JP4495073B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4495073B2
JP4495073B2 JP2005343355A JP2005343355A JP4495073B2 JP 4495073 B2 JP4495073 B2 JP 4495073B2 JP 2005343355 A JP2005343355 A JP 2005343355A JP 2005343355 A JP2005343355 A JP 2005343355A JP 4495073 B2 JP4495073 B2 JP 4495073B2
Authority
JP
Japan
Prior art keywords
insulating film
germanium layer
layer
silicon layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005343355A
Other languages
Japanese (ja)
Other versions
JP2006190986A (en
Inventor
ジュン,ミュン・ジン
Original Assignee
東部エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東部エレクトロニクス株式会社 filed Critical 東部エレクトロニクス株式会社
Publication of JP2006190986A publication Critical patent/JP2006190986A/en
Application granted granted Critical
Publication of JP4495073B2 publication Critical patent/JP4495073B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66651Lateral single gate silicon transistors with a single crystalline channel formed on the silicon substrate after insulating device isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Description

本発明は半導体素子に関し、特に歪みシリコン層(strained silicon layer)を活性層として用いた半導体素子において、ソース・ドレイン領域の下部の歪みシリコン層に絶縁膜を形成することにより、半導体素子の動作特性を向上させた半導体素子とその製造方法に関する。   The present invention relates to a semiconductor device, and more particularly, in a semiconductor device using a strained silicon layer as an active layer, by forming an insulating film in a strained silicon layer below a source / drain region, the operating characteristics of the semiconductor device The present invention relates to a semiconductor device and a manufacturing method thereof.

一般的に、半導体素子は、シリコン(Si)基板上にゲルマニウム(Ge)片を載置し、一定温度の条件下でシリコン基板上のゲルマニウム層を成長させ、ゲルマニウム層上にシリコン層を再成長させると、ゲルマニウム層と同一の格子間の距離を有する歪みシリコン層を成長させることができる。したがって、歪みシリコン層は、既存のシリコン格子の間隔よりさらに広がった格子構造となる。   In general, a semiconductor device is formed by placing a germanium (Ge) piece on a silicon (Si) substrate, growing a germanium layer on the silicon substrate under a constant temperature condition, and re-growing the silicon layer on the germanium layer. Then, a strained silicon layer having the same interstitial distance as the germanium layer can be grown. Therefore, the strained silicon layer has a lattice structure that is wider than the interval between the existing silicon lattices.

また、半導体素子のサイズが微小化するのに伴って、発生する電子とホールの移動度が減少するという問題点がある。したがって、前記のような電子とホールの移動度が減少するという問題点を解決するために、前記のような歪みシリコン層が半導体素子の基板として多く用いられている。   Further, as the size of the semiconductor element is reduced, there is a problem that the mobility of generated electrons and holes decreases. Therefore, in order to solve the problem that the mobility of electrons and holes is reduced as described above, a strained silicon layer as described above is often used as a substrate of a semiconductor element.

しかしながら、かかる従来技術による半導体素子には、次のような問題点があった。   However, the conventional semiconductor device has the following problems.

歪みシリコン層を基板として用いることにより、電子とホールの移動度を高めて半導体素子の動作特性を向上させたが、半導体素子がナノ系列の大きさに微小化する際に発生するリーク電流、これによるDIBL(Drain Induced Barrier Lowing)、リーク電流の増加による接合降伏電圧の発生は解決することができなかった。   By using a strained silicon layer as a substrate, the mobility of electrons and holes has been increased to improve the operating characteristics of the semiconductor device. However, the leakage current generated when the semiconductor device is reduced to the nano-scale size, The generation of junction breakdown voltage due to DIBL (Drain Induced Barrier Lowing) due to the increase in leakage current cannot be solved.

本発明は、従来技術における制約や不都合に起因する問題点の一つ以上を解決できるような、半導体素子とその製造方法を提供する。   The present invention provides a semiconductor device and a method for manufacturing the same that can solve one or more problems caused by limitations and disadvantages in the prior art.

本発明の目的は、歪みシリコン層のソース・ドレイン領域の下部に絶縁膜を形成し、リーク電流を減少させ、リーク電流による接合降伏電圧を減少させ、動作電源を高電圧でも投入することができる半導体素子とその製造方法を提供することである。   An object of the present invention is to form an insulating film below the source / drain region of the strained silicon layer, reduce the leakage current, reduce the junction breakdown voltage due to the leakage current, and turn on the operating power even at a high voltage. It is to provide a semiconductor device and a manufacturing method thereof.

上記目的を達成するために、本発明に係る半導体素子は、アクティブ領域とフィールド領域とが区画されており、第1シリコン層、ゲルマニウム層、第2シリコン層を順次成長させた歪みシリコン基板と、前記歪みシリコン基板のアクティブ領域の上に形成されたゲート電極と、前記歪みシリコン基板の前記ゲート電極の両側に形成されるソース・ドレイン領域と、前記歪みシリコン基板の前記ソース・ドレイン領域の下部に形成される絶縁膜とを有することを特徴とする。   In order to achieve the above object, a semiconductor device according to the present invention includes a strained silicon substrate in which an active region and a field region are partitioned, and a first silicon layer, a germanium layer, and a second silicon layer are sequentially grown; A gate electrode formed on an active region of the strained silicon substrate; a source / drain region formed on both sides of the gate electrode of the strained silicon substrate; and a lower portion of the source / drain region of the strained silicon substrate. And an insulating film to be formed.

前記絶縁膜は、前記ソース・ドレイン領域の空乏箇所まで延長して形成されていることが望ましい。   The insulating film is preferably formed to extend to a depletion portion of the source / drain region.

前記絶縁膜は、前記歪みシリコン基板のゲルマニウム層に形成されていることが望ましい。   The insulating film is preferably formed on a germanium layer of the strained silicon substrate.

前記第2シリコン層の厚さは、50Å〜250Åの範囲あることが望ましい。   The thickness of the second silicon layer is preferably in the range of 50 to 250 mm.

また、上記目的を達成するための本発明による半導体素子は、第1シリコン層、ゲルマニウム層、第2シリコン層が順次成長した歪みシリコン基板と、前記歪みシリコン基板上に形成される第1、第2ゲート電極と、前記歪みシリコン基板の前記第1ゲート電極の両側に形成される第1導電型ソース・ドレイン領域と、前記歪みシリコン基板の前記第2ゲート電極の両側に形成される第2導電型ソース・ドレイン領域と、前記歪みシリコン基板の前記第1、第2ソース・ドレイン領域の下部に形成される絶縁膜とを有することを特徴とする。   In order to achieve the above object, a semiconductor device according to the present invention includes a strained silicon substrate on which a first silicon layer, a germanium layer, and a second silicon layer are sequentially grown, and a first and a first formed on the strained silicon substrate. Two gate electrodes; first conductivity type source / drain regions formed on both sides of the first gate electrode of the strained silicon substrate; and second conductivity formed on both sides of the second gate electrode of the strained silicon substrate. And having an insulating film formed under the first and second source / drain regions of the strained silicon substrate.

一方、上記目的を達成するために、本発明に係る半導体素子の製造方法は、第1シリコン層上にゲルマニウム層を成長させる段階と、前記ゲルマニウム層に少なくとも2つのトレンチを形成する段階と、前記トレンチを備えているゲルマニウム層に絶縁膜を形成する段階と、前記トレンチの底面のみに前記絶縁膜が残るように、前記ゲルマニウム層と絶縁膜を研磨し、少なくとも2つの絶縁膜パターンを形成する段階と、前記平坦化させたゲルマニウム層にゲルマニウム層を再成長させて平坦化する段階と、前記ゲルマニウム層に第2シリコン層を形成する段階と、前記少なくとも2つの絶縁膜の間の第2シリコン層上に、ゲート絶縁膜とゲート電極を形成する段階と、前記第2シリコン層の前記ゲート電極の両側に不純物イオンを注入し、ソース・ドレイン領域を形成する段階とを有することを特徴とする。   Meanwhile, in order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention includes a step of growing a germanium layer on a first silicon layer, a step of forming at least two trenches in the germanium layer, Forming an insulating film on a germanium layer having a trench; and polishing at least two insulating film patterns by polishing the germanium layer and the insulating film so that the insulating film remains only on a bottom surface of the trench. A step of re-growing a germanium layer on the planarized germanium layer to planarize, a step of forming a second silicon layer on the germanium layer, and a second silicon layer between the at least two insulating films A step of forming a gate insulating film and a gate electrode; and implanting impurity ions on both sides of the gate electrode of the second silicon layer; And having and forming over scan and drain regions.

前記第1シリコン層(SiX−1)とゲルマニウム層(GeX)の組成比(X)は、0.1〜0.5の比率とすることが望ましい。 The composition ratio (X) of the first silicon layer (Si x-1 ) and the germanium layer (Ge x ) is preferably set to a ratio of 0.1 to 0.5.

本発明の半導体素子とその製造方法には次のような効果がある。   The semiconductor device and the manufacturing method thereof according to the present invention have the following effects.

第一に、本発明は歪みシリコン基板内部のソース・ドレイン領域の下部に絶縁膜を形成することにより、徐々に微細化される半導体素子で、シリコン格子による電子とホールの移動度の減少を改善すると共に半導体素子のサイズを微小化し、チャンネル減少によるリーク電流を防止することができる。従って、飽和された駆動電流を20〜40%向上させることができる。   First, the present invention improves the reduction of mobility of electrons and holes due to the silicon lattice in a semiconductor element that is gradually miniaturized by forming an insulating film under the source / drain region inside the strained silicon substrate. At the same time, the size of the semiconductor element can be reduced, and leakage current due to channel reduction can be prevented. Therefore, the saturated drive current can be improved by 20 to 40%.

第二に、リーク電流を解決することにより、DIBLと接合降伏電圧が減少するため、歪みシリコン基板においてナノ級以下の半導体素子と高電圧素子を得ることができる。   Second, by solving the leakage current, the DIBL and the junction breakdown voltage are reduced, so that a nano-class semiconductor element and a high-voltage element can be obtained in a strained silicon substrate.

第三に、電子移動度が50%以上向上するため、半導体素子の性能が顕著に向上する。   Third, since the electron mobility is improved by 50% or more, the performance of the semiconductor element is remarkably improved.

第四に、CMOS半導体素子を製作しても、n型ウェルとp型ウェルを形成する工程を減らすことができるため、生産性を向上させて単価を減らすことができる。   Fourth, even if a CMOS semiconductor device is manufactured, the number of steps for forming the n-type well and the p-type well can be reduced, so that the productivity can be improved and the unit price can be reduced.

第五に、絶縁膜によりソースとドレインとの間で発生する熱を容易に逃すことができるため、熱による半導体素子の性能が低下することを防止することができる。   Fifth, since heat generated between the source and the drain can be easily released by the insulating film, it is possible to prevent the performance of the semiconductor element from being deteriorated due to heat.

第六に、CMOS半導体素子を形成する時は、nMOSとpMOSとの間で素子隔離膜の形成が不要なため、半導体素子のサイズを微小化することができる。   Sixth, when forming a CMOS semiconductor element, it is not necessary to form an element isolation film between the nMOS and the pMOS, so that the size of the semiconductor element can be reduced.

添付図面に例示された、本発明の好ましい実施形態について詳細に説明する。図面において対応する要素に同一の参照符号を付している。   Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Corresponding elements in the drawings have the same reference numerals.

以下、本発明に係る半導体素子とその製造方法の好適な実施の形態について、添付の図面に基づいて詳細に説明する。   Preferred embodiments of a semiconductor device and a method for manufacturing the same according to the present invention will be described below in detail with reference to the accompanying drawings.

図1は本発明に係る半導体素子の構造断面図である。
本発明に係る半導体素子は、図1に示すように、第1シリコン層3上にゲルマニウム層5を成長させ、ゲルマニウム層5上に第2シリコン層6を再成長させた歪みシリコン基板10と、アクティブ領域とフィールド領域を区画するために、歪みシリコン基板10のフィールド領域に形成された素子隔離膜31と、アクティブ領域の歪みシリコン基板10上の所定領域に順次積層されたゲート絶縁膜41とゲート電極42と、歪みシリコン基板10のゲート電極42の両側に形成されるソース・ドレイン領域44a、44bと、歪みシリコン基板10内のソース・ドレイン領域44a、44bの下部に形成される絶縁膜17a、17bとを備えている。
FIG. 1 is a structural sectional view of a semiconductor device according to the present invention.
As shown in FIG. 1, a semiconductor device according to the present invention includes a strained silicon substrate 10 in which a germanium layer 5 is grown on a first silicon layer 3 and a second silicon layer 6 is regrown on the germanium layer 5. In order to partition the active region and the field region, an element isolation film 31 formed in the field region of the strained silicon substrate 10, a gate insulating film 41 and a gate sequentially stacked in a predetermined region on the strained silicon substrate 10 in the active region An electrode 42, source / drain regions 44a, 44b formed on both sides of the gate electrode 42 of the strained silicon substrate 10, and an insulating film 17a formed under the source / drain regions 44a, 44b in the strained silicon substrate 10. 17b.

この絶縁膜17a、17bは素子隔離膜31と接触するように形成されており、歪みシリコン基板10内のゲルマニウム層3に形成される。
また、ゲート電極42とゲート絶縁膜41の側面には側壁絶縁膜43が形成される。
The insulating films 17 a and 17 b are formed so as to be in contact with the element isolation film 31 and are formed on the germanium layer 3 in the strained silicon substrate 10.
A sidewall insulating film 43 is formed on the side surfaces of the gate electrode 42 and the gate insulating film 41.

このような原理を用いて形成された本発明に係る半導体素子の製造方法について説明すると次のとおりである。
図2aないし図2fは本発明に係る半導体素子の製造工程断面図である。
図2aに示したように、第1シリコン層3上にゲルマニウム層5をエピタキシャルタキシャル成長させ、ゲルマニウム層5上に第1絶縁膜11を堆積させる。ゲルマニウム層5の格子間の距離は、第1シリコン層の格子間の距離よりも広くなる。
A method for manufacturing a semiconductor device according to the present invention formed using such a principle will be described as follows.
2a to 2f are cross-sectional views illustrating a manufacturing process of a semiconductor device according to the present invention.
As shown in FIG. 2 a, the germanium layer 5 is epitaxially grown on the first silicon layer 3, and the first insulating film 11 is deposited on the germanium layer 5. The distance between the lattices of the germanium layer 5 is larger than the distance between the lattices of the first silicon layer.

第1シリコン層3上にゲルマニウム層5をエピタキシャルタキシャル成長させる方法以外の方法で、シリコン(SiX−1)とゲルマニウム(GeX)を備えた基板を形成することができる。この時、シリコンとゲルマニウムの組成比(X)は0.1〜0.5の比率とする。
次に、第1絶縁膜11上に感光膜を塗布し、マスクを用いた露光工程と現像工程でその後に形成されるソース・ドレイン領域の感光膜を除去した第1感光膜パターン12を形成する。
A substrate comprising silicon (Si x-1 ) and germanium (Ge x ) can be formed by a method other than the method of epitaxially growing the germanium layer 5 on the first silicon layer 3. At this time, the composition ratio (X) of silicon and germanium is set to a ratio of 0.1 to 0.5.
Next, a photosensitive film is applied on the first insulating film 11, and a first photosensitive film pattern 12 is formed by removing the photosensitive film in the source / drain regions formed thereafter in the exposure process and development process using a mask. .

図2bに示すように、第1感光膜パターン12をマスクとして用いて、第1絶縁膜11とゲルマニウム層5を所定の深さ除去してトレンチ15を形成する。
次に、第1感光膜パターン12と第1絶縁膜11を全て除去する。
その後、トレンチ15の内壁を含めてゲルマニウム層5の全面に、所定の厚さで第2絶縁膜17を形成する。
As shown in FIG. 2B, the first insulating film 11 and the germanium layer 5 are removed to a predetermined depth using the first photosensitive film pattern 12 as a mask to form a trench 15.
Next, the first photosensitive film pattern 12 and the first insulating film 11 are all removed.
Thereafter, the second insulating film 17 is formed with a predetermined thickness on the entire surface of the germanium layer 5 including the inner wall of the trench 15.

図2cに示すように、第2絶縁膜17とゲルマニウム層5の一部を化学機械研磨(CMP)工程でトレンチ15の下部面のみに第2絶縁膜17が残るように平坦化した絶縁膜17a、17bパターンを形成する。
この絶縁膜17a、17bパターンはその後形成されるソース・ドレイン領域の空乏箇所まで延長させるようにし、ソース・ドレイン領域のリーク経路が長くなるようにすると共に、接合容量を減らす役割をする。それだけでなく、絶縁膜17a、17bパターンには、ソースとドレインとの間で発生する熱を容易に逃す機能がある。
As shown in FIG. 2c, the second insulating film 17 and a part of the germanium layer 5 are planarized so that the second insulating film 17 remains only on the lower surface of the trench 15 by a chemical mechanical polishing (CMP) process. , 17b pattern is formed.
The patterns of the insulating films 17a and 17b are extended to the depleted portions of the source / drain regions to be formed thereafter, so that the leakage path of the source / drain regions becomes longer and the junction capacitance is reduced. In addition, the insulating films 17a and 17b patterns have a function of easily releasing heat generated between the source and the drain.

図2dに示すように、絶縁膜17a、17bが形成された基板上にゲルマニウム層5を再びエピタキシャルタキシャル成長させた後、CMP工程を用いてゲルマニウム層5を平坦化させる。平坦化させる理由は、前記ゲルマニウム層5を再成長させる時、絶縁膜17a、17bパターンの上側では、相対的にゲルマニウム層が薄く形成されるためである。   As shown in FIG. 2d, after the germanium layer 5 is epitaxially grown again on the substrate on which the insulating films 17a and 17b are formed, the germanium layer 5 is planarized using a CMP process. The reason for flattening is that when the germanium layer 5 is regrown, the germanium layer is relatively thinly formed on the upper side of the patterns of the insulating films 17a and 17b.

図2eに示すように、平坦化させたゲルマニウム層5上に、エピタキシャル工程で第2シリコン層6を50Å〜250Åの厚さに成長させ、第1シリコン層3、ゲルマニウム層5、第2シリコン層6が順次積層した歪みシリコン基板10を形成する。ゲルマニウム層5の上に形成される第2シリコン層6の格子間の距離はゲルマニウム層5の格子間の距離と同一に形成される。   As shown in FIG. 2e, a second silicon layer 6 is grown on the planarized germanium layer 5 to a thickness of 50 to 250 by an epitaxial process, and the first silicon layer 3, the germanium layer 5, and the second silicon layer are grown. A strained silicon substrate 10 in which 6 is sequentially stacked is formed. The distance between the lattices of the second silicon layer 6 formed on the germanium layer 5 is the same as the distance between the lattices of the germanium layer 5.

図2fに示すように、歪みシリコン基板10をアクティブ領域とフィールド領域とを決め、フィールド領域において歪みシリコン基板10を所定の深さでエッチングしてトレンチを形成し、トレンチ内に絶縁膜を形成して素子分離膜31を形成する。
また、素子分離膜31が形成された歪みシリコン基板10の全面にゲート絶縁用絶縁膜41aと導電層42aを順次堆積させる。
As shown in FIG. 2f, an active region and a field region are determined for the strained silicon substrate 10, and a trench is formed by etching the strained silicon substrate 10 at a predetermined depth in the field region, and an insulating film is formed in the trench. Thus, the element isolation film 31 is formed.
Further, an insulating film 41a for gate insulation and a conductive layer 42a are sequentially deposited on the entire surface of the strained silicon substrate 10 on which the element isolation film 31 is formed.

図2gに示すように、ゲート絶縁用絶縁膜41aと導電層42aを選択的に除去してゲート絶縁膜41とゲート電極42を形成する。
この時、ゲート絶縁膜41とゲート電極42の幅はトランジスタのチャンネルの幅に相当するもので、絶縁膜17a、17bのパターンの間の距離より長く形成され、その後形成されるソース・ドレイン領域の空乏箇所が絶縁膜17a、17bパターンにより覆われるようにする。即ち、ゲート電極42は絶縁膜17a、17bパターンとオーバーラップするように形成される。これはリーク電流のリーク経路を長くする役割をする。
As shown in FIG. 2g, the gate insulating film 41a and the gate electrode 42 are formed by selectively removing the gate insulating film 41a and the conductive layer 42a.
At this time, the width of the gate insulating film 41 and the gate electrode 42 corresponds to the width of the channel of the transistor, and is formed longer than the distance between the patterns of the insulating films 17a and 17b. The depletion part is covered with the insulating film 17a, 17b pattern. That is, the gate electrode 42 is formed so as to overlap the patterns of the insulating films 17a and 17b. This serves to lengthen the leakage path of the leakage current.

次に、ゲート絶縁膜41とゲート電極42をマスクとして用いて、低濃度の不純物イオンを注入し、歪みシリコン基板10のゲート電極42の両側にLDD領域23a、23bを形成する。
さらに、全面に絶縁膜を堆積し、異方性エッチングを施してゲート電極42とゲート絶縁膜41の側面にスペーサ43を形成する。次に、ゲート電極42とスペーサ43をマスクとして用いて歪みシリコン基板10のアクティブ領域に不純物イオンを高濃度で注入してソース・ドレイン領域44a、44bを形成する。
Next, using the gate insulating film 41 and the gate electrode 42 as a mask, low concentration impurity ions are implanted to form LDD regions 23 a and 23 b on both sides of the gate electrode 42 of the strained silicon substrate 10.
Further, an insulating film is deposited on the entire surface, and anisotropic etching is performed to form spacers 43 on the side surfaces of the gate electrode 42 and the gate insulating film 41. Next, using the gate electrode 42 and the spacer 43 as a mask, impurity ions are implanted at a high concentration into the active region of the strained silicon substrate 10 to form source / drain regions 44a and 44b.

図3は、このような本発明の半導体素子をCMOSに適用した断面図である。
即ち、第1シリコン層13上にゲルマニウム層15が成長し、ゲルマニウム層15上に第2シリコン層16が再成長した歪みシリコン基板100の所定領域にn−MOSゲート絶縁膜141aとゲート電極142aが形成され、他の領域にp−MOS用ゲート絶縁膜141bとゲート電極142aが形成されている。
FIG. 3 is a sectional view in which such a semiconductor device of the present invention is applied to a CMOS.
That is, the n-MOS gate insulating film 141a and the gate electrode 142a are formed in a predetermined region of the strained silicon substrate 100 in which the germanium layer 15 is grown on the first silicon layer 13 and the second silicon layer 16 is regrown on the germanium layer 15. The p-MOS gate insulating film 141b and the gate electrode 142a are formed in other regions.

n−MOS用ゲート電極142aの両側の歪みシリコン基板100に高濃度のn型ソース・ドレイン領域144a、144bが形成され、p−MOS用ゲート電極142bの両側の歪みシリコン基板100に高濃度のp型ソース・ドレイン領域145a、145bが形成されている。そして、歪みシリコン基板100内のn型とp型のソース・ドレイン領域144a、144b、145a、145bの下部に絶縁膜117a、117bが形成される。
絶縁膜117a、117bは歪みシリコン基板100のゲルマニウム層13に形成され、各ソース・ドレイン領域144a、144bと145a、145bの空乏箇所を覆うようにチャンネル領域側に延長して形成される。
High-concentration n-type source / drain regions 144a and 144b are formed on the strained silicon substrate 100 on both sides of the n-MOS gate electrode 142a, and high-concentration p is formed on the strained silicon substrate 100 on both sides of the p-MOS gate electrode 142b. Type source / drain regions 145a and 145b are formed. Then, insulating films 117 a and 117 b are formed below the n-type and p-type source / drain regions 144 a, 144 b, 145 a and 145 b in the strained silicon substrate 100.
The insulating films 117a and 117b are formed on the germanium layer 13 of the strained silicon substrate 100, and are extended to the channel region side so as to cover the depletion portions of the source / drain regions 144a, 144b and 145a and 145b.

このように、CMOSトランジスタを製作しても、電子移動度が優れているため、別途のn型ウェルとp型ウェルの形成が不要なため、n−MOSとp−MOSとの間に素子隔離膜を必要としない。   Thus, even if a CMOS transistor is manufactured, since the electron mobility is excellent, it is not necessary to form a separate n-type well and p-type well, so that element isolation is provided between the n-MOS and the p-MOS. Does not require a membrane.

本発明に係る半導体素子の構造断面図である。1 is a structural cross-sectional view of a semiconductor element according to the present invention. 本発明に係る半導体素子の工程断面図である。It is process sectional drawing of the semiconductor element which concerns on this invention. 本発明に係る半導体素子の工程断面図である。It is process sectional drawing of the semiconductor element which concerns on this invention. 本発明に係る半導体素子の工程断面図である。It is process sectional drawing of the semiconductor element which concerns on this invention. 本発明に係る半導体素子の工程断面図である。It is process sectional drawing of the semiconductor element which concerns on this invention. 本発明に係る半導体素子の工程断面図である。It is process sectional drawing of the semiconductor element which concerns on this invention. 本発明に係る半導体素子の工程断面図である。It is process sectional drawing of the semiconductor element which concerns on this invention. 本発明に係る半導体素子の工程断面図である。It is process sectional drawing of the semiconductor element which concerns on this invention. 本発明に係るCMOS半導体素子の構造断面図である。1 is a structural cross-sectional view of a CMOS semiconductor device according to the present invention.

符号の説明Explanation of symbols

10、100 基板、3、13 第1シリコン層、5、15 ゲルマニウム層、6、16 第2シリコン層、11 第1絶縁膜、12 第1感光膜、15 トレンチ、17 第2絶縁膜、17a、17b、117a、117b 絶縁膜、23a、23b LDD領域、31 素子隔離膜、41、141a、141b ゲート絶縁膜、42、142a、142b ゲート電極、44a、44b、144a、144b、145a、145b ソース・ドレイン領域   10, 100 substrate, 3, 13 first silicon layer, 5, 15 germanium layer, 6, 16 second silicon layer, 11 first insulating film, 12 first photosensitive film, 15 trench, 17 second insulating film, 17a, 17b, 117a, 117b Insulating film, 23a, 23b LDD region, 31 Device isolation film, 41, 141a, 141b Gate insulating film, 42, 142a, 142b Gate electrode, 44a, 44b, 144a, 144b, 145a, 145b Source / drain region

Claims (3)

第1シリコン層上に格子間の距離がこの第1シリコン層の格子間の距離より広いゲルマニウム層を成長させる段階と、
前記ゲルマニウム層に少なくとも2つのトレンチを形成する段階と、
前記トレンチを備えているゲルマニウム層に絶縁膜を形成する段階と、
前記トレンチの底面のみに前記絶縁膜が残るように、前記ゲルマニウム層と絶縁膜を研磨し、少なくとも2つの絶縁膜パターンを形成する段階と、
前記平坦化させたゲルマニウム層にゲルマニウム層を再成長させて平坦化する段階と、
前記ゲルマニウム層上に格子間の距離が前記ゲルマニウム層の格子間の距離と同一となるように第2シリコン層を形成する段階と、
前記少なくとも2つの絶縁膜パターンの間の前記第2シリコン層上に、ゲート絶縁膜とゲート電極を形成する段階と、
前記ゲート電極の両側の前記第2シリコン層に、不純物イオンを注入し、ソース・ドレイン領域を形成する段階と
を有し、
前記少なくとも二つの絶縁膜パターンは、前記ソース・ドレイン領域の下部に前記ソース・ドレイン領域の空乏箇所まで延長して形成される
ことを特徴とする半導体素子の製造方法。
Growing a germanium layer on the first silicon layer having a greater interstitial distance than the interstitial distance of the first silicon layer ;
Forming at least two trenches in the germanium layer;
Forming an insulating film on the germanium layer having the trench;
Polishing the germanium layer and the insulating film so as to leave the insulating film only on the bottom surface of the trench, and forming at least two insulating film patterns;
Re-growth and planarize the germanium layer on the planarized germanium layer;
Forming a second silicon layer on the germanium layer such that a distance between lattices is the same as a distance between lattices of the germanium layer ;
The second silicon layer between the at least two insulating pattern, forming a gate insulating film and the gate electrode,
The second silicon layer on both sides of the gate electrode, the impurity ions are implanted, possess and forming source and drain regions,
The method of manufacturing a semiconductor device, wherein the at least two insulating film patterns are formed under the source / drain regions so as to extend to a depletion portion of the source / drain regions .
前記第2シリコン層の厚さは、50Å〜250Åの範囲で形成されていることを特徴とする請求項に記載の半導体素子の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1 , wherein a thickness of the second silicon layer is in a range of 50 to 250 mm. 3. 前記ゲート電極は、前記少なくとも2つの絶縁膜パターンとオーバーラップするように形成されていることを特徴とする請求項1または2に記載の半導体素子の製造方法。 The gate electrode, The method according to claim 1 or 2, characterized in that it is formed to the overlapping at least two of the insulating film pattern.
JP2005343355A 2004-12-31 2005-11-29 Manufacturing method of semiconductor device Expired - Fee Related JP4495073B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040117613A KR100640969B1 (en) 2004-12-31 2004-12-31 Semiconductor Device and Method for Manufacturing the Same

Publications (2)

Publication Number Publication Date
JP2006190986A JP2006190986A (en) 2006-07-20
JP4495073B2 true JP4495073B2 (en) 2010-06-30

Family

ID=36599561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343355A Expired - Fee Related JP4495073B2 (en) 2004-12-31 2005-11-29 Manufacturing method of semiconductor device

Country Status (4)

Country Link
JP (1) JP4495073B2 (en)
KR (1) KR100640969B1 (en)
CN (1) CN100533765C (en)
DE (1) DE102005059455A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160107398A (en) * 2015-03-03 2016-09-19 한국전자통신연구원 Germanium on insulator substrate and Methods for forming the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038405B (en) * 2020-08-19 2024-06-18 深圳市紫光同创电子有限公司 Field effect transistor, preparation method thereof, static random access memory and integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160107398A (en) * 2015-03-03 2016-09-19 한국전자통신연구원 Germanium on insulator substrate and Methods for forming the same
KR102279162B1 (en) 2015-03-03 2021-07-20 한국전자통신연구원 Germanium on insulator substrate and Methods for forming the same

Also Published As

Publication number Publication date
KR100640969B1 (en) 2006-11-02
CN100533765C (en) 2009-08-26
CN1822393A (en) 2006-08-23
JP2006190986A (en) 2006-07-20
KR20060079424A (en) 2006-07-06
DE102005059455A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP5063352B2 (en) High mobility bulk silicon PFET
JP5795260B2 (en) Transistor with embedded strain-inducing material having a step-shaped structure
KR101552938B1 (en) Method of fabricating semiconductor device having stress creating layer
US7754571B2 (en) Method for forming a strained channel in a semiconductor device
JP4426988B2 (en) Method for manufacturing p-channel MOS transistor
JP5772068B2 (en) Semiconductor device and manufacturing method thereof
US20120256240A1 (en) Method for increasing penetration depth of drain and source implantation species for a given gate height
US10014406B2 (en) Semiconductor device and method of forming the same
JP2010062564A (en) Poly-emitter type bipolar transistor, bcd device, poly-emitter type bipolar transistor manufacturing method, and bcd device manufacturing method
KR100618827B1 (en) Semiconductor device comprising FinFET and fabricating method thereof
JP5535486B2 (en) Method and apparatus for forming body contact element having structure (SOI) in which semiconductor is provided on insulator
JP2009272480A (en) Method of manufacturing semiconductor device
JP2009055041A (en) Semiconductor device and method of fabricating the same
US20060170006A1 (en) Semiconductor device and method of manufacturing the same
KR20090020847A (en) Method of fabricating a mos transistor having a strained channel and mos transistor fabricated thereby
JP4495073B2 (en) Manufacturing method of semiconductor device
JP5410055B2 (en) Semiconductor device and manufacturing method of semiconductor device
US8101482B2 (en) Method of fabricating semiconductor device having transistor
JP5547986B2 (en) Semiconductor device and manufacturing method thereof
JP2004146825A (en) Mos transistor and its manufacturing method
KR101827803B1 (en) Manufacturing method of tunnel field-effect transistor
JP2008066548A (en) Semiconductor device and manufacturing method of semiconductor device
KR100848242B1 (en) Semiconductor device and manufacturing method of semiconductor device
JP2009266868A (en) Mosfet and manufacturing method of mosfet
JP2010219440A (en) Semiconductor device, and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees