研磨品質が所定レベル以上で安定的に確保され,歩留まりが向上する。
【0072】
【実施例】
次に,上記実施形態に基づいて,研磨パッド16の動的粘弾性を測定する実験等を行った結果について説明する。
【0073】
まず,上記動的粘弾性の測定実験の予備実験として,研磨パッド16の反応率と研磨レート(研磨効率)との相関を求めるために行った研磨実験結果について,図6に基づいて説明する。なお,図6は,本実施例にかかる研磨実験結果として,研磨パッド16の反応率と研磨レートとの相関を示すグラフである。
【0074】
研磨パッド16の不良原因の1つとしては,例えば,研磨パッド16の成型時における材料の反応不全が挙げられる。そこで,良品の研磨パッド16(反応率100%)と,不良品の研磨パッド16(反応率90%,80%,70%)とを用いて,基板30の研磨実験を行った。この結果,図6に示すように,良品の研磨パッド16の研磨レートが約0.27[μm/mim]と比較的高いのに対し,不良品の研磨パッド16の研磨レートは,いずれも0.10[μm/mim]以下であり,反応率が低いほど研磨パッド16の研磨レートが低下(即ち,研磨パッド16の研磨性能が悪化)することが分かった。
【0075】
次に,表1および図7に基づいて,上記測定装置50を用いた研磨パッド16の動的粘弾性等の測定実験結果について,説明する。なお,表1は,本実施例にかかる測定実験結果として,研磨パッド16の反応率と,研磨パッド16の硬度,静的弾性率,動的弾性率および損失弾性率との関係を示す表である。また,図7は,本実施例にかかる測定実験結果として,研磨パッド16の反応率と,研磨パッド16の硬度,静的弾性率,動的弾性率および損失弾性率との相関を示すグラフである。
【0076】
本実験では,研磨パッド16の硬度を略同一となるようにし,成型時の反応率を変えて,意図的に,3つの不良品の研磨パッド16(反応率90,80,70%)と,1つの良品の研磨パッド16(反応率100%)を製造した。さらに,これら4つの研磨パッド16に対して,静的粘弾性を表す静的弾性率(ヤング率)と,動的粘弾性を表す動的弾性率E’および損失弾性率E’’をそれぞれ測定し,各測定結果を比較した。なお,硬度測定はJISK6253‐1997/IS07619で規定するシヨアD硬度計を用いた。また,動的粘弾性の測定では,研磨パッド16の温度が30℃となるようにし,研磨パッド16に加える正弦波応力の周波数を5Hzとした。
【0077】
【表1】

Figure 0004495398
【0078】
かかる測定実験によれば,表1および図7に示すように,静的弾性率は,良品である反応率100%の場合には,1400[MPa]であるのに対し,不良品である反応率90,80%の場合には,それぞれ1000[MPa],800[MPa]であり,両者の差は約1.4〜1.75倍程度で大差はない。ただし,反応率70%の場合には,10[MPa]であり良品との差は大きいが,これは不良の度合いが静的弾性率でも検知可能な程度に過度に大きいためと考えられる。
【0079】
これに対し,動的弾性率E’は,良品である反応率100%の場合には,2400[MPa]であるのに対し,不良品である反応率90,80%の場合には,それぞれ810[MPa],740[MPa]であり,両者の差は約3〜3.4倍程度で顕著な差が見られる。また,損失弾性率E’’は,良品である反応率100%の場合には,86.0[MPa]であるのに対し,不良品である反応率90,80%の場合には,それぞれ260[MPa],290[MPa]であり,両者の差は約3.3〜3.6倍程度で顕著な差が見られる。
【0080】
このように,良品と不良品との間で,静的弾性率には大きな差異が見られないのに対し,動的弾性率E’および損失弾性率E”には,大きな差異が見られることが分かる。従って,動的粘弾性測定を行うことによって,硬度や静的弾性率では評価不能な研磨パッド16の品質を評価できることが明らかになった。よって,研磨パッド16の品質管理をするために,動的粘弾性を測定することが有効な手段であることが実証された。
【0081】
さらに,上記実験結果に基づいて,研磨パッド16の良否判断の基準となる基準動的粘弾性値について考察すると,例えば,動的弾性率E’が1000[MPa]以下であれば不良であると判断することができる。また,例えば,損失弾性率E’’が100[MPa]以上であれば不良であると判断することもできる。しかし,この基準動的粘弾性値は,かかる例に限定されず,例えば,研磨パッド16の硬度に応じて適切に増減させてよく,研磨パッド16の硬度毎に動的弾性率E’または損失弾性率E’’の上限または下限などを設定してもよい。また,例えば,動的弾性率E’および損失弾性率E’’の双方の基準値を設定して,良否判断することも可能である。
【0082】
以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
【0083】
例えば,上記実施形態では,測定装置50が研磨パッド16に対して与える振動は正弦波振動であったが,本発明はかかる例に限定されず,任意の周期的な振動であってもよい。
【0084】
また,上記実施形態では,研磨パッド16に対して正弦波応力を与えたときの正弦波歪みを検出して,研磨パッド16の動的粘弾性測定を行ったが,本発明はかかる例に限定されない。例えば,研磨パッド16に周期的な歪み(正弦波歪み等)を加えたときの動的に変化する応力を検出して,研磨パッド16の動的粘弾性を測定してもよい。なお,この場合には,制御解析装置60の回路構成などを適宜変更してもよい。
【0085】
また,上記実施形態では,研磨パッドの品質管理装置40は,測定装置50と,制御解析装置60と,情報処理装置70とを備えたが,本発明はかかる例に限定されない。例えば,制御解析装置60は必ずしも具備されなくてもよく,この場合には,制御解析装置60の構成を,測定装置50または情報処理装置70が備えるようにしてもよい。
【0086】
また,上記実施形態では,測定装置50と制御解析装置60などは,ケーブル62などによって有線で接続されていたが,本発明はかかる例に限定されず,例えば,相互に無線で接続されていてもよい。
【0087】
また,上記実施形態では,動的弾性率E’および損失弾性率E’’の双方を測定したが,本発明はかかる例に限定されない。例えば,動的弾性率E’または損失弾性率E’’のいずれか一方のみを測定してもよく,また,研磨パッド16の動的粘弾性を表すその他の物性値を測定するようにしてもよい。
【0088】
また,上記実施形態にかかる測定装置50では,加振装置は,加振器52と押圧棒54とから構成されていたが,本発明はかかる例に限定されない。例えば,加振装置は,研磨パッド16に対して周期的な振動を加えることが可能であれば,任意の構成に変更することができる。また,押圧棒54の形状も上記例に限定されるものではない。
【0089】
また,上記実施形態にかかる研磨パッドの品質管理方法では,研磨装置10に取り付けられている状態の研磨パッド16を測定したが,本発明はかかる例に限定されない。例えば,研磨工程途中に研磨パッド16を研磨装置10から取り外した上で,動的粘弾性を測定してもよい。また,例えば,製造した直後の新品の研磨パッド16に対して動的粘弾性を測定して,研磨パッド16の出荷前検査などに利用してもよい。
【0090】
また,上記実施形態にかかる研磨パッドの品質管理方法では,所定枚数の基板30を研磨する毎に研磨パッド16の動的粘弾性を測定して,定期的に品質管理を行ったが,本発明はかかる例に限定されない。例えば,研磨加工を任意のタイミングで中断して単発的に研磨パッド16の動的粘弾性を測定してもよい。
【0091】
【発明の効果】
以上説明したように,本発明によれば,研磨パッドに対して動的粘弾性測定を行うことにより,研磨パッドの品質を正確に把握できる。また,研磨工程中に随時,研磨パッドの動的粘弾性を測定できるので,実際に研磨加工に使用されている状態の研磨パッドの品質を容易かつ正確に評価,管理できる。このため,研磨パッドの交換時期が好適となるので,被研磨物の研磨品質を安定して確保することができる。
【図面の簡単な説明】
【図1】図1は,第1の実施形態にかかる研磨装置,および研磨パッドの品質管理装置の概略的な構成を示す斜視図である。
【図2】図2は,第1の実施形態にかかる研磨パッドの動的粘弾性測定装置の概略的な構成を示す断面図である。
【図3】図3は,第1の実施形態にかかる押圧棒の先端部の形状例を示す断面図である。
【図4】図4は,第1の実施形態にかかる制御解析装置の概略的な構成を示すブロック図である。
【図5】図5は,第1の実施形態にかかる研磨パッドの品質管理方法を示すフローチャートである。
【図6】図6は,実施例にかかる研磨実験結果として,研磨パッドの反応率と研磨レートとの相関を示すグラフである。
【図7】図7は,実施例にかかる測定実験結果として,研磨パッドの反応率と,研磨パッドの硬度,静的弾性率,動的弾性率および損失弾性率との相関を示すグラフである。
【符号の説明】
10 : 研磨装置
14 : 研磨テーブル
16 : 研磨パッド
30 : 基板
40 : 研磨パッドの品質管理装置
50 : 研磨パッドの動的粘弾性測定装置
51 : 筐体
52 : 加振器
54 : 押圧棒
56 : 変位センサ
58 : 温度センサ
60 : 制御解析装置
70 : 情報処理装置[0001]
BACKGROUND OF THE INVENTION
The present invention provides a polishing pad. method of exchange And a dynamic viscoelasticity measuring device of a polishing pad.
[0002]
[Prior art]
Conventionally, in order to polish an object to be polished such as a semiconductor wafer, a polishing pad made of, for example, non-woven fabric or urethane foam has been used. Since such a polishing pad uses a resin material or the like and has high temperature dependence, the characteristics of the polishing pad may change due to processing heat during polishing, which may affect the polishing quality. In addition, since the polishing pad is often used for a long time in the polishing process, the polishing characteristics of the polishing pad deteriorate with time due to fatigue. Therefore, in the polishing process, it is necessary to replace the polishing pad whose quality (polishing characteristics) has deteriorated from time to time. However, if this replacement time is too early, the cost of the polishing process will be increased. As a result, the polishing quality is degraded and defective products are produced.
[0003]
Therefore, it is necessary to accurately grasp the deterioration state of the polishing pad during the polishing process and control the quality of the polishing pad. In particular, in recent years, there is a strong demand for improvement and stability of polishing quality, and therefore it is required to perform quality control of the polishing pad at a higher level.
[0004]
Conventionally, polishing pad hardness has been measured for quality control of the polishing pad. However, even if polishing is performed using a polishing pad having substantially the same hardness value, the polishing quality of the object to be polished may vary. Such hardness measurement cannot accurately determine the quality of the polishing pad.
[0005]
As a method for solving such a problem, it has been proposed to determine a polishing pad replacement time by measuring a deterioration state of the polishing pad by measuring an elastic modulus of the polishing pad (for example, Patent Document 1). reference). However, in this method, since the polishing pad is regarded as an elastic body, it cannot be said that the state of the polishing pad is sufficiently grasped. This is because the polishing pad is actually considered to have physical properties as a viscoelastic body rather than an elastic body.
[0006]
Therefore, paying attention to the physical properties of such a polishing pad, a method for measuring the viscoelasticity of the polishing pad and evaluating the quality of the polishing pad has been proposed (see, for example, Patent Documents 2 and 3). These methods measure static viscoelasticity among the viscoelasticity of the polishing pad. That is, the static viscoelasticity of the polishing pad is measured by a creep test or a stress relaxation test in which a predetermined stress or strain is applied to the polishing pad and a change over time is observed.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-315116
[Patent Document 2]
JP-A-8-94508
[Patent Document 3]
Japanese Patent Laid-Open No. 10-288579
[0008]
[Problems to be solved by the invention]
However, since the conventional quality control method of the polishing pad uses the static viscoelasticity of the polishing pad as an evaluation criterion, it does not evaluate the quality of the polishing pad actually used for polishing. That is, in the actual polishing process, for example, the polishing pad rotates while the object to be polished is pressed against a part of the pad, so that the portion that interferes with the pressed object is periodically changed. . As described above, since the polishing pad dynamically changes during polishing, even if the static viscoelasticity of the polishing pad is measured, the polishing characteristics of the polishing pad in the state actually used for polishing are accurately measured. There was a problem that could not be judged.
[0009]
The present invention has been made in view of the above-mentioned problems of the conventional polishing pad quality control method, and an object of the present invention is to manage the quality of the polishing pad easily and accurately during the polishing process. Possible new and improved polishing pad method of exchange , And a dynamic viscoelasticity measuring device for a polishing pad for realizing this.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, according to a first aspect of the present invention, in a method for replacing a polishing pad after being used for polishing of an object to be polished, a dynamic viscosity indicating a good state or a defective state of the polishing pad: In order to determine the reference range of the elastic value in advance and grasp the state of deterioration of the polishing characteristics of the polishing pad over time, After being used for the polishing process, it remains attached to the polishing apparatus. The dynamic viscoelasticity measurement is performed on the polishing pad, and whether or not the polishing pad needs to be replaced is determined based on the measured dynamic viscoelasticity value and the reference range of the dynamic viscoelasticity value. It is characterized by judging.
[0011]
With this configuration, a physical property value related to dynamic viscoelasticity can be acquired for the polishing pad. The physical property value relating to such dynamic viscoelasticity has a close correlation with the quality (polishing characteristics) of the polishing pad actually used for polishing. Therefore, the quality of the polishing pad can be accurately grasped and evaluated by measuring such dynamic viscoelasticity. Accordingly, since it is possible to accurately determine the replacement timing of the polishing pad and whether or not it is a defective product, quality control of the polishing pad can be suitably executed. Therefore, it is possible to stably ensure the polishing quality of the object to be polished by the polishing pad.
[0012]
The dynamic viscoelasticity measurement may be configured to measure at least one or both of the dynamic elastic modulus and the loss elastic modulus. With this configuration, it is possible to accurately grasp and evaluate the quality of the polishing pad by measuring the dynamic elastic modulus and / or the loss elastic modulus, which are suitable physical property values representing dynamic viscoelasticity.
[0013]
The polishing pad may be configured to be measured in a state where it is mounted on a polishing apparatus. With this configuration, the dynamic viscoelasticity of the polishing pad can be measured easily and quickly without removing the polishing pad from the polishing apparatus during the polishing process. This polishing apparatus is an apparatus that polishes an object to be polished by relatively moving the mounted polishing pad and the object to be polished while pressing each other.
[0014]
Moreover, you may comprise so that the said dynamic viscoelasticity measurement may be performed with the dynamic viscoelasticity measuring apparatus mounted on the polishing pad. With this configuration, the dynamic viscoelasticity of the polishing pad can be measured easily and quickly simply by placing the dynamic viscoelasticity measuring device on the polishing pad during the polishing process.
[0015]
In order to solve the above problems, according to another aspect of the present invention, there is provided a dynamic viscoelasticity measuring device for a polishing pad used in the above polishing pad replacement method. This dynamic viscoelasticity measuring device for a polishing pad After being used for polishing, it remains attached to the polishing equipment. The dynamic viscoelasticity of the polishing pad is measured by applying periodic vibration to the polishing pad.
[0016]
With this configuration, it is possible to provide a dynamic viscoelasticity measuring apparatus for a polishing pad that can suitably implement the above dynamic viscoelasticity measuring method for a polishing pad. This dynamic viscoelasticity measuring device detects periodic stress and / or periodic strain acting on the polishing pad by applying periodic vibration (for example, sinusoidal vibration) to the polishing pad. be able to. The dynamic viscoelasticity of the polishing pad can be measured simply and accurately simply by placing such a dynamic viscoelasticity measuring device on the polishing pad. This makes it possible to accurately grasp the quality of the polishing pad that is actually used for polishing.
[0017]
The polishing pad dynamic viscoelasticity measuring apparatus includes: a housing placed on the polishing pad; a vibration device disposed in the housing and applying periodic vibration to the polishing pad; And a displacement sensor that detects the amount of strain deformation generated in the polishing pad due to the vibration of the apparatus. With this configuration, the housing can accommodate each device of the dynamic viscoelasticity measuring device. Further, the vibration exciter can apply periodic vibration (for example, sinusoidal vibration) to the polishing pad, thereby causing periodic stress to act on the polishing pad, thereby generating periodic distortion. . Further, the displacement sensor can detect a periodic strain deformation amount generated in the polishing pad and output data necessary for calculating a physical property value representing dynamic viscoelasticity.
[0018]
The polishing pad may be configured to be attached to a polishing apparatus. With this configuration, the dynamic viscoelasticity of the polishing pad can be measured easily and quickly simply by placing the dynamic viscoelasticity measuring device on the polishing pad during the polishing process.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
[0020]
(First embodiment)
First, an outline of the polishing apparatus according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a perspective view showing a schematic configuration of a polishing apparatus 10 and a polishing pad quality control apparatus 40 according to the present embodiment.
[0021]
As shown in FIG. 1, the polishing apparatus 10 according to this embodiment includes, for example, a polishing table 14, a polishing pad 16, a substrate holding unit driving means 18, a substrate holding unit 20, a polishing agent supply nozzle 24, It is composed of
[0022]
The polishing table 14 is a substantially disk-shaped table formed of, for example, stainless steel or ceramics, and has a smooth horizontal surface on the upper surface, for example. The polishing table 14 can be rotated by, for example, a motor 12 provided in the apparatus below the polishing table 14. That is, when the driving force of the motor 12 is transmitted through the spindle 26, a transmission (not shown), etc., the polishing table 14 is rotated at a predetermined rotational speed (for example, 40 rpm) in the direction of the thick arrow in FIG. Rotate with.
[0023]
The polishing pad 16 has a two-layer structure composed of, for example, a polishing cloth on the surface and an elastic layer on the lower side. This abrasive cloth is, for example, an artificial leather-like cloth made of a nonwoven fabric, urethane foam, or the like, and has a predetermined friction resistance and appropriate hardness, and is excellent in hydrophilicity, viscoelasticity, and chemical resistance. The elastic layer is made of a material having high elasticity and has a function of elastically contacting the pressed substrate 30 with the polishing cloth in order to polish the entire substrate 30 substantially uniformly. Note that the polishing pad 16 does not necessarily have such a resilient layer.
[0024]
The polishing pad 16 having such a configuration is mounted, for example, by being attached to the polishing table 14 so as to be as flat as possible. For this reason, the polishing pad 16 rotates and moves relative to the substrate 30 as the polishing table 14 rotates. Thereby, the polishing pad 16 can polish the substrate 30 such as a semiconductor wafer to be polished. That is, the polishing pad 16 mechanically interferes with the substrate 30 pressed by the substrate holding unit 20 (described later) while being supplied with the slurry 25, for example, to flatten or mirror the surface to be polished of the substrate 30. Can do.
[0025]
In general, a plurality of substrates 30 can be polished with one polishing pad 16. However, the polishing pad 16 becomes fatigued over time as the number of substrates 30 to be polished increases, and the polishing characteristics deteriorate. Therefore, in order to maintain the polishing quality of the substrate 30, it is necessary to replace the polishing pad 16 whose polishing characteristics have deteriorated below a predetermined standard as needed.
[0026]
The substrate holding unit driving means 18 is a mechanism that rotates the substrate holding unit 20 while applying pressure through the rod 28, and includes, for example, a motor and a cylinder (not shown). That is, for example, the substrate holding unit 20 holding the substrate 30 is pressed against the polishing pad 16 in the vertical direction, for example, by a cylinder that is a pressurizing mechanism, and the substrate holding unit 20 is moved by, for example, FIG. It can be rotated in the direction of the thin arrow.
[0027]
Further, the substrate holding unit 20 has, for example, a substantially cylindrical shape as a whole, and is rotatably installed above the polishing table 14. The substrate holding unit 20 is connected to the substrate holding unit driving means 18 via a rod 28, for example, and includes a ring 22 for holding the substrate 30 on the lower surface. For this reason, the substrate holding unit 20 can hold the substrate 30 such that the surface to be polished faces the polishing pad 16, for example. Further, the substrate holding unit 20 can press the surface to be polished of the substrate 30 held in this way against the polishing pad 16 while rotating. As a result, the polishing pad 16 and the surface to be polished of the substrate 30 move relative to each other while interfering with each other, so that the surface to be polished is polished. At this time, for example, since both the substrate 30 and the polishing pad 16 are rotating, they are rubbed in a balanced direction in a balanced manner, so that the entire surface to be polished is evenly polished.
[0028]
Further, the abrasive supply nozzle 24 can supply the slurry 25 onto, for example, the rotating polishing pad 16 when the substrate 30 is polished. The slurry 25 is an abrasive containing a chemically reactive substance, and various chemical solutions and abrasive grains are used depending on the object to be polished. Specifically, the slurry 25 is made of, for example, SiO. 2 It can be prepared by preparing colloidal silica in which ultrafine particles of the system are suspended in pure water and an alkaline solution (for example, pH 9 to 11.5). The slurry 25 enters between the substrate 30 and the polishing pad 16 during polishing and functions as abrasive grains, and smoothes the surface to be polished of the substrate 30 with high accuracy.
[0029]
In addition, although not shown in FIG. 1, for example, the polishing apparatus 10 sharpens the surface for the purpose of constantly maintaining the surface properties of the polishing pad 16 in order to polish the substrate 30 stably. A conditioning mechanism, a dressing mechanism that rubs the surface of the polishing pad 16 with a diamond grindstone, a nylon brush, or the like may be provided. Further, an elevating mechanism for moving the substrate holding unit 20 up and down, a pressure pump for bringing the substrate 30 into uniform pressure contact with the polishing pad 16, a pressure reducing pump for holding the substrate 30 by suction, and the like may be provided. .
[0030]
The polishing apparatus 10 having the above configuration can polish a polished surface of a semiconductor wafer, which is the substrate 30, with high accuracy to make a mirror surface (that is, polish) in a wafer manufacturing process, for example. In addition, the polishing apparatus 10 is configured so that, for example, in a wafer processing step, an uneven surface formed on the surface of a semiconductor wafer with a multi-layer structure of a semiconductor device is subjected to chemical action by chemical mechanical polishing (CMP). Polishing and smoothing can be performed by the combined action of mechanical polishing.
[0031]
Next, a polishing pad quality control device 40, which is a feature of the present embodiment, will be described with reference to FIG. This polishing pad quality control device 40 is a device for measuring, evaluating and managing the quality of the polishing pad 16 used for polishing, for example, and is characterized by measuring dynamic viscoelasticity as such an evaluation index. To do.
[0032]
Here, this dynamic viscoelasticity will be described. Dynamic viscoelasticity is a viscoelasticity observed when a periodically changing strain or stress is applied to an object. This dynamic viscoelasticity is expressed, for example, as a complex number having a real part corresponding to elasticity and an imaginary part corresponding to viscosity. The dynamic elastic modulus (storage elastic modulus) E ′ and the loss elastic modulus E ″, respectively. It is called. Further, the complex elastic modulus E is obtained by representing the sum of the dynamic elastic modulus E ′ and the loss elastic modulus E ″ in a complex number. * (= E ′ + E ″ i). Further, the ratio (E ″ / E ′) of the loss elastic modulus E ″ and the dynamic elastic modulus E ′ is called a loss tangent (tan δ). It is an important physical quantity for evaluation.
[0033]
In this dynamic viscoelasticity measurement, the dynamics of the material to be measured are analyzed by analyzing the behavior according to the change in temperature of the material to be measured (temperature dispersion) and the change in the frequency of applied strain or stress (frequency dispersion) You can get a lot of information to understand the properties. For this reason, the measurement of such dynamic viscoelasticity is effective as an evaluation means and quality control means of the material to be measured during the actual manufacturing process and processing process.
[0034]
From this point of view, the polishing pad quality control device 40 according to the present embodiment performs dynamic viscoelasticity measurement on the polishing pad 16 to accurately evaluate the state of the polishing pad 16 that is actually used. It is what. More specifically, in the polishing process by the polishing apparatus 10 as shown in FIG. 1, for example, the substrate 30 is pressed only partially against the rotating polishing pad 16 instead of the whole. For this reason, the state of the polishing pad 16 being polished is dynamically changed by periodically repeating the state in which the substrate 30 is partially pressed / not pressed. Accordingly, the dynamic viscoelasticity as described above suitably corresponds to the state of the polishing pad 16 that is actually used for such polishing processing, and therefore polishing in the state that is actually used for polishing processing. As an index for evaluating the polishing characteristics of the pad 16, it is superior to the conventional static viscoelasticity.
[0035]
Therefore, the polishing pad quality control device 40 according to the present embodiment performs, for example, dynamic viscoelasticity measurement on the polishing pad 16 mounted on the polishing device 10, for example, the dynamic elastic modulus E 'And loss modulus E''are measured. On the other hand, for example, a range of dynamic elastic modulus E ′ and loss elastic modulus E ″ indicating a good state (a state where replacement is not required) or a defective state (a state where replacement is necessary) is preliminarily (for example, below). Then, it may be called the range of the standard dynamic viscoelasticity value). Thus, by determining whether one or both of the measured dynamic elastic modulus E ′ and loss elastic modulus E ″ are out of or included in the range of the reference dynamic viscoelasticity value. It is possible to evaluate whether the state of the polishing pad 16 is good or bad. As a result, it is possible to accurately determine the replacement time of the polishing pad 16.
[0036]
In order to realize the quality control of the polishing pad based on the dynamic viscoelasticity measurement, the polishing pad quality control device 40 includes, as shown in FIG. An abbreviated measurement device 50), a control analysis device 60, and an information processing device 70.
[0037]
For example, the measuring device 50 is placed on the polishing pad 16 of the polishing device 10 when the polishing device 10 is in a stationary state (that is, in a state where the rotation of the rotary table 14 is stopped and polishing is not performed). The dynamic viscoelasticity of the polishing pad 16 can be measured. In other words, the measuring device 50 is not permanently installed in the polishing device 10 but is optionally attached on the polishing pad 16 only when measuring the dynamic viscoelasticity of the polishing pad 16.
[0038]
On the other hand, the control analysis device 60 and the information processing device 70 are arranged separately from the polishing device 10, for example, and various control signals and measurement data are exchanged with the measurement device 50 connected by the cable 62 or the like. Etc. can be transmitted and received. The control analysis device 60 and the information processing device 70 can, for example, cooperate to control the measurement device 50 and analyze and display the measurement data of the measurement device 50.
[0039]
As described above, in the polishing pad quality control device 40, for example, the measurement device 50, the control analysis device 60, and the information processing device 70 are configured independently, and only the relatively small measurement device 50 is polished. It can be placed on the pad 16. Details of each of these devices will be described below.
[0040]
First, a dynamic viscoelasticity measuring device 50 for a polishing pad, which is a feature according to the present embodiment, will be described in detail with reference to FIG. FIG. 2 is a cross-sectional view showing a schematic configuration of the dynamic viscoelasticity measuring apparatus 50 for a polishing pad according to the present embodiment. Moreover, FIG. 3 is sectional drawing which shows the example of a shape of the front-end | tip part of the press bar 54 concerning this embodiment.
[0041]
As shown in FIG. 2, the measuring device 50 mainly includes, for example, a casing 51, a vibrator 52, a pressing rod 54, a displacement sensor 56, and a temperature sensor 58.
[0042]
The casing 51 has, for example, a substantially cubic shape of 150 mm square, and is formed of, for example, metal or synthetic resin. Inside the casing 51, each device of the measuring device 50 is installed. For example, the casing 51 is placed on the polishing pad 16 so that the lower surface thereof is in direct contact with the polishing pad 16 at the time of measurement. The case 51 is designed in size, shape, etc. so that it can be suitably placed on the polishing pad 16 of the polishing apparatus 10.
[0043]
The vibration exciter 52 is fixed to the housing 51 via a base portion 53, for example. The vibrator 52 includes a motor or the like inside, and can generate periodic vibration based on a control signal from the control analysis device 60, for example. The vibration generated by the vibrator 52 is transmitted to a pressing rod 54 attached to the lower part of the vibrator 52, for example. In the present embodiment, the periodic vibration generated by the vibrator 52 is configured to be a sine wave vibration, for example. By adopting such sinusoidal vibration, the measurement process and the analysis process of the dynamic viscoelasticity of the polishing pad 16 become simple and accurate.
[0044]
The pressing bar 54 is, for example, a substantially bar-shaped pressing member (jig) for pressing the polishing pad 16, and is formed of, for example, a hard metal. As shown in FIG. 3, the tip of the pressing rod 54 has, for example, a substantially hemispherical shape (FIG. 3A), a substantially cone shape (FIG. 3B), and a substantially planar shape (FIG. 3C). And so on. The shape of the tip is determined according to, for example, the material, hardness, thickness, etc. of the polishing pad 16. The pressing rod 54 is periodically vibrated in the substantially vertical direction (for example, the vertical direction) with respect to the polishing pad 16 by the vibrator 52, for example. As a result, the pressing rod 54 protrudes from, for example, a through hole 55 provided in the lower surface of the casing 51 and can be deformed by periodically pressing a part of the polishing pad 16.
[0045]
Such a vibrator 52 and a pressing bar 54 are configured as a vibration device according to the present embodiment, and can apply, for example, sinusoidal vibration to the polishing pad 16. Further, in the present embodiment, the sine wave vibration is controlled so that, for example, a sine wave stress is applied to the polishing pad 16. Accordingly, the vibrator 52 and the pressing rod 54 can apply, for example, sinusoidal stress that periodically changes to the polishing pad 16, and as a result, for example, partial sine wave distortion is applied to the polishing pad 16. Can be generated.
[0046]
The displacement sensor 56 is composed of, for example, a non-contact displacement meter installed near the pressing rod 54. The displacement sensor 56 can detect a displacement amount of the pressing rod 54 in, for example, a substantially vertical direction. Thereby, the displacement sensor 56 can detect, for example, the amount of distortion deformation generated in the polishing pad 16 due to the pressing of the pressing rod 54.
[0047]
The temperature sensor 58 is, for example, a thermometer installed inside the lower surface of the housing 51. The temperature sensor 58 can detect, for example, the temperature in the vicinity of the sine wave vibration applied to the polishing pad 16. The temperature sensor 58 is not necessarily provided.
[0048]
The measuring apparatus 50 having the above configuration causes, for example, sinusoidal vibration (sinusoidal stress) to the polishing pad 16 to cause dynamically changing distortion (sinusoidal distortion) in the polishing pad 16, Furthermore, the dynamic viscoelasticity of the polishing pad 16 can be measured by detecting such strain. At this time, the dynamic viscoelasticity of the polishing pad 16 can be measured by placing and operating the measuring device 50 on the polishing pad 16 that is still attached to the polishing apparatus 10. For this reason, since measurement can be performed quickly and easily without removing the polishing pad 16 from the polishing apparatus 10, the measurement operation becomes efficient.
[0049]
Next, based on FIG. 4, the control analysis apparatus 60 concerning this embodiment is demonstrated in detail. FIG. 4 is a block diagram illustrating a schematic configuration of the control analysis device 60 according to the present embodiment.
[0050]
As shown in FIG. 4, the control analysis device 60 includes, for example, a sine wave generator 61, an amplifier 62, a stress detection circuit 63, a displacement detection circuit 64, an amplitude comparison circuit 65, a phase difference circuit 66, A temperature detection circuit 67.
[0051]
The sine wave generator 61 and the amplifier 62 function as a control unit that controls the operation of the vibration exciter 52 of the measurement apparatus 50, for example.
[0052]
Specifically, the sine wave generator 61 generates a sine wave signal having a specific frequency, for example, based on a control instruction signal from the information processing unit 70, for example. The amplifier 62 adjusts the amplitude of the sine wave signal, which is the output of the sine wave generator 61, and then outputs it as a control signal to the exciter 52. Thereby, the vibrator 52 can generate a sine wave vibration corresponding to the input sine wave signal. The sine wave vibration generated by the vibrator 52 acts as a sine wave stress on the polishing pad 16 via the pressing rod 54.
[0053]
Further, the stress detection circuit 63, the displacement detection circuit 64, the amplitude comparison circuit 65, the phase difference circuit 66, and the temperature detection circuit 67 function as an analysis unit that analyzes measurement data of the measurement device 50, for example. In this analysis process, for example, correlation data between sine wave stress and sine wave distortion acting on the polishing pad 16 necessary for calculating the dynamic elastic modulus E ′ and the loss elastic modulus E ″ of the polishing pad 16 and the like. And a process for obtaining the temperature of the polishing pad 16.
[0054]
More specifically, the stress detection circuit 63 detects a sine wave stress acting on the polishing pad 16 based on, for example, a sine wave signal that is an output of the amplifier 52, and detects a stress corresponding to the sine wave stress. Generate a signal. On the other hand, the displacement detection circuit 64 detects, for example, a sine wave distortion generated in the polishing pad 16 based on the displacement of the pressing rod 54 detected by the displacement sensor 56, and generates a displacement detection signal corresponding to the sine wave distortion. Generate. These stress detection signal and displacement detection signal are input to the amplitude comparison circuit 65 and the phase difference detection circuit 66, respectively. For example, the amplitude comparison circuit 65 compares the amplitudes of the stress detection signal and the displacement detection signal, and generates an amplitude comparison signal corresponding to the amplitude ratio between the two. Further, the phase difference circuit 66 compares the phases of the stress detection signal and the displacement detection signal that increase / decrease in substantially the same cycle, for example, and generates a phase difference signal corresponding to the phase difference between them. The amplitude comparison signal represents the dynamic elastic modulus E ′, and the phase difference signal represents the loss tangent (tan δ) that is the ratio (E ″ / E ′) of the loss elastic modulus to the dynamic elastic modulus. The information processing device 70 can obtain the dynamic elastic modulus E ′ and the loss elastic modulus E ″ of the polishing pad 16 based on the amplitude comparison signal and the phase difference signal. For example, based on the detection data of the temperature sensor 58, a temperature detection signal indicating the temperature of the polishing pad 16 in the vicinity where the sine wave stress is applied is generated and output to the information processing apparatus 70.
[0055]
Next, the information processing apparatus 70 according to the present embodiment will be described in detail.
[0056]
As shown in FIG. 1, the information processing apparatus 70 is configured by, for example, a personal computer. The information processing device 70 is, for example, a process for transmitting a control signal to the measuring device 50 and the control analyzing device 60, a calculation process related to measurement data and analysis data input from the control analyzing device 60, a drawing, a table, etc. Various processes relating to the dynamic viscoelasticity measurement of the polishing pad 16 such as a display process and a recording process are executed.
[0057]
As a specific example, the information processing device 70 sets the period, amplitude, etc. of the sine wave vibration applied to the polishing pad 16 based on an operator input or the like, and controls the operation of the measuring device 50 and the control analysis device 60. Can be directed. The information processing device 70 calculates the dynamic elastic modulus E ′ and the loss elastic modulus E ″ of the polishing pad 16 based on, for example, the amplitude comparison signal and the phase difference signal input from the control analysis device 60. These changes over time can be displayed in a graph on a monitor or the like.
[0058]
Note that the various processing functions of the information processing apparatus 70 as described above are performed by installing a program that defines the various processes related to dynamic viscoelasticity measurement in the information processing apparatus 70 that is a general PC, for example. , May be configured to be feasible.
[0059]
Next, a quality control method for a polishing pad according to the present embodiment will be described with reference to FIG. FIG. 5 is a flowchart showing the quality control method for the polishing pad according to the present embodiment.
[0060]
As shown in FIG. 5, first, in step S10, the polishing apparatus 10 polishes, for example, a predetermined number of substrates 30, such as a semiconductor wafer (step S10). During this polishing process, the same polishing pad 16 is used continuously without being replaced until, for example, a predetermined plurality of substrates 30 are polished. It should be noted that the process proceeds to step S12 not only when a predetermined number of substrates 30 have been polished, but also when, for example, the operator has found a defect or abnormality in the polishing quality during the polishing process. You may make it. That is, the number of substrates 30 to be polished in this step is not necessarily fixed to a predetermined number, and can be changed to an arbitrary number according to the necessity of measurement of the polishing pad 16.
[0061]
Next, in step S12, the measuring device 50 is placed on the polishing pad 16 (step S12). At this time, for example, the polishing apparatus 10 is in the stationary state, and the polishing process is interrupted. Further, the polishing pad 16 is in a state of being mounted on the polishing table 14 of the polishing apparatus 10, for example.
[0062]
Further, in step S14, the dynamic viscoelasticity of the polishing pad 16 is measured by the measuring device 50 (step S14). More specifically, for example, when the operator inputs measurement conditions to the information processing device 70 and instructs the start of measurement, the control analysis device 60 controls the measurement device 50 to start the measurement operation, for example. Thereby, the measuring apparatus 50 detects the sine wave distortion which arose in the polishing pad 16 by this stress, for example, applying a sine wave stress with respect to the polishing pad 16 in the state with which the polishing apparatus 10 was mounted | worn. In this way, the measurement device 50 outputs the measurement data to the control analysis device 60 while measuring the data necessary for calculating the dynamic viscoelasticity of the polishing pad 16. Further, the control analysis device 60 and the information processing device 70 analyze and calculate the measurement data, for example, so that the dynamic elastic modulus E ′ and the loss elasticity that are physical properties representing the dynamic viscoelasticity of the polishing pad 16 are obtained. Get the rate E ″. Further, during the measurement of the dynamic viscoelasticity, for example, the temperature of the polishing pad 16 can be measured by the temperature sensor 58 or the like.
[0063]
Thereafter, in step S16, the deterioration degree of the quality of the polishing pad 16 is determined based on the measured dynamic viscoelasticity value, and it is determined whether or not the polishing pad 16 needs to be replaced (step S16). S16). The determination as to whether or not the replacement is necessary is made, for example, by determining whether one or both of the measured dynamic elastic modulus E ′ and the loss elastic modulus E ″ is a preset dynamic elastic modulus E indicating a good state of the polishing pad 16. Whether or not it falls within the range of 'or loss elastic modulus E ″ (the range of the reference dynamic viscoelasticity value) can be used as a criterion. More specifically, for example, when the measured value of the dynamic elastic modulus E ′ is, for example, 1000 [MPa] or less, it is determined that the polishing pad 16 is in a defective state and needs to be replaced. It may be set.
[0064]
The determination of whether or not it is necessary to replace the polishing pad 16 may be performed by, for example, an operator, or the information processing device 70 or the like compares the reference dynamic viscoelasticity value with the measured dynamic viscoelasticity value. Then, it may be performed automatically. As a result of the determination as described above, when it is determined that the polishing pad 16 needs to be replaced, the process proceeds to step S18. On the other hand, when it is determined that the polishing pad 16 is not necessary, the process proceeds to step S20.
[0065]
Next, in step S18, the polishing pad 16 is replaced (step S18). That is, the polishing pad 16 determined to be in a defective state is removed from the polishing table 14 of the polishing apparatus 10, and a new polishing pad 16 in a good state is mounted on the polishing table 14.
[0066]
Further, in step S20, it is determined whether or not the polishing process for the substrate 30 is to be terminated (step S20). If the polishing process is not finished, the process returns to step S10, and, for example, after polishing a predetermined number of substrates 30, the dynamic viscoelasticity of the polishing pad 16 is measured by the measuring device 50 to evaluate the quality. Is done. By repeating such a flow, the quality of the polishing pad 16 can be periodically evaluated in the polishing process. On the other hand, when the polishing process is finished, all the steps of the quality control method of the polishing pad are finished.
[0067]
According to the quality control device 50 and the quality control method of the polishing pad according to the present embodiment as described above, the dynamic viscoelasticity measurement is performed on the polishing pad 16, so that it is actually used for polishing processing. The polishing characteristics (quality) of the polishing pad 16 can be accurately measured and grasped.
[0068]
The measurement of dynamic viscoelasticity can be performed simply by placing the measuring device 50 on the polishing pad 16, and a small piece having a size enough to allow the polishing pad 16 to enter the measurement sample chamber as in the prior art. There is no need to process it. Therefore, for example, the operator can easily and quickly measure the dynamic viscoelasticity of the polishing pad 16 during the polishing process, and can accurately grasp the polishing characteristics of the polishing pad 16. As a result, the polishing quality and the like of the substrate 30 polished by the polishing pad 16 can be accurately grasped.
[0069]
Further, the necessity of replacement of the polishing pad 16 is objectively compared by comparing a reference dynamic viscoelasticity value set in advance as a quality adequacy standard of the polishing pad 16 and the measured dynamic viscoelasticity value. Can be judged. That is, it is possible to appropriately determine the replacement time of the polishing pad 16. For this reason, the replacement time is too early to induce an increase in cost due to the waste of the polishing pad 16, and conversely, the replacement time is too late and the polishing quality of the substrate 30 is deteriorated to produce a defective product. It can prevent suitably.
[0070]
Even when the temperature of the polishing pad 16 changes due to processing heat or the like during the polishing process, the polishing characteristics of the polishing pad 16 are accurately determined by analyzing the detection result of the temperature sensor 58 and the temperature dependence of the polishing pad. You can grasp and respond. For this reason, quality control of the polishing pad 16 corresponding to temperature changes can be realized.
[0071]
As described above, according to the present embodiment, for example, the quality of the polishing pad 16 that is actually used for polishing in the polishing process can be managed easily, quickly, and accurately. As a result, the polishing quality of the object to be polished such as the substrate 30 is stably secured at a predetermined level or more, and the yield is improved.
[0072]
【Example】
Next, the results of experiments and the like for measuring the dynamic viscoelasticity of the polishing pad 16 based on the above embodiment will be described.
[0073]
First, as a preliminary experiment of the dynamic viscoelasticity measurement experiment, the result of a polishing experiment performed to obtain the correlation between the reaction rate of the polishing pad 16 and the polishing rate (polishing efficiency) will be described with reference to FIG. FIG. 6 is a graph showing the correlation between the reaction rate of the polishing pad 16 and the polishing rate as a result of the polishing experiment according to this example.
[0074]
One cause of the failure of the polishing pad 16 is, for example, a material failure during molding of the polishing pad 16. Therefore, a polishing experiment of the substrate 30 was performed using a non-defective polishing pad 16 (reaction rate 100%) and a defective polishing pad 16 (reaction rates 90%, 80%, 70%). As a result, as shown in FIG. 6, the polishing rate of the non-defective polishing pad 16 is relatively high at about 0.27 [μm / mim], whereas the polishing rate of the defective polishing pad 16 is 0 in all cases. It was found that the polishing rate of the polishing pad 16 was lowered (that is, the polishing performance of the polishing pad 16 was deteriorated) as the reaction rate was lower.
[0075]
Next, based on Table 1 and FIG. 7, the results of measurement experiments such as dynamic viscoelasticity of the polishing pad 16 using the measuring device 50 will be described. Table 1 is a table showing the relationship between the reaction rate of the polishing pad 16 and the hardness, static elastic modulus, dynamic elastic modulus, and loss elastic modulus of the polishing pad 16 as a measurement experiment result according to this example. is there. FIG. 7 is a graph showing the correlation between the reaction rate of the polishing pad 16 and the hardness, static elastic modulus, dynamic elastic modulus, and loss elastic modulus of the polishing pad 16 as a measurement experiment result according to this example. is there.
[0076]
In this experiment, the hardness of the polishing pad 16 is made substantially the same, the reaction rate at the time of molding is changed, and the three defective polishing pads 16 (reaction rate 90, 80, 70%) are intentionally One non-defective polishing pad 16 (reaction rate 100%) was produced. Further, for these four polishing pads 16, a static elastic modulus (Young's modulus) representing static viscoelasticity, a dynamic elastic modulus E ′ representing dynamic viscoelasticity, and a loss elastic modulus E ″ are measured. Each measurement result was compared. The hardness measurement was performed using a Shiore D hardness meter specified in JIS K6253-1997 / IS07619. In the measurement of dynamic viscoelasticity, the temperature of the polishing pad 16 was set to 30 ° C., and the frequency of the sine wave stress applied to the polishing pad 16 was 5 Hz.
[0077]
[Table 1]
Figure 0004495398
[0078]
According to this measurement experiment, as shown in Table 1 and FIG. 7, the static elastic modulus is 1400 [MPa] when the reaction rate is 100%, which is a non-defective product, whereas the reaction that is a defective product. When the rates are 90 and 80%, they are 1000 [MPa] and 800 [MPa], respectively, and the difference between them is about 1.4 to 1.75 times, and there is no significant difference. However, when the reaction rate is 70%, it is 10 [MPa], and the difference from the non-defective product is large. This is considered to be because the degree of failure is too large to be detected even with the static elastic modulus.
[0079]
On the other hand, the dynamic elastic modulus E ′ is 2400 [MPa] when the reaction rate is 100%, which is a non-defective product, whereas it is 2400 [MPa] when the reaction rate is 90,80%, which is a defective product. 810 [MPa] and 740 [MPa], and the difference between the two is about 3 to 3.4 times, and a remarkable difference is seen. Further, the loss elastic modulus E ″ is 86.0 [MPa] when the reaction rate is 100%, which is a non-defective product, whereas the loss elastic modulus E ″ is respectively when the reaction rate is 90, 80%, which is a defective product. 260 [MPa] and 290 [MPa], and the difference between the two is about 3.3 to 3.6 times, and a remarkable difference is seen.
[0080]
Thus, there is no significant difference in static elastic modulus between good and defective products, but there is a large difference in dynamic elastic modulus E ′ and loss elastic modulus E ″. Therefore, it has been clarified that the quality of the polishing pad 16 that cannot be evaluated by the hardness and the static elastic modulus can be evaluated by performing the dynamic viscoelasticity measurement. In addition, it was proved that measuring dynamic viscoelasticity is an effective means.
[0081]
Further, based on the above experimental results, considering the reference dynamic viscoelasticity value that is a criterion for determining whether the polishing pad 16 is good or bad, for example, if the dynamic elastic modulus E ′ is 1000 [MPa] or less, it is considered to be defective. Judgment can be made. Further, for example, if the loss elastic modulus E ″ is 100 [MPa] or more, it can be determined to be defective. However, the reference dynamic viscoelasticity value is not limited to such an example, and may be appropriately increased or decreased according to the hardness of the polishing pad 16, for example, and the dynamic elastic modulus E ′ or loss for each hardness of the polishing pad 16. An upper limit or a lower limit of the elastic modulus E ″ may be set. Further, for example, it is possible to determine whether or not the product is good by setting reference values of both the dynamic elastic modulus E ′ and the loss elastic modulus E ″.
[0082]
As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, this invention is not limited to this example. It will be obvious to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
[0083]
For example, in the above embodiment, the vibration applied to the polishing pad 16 by the measuring device 50 is a sine wave vibration, but the present invention is not limited to such an example, and may be an arbitrary periodic vibration.
[0084]
In the above embodiment, the sine wave distortion when the sine wave stress is applied to the polishing pad 16 is detected and the dynamic viscoelasticity of the polishing pad 16 is measured. However, the present invention is limited to this example. Not. For example, the dynamic viscoelasticity of the polishing pad 16 may be measured by detecting a dynamically changing stress when a periodic strain (sine wave distortion or the like) is applied to the polishing pad 16. In this case, the circuit configuration of the control analysis device 60 may be changed as appropriate.
[0085]
In the above embodiment, the polishing pad quality management device 40 includes the measurement device 50, the control analysis device 60, and the information processing device 70, but the present invention is not limited to such an example. For example, the control analysis device 60 may not necessarily be provided, and in this case, the measurement analysis device 60 or the information processing device 70 may include the configuration of the control analysis device 60.
[0086]
In the above-described embodiment, the measurement device 50 and the control analysis device 60 are connected by a cable 62 or the like. However, the present invention is not limited to this example, and is connected to each other wirelessly, for example. Also good.
[0087]
Moreover, in the said embodiment, although both dynamic elastic modulus E 'and loss elastic modulus E''were measured, this invention is not limited to this example. For example, only one of the dynamic elastic modulus E ′ and the loss elastic modulus E ″ may be measured, or other physical property values representing the dynamic viscoelasticity of the polishing pad 16 may be measured. Good.
[0088]
Moreover, in the measuring apparatus 50 concerning the said embodiment, although the vibration apparatus was comprised from the vibrator 52 and the press rod 54, this invention is not limited to this example. For example, the vibration device can be changed to any configuration as long as it can apply periodic vibration to the polishing pad 16. Further, the shape of the pressing rod 54 is not limited to the above example.
[0089]
In the polishing pad quality control method according to the above embodiment, the polishing pad 16 attached to the polishing apparatus 10 is measured. However, the present invention is not limited to this example. For example, the dynamic viscoelasticity may be measured after removing the polishing pad 16 from the polishing apparatus 10 during the polishing process. Further, for example, the dynamic viscoelasticity may be measured for a new polishing pad 16 immediately after manufacturing, and used for inspection before shipping of the polishing pad 16.
[0090]
In the polishing pad quality control method according to the above embodiment, the dynamic viscoelasticity of the polishing pad 16 is measured every time a predetermined number of substrates 30 are polished, and the quality control is performed periodically. Is not limited to such an example. For example, the dynamic viscoelasticity of the polishing pad 16 may be measured once by interrupting the polishing process at an arbitrary timing.
[0091]
【The invention's effect】
As described above, according to the present invention, the quality of the polishing pad can be accurately grasped by performing dynamic viscoelasticity measurement on the polishing pad. In addition, since the dynamic viscoelasticity of the polishing pad can be measured at any time during the polishing process, it is possible to easily and accurately evaluate and manage the quality of the polishing pad actually used in the polishing process. For this reason, since the replacement | exchange time of a polishing pad becomes suitable, the polishing quality of a to-be-polished object can be ensured stably.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a schematic configuration of a polishing apparatus and a quality control apparatus for a polishing pad according to a first embodiment.
FIG. 2 is a cross-sectional view showing a schematic configuration of a dynamic viscoelasticity measuring apparatus for a polishing pad according to a first embodiment.
FIG. 3 is a cross-sectional view showing an example of the shape of the tip of the pressing rod according to the first embodiment.
FIG. 4 is a block diagram illustrating a schematic configuration of the control analysis apparatus according to the first embodiment;
FIG. 5 is a flowchart showing a quality control method for a polishing pad according to the first embodiment;
FIG. 6 is a graph showing the correlation between the reaction rate of the polishing pad and the polishing rate as a result of the polishing experiment according to the example.
FIG. 7 is a graph showing the correlation between the reaction rate of the polishing pad and the hardness, static elastic modulus, dynamic elastic modulus, and loss elastic modulus of the polishing pad as a measurement experiment result according to the example. .
[Explanation of symbols]
10: Polishing device
14: Polishing table
16: Polishing pad
30: Substrate
40: Quality control device for polishing pad
50: Dynamic viscoelasticity measuring device of polishing pad
51: Case
52: Exciter
54: Pressing bar
56: Displacement sensor
58: Temperature sensor
60: Control analysis device
70: Information processing device

Claims (6)

被研磨物の研磨加工に使用した後の研磨パッドの交換方法において:
前記研磨パッドの良好状態又は不良状態を示す動的粘弾性値の基準範囲を予め設定しておき,
前記研磨パッドの研磨特性の経時的な劣化状態を把握するために,前記研磨加工に使用された後に研磨装置に装着されたままの状態の前記研磨パッドに対して動的粘弾性測定を行い,
前記測定された動的粘弾性値と前記動的粘弾性値の基準範囲に基づいて,前記研磨パッドの交換が必要であるか否かを判断することを特徴とする,研磨パッドの交換方法。
In the method of replacing the polishing pad after it has been used for polishing the workpiece:
Preset a reference range of dynamic viscoelasticity value indicating a good state or a bad state of the polishing pad;
In order to grasp the state of deterioration over time of the polishing characteristics of the polishing pad, a dynamic viscoelasticity measurement is performed on the polishing pad that is used in the polishing process and remains attached to a polishing apparatus ,
A method of replacing a polishing pad, comprising determining whether or not the polishing pad needs to be replaced based on the measured dynamic viscoelasticity value and a reference range of the dynamic viscoelasticity value.
前記動的粘弾性測定は,少なくとも,動的弾性率または損失弾性率のいずれか一方若しくは双方を測定することを特徴とする,請求項1に記載の研磨パッドの交換方法。  2. The polishing pad replacement method according to claim 1, wherein the dynamic viscoelasticity measurement includes measuring at least one of or both of a dynamic elastic modulus and a loss elastic modulus. 前記研磨パッドは,研磨装置に装着された状態で測定されることを特徴とする,請求項1または2のいずれかに記載の研磨パッドの交換方法。  The polishing pad replacement method according to claim 1, wherein the polishing pad is measured in a state where the polishing pad is mounted on a polishing apparatus. 前記動的粘弾性測定は,前記研磨パッド上に載置された動的粘弾性測定装置によって行われることを特徴とする,請求項1,2または3のいずれかに記載の研磨パッドの交換方法。  4. The method of replacing a polishing pad according to claim 1, wherein the dynamic viscoelasticity measurement is performed by a dynamic viscoelasticity measuring device placed on the polishing pad. . 請求項1〜4のいずれかに記載の研磨パッドの交換方法に用いられる研磨パッドの動的粘弾性測定装置であって,
被研磨物の研磨加工に使用された後に研磨装置に装着されたままの状態の研磨パッド上に載置され;
前記研磨パッドに対して周期的な振動を加えることにより,前記研磨パッドの動的粘弾性を測定することを特徴とする,研磨パッドの動的粘弾性測定装置。
A dynamic viscoelasticity measuring device for a polishing pad used in the method for replacing a polishing pad according to any one of claims 1 to 4,
Placed on a polishing pad that has been used for polishing a workpiece and is still attached to the polishing apparatus ;
An apparatus for measuring dynamic viscoelasticity of a polishing pad, wherein the dynamic viscoelasticity of the polishing pad is measured by applying periodic vibration to the polishing pad.
前記研磨パッドの動的粘弾性測定装置は,
前記研磨パッド上に載置される筐体と;
前記筐体内に配され,前記研磨パッドに対して周期的な振動を加える加振装置と;
前記加振装置の振動によって前記研磨パッドに生じた歪み変形量を検出する変位センサと;
を備えることを特徴とする,請求項5に記載の研磨パッドの動的粘弾性測定装置。
The dynamic viscoelasticity measuring device of the polishing pad is:
A housing placed on the polishing pad;
An excitation device that is arranged in the housing and applies periodic vibration to the polishing pad;
A displacement sensor for detecting a strain deformation amount generated in the polishing pad by vibration of the vibration exciter;
The dynamic viscoelasticity measuring apparatus for a polishing pad according to claim 5, comprising:
JP2003013006A 2003-01-22 2003-01-22 Polishing pad replacement method, polishing pad dynamic viscoelasticity measuring device Expired - Lifetime JP4495398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013006A JP4495398B2 (en) 2003-01-22 2003-01-22 Polishing pad replacement method, polishing pad dynamic viscoelasticity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013006A JP4495398B2 (en) 2003-01-22 2003-01-22 Polishing pad replacement method, polishing pad dynamic viscoelasticity measuring device

Publications (2)

Publication Number Publication Date
JP2004228265A JP2004228265A (en) 2004-08-12
JP4495398B2 true JP4495398B2 (en) 2010-07-07

Family

ID=32901451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013006A Expired - Lifetime JP4495398B2 (en) 2003-01-22 2003-01-22 Polishing pad replacement method, polishing pad dynamic viscoelasticity measuring device

Country Status (1)

Country Link
JP (1) JP4495398B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9502318B2 (en) 2014-06-17 2016-11-22 Kabushiki Kaisha Toshiba Polish apparatus, polish method, and method of manufacturing semiconductor device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047574A (en) * 2006-08-11 2008-02-28 Renesas Technology Corp Manufacturing method and system of semiconductor device
JP5168966B2 (en) 2007-03-20 2013-03-27 富士通セミコンダクター株式会社 Polishing method and polishing apparatus
EP2135707A4 (en) * 2007-03-20 2013-10-09 Kuraray Co Cushion for polishing pad and polishing pad using the cushion
WO2010054486A1 (en) 2008-11-14 2010-05-20 Atomic Energy Of Canada Limited Portable polymer tester
CN109799138B (en) * 2019-02-20 2023-09-22 中国工程物理研究院激光聚变研究中心 In-situ measurement device and in-situ measurement method for elastic modulus and creep characteristic of polishing disc
JP7409073B2 (en) * 2019-12-24 2024-01-09 コニカミノルタ株式会社 Viscoelasticity measurement device and viscoelasticity measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124491A (en) * 2000-08-10 2002-04-26 Toray Ind Inc Polishing pad
WO2002083757A1 (en) * 2001-04-09 2002-10-24 Toyo Boseki Kabushiki Kaisha Polyurethane composition and polishing pad
JP2002370157A (en) * 2001-06-15 2002-12-24 Toray Ind Inc Polishing pad
JP2002371121A (en) * 2001-04-09 2002-12-26 Toyobo Co Ltd Polishing pad comprising polyurethane composition
JP2002371154A (en) * 2000-12-08 2002-12-26 Kuraray Co Ltd Thermoplastic polyurethane foamed body, method for manufacturing the same and polishing pad made of the foamed body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124491A (en) * 2000-08-10 2002-04-26 Toray Ind Inc Polishing pad
JP2002371154A (en) * 2000-12-08 2002-12-26 Kuraray Co Ltd Thermoplastic polyurethane foamed body, method for manufacturing the same and polishing pad made of the foamed body
WO2002083757A1 (en) * 2001-04-09 2002-10-24 Toyo Boseki Kabushiki Kaisha Polyurethane composition and polishing pad
JP2002371121A (en) * 2001-04-09 2002-12-26 Toyobo Co Ltd Polishing pad comprising polyurethane composition
JP2002370157A (en) * 2001-06-15 2002-12-24 Toray Ind Inc Polishing pad

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9502318B2 (en) 2014-06-17 2016-11-22 Kabushiki Kaisha Toshiba Polish apparatus, polish method, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2004228265A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
US6494765B2 (en) Method and apparatus for controlled polishing
US20170252889A1 (en) Polishing apparatus
JP7018938B2 (en) A device for measuring rubber wear
TWI458589B (en) Profile measuring method
JP2004142083A (en) Wafer polishing device and wafer polishing method
CN102725832B (en) For compensating the variable Apparatus and method in chemico-mechanical polishing consumptive material
US6896583B2 (en) Method and apparatus for conditioning a polishing pad
CN102782814A (en) Pad conditioning sweep torque modeling to achieve constant removal rate
US7749050B2 (en) Pad conditioner dresser
US6220936B1 (en) In-site roller dresser
TW201201264A (en) Hydrostatic pad pressure modulation in a simultaneous double side wafer grinder
JP4495398B2 (en) Polishing pad replacement method, polishing pad dynamic viscoelasticity measuring device
JP2001198794A (en) Polishing device
WO2022070607A1 (en) Polishing device, and method for determining when to replace polishing pad
Han et al. Fractional in situ pad conditioning in chemical mechanical planarization
WO2002038336A1 (en) A method and apparatus for controlled polishing
JP2005252000A (en) Wafer polishing method
JP2009238849A (en) Manufacturing apparatus of semiconductor device and manufacturing method
Sikder et al. Evaluation of mechanical and tribological behavior, and surface characteristics of CMP pads
JP2005347530A (en) Polishing pad adjustment method and chemical mechanical polishing equipment
JP2024067256A (en) Polishing apparatus, information processing apparatus and program
JP2005081461A (en) Polishing method and device of wafer or the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4495398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term