JP4493384B2 - Method and apparatus for detecting deposit level of charge in high temperature vertical reactor - Google Patents

Method and apparatus for detecting deposit level of charge in high temperature vertical reactor Download PDF

Info

Publication number
JP4493384B2
JP4493384B2 JP2004113266A JP2004113266A JP4493384B2 JP 4493384 B2 JP4493384 B2 JP 4493384B2 JP 2004113266 A JP2004113266 A JP 2004113266A JP 2004113266 A JP2004113266 A JP 2004113266A JP 4493384 B2 JP4493384 B2 JP 4493384B2
Authority
JP
Japan
Prior art keywords
furnace
charge
receiver
waveguide
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004113266A
Other languages
Japanese (ja)
Other versions
JP2005300218A (en
Inventor
善治 藤原
康男 増田
益人 清水
光裕 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2004113266A priority Critical patent/JP4493384B2/en
Publication of JP2005300218A publication Critical patent/JP2005300218A/en
Application granted granted Critical
Publication of JP4493384B2 publication Critical patent/JP4493384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Incineration Of Waste (AREA)

Description

本発明は、高温縦型反応炉に装入された装入物の堆積レベルを優れた精度でかつ安定して検知する方法及び装置に関する。   The present invention relates to a method and an apparatus for stably detecting an accumulation level of a charge charged in a high-temperature vertical reactor with excellent accuracy.

従来より、ガス化溶融炉を含めた高温縦型反応炉においては、炉内に装入した廃棄物等の装入物の堆積レベルを検知するために、種々の手段が講じられてきた。その各々の手段について以下述べる。   Conventionally, in a high-temperature vertical reactor including a gasification melting furnace, various means have been taken in order to detect the accumulation level of charges such as waste charged in the furnace. Each means will be described below.

接触式による前記検知方式に関するものとしては、例えば、特許文献1には、図1に示すように、シャフト炉方式の廃棄物溶融炉1において、堆積レベル(ストックレベル)検知器1eと炉内の通気差圧を検出する通気差圧計PTとを用いて、炉内通気差圧が予め設定された目標値となるようにストックレベルを増減することを特徴とする廃棄物溶融炉の装入物ストックレベル制御方法が開示されている。ところが、このような接触式による廃棄物の堆積レベル検知方法を用いることは、炉内の高温雰囲気による堆積レベル検知端の熱衝撃及び熱損傷、また炉内雰囲気の外部漏洩の防止等の観点からすると好適でない。   As for the contact type detection method, for example, in Patent Document 1, as shown in FIG. 1, in a shaft furnace type waste melting furnace 1, a deposit level (stock level) detector 1e and the inside of the furnace A stock of waste melting furnace characterized in that the stock level is increased or decreased using a vent pressure differential pressure gauge PT for detecting a draft differential pressure so that the vent pressure difference in the furnace becomes a preset target value. A level control method is disclosed. However, the use of such a contact type waste accumulation level detection method is from the viewpoint of preventing thermal shock and thermal damage at the accumulation level detection end due to the high temperature atmosphere in the furnace, and external leakage of the furnace atmosphere. Then, it is not suitable.

非接触式による前記検知方式としては、具体的には、音波によるもの、光によるもの、放射線(γ線等)によるものおよび電(磁)波によるものの4種類がある。
このうち、音波は温度に依存性があり、ダストによる反射が大きい等により好適でない。また、光はダストを透過しないことにより好適でない。更に放射線については、法令を含めてその取り扱いが煩雑であることから好適でない。これに対し、電(磁)波については、既に市販の技術の転用が容易であり、しかも信号に直線性がある。
上記のように、高温廃棄物処理炉において、炉内に装入した廃棄物の堆積レベルを検知する方法としては、電(磁)波による非接触方式が好適に適用可能である。
Specifically, the non-contact detection method includes four types, that is, a method using sound waves, a method using light, a method using radiation (gamma rays or the like), and a method using electric (magnetic) waves.
Among these, the sound wave is not suitable because it depends on temperature and is highly reflected by dust. Moreover, light is not suitable because it does not transmit dust. Furthermore, radiation is not suitable because of its complicated handling including laws and regulations. On the other hand, with regard to electromagnetic waves, it is easy to divert a commercially available technology and the signal has linearity.
As described above, in a high temperature waste treatment furnace, as a method for detecting the accumulation level of waste charged in the furnace, a non-contact method using an electric (magnetic) wave can be suitably applied.

次に、前記電(磁)波、具体的にはマイクロ波による非接触方式を用いた廃棄物の堆積レベル検知手段を、廃棄物の熱処理炉、具体的にはストーカ式ごみ焼却炉及び廃棄物ガス化溶融炉に適用した場合についての各種評価を述べる。なお、廃棄物ガス化溶融炉については、具体的には、炉内の廃棄物の堆積レベル検知手段設置位置近傍の雰囲気温度が比較的低温であるNKK方式ガス化溶融炉及び炉内の廃棄物の堆積レベル検知手段設置位置近傍の雰囲気温度が高温である川鉄サーモセレクト方式ガス化溶融炉に適用した場合について述べる。   Next, the waste accumulation level detection means using the above-mentioned electric (magnetic) wave, specifically microwave non-contact method, waste heat treatment furnace, specifically stoker waste incinerator and waste Various evaluations for the case of application to a gasification melting furnace are described. As for the waste gasification melting furnace, specifically, the NKK gasification melting furnace and the waste in the furnace in which the ambient temperature in the vicinity of the installation level of the waste accumulation level detection means in the furnace is relatively low. The case of applying to the Kawatetsu Thermo Select Gasification Melting Furnace where the ambient temperature in the vicinity of the installation level of the deposition level detection means is high will be described.

ストーカ式ごみ焼却炉において、マイクロ波による非接触方式の廃棄物の堆積レベル検知方法は既に実用化されている。該炉において、廃棄物は火格子上に500〜1300mm程度にごみが敷かれている。該炉の炉内温度は、概ね800℃〜900℃の比較的低温域であり、火格子から送入する燃焼空気量も低空気比を前提とするため、ごみ層上のダスト飛散の程度も概ね低いレベルである。また、該炉は前記したように比較的低温域であるため、溶融スラグが発生せず、その影響を考慮する必要が無い。このような状況下で発信/受信個別型式のマイクロ波によるごみ層厚計測装置を適用した場合、例えば、10mWの微弱な信号でもその減衰量と予め設定した閾値とを比較することにより、容易にしかも精度高くごみ層高さが所定のレベルに到達したと判定することができる。   In a stoker-type waste incinerator, a non-contact type waste accumulation level detection method using microwaves has already been put into practical use. In the furnace, the waste is disposed of about 500 to 1300 mm on the grate. The furnace temperature in the furnace is a relatively low temperature range of approximately 800 ° C. to 900 ° C., and the amount of combustion air fed from the grate is also premised on a low air ratio. The level is generally low. Further, since the furnace is in a relatively low temperature region as described above, no molten slag is generated, and there is no need to consider the influence thereof. In such a situation, when the transmission / reception separate type microwave dust layer thickness measuring device is applied, for example, even a weak signal of 10 mW can be easily compared by comparing the attenuation amount with a preset threshold value. Moreover, it can be determined that the dust layer height has reached a predetermined level with high accuracy.

次に、NKK方式ガス化溶融炉に関しては、特許文献2には、図2に示されるように、炉本体1上部に廃棄物および炭素系補助燃料の装入口2を有すると共に、炉本体1側部に酸素含有ガスを吹き込む羽口を有し、装入された廃棄物を熱分解して可燃性ガスを発生させると共に、廃棄物中の灰分および不燃物を溶融させる竪型炉であって、装入された廃棄物および炭素系補助燃料によって形成される堆積層の上面よりも上に相当するレベルに上段の羽口3が設けられ、前記堆積層の上部に相当するレベルに中段の羽口4が設けられ、前記堆積層の下部に相当するレベルに下段の羽口5が設けられた廃棄物ガス化溶融炉が開示されている。   Next, with respect to the NKK type gasification melting furnace, as shown in FIG. 2, Patent Document 2 has an inlet 2 for waste and carbon-based auxiliary fuel at the top of the furnace body 1, and the furnace body 1 side. A vertical furnace that has a tuyere that blows oxygen-containing gas into the part, pyrolyzes the charged waste to generate flammable gas, and melts ash and incombustibles in the waste; An upper tuyere 3 is provided at a level corresponding to a level above the upper surface of the deposited layer formed by the charged waste and the carbon-based auxiliary fuel, and a middle tuyere at a level corresponding to the upper part of the deposited layer. 4, a waste gasification and melting furnace is disclosed in which a lower tuyere 5 is provided at a level corresponding to the lower part of the deposited layer.

また、その効果については、特許文献2の段落[0062]に、装入物によって形成される堆積層の上面よりも上に相当するレベルと、堆積層の上部に相当するレベルと、堆積層の下部に相当するレベルに、それぞれ上段の羽口3、中段の羽口4、下段の羽口5が設けられているので、炉本体1下部における灰分などの溶融状態を良好な状態に維持しながら、堆積層の流動を良好な半流動状態に維持することができ、さらにフリーボード部1aのガス温度を1000℃以上の高温域に維持することができ、安定した操業を継続することができる、と記載されている。   Regarding the effect, in paragraph [0062] of Patent Document 2, the level corresponding to the upper surface of the deposited layer formed by the charge, the level corresponding to the upper part of the deposited layer, Since the upper tuyere 3, the middle tuyere 4 and the lower tuyere 5 are provided at the level corresponding to the lower part, the molten state such as ash in the lower part of the furnace body 1 is maintained in a good state. In addition, the flow of the deposited layer can be maintained in a good semi-fluid state, the gas temperature of the free board portion 1a can be maintained in a high temperature range of 1000 ° C. or higher, and stable operation can be continued. It is described.

この炉において廃棄物堆積レベルを検知するポイントは、炉本体1における朝顔部1b付近であると推定される。この領域は該炉のフリーボード1a部と直結しているので、雰囲気温度は1000℃以下であり、比較的低温域であるといえる。また、該炉において、廃棄物堆積層上端位置付近は、廃棄物の堆積層が廃棄物の飛散程度が比較的低い半流動状態で運動し、乾燥及び熱分解を呈する領域であると考えられるので、ダストの飛散程度も比較的低く、よって該領域において、マイクロ波による廃棄物堆積レベル検知装置は溶融スラグの影響を受けることも殆ど無いと推定される。   The point at which the waste accumulation level is detected in this furnace is presumed to be in the vicinity of the morning glory 1b in the furnace body 1. Since this region is directly connected to the free board 1a portion of the furnace, the ambient temperature is 1000 ° C. or less, which can be said to be a relatively low temperature region. In addition, in the furnace, the vicinity of the upper end position of the waste accumulation layer is considered to be an area where the waste accumulation layer moves in a semi-fluid state where the degree of waste scattering is relatively low and exhibits drying and thermal decomposition. Therefore, it is estimated that the dust accumulation level detector is hardly affected by the molten slag in this region.

次に、川鉄サーモセレクト方式ガス化溶融炉に関しては、特許文献3に、易揮発成分を含まない、乾燥した断片的な形で、加熱されたチャンネルから排出される構造的に安定な固形物集合体を即時にかつ直接的に高温反応器内に導入し、該高温反応器内で前記固形物集合体からガス透過性の固体床を形成し、かつ、該固体床を加熱されたチャンネルの出口の高さまで維持し、次いで、該高温反応器内で固体床の上部に炭素含有流動床を形成させ、更には、酸素の添加により、該固体床中の炭素成分を酸化して二酸化炭素ガスにし、該二酸化炭素ガスを炭素含有流動床を通過する際に一酸化炭素に転化せしめると共に、該固体床中の金属成分及び鉱物質成分が2000℃以上の温度で溶融し、得られた溶融物を該高温反応器から抜き取ることからなる有用な廃棄物処理生成物を得るための方法が開示されている。   Next, with regard to the Kawatetsu Thermo Select Gasification Melting Furnace, Patent Document 3 discloses a structure-stable solid aggregate that is discharged from a heated channel in a dry, fragmentary form that does not contain readily volatile components. The body is immediately and directly introduced into the high temperature reactor to form a gas permeable solid bed from the solid mass assembly in the high temperature reactor, and the solid bed is exited from a heated channel And then forming a carbon-containing fluidized bed at the top of the solid bed in the high-temperature reactor, and by adding oxygen, the carbon component in the solid bed is oxidized to carbon dioxide gas. The carbon dioxide gas is converted into carbon monoxide when passing through the carbon-containing fluidized bed, and the metal component and the mineral component in the solid bed are melted at a temperature of 2000 ° C. or higher. Whether to withdraw from the high temperature reactor Methods for obtaining useful waste product comprising is disclosed.

前記川鉄サーモセレクト方式ガス化溶融炉において、該炉頂よりマイクロ波を発信/受信し該炉内廃棄物の堆積レベルを検知する方法について述べる。
このような検知方法については、例えば、特許文献4に、図3に示すように、廃棄物溶融炉31の上部の開口部37に固定される層高レベル測定装置32の筒状体38の上部にマイクロ波35の反射波36により廃棄物の層高レベルを測定するマイクロ波送受信装置33が設けられ、筒状体38の下部には筒状体38を仕切る多孔質セラミック板34が設けられ、マイクロ波送受信装置33と多孔質セラミック板34とで区画される筒状体38には、不活性ガスを筒状体38へ吹き込むパージガス配管39が設けられている廃棄物溶融炉内の層高レベル測定装置32が開示されている。
In the Kawatetsu Thermo Select Gasification Melting Furnace, a method of transmitting / receiving microwaves from the top of the furnace and detecting the accumulation level of the waste in the furnace will be described.
As for such a detection method, for example, in Patent Document 4, as shown in FIG. 3, the upper part of the cylindrical body 38 of the layer high level measuring device 32 fixed to the opening 37 of the upper part of the waste melting furnace 31. A microwave transmitting / receiving device 33 for measuring the layer height level of the waste by the reflected wave 36 of the microwave 35 is provided, and a porous ceramic plate 34 for partitioning the cylindrical body 38 is provided below the cylindrical body 38, A cylindrical body 38 partitioned by the microwave transmitting / receiving device 33 and the porous ceramic plate 34 is provided with a purge gas pipe 39 for blowing an inert gas into the cylindrical body 38. A measuring device 32 is disclosed.

ところが、特許文献4に開示された技術では、炉頂から発信されたマイクロ波は拡散し、炉内壁、または廃棄物層上面で乱反射するので、受信した反射波により精度高く廃棄物溶融炉内の堆積レベルを検知するのは非常に困難であると推定される。   However, in the technique disclosed in Patent Document 4, microwaves transmitted from the top of the furnace are diffused and diffusely reflected on the inner wall of the furnace or on the upper surface of the waste layer. Therefore, the received reflected waves have high accuracy in the waste melting furnace. It is estimated that it is very difficult to detect the deposition level.

次に、廃棄物溶融炉内の廃棄物層上面近傍において、前記マイクロ波を水平に発信受信して、該廃棄物堆積レベルを検知する方法について述べる。
この検知方法は、例えば、本出願人の出願に係る特願2003−087422号に開示されており、これは、図4及び図5に示すように、ガス化溶融設備の高温反応炉装入口55から高温反応炉46内に装入された圧縮廃棄物47の堆積レベル検出方法において、前記高温反応炉46の装入口55の下方の炉壁に配設されかつ炉内側面に耐火物61を有する水冷ジャケット59a内の1基の電磁波発信装置57を用いてマイクロ波又はγ線などの電磁波を発信し、前記電磁波発信装置57に対向する側の炉壁62に配設されかつ炉内側面に耐火物61を有する水冷ジャケット59b内の1基の電磁波受信装置58を用いて前記電磁波を受信して、前記電磁波の減衰量を測定し、前記減衰量の測定値と予め設定されたしきい値とを比較し、前記減衰量の測定値が前記しきい値を超えたときに前記高温反応炉46内の前記圧縮廃棄物47が所定のレベルに到達したと判定するようにした装入堆積レベル検出方法である。図5は電磁波発信装置17付近の詳細図を示したものであり、60はアンテナであり、その端部は耐火物61に設けた貫通孔63内に挿入されている。そして、水冷ジャケット59a内部はNガス等の不活性ガスによってパージされ、粉塵やガスの侵入を防止している。
Next, a method for horizontally transmitting and receiving the microwave in the vicinity of the upper surface of the waste layer in the waste melting furnace to detect the waste accumulation level will be described.
This detection method is disclosed, for example, in Japanese Patent Application No. 2003-087422 filed by the applicant of the present application, which is shown in FIG. 4 and FIG. In the method for detecting the accumulation level of the compressed waste 47 charged into the high temperature reactor 46 from above, the refractory 61 is provided on the furnace wall below the charging port 55 of the high temperature reactor 46 and on the inner surface of the furnace. A single electromagnetic wave transmission device 57 in the water-cooling jacket 59a is used to transmit an electromagnetic wave such as microwaves or γ-rays. The electromagnetic wave is received by using one electromagnetic wave receiving device 58 in the water-cooled jacket 59b having the object 61, the attenuation amount of the electromagnetic wave is measured, the measured value of the attenuation amount and a preset threshold value, Compare the above The compressed waste 47 in the high temperature reaction furnace 46 when the measured value of 衰量 exceeds the threshold value is a charging deposition level detection method to be determined to have reached a predetermined level. FIG. 5 is a detailed view of the vicinity of the electromagnetic wave transmission device 17, 60 is an antenna, and an end portion thereof is inserted into a through hole 63 provided in the refractory 61. The inside of the water cooling jacket 59a is purged with an inert gas such as N 2 gas to prevent intrusion of dust and gas.

しかしながら、上記のマイクロ波を用いた装置の信頼性を、マイクロ波の代わりにγ線を用いた装置を用いて試験して得られた結果と比較すると、マイクロ波とγ線の相関は一致せず、マイクロ波の廃棄物堆積レベルの検出値自体に信頼性が確保されていないことがわかった。   However, comparing the reliability of the above-mentioned apparatus using microwaves with the results obtained by testing using an apparatus using γ rays instead of microwaves, the correlation between microwaves and γ rays agrees. Therefore, it was found that the reliability of the detection value itself of the microwave waste accumulation level was not ensured.

マイクロ波の廃棄物堆積レベルの検出値に信頼性が確保できない推定原因としては以下のものが考えられる。
(1)炉内廃棄物堆積層上端から噴出し、電磁波を発生する火炎の影響
(2)該廃棄物堆積レベル検出装置を配設した炉内近傍空間領域におけるダストの影響
(3)マイクロ波の炉内における乱反射成分の影響
(4)該レベル検出装置の熱遮断用レンガへの付着スラグによるマイクロ波減衰問題
The following can be considered as the probable cause that the reliability of the detected value of the microwave waste accumulation level cannot be secured.
(1) Effects of flames ejected from the top of the reactor waste accumulation layer and generating electromagnetic waves
(2) Effect of dust in the space near the furnace where the waste accumulation level detector is installed
(3) Influence of diffuse reflection component in microwave oven
(4) Microwave attenuation problem due to slag adhering to the heat insulation brick of the level detector

そして、本発明者等らは、マイクロ波による廃棄物の堆積レベルの検出値の信頼性が確保できない最大の原因は、レベル検出装置の熱遮断用レンガへの付着スラグによってマイクロ波が減衰することにあることをつきとめた。即ち、マイクロ波発信装置およびマイクロ波受信装置を高温反応炉内の高温雰囲気から保護する熱遮断用のレンガの炉内側表面には、金属酸化物の形態で廃棄物中に含有される低沸点金属である鉛や亜鉛が25〜35%程度含有し、更に廃棄物中のメタル分も含有する溶融スラグが付着し、この付着スラグがマイクロ波を減衰させる大きな要因であることがわかった。
本発明者等は、上記課題を解決するため、図6に示すような、導波管82を進退自在に設けて、操炉中に導波管82の先端をマイクロ波導入口から突き出すことによってマイクロ波導入口を機械的に突いてマイクロ波導入口の炉内口前にスラグが付着することを妨げる方法を提案した。しかしながら、この方法は、装置の構造が複雑となりコストが高くなるという欠点がある。
The inventors of the present invention have found that the greatest reason why the reliability of the detection value of the waste accumulation level by microwaves cannot be ensured is that the microwaves are attenuated by the slag adhering to the heat-blocking bricks of the level detection device. I found out that That is, the low-boiling point metal contained in the waste in the form of metal oxide is provided on the furnace inner surface of the heat-blocking brick that protects the microwave transmitter and the microwave receiver from the high-temperature atmosphere in the high-temperature reactor. It has been found that molten slag containing about 25 to 35% of lead and zinc and further containing a metal component in the waste adheres, and this attached slag is a major factor that attenuates the microwave.
In order to solve the above problems, the present inventors have provided a waveguide 82 as shown in FIG. 6 so as to be able to advance and retreat, and project the tip of the waveguide 82 from the microwave inlet during operation. A method was proposed to prevent the slag from sticking in front of the furnace inlet of the microwave inlet by mechanically pushing the wave inlet. However, this method has a drawback that the structure of the apparatus is complicated and the cost is increased.

特開平8−285246号公報JP-A-8-285246 特開平9−60830号公報Japanese Patent Laid-Open No. 9-60830 特許第2729124号公報Japanese Patent No. 2729124 特開2000−304233号公報JP 2000-304233 A

本発明は上記のような問題点を解消すること、すなわち、耐熱性に優れ、溶融スラグ付着による発信/受信能の低下を防止し、ダスト含有率の非常に高い雰囲気領域においてもその精度の維持が可能であり、しかも信号に確実性があり誤信号がなく、ガス化溶融設備の高温反応炉に装入された廃棄物の堆積レベルを優れた精度で、しかも長期間にわたって安定して検知可能な方法を提供することにある。 The present invention is to solve the above problems, i.e., excellent heat resistance, and preventing a decrease in the transmit / receive function by molten slag deposition, also the accuracy at very high ambient region of the dust content It can be maintained, and the signal is reliable, there is no false signal, and the accumulation level of waste charged in the high-temperature reactor of the gasification and melting equipment is detected with excellent accuracy and stable over a long period of time. It is to provide a possible method.

(1)高温縦型反応炉の炉体側壁に電磁波の発信器と受信器とを設置して、炉内を透過する電磁波信号の強度から、装入物の有無を判定するようにした装入物の堆積レベル検知装置であって、該炉体側壁にバーナーガス導入管を兼ねる電磁波導波管を設け
該導波管に電磁波の発信器及び受信器を接続し
該導波管を通して電磁波の発信・受信を行うとともに、
該導波管を通してバーナーガスを導入してバーナー炎を形成するようにしたことを特徴とする装入物の堆積レベル検知装置。
(2)前記電磁波が周波数8〜30GHzのマイクロ波であることを特徴とする上記(1)の装入物の堆積レベル検知装置。
(3)前記高温縦型反応炉が廃棄物のガス化溶融炉又はガス化溶融改質炉であることを特徴とする上記(1)、(2)の装入物の堆積レベル検知装置。
(4)前記発信器と受信器とが炉体側壁に対向して配設されていることを特徴とする上記(1)〜(3)の装入物の堆積レベル検知装置。
(5)前記発信器及び受信器として、発信器と受信器とが一体となった送受信装置を用いることを特徴とする上記(1)〜(3)の装入物の堆積レベル検知装置。
(1) An electromagnetic wave transmitter and receiver are installed on the side wall of the high-temperature vertical reactor, and the presence or absence of a charge is determined from the intensity of the electromagnetic wave signal transmitted through the furnace. An apparatus for detecting the accumulation level of an object, provided with an electromagnetic wave waveguide also serving as a burner gas introduction pipe on the side wall of the furnace body ,
An electromagnetic wave transmitter and receiver are connected to the waveguide ;
While transmitting and receiving electromagnetic waves through the waveguide,
An apparatus for detecting the accumulation level of a charge, wherein a burner gas is introduced through the waveguide to form a burner flame.
(2) The charge level detector for a charge according to (1) above, wherein the electromagnetic wave is a microwave having a frequency of 8 to 30 GHz.
(3) The apparatus for detecting the accumulation level of charges according to the above (1) and (2), wherein the high-temperature vertical reactor is a waste gasification melting furnace or a gasification melting reforming furnace.
(4) The deposit level detector for charged materials according to (1) to (3) above, wherein the transmitter and the receiver are arranged to face the furnace side wall.
(5) The charge accumulation level detection device according to any one of (1) to (3) above, wherein a transmitter / receiver in which a transmitter and a receiver are integrated is used as the transmitter and receiver.

(6)前記導波管のバーナガス導入口と電磁波の発信器又は受信器との間に電磁波は透過させるがガスは遮断する機能を持った栓を挿入し、バーナーガスが電磁波発信器又は受信器内に入ることを防止したことを特徴とする上記(1)〜(5)の装入物の堆積レベル検知装置。
)高温縦型反応炉の炉体側壁に、電磁波の発信器と受信器とを設置し、炉内を透過する電磁波信号の強度から、装入物の有無を判定する装入物の堆積レベル検知方法であって、炉体側壁に設けたバーナーガス導入管を兼ねる電磁波導波管を通して、バーナーガスを導入してバーナー炎を形成させると共に、電磁波導波管を通して電磁波の発信及び受信を行ことを特徴とする装入物の堆積レベル検知方法。
(6) the electromagnetic wave between the Banagasu inlet and an electromagnetic wave transmitter or receiver of the waveguide to transmit but to insert a plug having a function of blocking the gas, transmitter or receiver burner gas electromagnetic The apparatus (1) to (5) according to any one of the above items (1) to (5), wherein the accumulation level detection device is prevented from entering the vessel.
( 7 ) Accumulation of charge to determine the presence or absence of charge from the intensity of the electromagnetic wave signal transmitted through the furnace by installing an electromagnetic wave transmitter and receiver on the side wall of the high-temperature vertical reactor This level detection method introduces burner gas to form a burner flame through an electromagnetic wave waveguide that also serves as a burner gas introduction pipe provided on the furnace side wall, and transmits and receives electromagnetic waves through the electromagnetic wave waveguide. deposition level detecting method of charge, characterized in that the Hare.

本発明によれば、高温縦型反応炉内に装入された廃棄物等の装入物の堆積レベルを、優れた精度で、しかも長期間にわたって安定して検出することができる。   According to the present invention, it is possible to stably detect the accumulation level of a charge such as waste charged in a high-temperature vertical reactor with excellent accuracy and for a long period of time.

上記したように、従来法は、マイクロ波導入用の専用の導波管を設け、この専用導波管内部にパージガスを流し、専用導波管先端からパージガスを吹き出させ、ガスの噴出圧によって溶融物(スラグ、メタル)の付着を防止するものであるが、この方法では、パージガスによって溶融物が冷却されて成長し、閉塞が発生するという現象が起こり、詰まり防止の効果は少ないことがわかった。すなわち、炉内圧の変動やパージガス圧の変動により、パージガスの流れが乱されて溶融物が巻き込まれて導波管内に侵入し、冷却されて溶融物が導波管内に侵入し、成長し、2週間程度で閉塞に至ることがわかった。
また、パージガスでは冷却不足で、初期状態では耐火物より突き出して設けられていた導波管は炉内の高温環境に曝されることによってその端面が耐火物面と同一か若干短くなり、炉体壁面を流れる溶融物が専用導波管に侵入しやすい状態となる。
As described above, in the conventional method, a dedicated waveguide for introducing microwaves is provided, purge gas is allowed to flow inside the dedicated waveguide, purge gas is blown from the tip of the dedicated waveguide, and melted by the gas jet pressure. Although it is intended to prevent adhesion of materials (slag, metal), it has been found that in this method, the melt is cooled by the purge gas, grows, and clogging occurs, resulting in less clogging prevention effects. . That is, the flow of the purge gas is disturbed by fluctuations in the furnace pressure or the purge gas pressure, the melt is entrained and penetrates into the waveguide, is cooled, and the melt penetrates into the waveguide and grows. It was found that obstruction occurred in about a week.
In addition, the purge gas is insufficiently cooled in the purge gas, and the waveguide provided in the initial state protruding from the refractory is exposed to the high temperature environment in the furnace, so that its end face becomes the same as or slightly shorter than the refractory surface. The melt flowing on the wall surface is likely to enter the dedicated waveguide.

そこで、本発明においては、マイクロ波のための導波管として専用の導波管を設けることなく、バーナーのバーナーガス導入管をマイクロ波の導波管として兼用し、バーナーガス導入管(=マイクロ波導波管)を通してバーナーガスの吹き出し圧を利用すると共に、バーナー炎を利用することによって、導波管への異物の混入・堆積を防止するようにした。   Therefore, in the present invention, without providing a dedicated waveguide as a waveguide for microwaves, the burner gas introduction tube of the burner is also used as a microwave waveguide, and the burner gas introduction tube (= microwave In addition to utilizing the blowout pressure of the burner gas through the wave waveguide), the use of a burner flame prevents contamination and accumulation of foreign matter in the waveguide.

本発明の高温縦型反応炉の堆積レベル検知方法を図4に示した廃棄物のガス化溶融設備に適用する場合を例にとって説明する。   The case where the deposition level detection method for a high-temperature vertical reactor according to the present invention is applied to the waste gasification and melting facility shown in FIG. 4 will be described as an example.

まず、図4に示される廃棄物のガス化溶融設備の概略を説明する。
圧縮支持板4を下降させて、投入口41から廃棄物を圧縮装置42内に投入し、プレス43を圧縮支持板44の方向へ移動させて廃棄物を圧縮し、所定の形状に成形する。次に圧縮支持板44を上昇させてプレス43により圧縮廃棄物47を加熱炉45に押し込む。
次いで、プレス43を戻し、圧縮支持板44を下降させた後、投入口41から廃棄物を圧縮装置42内に投入して圧縮廃棄物47を成形し、圧縮支持板44を上昇させてプレス43を用いて圧縮廃棄物47を加熱炉45に押し込む。
上記の操作を繰り返すことによって、圧縮廃棄物47は加熱炉45の挿入口から排出口へと順次移動していく。
First, an outline of the waste gasification and melting facility shown in FIG. 4 will be described.
The compression support plate 4 is lowered, waste is introduced into the compression device 42 from the insertion port 41, the press 43 is moved in the direction of the compression support plate 44, and the waste is compressed and formed into a predetermined shape. Next, the compression support plate 44 is raised, and the compressed waste 47 is pushed into the heating furnace 45 by the press 43.
Next, after the press 43 is returned and the compression support plate 44 is lowered, the waste is introduced into the compression device 42 from the insertion port 41 to form the compressed waste 47, and the compression support plate 44 is raised to press the press 43. Is used to push the compressed waste 47 into the heating furnace 45.
By repeating the above operation, the compressed waste 47 sequentially moves from the insertion port of the heating furnace 45 to the discharge port.

加熱炉45の炉壁には加熱配管48が配設され、加熱配管48内を流れる高温ガスによって加熱炉45内は600℃程度に加熱される。この高温ガスは、高温ガス発生装置50内でLNGガス等の燃料を燃焼して熱媒体となるガスを昇温したものであり、高温ガス発生装置50と加熱炉45の加熱配管48との間を循環する。
こうして圧縮廃棄物47が加熱炉45内を移動する間に、圧縮廃棄物47の表面が炭化され、融点の低い廃棄物は溶融する。その結果、圧縮廃棄物47が崩壊するのを防止し、ダストの発生を抑制できる。
A heating pipe 48 is disposed on the furnace wall of the heating furnace 45, and the inside of the heating furnace 45 is heated to about 600 ° C. by the high temperature gas flowing in the heating pipe 48. This high-temperature gas is obtained by burning a fuel such as LNG gas in the high-temperature gas generator 50 to raise the temperature of the gas serving as a heat medium, and between the high-temperature gas generator 50 and the heating pipe 48 of the heating furnace 45. Circulate.
Thus, while the compressed waste 47 moves in the heating furnace 45, the surface of the compressed waste 47 is carbonized, and the waste having a low melting point is melted. As a result, the compressed waste 47 can be prevented from collapsing, and the generation of dust can be suppressed.

加熱炉45内で表面を炭化された圧縮廃棄物47は、高温反応炉装入口55から高温反応炉46内に装入される。高温反応炉46の下部には酸素含有ガス供給配管51が配設されており、高温反応炉46内に酸素ガスを供給する。この酸素ガスによって圧縮廃棄物47中の樹脂類が燃焼し、かつ高温反応炉46内は1000℃以上に保持される。高温反応炉46内の下部温度は1600℃程度に上昇することもある。樹脂類が燃焼して発生したガスにはCOやH2が含まれているので、高温反応炉46から冷却装置52に送給して冷却した後、精製装置で発生したガスを精製装置53で精製して回収する。このようにして回収された精製ガスは、各種設備の燃料として利用する。 The compressed waste 47 whose surface is carbonized in the heating furnace 45 is charged into the high temperature reactor 46 through the high temperature reactor inlet 55. An oxygen-containing gas supply pipe 51 is disposed at the lower part of the high temperature reactor 46 to supply oxygen gas into the high temperature reactor 46. Resins in the compressed waste 47 are combusted by this oxygen gas, and the inside of the high temperature reactor 46 is maintained at 1000 ° C. or higher. The lower temperature in the high temperature reactor 46 may rise to about 1600 ° C. Since the gas generated by the combustion of the resin contains CO and H 2 , the gas generated in the purifier is cooled by the purifier 53 after being fed from the high temperature reactor 46 to the cooling device 52 and cooled. Purify and collect. The purified gas recovered in this way is used as fuel for various facilities.

なお、高温反応炉46内の燃焼温度は1000℃以上の高温であるから、樹脂類の燃焼によって発生するダイオキシン等の有害物質は分解し、回収される精製ガス中に有害物質は含まれない。
一方、圧縮廃棄物47中の金属類あるいは灰分は高温反応炉46下部に堆積し、更にバーナー49を有する溶融保温炉54内で溶融して溶融金属あるいは溶融スラグとして回収される。
In addition, since the combustion temperature in the high temperature reactor 46 is a high temperature of 1000 ° C. or higher, harmful substances such as dioxins generated by the combustion of resins are decomposed, and no harmful substances are included in the recovered purified gas.
On the other hand, the metal or ash in the compressed waste 47 is deposited in the lower part of the high temperature reactor 46 and further melted in a melting and holding furnace 54 having a burner 49 to be recovered as molten metal or molten slag.

次に本発明のマイクロ波による堆積レベル検知装置について述べる。
図7に本発明の装置の一例の概念図を示したものであり、図8は、図7に示した装置をより詳細に示したものである。
Next, the microwave deposition level detection apparatus of the present invention will be described.
FIG. 7 shows a conceptual diagram of an example of the apparatus of the present invention, and FIG. 8 shows the apparatus shown in FIG. 7 in more detail.

図8に基づいて本件発明の装置について説明する。
一対の燃焼バーナー兼マイクロ波導波管を熱遮蔽レンガからなる炉壁を貫通して設ける。マイクロ波発信装置とマイクロ波受信装置の一対は高温反応炉装入口下方の炉壁に、互いに対向して配設される。なお図では、マイクロ波を水平に発信する場合を示したが、マイクロ波は必ずしも水平に発信する必要はなく、検出すべき装入物の堆積レベルの設定や設備の制約等に応じて適宜に設定すればよい。但し、マイクロ波の送信距離を短縮して検出精度を向上させるために、マイクロ波を水平に送信することが好ましい。
The apparatus of the present invention will be described with reference to FIG.
A pair of combustion burner and microwave waveguides are provided through the furnace wall made of heat shielding bricks. A pair of the microwave transmission device and the microwave reception device is disposed opposite to each other on the furnace wall below the high-temperature reactor furnace inlet. In the figure, the case where the microwave is transmitted horizontally is shown, but the microwave does not necessarily need to be transmitted horizontally, depending on the setting of the accumulation level of the charge to be detected and the restrictions on the equipment. You only have to set it. However, in order to shorten the transmission distance of the microwave and improve the detection accuracy, it is preferable to transmit the microwave horizontally.

燃焼バーナーは図示したような多重管構造のものを用いることが好ましく、多重管の内管を燃料ガス導入管兼マイクロ波導波管として用い、外管を空気又は酸素の導入管として用いる。また、外管は冷却水によって冷却することができる構造のものとする。そして、燃焼バーナーの内管の後段にマイクロ波発信器又はマイクロ波受信器接続する。
上記のような構成とすることにより、バーナー火炎によって、導波管先端部(炉内壁側)への溶融スラグ等の侵入・付着を防止することができ、先端詰まりの発生を防止することができる。
The combustion burner preferably has a multi-tube structure as shown in the figure, and the inner tube of the multi-tube is used as a fuel gas introduction tube / microwave waveguide, and the outer tube is used as an introduction tube for air or oxygen. In addition, the outer tube has a structure that can be cooled by cooling water. Then, connect the microwave oscillator or a microwave receiver downstream of the inner tube of a combustion burner.
By adopting the configuration as described above, the burner flame can prevent the molten slag from entering and attaching to the waveguide tip (furnace inner wall side), and can prevent clogging of the tip. .

マイクロ波発信器及びマイクロ波受信器はメンテナンスを容易にするために、図示したように進退移動可能に設けてもよい。   In order to facilitate maintenance, the microwave transmitter and the microwave receiver may be provided so as to be movable back and forth as illustrated.

マイクロ波の周波数は、8〜30GHzとすることが好ましい。このような周波数にすることにより、マイクロ波と火炎プラズマとの干渉による検知精度への影響がない。すなわち、バーナ火炎はプラズマであり、一般にプラズマはその種類に固有のプラズマ振動数を持ち、これより低い振動数の電磁波を遮蔽することが知られている。バーナ火炎プラズマの電子密度(ne)[cm−3]は10程度であり、これよりプラズマ振動数(fp)は、fp=9×10×ne1/2により計算でき、およそ90MHz程度となる。これに対し、マイクロ波として8〜30GHzというはるかに高い振動数のものを用いると、火炎による遮断等の問題は生じない。マイクロ波レベル計を用いてマイクロ波強度の火炎による減衰がどれほどあるかを実験により確認した結果、バーナ火炎の有無に依存しないほぼ一定(バーナ点火中の減衰はzeroではないが)のマイクロ波強度が確保できることが判明した。 The frequency of the microwave is preferably 8 to 30 GHz. By using such a frequency, there is no influence on detection accuracy due to interference between the microwave and the flame plasma. That is, the burner flame is a plasma, and it is generally known that a plasma has a plasma frequency unique to its type and shields electromagnetic waves having a lower frequency. The electron density (ne) [cm −3 ] of the burner flame plasma is about 10 8 , and from this, the plasma frequency (fp) can be calculated by fp = 9 × 10 3 × ne 1/2 and is about 90 MHz. Become. On the other hand, when a microwave having a much higher frequency of 8 to 30 GHz is used, problems such as interruption by flame do not occur. As a result of experimentally confirming how much attenuation of the microwave intensity is caused by the flame using a microwave level meter, the microwave intensity is almost constant regardless of the presence or absence of the burner flame (although attenuation during burner ignition is not zero) It was found that can be secured.

図8に示した導波管内に設けたガスシール機構は、具体的には栓であり、バーナーガスを導入するに際してバーナガス導入口とマイクロ波発信器又は受信器間にマイクロ波は透過させるがガスは遮断する機能を有している。この栓を設けることによって、バーナーガスがマイクロ波送信機又は受信器内に入ることを防止でき、発信器及び受信器内での可燃性ガスの爆発を防ぐことができる。栓の材料としては例えば合成樹脂を用いることができる。   The gas seal mechanism provided in the waveguide shown in FIG. 8 is specifically a plug, and when introducing the burner gas, the microwave is transmitted between the burner gas inlet and the microwave transmitter or receiver, but the gas is transmitted. Has a blocking function. By providing this plug, burner gas can be prevented from entering the microwave transmitter or receiver, and explosion of the combustible gas in the transmitter and receiver can be prevented. As a material for the stopper, for example, a synthetic resin can be used.

導波管中にバーナーガスを導入するに際しては、導波管周状に多数の小孔を空けてガス導入を確保するとともにマイクロ波の損失を少なくするようにする。マイクロ波の漏洩はマイクロ波の波長以上の開口部があれば発生するので、それによる損失を防ぐには、開口部をマイクロ波の波長より十分小さいものとする必要がある。   When introducing the burner gas into the waveguide, a large number of small holes are formed around the waveguide to ensure gas introduction and reduce the loss of microwaves. Microwave leakage occurs when there is an opening having a wavelength longer than the wavelength of the microwave. Therefore, in order to prevent loss due to the opening, it is necessary to make the opening sufficiently smaller than the wavelength of the microwave.

マイクロ波発信器から発信されたマイクロ波をマイクロ波受信器で受信して、マイクロ波の減衰量を測定する。このとき、マイクロ波発信器から発信されたマイクロ波が高温反応炉内に堆積した圧縮廃棄物を透過せずにマイクロ波受信器で受信された場合は、マイクロ波の減衰量は僅かである。一方、マイクロ波が圧縮廃棄物を透過してマイクロ波受信器で受信された場合には、マイクロ波の減衰量は圧縮廃棄物内の透過距離に応じて変化する。   The microwave transmitted from the microwave transmitter is received by the microwave receiver, and the attenuation of the microwave is measured. At this time, when the microwave transmitted from the microwave transmitter is received by the microwave receiver without passing through the compressed waste accumulated in the high temperature reactor, the amount of attenuation of the microwave is small. On the other hand, when the microwave passes through the compressed waste and is received by the microwave receiver, the attenuation amount of the microwave changes according to the transmission distance in the compressed waste.

すなわち、マイクロ波が圧縮廃棄物内を透過する距離が長くなるほどマイクロ波の減衰量は大きくなる。そこで、しきい値をあらかじめ設定しておき、マイクロ波の減衰量の測定値としきい値とを比較して、減衰量の測定値がしきい値を超えたときに高温反応炉内の圧縮廃棄物が所定の堆積レベルに到達したと判定する。   That is, the longer the distance that the microwave passes through the compressed waste, the greater the attenuation of the microwave. Therefore, a threshold value is set in advance, and the measured value of microwave attenuation is compared with the threshold value. When the measured attenuation value exceeds the threshold value, the compression waste in the high-temperature reactor is discarded. It is determined that the object has reached a predetermined deposition level.

上記のように、本発明においては、マイクロ波の減衰量の測定値としきい値とを比較するので、マイクロ波発信装置とマイクロ波受信装置とを一対使用するのみで圧縮廃棄物の堆積レベルを検出することができる。   As described above, in the present invention, the measured value of the attenuation amount of the microwave is compared with the threshold value, so that the compression waste accumulation level can be increased by only using a pair of the microwave transmission device and the microwave reception device. Can be detected.

上記した例は、発信器から発信され炉内を貫通してきたマイクロ波を受信器で受信する貫通型のものであるが、発信器と受信器とを一体化した反射型の送受信器を用い、炉壁に測定口を一箇所だけ設けて、この送受信器を配設して測定してもよい。貫通型のものは、マイクロ波の経路が短いため、信号の減衰が少なく、また、ノイズを受けにくいという利点があるが、測定口を二箇所設ける必要がある。また反射型のものは、測定口が1個所で済むため、設置箇所の制約が貫通型に比べて少ないが、信号が炉内を往復するため、信号の減衰や、ノイズが多いという欠点がある。   The above-described example is a penetration type that receives a microwave transmitted from a transmitter and penetrates the inside of the furnace with a receiver, but uses a reflection type transceiver that integrates the transmitter and the receiver, You may measure by providing this transmitter / receiver by providing only one measurement port in the furnace wall. The feed-through type has the advantage that the microwave path is short, so that the attenuation of the signal is small and it is difficult to receive noise, but it is necessary to provide two measurement ports. In addition, the reflective type requires only one measurement port, so there are fewer restrictions on the installation location than the penetration type, but the signal reciprocates in the furnace, so there are drawbacks of signal attenuation and noise. .

本発明の検知装置は、溶融スラグが付着しやすい廃棄物のガス化溶融炉又はガス化溶融改質炉に適用すると効果的である。また、本発明の検知装置を廃棄物のガス化溶融炉又はガス化溶融改質炉に適用すると、多重管からの燃料ガス流量が十分でなくても、酸素ガス流量が確保されていれば、酸素がバーナ近傍の高温反応炉内の改質ガス(例:CO:30%、H:30%、その他)と反応して燃焼するので同等の効果が得られるという利点がある。 The detection device of the present invention is effective when applied to a waste gasification melting furnace or gasification melting reforming furnace to which molten slag easily adheres. Further, when the detection device of the present invention is applied to a waste gasification melting furnace or a gasification melting reforming furnace, even if the fuel gas flow rate from the multiple pipe is not sufficient, if the oxygen gas flow rate is secured, Since oxygen reacts with the reformed gas (for example, CO: 30%, H 2 : 30%, etc.) in the high-temperature reactor near the burner and burns, there is an advantage that an equivalent effect can be obtained.

マイクロ波発信装置及びマイクロ波受信装置を前記高温反応炉に配設し、マイクロ波発信装置の周波数を10GHz、出力を1.5kWとして実機実験を実施した。
180日間操業しても、導波管の先端に付着物は形成されなかった。
A microwave transmission device and a microwave reception device were installed in the high-temperature reactor, and an actual machine experiment was performed with the frequency of the microwave transmission device being 10 GHz and the output being 1.5 kW.
Even after 180 days of operation, no deposit was formed on the tip of the waveguide.

本発明の装入物の堆積レベル検知装置は、高温縦型反応炉に装入された装入物の堆積レベルを、ダスト含有率の非常に高い雰囲気領域においても優れた精度で検出することを可能にするので、高温縦型廃棄物処理炉における利用性は高い。   The charge accumulation level detection device of the present invention is capable of detecting the accumulation level of the charge charged in the high-temperature vertical reactor with excellent accuracy even in an atmosphere region where the dust content is very high. Therefore, the utility in a high temperature vertical waste processing furnace is high.

従来の接触式の堆積レベル検知器を用いた例を示す図である。It is a figure which shows the example using the conventional contact-type deposition level detector. 従来のガス化溶融炉の例を示す図である。It is a figure which shows the example of the conventional gasification melting furnace. 川鉄サーモセレクト方式のガス化溶融炉の例を示す図である。It is a figure which shows the example of the gasification melting furnace of a Kawatetsu thermo selection system. ガス化溶融炉に、マイクロ波又はガンマ線を利用した廃棄物の堆積レベル検知装置を設けた例を示す図である。It is a figure which shows the example which provided the deposition level detection apparatus of the waste using a microwave or a gamma ray in the gasification melting furnace. 図4におけるマイクロ波発信装置の詳細を示した図である。It is the figure which showed the detail of the microwave transmission device in FIG. マイクロ波導波管の先端部でマイクロ波導入口を機械的に突いてマイクロ波導入口の炉内口前にスラグが付着するのを防ぐようにした装置を示す図である。It is a figure which shows the apparatus which prevented the slag adhering in front of the furnace inner opening of a microwave introduction port by mechanically projecting the microwave introduction port at the tip of the microwave waveguide. 本発明の堆積レベル検知装置の構成を示す概念図である。It is a conceptual diagram which shows the structure of the deposition level detection apparatus of this invention. 本発明の堆積レベル検知装置の詳細な構成を示す図である。It is a figure which shows the detailed structure of the deposition level detection apparatus of this invention.

符号の説明Explanation of symbols

<図1>
1 シャフト炉方式の廃棄物溶融炉
1a シャフト部
1a 朝顔部
1b 炉床部
1c 乾燥完了レベル
1e ストックレベル
2 下段羽口
3 上段羽口
<Figure 1>
DESCRIPTION OF SYMBOLS 1 Shaft furnace type waste melting furnace 1a Shaft part 1a Morning glory part 1b Hearth part 1c Drying completion level 1e Stock level 2 Lower tuyere 3 Upper tuyere

<図2〜6>
1 炉本体
2 廃棄物と炭素系補助燃料の装入口
3 上段の羽口
4 中段の羽口
5 下段の羽口
6 溶融物の排出口
7 燃焼排ガスの排出口
8 温度計
9 ガス分析計
10,11 熱交換器
17 上段の羽口へ供給する空気の流量調節弁
19 上段の羽口へ供給する酸素の流量調節弁
20 中段の羽口へ供給する空気の流量調節弁
21 下段の羽口へ供給する空気の流量調節弁
23 下段の羽口へ供給する酸素の流量調節弁
31 シャフト炉式熱分解溶融炉
32 層高レベル測定装置
33 マイクロ波送受信装置
34 多孔質セラミック板
35 マイクロ波
36 反射波
37 開口部
38 筒状体
39 パージガス配管
40 遮断弁
41 投入口
42 圧縮装置
43 プレス
44 圧縮支持板
45 加熱炉
46 高温反応炉
47 圧縮廃棄物
48 加熱配管
49 バーナー
50 高温ガス発生装置
51 酸素含有ガス供給配管
52 冷却装置
53 精製装置
54 溶融保温炉
55 高温反応炉装入口
56 マイクロ波
57 マイクロ波発信装置
58 マイクロ波受信装置
59a、59b 水冷ジャケット
60 アンテナ
61 耐火物
62 炉壁
63 貫通孔
81 マイクロ波発信器
82 導波管
83 導波管ガイドパイプ
84 水冷管
85 ガスシール機構
86 ボール弁
87 炉内レンガ
88 鉄皮
89 防熱レンガ
90 導波管スラグ除去位置
91 測定位置
<Figures 2-6>
1 Furnace 2 Waste and carbon-based auxiliary fuel inlet 3 Upper tuyere 4 Middle tuyere 5 Lower tuyere 6 Melt outlet 7 Combustion exhaust 8 Thermometer 9 Gas analyzer 10, DESCRIPTION OF SYMBOLS 11 Heat exchanger 17 Flow control valve of air supplied to upper tuyere 19 Flow control valve of oxygen supplied to upper tuyere 20 Flow control valve of air supplied to middle tuyere 21 Supply to lower tuyere Flow control valve for air 23 Flow control valve for oxygen supplied to the lower tuyere 31 Shaft furnace-type pyrolysis melting furnace 32 Layer high level measurement device 33 Microwave transmitter / receiver 34 Porous ceramic plate 35 Microwave 36 Reflected wave 37 Opening 38 Tubular body 39 Purge gas piping 40 Shut-off valve 41 Input port 42 Compressor 43 Press 44 Compression support plate 45 Heating furnace 46 High temperature reactor 47 Compressed waste 48 Heating piping 49 Bar 50 High-temperature gas generator 51 Oxygen-containing gas supply pipe 52 Cooling device 53 Purification device 54 Melting and holding furnace 55 High-temperature reactor inlet 56 Microwave 57 Microwave transmitter 58 Microwave receiver 59a, 59b Water-cooled jacket 60 Antenna 61 Fireproof Object 62 Furnace wall 63 Through-hole 81 Microwave transmitter 82 Waveguide 83 Waveguide guide pipe 84 Water-cooled pipe 85 Gas seal mechanism 86 Ball valve 87 In-furnace brick 88 Iron skin 89 Heat-proof brick 90 Waveguide slag removal position 91 Measurement position

Claims (7)

高温縦型反応炉の炉体側壁に電磁波の発信器と受信器とを設置して、炉内を透過する電磁波信号の強度から、装入物の有無を判定するようにした装入物の堆積レベル検知装置であって、該炉体側壁にバーナーガス導入管を兼ねる電磁波導波管を設け
該導波管に電磁波の発信器及び受信器を接続し
該導波管を通して電磁波の発信・受信を行うとともに、
該導波管を通してバーナーガスを導入してバーナー炎を形成するようにしたことを特徴とする装入物の堆積レベル検知装置。
Accumulation of charge by installing an electromagnetic wave transmitter and receiver on the furnace side wall of the high temperature vertical reactor and determining the presence or absence of the charge from the intensity of the electromagnetic wave signal transmitted through the furnace It is a level detection device, provided with an electromagnetic wave waveguide that also serves as a burner gas introduction tube on the furnace body side wall ,
An electromagnetic wave transmitter and receiver are connected to the waveguide ;
While transmitting and receiving electromagnetic waves through the waveguide,
An apparatus for detecting the accumulation level of a charge, wherein a burner gas is introduced through the waveguide to form a burner flame.
前記電磁波が周波数8〜30GHzのマイクロ波であることを特徴とする請求項1記載の装入物の堆積レベル検知装置。 2. The charge level detector according to claim 1, wherein the electromagnetic wave is a microwave having a frequency of 8 to 30 GHz. 前記高温縦型反応炉が廃棄物のガス化溶融炉又はガス化溶融改質炉であることを特徴とする請求項1又は2記載の装入物の堆積レベル検知装置。 3. The charge accumulation level detection apparatus according to claim 1, wherein the high-temperature vertical reactor is a waste gasification melting furnace or a gasification melting reforming furnace. 前記発信器と受信器とが炉体側壁に対向して配設されていることを特徴とする請求項1〜3のいずれかに記載の装入物の堆積レベル検知装置。 The charge level detector according to any one of claims 1 to 3, wherein the transmitter and the receiver are disposed so as to face the side wall of the furnace body. 前記発信器及び受信器として、発信器と受信器とが一体となった送受信装置を用いることを特徴とする請求項1〜3のいずれかに記載の装入物の堆積レベル検知装置。 4. The charge accumulation level detecting device according to claim 1, wherein a transmitter / receiver in which a transmitter and a receiver are integrated is used as the transmitter and the receiver. 前記導波管のバーナガス導入口と電磁波の発信器又は受信器との間に電磁波は透過させるがガスは遮断する機能を持った栓を挿入し、バーナーガスが電磁波発信器又は受信器内に入ることを防止したことを特徴とする請求項1〜5のいずれかに記載の装入物の堆積レベル検知装置。 A plug having a function of transmitting gas but blocking gas is inserted between the burner gas inlet of the waveguide and the electromagnetic wave transmitter or receiver, and the burner gas is inserted into the electromagnetic wave transmitter or receiver. 6. The charge accumulation level detection apparatus according to claim 1, wherein the charge accumulation level is prevented. 高温縦型反応炉の炉体側壁に、電磁波の発信器と受信器とを設置し、炉内を透過する電磁波信号の強度から、装入物の有無を判定する装入物の堆積レベル検知方法であって、炉体側壁に設けたバーナーガス導入管を兼ねる電磁波導波管を通して、バーナーガスを導入してバーナー炎を形成させると共に、電磁波導波管を通して電磁波の発信及び受信を行ことを特徴とする装入物の堆積レベル検知方法。 An electromagnetic wave transmitter and receiver are installed on the side wall of the high-temperature vertical reactor, and the charge level detection method is used to determine the presence or absence of the charge from the intensity of the electromagnetic wave signal transmitted through the furnace. a is, through electromagnetic waveguide which also serves as a burner gas inlet tube provided in the furnace body side wall, by introducing the burner gas together to form a burner flame, that intends electromagnetic rows originating and receiving through electromagnetic waveguide A method for detecting the accumulation level of a charge.
JP2004113266A 2004-04-07 2004-04-07 Method and apparatus for detecting deposit level of charge in high temperature vertical reactor Expired - Lifetime JP4493384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113266A JP4493384B2 (en) 2004-04-07 2004-04-07 Method and apparatus for detecting deposit level of charge in high temperature vertical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113266A JP4493384B2 (en) 2004-04-07 2004-04-07 Method and apparatus for detecting deposit level of charge in high temperature vertical reactor

Publications (2)

Publication Number Publication Date
JP2005300218A JP2005300218A (en) 2005-10-27
JP4493384B2 true JP4493384B2 (en) 2010-06-30

Family

ID=35331938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113266A Expired - Lifetime JP4493384B2 (en) 2004-04-07 2004-04-07 Method and apparatus for detecting deposit level of charge in high temperature vertical reactor

Country Status (1)

Country Link
JP (1) JP4493384B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143780A (en) * 2008-12-17 2010-07-01 Ihi Corp Glass melting furnace and method for detecting deposit
US20120292523A1 (en) * 2010-01-20 2012-11-22 Enertechnix, Inc. Detection of pluggage in apparatus operating in hot, particle-laden environments
JP5765466B2 (en) * 2014-05-15 2015-08-19 株式会社Ihi Glass melting furnace
DE102018213435A1 (en) * 2018-08-09 2020-02-13 Vega Grieshaber Kg Multi-band radar antenna system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170280U (en) * 1983-04-27 1984-11-14 株式会社安川電機 Microwave waveguide flange
JPH10307053A (en) * 1997-05-07 1998-11-17 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for detecting level of lump of substance
JP2004028997A (en) * 2002-05-09 2004-01-29 Jfe Engineering Kk Method for detecting charge level in high-temperature reactor of gasifying/melting equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170280U (en) * 1983-04-27 1984-11-14 株式会社安川電機 Microwave waveguide flange
JPH10307053A (en) * 1997-05-07 1998-11-17 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for detecting level of lump of substance
JP2004028997A (en) * 2002-05-09 2004-01-29 Jfe Engineering Kk Method for detecting charge level in high-temperature reactor of gasifying/melting equipment

Also Published As

Publication number Publication date
JP2005300218A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US3586468A (en) Burner combustion control including ultrasonic pressure waves
AU2009248720B2 (en) Method for feeding pulverised coal into a blast furnace
EP1148295B1 (en) Gasification melting furnace for wastes and gasification melting method
CN111121872B (en) Device and method capable of monitoring and adjusting combustion condition in furnace in real time
EP1865256A1 (en) Method and apparatus for supplying waste to gasification melting furnace
KR20150140305A (en) Apparatus for temperature measurements of a molten bath in a top submerged injection lance installation
JP4493384B2 (en) Method and apparatus for detecting deposit level of charge in high temperature vertical reactor
US9267686B1 (en) Apparatus and method for monitoring flares and flare pilots
CN111396882A (en) Melting furnace
JP4411608B2 (en) High efficiency power generation method and apparatus using gasification melting furnace
Qu et al. Ignition and combustion of laser-heated pulverized coal
JP2005140645A (en) Method and detector for detecting accumulation level in high-temperature vertical waste disposal furnace
JP2018040533A (en) Waste deposit layer height measuring device and method for waste gasification melting furnace, and waste gasification melting apparatus and method
US20190284652A1 (en) Melting and refining furnace for cold iron source and method of operating melting and refining furnace
JP2005140424A (en) Method and device for detecting deposition level of high-temperature vertical waste treatment furnace
JP2004271446A (en) Method and instrument for measuring coal charge level in coke oven
US4850001A (en) Orifice blockage detection system
JP4234727B2 (en) In-furnace condition monitoring / control method and apparatus for melting furnace
Frederick et al. Optical pyrometric measurements of surface temperatures during black liquor char burning and gasification
JP2004028997A (en) Method for detecting charge level in high-temperature reactor of gasifying/melting equipment
KR100856653B1 (en) Method for supplying waste to gasification melting furnace
JP2018040534A (en) Waste gasification melting apparatus and waste gasification melting method
JP2024504590A (en) Monitoring of flammable substances in gas streams
EP3974754A1 (en) System for measuring temperature in a furnace and method for controlling combustion inside the same
JP2019123896A (en) Method of estimating combustion position of reducing agent injected into blast furnace, method of operating blast furnace, and blast tuyere

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent or registration of utility model

Ref document number: 4493384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250