JP4492779B2 - X-ray diffraction method and neutron diffraction method - Google Patents

X-ray diffraction method and neutron diffraction method Download PDF

Info

Publication number
JP4492779B2
JP4492779B2 JP2001289460A JP2001289460A JP4492779B2 JP 4492779 B2 JP4492779 B2 JP 4492779B2 JP 2001289460 A JP2001289460 A JP 2001289460A JP 2001289460 A JP2001289460 A JP 2001289460A JP 4492779 B2 JP4492779 B2 JP 4492779B2
Authority
JP
Japan
Prior art keywords
axis
angle
sample
ray
diffraction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001289460A
Other languages
Japanese (ja)
Other versions
JP2003098124A (en
Inventor
淳 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Original Assignee
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University filed Critical Toyama University
Priority to JP2001289460A priority Critical patent/JP4492779B2/en
Publication of JP2003098124A publication Critical patent/JP2003098124A/en
Application granted granted Critical
Publication of JP4492779B2 publication Critical patent/JP4492779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はX線もしくは中性子線回折方法に関し、さらに詳しくは試料における空間的な逆格子点を測定するためのX線もしくは中性子線回折方法に関する。
【0002】
【従来の技術】
薄膜において、様々な目的の特性向上のために配向性の制御が行なわれる。しかしながら、基板の状態、膜の特性、組成、成膜条件の変動等により膜構造の乱れ、異相の出現が生じやすくなる。このような薄膜等における表面の特性を評価するに際して、その配向性を把握するために空間的な逆格子点を測定することが多い。逆格子は三次元空間の中の点の配列であり、結晶格子(実格子)の一組の格子面(hkl)が、逆格子の空間では、座標hklの一点で表される。そして、(1)逆格子点Pに対応する一組の結晶面(hkl)はブラッグの法則にしたがって入射X線を反射する。(2)回折X線の方向は逆空間内に描かれた反射球の中心点Cから反射球の表面上の点Pに向かい、回折X線の方向と一次X線の方向の間の角度は2θである。ここで上記反射球は一次X線の方向(すなわち入射および投下X線の方向)の単位ベクトルsが、一つの直径に平行となるように、半径1/λ(λはX線の波長)の球を描いたものである。結晶(したがって結晶格子)が一つの回転軸のまわりを回転するとき、逆格子は原点O(透過X線が反射球から出てくる点)を通り結晶の回転軸に平行な軸のまわりに同じ角度だけ回転して、反射球を通り抜ける。この反射球の中に含まれる逆格子点はすべて回折点として記録される可能性を持つ。膜構造の複雑化に伴いその表面の特性を評価するために、このような逆格子点の測定が利用されることが多くなっている。しかしながら、粉末X線回折計によると、測定面に平行な面間隔の測定(薄膜では配向面のみの情報)には適するが、逆格子空間マップの測定には不向きである。電子線回折法が用いられることも多いが、電子線の利用は超高真空の測定環境を必要とし、試料も非常に限定される。したがって、空気中において非破壊で試料を評価しうる方法が望まれ、その1つとして4つの可動軸を有し、これらを走査することにより、多岐にわたる測定が可能な薄膜材料結晶性解析X線回折装置(Materials Research Diffractometer :MRD)が知られており、逆格子空間マップ測定機能も有する。
【0003】
このMRDにおいては、4つの可動な軸(ω、2θ、ψおよびφ軸)を組合わせて走査して、逆格子空間マップを作成することができる。しかし、この方法ではφ軸の回転は低速回転であり、しかも低角度(試料の影で測定できない)に難があるがψ軸よりも精度の高いωシフトが利用されていることと相俟って、基板および膜の構造が既知であり、しかも相互の格子軸が実質的に平行でないと評価しにくい難点がある。したがって、基板に平行な配向面の強度が弱かったり、消滅則などで出ない相が出現した場合、その存在を見落とす可能性があり、全空間の逆格子点マップを得ることは困難である。
【0004】
【発明が解決しようとする課題】
そこで、本発明者は、薄膜等における空間的な逆格子を見落とすことなく非破壊で測定し得、未知相の同定や双晶の存在確認も可能としうるX線もしくは中性子線回折方法を見出すべく検討を行ない本発明に到達した。
【0005】
【課題を解決するための手段】
すなわち、本発明の要旨は、
(1)試料における逆格子点をX線回折方法により測定する際に、入射X線と回折X線のなす角度である2θ軸、入射X線と試料のなす角度であるω軸、X線の入射方向に対して垂直方向のあおり角であるψ軸ならびに試料の面内回転角であるφ軸からなる4つの可動軸を備えたX線回折を用い、
2θ軸とω軸をカップリングさせて一定の角度区間を走査し、ついでψ軸をシフトして再び2θ軸とω軸をカップリングさせながら一定の角度区間を走査することを最大で角度90度まで繰返すことにより逆格子点を測定し、ならびに
この測定中にφ軸を高速回転させることを特徴とするX線回折方法、
(2)試料における逆格子点をX線回折方法により測定する際に、入射X線と回折X線のなす角度である2θ軸、入射X線と試料のなす角度であるω軸、X線の入射方向に対して垂直方向のあおり角であるψ軸ならびに試料の面内回転角であるφ軸からなる4つの可動軸を備えたX線回折を用い、
2θ軸とω軸をカップリングさせて一定の角度区間を走査し、ついでω軸をシフトして再び2θ軸とω軸をカップリングさせながら一定の角度区間を走査することを最大で角度90度まで繰返すことにより逆格子点を測定し、ならびに
この測定中にφ軸を高速回転させることを特徴とするX線回折方法、
(3)試料における逆格子点を中性子線回折方法により測定する際に、入射中性子線と回折中性子線のなす角度である2θ軸、入射中性子線と試料のなす角度であるω軸、中性子線の入射方向に対して垂直方向のあおり角であるψ軸ならびに試料の面内回転角であるφ軸からなる4つの可動軸を備えた中性子線回折を用い、
2θ軸とω軸をカップリングさせて一定の角度区間を走査し、ついでψ軸をシフトして再び2θ軸とω軸をカップリングさせながら一定の角度区間を走査することを最大で角度90度まで繰返すことにより逆格子点を測定し、ならびに
この測定中にφ軸を高速回転させることを特徴とする中性子線回折方法、ならびに
(4)試料における逆格子点を中性子線回折方法により測定する際に、入射中性子線と回折中性子線のなす角度である2θ軸、入射中性子線と試料のなす角度であるω軸、中性子線の入射方向に対して垂直方向のあおり角であるψ軸ならびに試料の面内回転角であるφ軸からなる4つの可動軸を備えた中性子線回折を用い、
2θ軸とω軸をカップリングさせて一定の角度区間を走査し、ついでω軸をシフトして再び2θ軸とω軸をカップリングさせながら一定の角度区間を走査することを最大で角度90度まで繰返すことにより逆格子点を測定し、ならびに
この測定中にφ軸を高速回転させることを特徴とする中性子線回折方法、にある。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0007】
まず、本発明においては、試料における空間的な逆格子点が測定されるが、試料としては薄膜、積層、単結晶等のバルク試料をそのままの状態(非破壊)で使用しうる。
【0008】
本発明においては4つの可動軸を有するX線回折装置が使用される。この4つの可動軸は、入射X線と回折X線のなす角度である2θ軸、入射X線と試料のなす角度であるω軸、X線の入射方向に対して垂直方向のあおり角であるψ軸ならびに試料の面内回転角であるφ軸からなる。3次元空間の逆格子点を測定するためには、3つの軸を走査する必要がある。本発明においては、好適には2θ軸とω軸をカップリングさせて一定の角度区間を走査し、ついでψ軸をシフトして再び2θ軸とω軸をカップリングさせながら一定の角度区間を走査することを最大で角度90度まで繰返すことにより逆格子点を測定し、この測定中にはφ軸を高速回転させる。
【0009】
このように2θ軸とω軸をカップリングさせながら走査させるとき、2θ軸がメインの軸となる2θ/ω、およびω軸がメインとなるω/2θの組合せが可能であるが、前者が好適である。上述のように、一定の角度区間の走査が終了した後に、ψ軸をシフトし、再び2θとωの走査を行なう。ψ軸のシフト角度は試料の種類、回折装置の種類、操作条件等を考慮して全空間における逆格子を収集できるように適宜選択されるが、通常1〜5度程度から選択される。ψ軸をシフトしての再走査は最大で角度90度まで繰返されるが、目的により適宜その角度を選定しうる。
【0010】
本発明においては、この測定中に、φ軸を高速回転させることが必要であるが、これはφ軸の高速回転は全空間における逆格子を収集できるような回転であることを意味する。たとえば、ステップ走査の場合、2θ軸(もしくはω軸)の1ステップ(たとえば、0.01〜1度。0.01〜1度/秒程度で)毎に1回転以上回転するようにして、格子点を見落とすことがないようにすることを目的とする。また、連続走査の場合にも、ステップ走査に相当するような回転速度が選ばれ、格子点を見落とすことがないようにする。このため、たとえば上記のMRDのような市販装置を使用する場合には、φ軸はこのような高速回転(たとえば60〜1800rpm)は不可能である(高々数rpmであり、通常の走査では2θ軸もしくはω軸の1ステップ毎に1回転以上回転することはできない)ので、試料ステージ上に新たに高速回転できるφ軸回転ステージを設ける必要がある(既設のφ軸は使用されない)。さらに、本発明においては、検出器の前にψ軸方向の分離を向上させるためにスリットを設け、ψ軸方向の発散を低減し、ピークの測定位置精度を高めるのが好適である。このような点から、スリットは横方向の拡散を抑える縦スリットが好適であり、その開き角度は通常0.1〜3度程度から選ばれる。
【0011】
本発明においては上記のように、一定の角度区間の走査が終了した後に、ψ軸をシフトさせていくのが好適であるが、目的によっては(たとえば低角における逆格子点のデータを重視しなくてもよい場合)、ψ軸のシフトに代えて従来のようなω軸のシフトによってもよい。
【0012】
X線に代えて中性子線を用いる場合は、線源として加速器によりパルス的に発生される中性子線、または原子炉で発生される定常的な中性子線を利用しうる。これらの線源から得られる熱中性子線の強度は性能のよいX線管から得られるビームより低いが、上記のX線回折の場合と同様に、上記の構成により中性子線回折(中性子回折)を実施しうる。
【0013】
次に図面により本発明をさらに詳細に説明する。
【0014】
図1は、本発明において用いられるX線回折計の試料ステージ部分の概略図であり、試料ステージ上に新たにφ軸回転ステージ(高速タイプ:回転速度60〜1800rpm)が設けられている。そして検出器の前には単孔(クロス)スリットが設けられている(開き角:0.25°)(図示せず)。
【0015】
図2は、本発明において逆格子空間を測定するために、φ軸を高速回転(600rpm)させながら2θ/ω走査し(1ステップを0.02度(0.5秒)として、ψ軸をシフト(2度づつ)させて全空間的な逆格子点を収集する様子を示すものである(2θ/ω−ψ−φ走査)。図3の(b)および(c)は、水溶液より析出したCaCu(Cl1−xBr)層状結晶(テトラゴナル、a=0.374nm,c=2.668nm)を上記の条件で走査して逆格子点を測定(実施例1)して得られたマップを示す。図3の(a)は同一試料について得られたバルクX線回折図形を示す。ただし、矢印は図3の(b)に示す走査マップより予測されるピーク位置を示す(粉末X線回折図形で確認された)。図3の(c)は全空間の逆格子点を2次元マップとして重畳した逆格子空間マップを示し、縦軸は逆格子ユニットQ /rlu、そして横軸は逆格子ユニットQ /rluである。
実施例2
測定試料はKrFエキシマレーザーを用いたプラズマレーザー堆積(PLD)法でSi(001)基板上に成膜したMA/CeO/YSZ薄膜(MA:Al添加MgO)とインダクション・カップリング・プラズマ(ICP)フラッシュ蒸発法によりMgO(001)基板上に成膜したYSZ薄膜を用いた。実施例1と同様にしてMA/CeO/YSZ薄膜およびSi基板の逆格子点を測定したところ、Alを2モル%添加したMgO膜には通常のX線回折(XRD)で観察される(001)、(101)、(111)配向以外に新たに(311)配向のドメインが存在していることがわかった。
【0016】
【発明の効果】
本発明によれば、薄膜等における空間的な逆格子を見落とすことなく非破壊で測定し得、未知相の固定や双晶の存在確認も可能としうるX線もしくは中性子線回折方法が提供される。すなわち、本発明によれば、結晶、薄膜試料等をバルクの状態のままで2次元マッピング測定でき、得られる逆格子を用いて、・未知層の同定が可能 ・極点図形測定を得るための有用な情報が得られ、・格子の歪み等が直接読み取れる ・結晶方位の揺らぎ等の立体的な解析がマッピングにより容易になる。
【図面の簡単な説明】
【図1】本発明において用いられるX線回折計の試料ステージ部分の概略図。
【図2】本発明において逆格子空間を測定する1態様を示す。
【図3】(a)はCaCu(Cl1−xBr)層状結晶について得られたバルクX線回折図形を示す。(b)および(c)は、同一結晶の逆格子点を測定(実施例1)して得られたマップを示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray or neutron diffraction method, and more particularly to an X-ray or neutron diffraction method for measuring a spatial reciprocal lattice point in a sample.
[0002]
[Prior art]
In a thin film, the orientation is controlled to improve various target characteristics. However, the structure of the substrate, the characteristics of the film, the composition, the fluctuation of the film forming conditions, etc. tend to cause the disorder of the film structure and the appearance of different phases. In evaluating the surface characteristics of such a thin film or the like, spatial reciprocal lattice points are often measured in order to grasp the orientation. A reciprocal lattice is an array of points in a three-dimensional space, and a set of lattice planes (hkl) of a crystal lattice (real lattice) is represented by one point of coordinates hkl in the space of the reciprocal lattice. (1) A set of crystal planes (hkl) corresponding to the reciprocal lattice point P reflects incident X-rays according to Bragg's law. (2) The direction of the diffracted X-ray is directed from the center point C of the reflecting sphere drawn in the inverse space to the point P on the surface of the reflecting sphere, and the angle between the direction of the diffracted X-ray and the direction of the primary X-ray is 2θ. Here, the reflection sphere has a radius 1 / λ (λ is the wavelength of the X-ray) so that the unit vector s 0 in the direction of the primary X-ray (that is, the direction of the incident and dropped X-rays) is parallel to one diameter. The sphere is drawn. When the crystal (and hence the crystal lattice) rotates about one axis of rotation, the reciprocal lattice passes through the origin O (the point where transmitted X-rays emerge from the reflecting sphere) and is the same around an axis parallel to the crystal's axis of rotation. Rotate the angle and pass through the reflective sphere. All reciprocal lattice points included in the reflection sphere have a possibility of being recorded as diffraction points. As the film structure becomes complicated, the measurement of such reciprocal lattice points is often used to evaluate the surface characteristics. However, according to the powder X-ray diffractometer, it is suitable for measurement of a plane interval parallel to the measurement surface (information on only the orientation surface in the thin film), but is not suitable for measurement of a reciprocal lattice space map. Although electron beam diffraction is often used, the use of electron beams requires an ultra-high vacuum measurement environment, and the number of samples is very limited. Therefore, a method capable of evaluating a sample in the air in a non-destructive manner is desired. One of them is a thin film material crystallinity analysis X-ray which has four movable axes and can perform various measurements by scanning these. A diffraction device (Materials Research Diffractometer: MRD) is known, and also has a reciprocal lattice space map measurement function.
[0003]
In this MRD, a reciprocal lattice space map can be created by scanning a combination of four movable axes (ω, 2θ, ψ, and φ axes). However, in this method, the rotation of the φ-axis is a low-speed rotation, and it is difficult to make a low angle (cannot be measured by the shadow of the sample), but this is coupled with the fact that the ω-shift is more accurate than the ψ-axis. Thus, it is difficult to evaluate the structure of the substrate and the film if they are known and their lattice axes are not substantially parallel to each other. Therefore, when the strength of the orientation plane parallel to the substrate is weak or a phase that does not appear due to the extinction rule appears, the presence of the phase may be overlooked, and it is difficult to obtain a reciprocal lattice point map of the entire space.
[0004]
[Problems to be solved by the invention]
Therefore, the present inventor should find an X-ray or neutron diffraction method capable of performing nondestructive measurement without overlooking a spatial reciprocal lattice in a thin film or the like, and capable of identifying an unknown phase and confirming the existence of twins. The present invention has been reached through investigation.
[0005]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
(1) When measuring the reciprocal lattice point in the sample by the X-ray diffraction method, the 2θ axis that is the angle between the incident X-ray and the diffracted X-ray, the ω axis that is the angle between the incident X-ray and the sample, Using X-ray diffraction having four movable axes consisting of a ψ axis that is a tilt angle perpendicular to the incident direction and a φ * axis that is an in-plane rotation angle of the sample,
Coupling the 2θ axis and the ω axis to scan a certain angle interval, and then shifting the ψ axis to scan the constant angle interval while coupling the 2θ axis and the ω axis again to a maximum angle of 90 degrees. X-ray diffraction method characterized by measuring the reciprocal lattice point by repeating the process until the φ * axis is rotated at high speed during the measurement,
(2) When measuring the reciprocal lattice point in the sample by the X-ray diffraction method, the 2θ axis that is the angle formed by the incident X-ray and the diffracted X-ray, the ω axis that is the angle formed by the incident X-ray and the sample, Using X-ray diffraction having four movable axes consisting of a ψ axis that is a tilt angle perpendicular to the incident direction and a φ * axis that is an in-plane rotation angle of the sample,
Coupling the 2θ axis and the ω axis to scan a certain angle section, and then shifting the ω axis to scan the constant angle section while coupling the 2θ axis and the ω axis again to a maximum angle of 90 degrees. X-ray diffraction method characterized by measuring the reciprocal lattice point by repeating the process until the φ * axis is rotated at high speed during the measurement,
(3) When measuring the reciprocal lattice point in the sample by the neutron diffraction method, the 2θ axis that is the angle between the incident neutron beam and the diffracted neutron beam, the ω axis that is the angle between the incident neutron beam and the sample, Using neutron diffraction with four movable axes consisting of the ψ axis that is the tilt angle perpendicular to the incident direction and the φ * axis that is the in-plane rotation angle of the sample,
Coupling the 2θ axis and the ω axis to scan a certain angle interval, and then shifting the ψ axis to scan the constant angle interval while coupling the 2θ axis and the ω axis again to a maximum angle of 90 degrees. The neutron diffraction method is characterized in that the reciprocal lattice point is measured by repeating the above and the φ * axis is rotated at high speed during the measurement, and (4) the reciprocal lattice point in the sample is measured by the neutron diffraction method. The 2θ axis that is the angle between the incident neutron beam and the diffracted neutron beam, the ω axis that is the angle between the incident neutron beam and the sample, the ψ axis that is the tilt angle perpendicular to the incident direction of the neutron beam, and the sample Using neutron diffraction with four movable axes consisting of φ * axes that are the in-plane rotation angles of
Coupling the 2θ axis and the ω axis to scan a certain angle section, and then shifting the ω axis to scan the constant angle section while coupling the 2θ axis and the ω axis again to a maximum angle of 90 degrees. The neutron diffraction method is characterized in that the reciprocal lattice point is measured by repeating the process until the φ * axis is rotated at high speed during the measurement.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0007]
First, in the present invention, a spatial reciprocal lattice point in a sample is measured. As a sample, a bulk sample such as a thin film, a laminate, or a single crystal can be used as it is (non-destructive).
[0008]
In the present invention, an X-ray diffraction apparatus having four movable axes is used. These four movable axes are a 2θ axis that is an angle formed by incident X-rays and diffracted X-rays, an ω-axis that is an angle formed by incident X-rays and a sample, and a tilt angle perpendicular to the incident direction of the X-rays. It consists of the ψ axis and the φ * axis that is the in-plane rotation angle of the sample. In order to measure a reciprocal lattice point in a three-dimensional space, it is necessary to scan three axes. In the present invention, preferably, the 2θ axis and the ω axis are coupled to scan a fixed angle section, and then the ψ axis is shifted to scan the fixed angle section while coupling the 2θ axis to the ω axis again. The reciprocal lattice point is measured by repeating this operation up to an angle of 90 degrees, and the φ * axis is rotated at high speed during this measurement.
[0009]
When scanning is performed while coupling the 2θ axis and the ω axis as described above, a combination of 2θ / ω in which the 2θ axis is the main axis and ω / 2θ in which the ω axis is the main is possible, but the former is preferable. It is. As described above, after the scanning of a certain angle interval is completed, the ψ axis is shifted, and scanning of 2θ and ω is performed again. The shift angle of the ψ axis is appropriately selected so as to collect reciprocal lattices in the entire space in consideration of the type of sample, the type of diffractometer, operating conditions, etc., but is usually selected from about 1 to 5 degrees. The rescan by shifting the ψ axis is repeated up to an angle of 90 degrees, but the angle can be appropriately selected according to the purpose.
[0010]
In the present invention, during this measurement, it is necessary to rotate the φ * axis at a high speed, which means that the high speed rotation of the φ * axis is a rotation that can collect the reciprocal lattice in the entire space. . For example, in the case of step scanning, the lattice is rotated by one or more rotations for each step of the 2θ axis (or ω axis) (for example, 0.01 to 1 degree, about 0.01 to 1 degree / second). The purpose is to ensure that points are not overlooked. Also in the case of continuous scanning, a rotational speed corresponding to step scanning is selected so that the grid points are not overlooked. For this reason, for example, when using a commercially available apparatus such as the above-mentioned MRD, the φ axis cannot be rotated at such a high speed (for example, 60 to 1800 rpm) (at most several rpm, and 2θ in normal scanning). Therefore, it is necessary to provide a φ * axis rotation stage that can be rotated at a high speed on the sample stage (the existing φ axis is not used). Furthermore, in the present invention, it is preferable to provide a slit in front of the detector in order to improve the separation in the ψ-axis direction, reduce the divergence in the ψ-axis direction, and increase the measurement position accuracy of the peak. From this point, the slit is preferably a vertical slit that suppresses lateral diffusion, and the opening angle is usually selected from about 0.1 to 3 degrees.
[0011]
In the present invention, as described above, it is preferable to shift the ψ axis after scanning of a certain angle interval is completed. However, depending on the purpose (for example, emphasizing the data of a reciprocal lattice point at a low angle). In the case where it is not necessary, a conventional ω-axis shift may be used instead of the ψ-axis shift.
[0012]
In the case of using a neutron beam instead of the X-ray, a neutron beam generated in a pulse by an accelerator or a stationary neutron beam generated in a nuclear reactor can be used as a radiation source. Although the intensity of thermal neutrons obtained from these radiation sources is lower than the beam obtained from a high-performance X-ray tube, neutron diffraction (neutron diffraction) can be performed with the above configuration, as in the case of the above X-ray diffraction. Can be implemented.
[0013]
Next, the present invention will be described in more detail with reference to the drawings.
[0014]
FIG. 1 is a schematic diagram of a sample stage portion of an X-ray diffractometer used in the present invention, and a φ * axis rotation stage (high speed type: rotation speed: 60 to 1800 rpm) is newly provided on the sample stage. A single hole (cross) slit is provided in front of the detector (opening angle: 0.25 °) (not shown).
[0015]
FIG. 2 is a diagram illustrating the measurement of the reciprocal lattice space in the present invention by performing 2θ / ω scanning while rotating the φ * axis at a high speed (600 rpm) (with one step set to 0.02 degrees (0.5 seconds), the ψ axis (2θ / ω-ψ-φ * scanning) in which all spatial reciprocal lattice points are collected by shifting (by two degrees) (b) and (c) in FIG. A reciprocal lattice point was measured by scanning the precipitated Ca 3 Cu 2 (Cl 1-x Br x ) layered crystal (tetragonal, a = 0.374 nm, c = 2.668 nm) under the above conditions (Example 1). 3A shows a bulk X-ray diffraction pattern obtained for the same sample, where the arrow indicates the peak position predicted from the scanning map shown in FIG. (Confirmed by powder X-ray diffraction pattern) (c) in FIG. A reciprocal lattice space map in which child points are superimposed as a two-dimensional map is shown, the vertical axis is the reciprocal lattice unit Q y * / rlu, and the horizontal axis is the reciprocal lattice unit Q x * / rlu.
Example 2
The measurement sample is a MA / CeO 2 / YSZ thin film (MA: Al 2 O 3 added MgO) formed on a Si (001) substrate by a plasma laser deposition (PLD) method using a KrF excimer laser and induction coupling. A YSZ thin film formed on a MgO (001) substrate by plasma (ICP) flash evaporation was used. When the reciprocal lattice points of the MA / CeO 2 / YSZ thin film and the Si substrate were measured in the same manner as in Example 1, the MgO film added with 2 mol% of Al 2 O 3 was observed by ordinary X-ray diffraction (XRD). In addition to the (001), (101), and (111) orientations, it was found that a domain of (311) orientation was newly present.
[0016]
【The invention's effect】
According to the present invention, there is provided an X-ray or neutron diffraction method capable of nondestructive measurement without overlooking a spatial reciprocal lattice in a thin film or the like, and capable of fixing an unknown phase and confirming the presence of twins. . That is, according to the present invention, two-dimensional mapping measurement can be performed on a crystal, a thin film sample or the like in a bulk state, and the obtained reciprocal lattice can be used to identify an unknown layer. Useful for obtaining a pole figure measurement.・ The lattice distortion etc. can be read directly ・ Three-dimensional analysis such as fluctuation of crystal orientation becomes easy by mapping.
[Brief description of the drawings]
FIG. 1 is a schematic view of a sample stage portion of an X-ray diffractometer used in the present invention.
FIG. 2 shows one mode of measuring reciprocal space in the present invention.
FIG. 3 (a) shows a bulk X-ray diffraction pattern obtained for a Ca 3 Cu 2 (Cl 1-x Br x ) layered crystal. (B) and (c) show maps obtained by measuring reciprocal lattice points of the same crystal (Example 1).

Claims (8)

試料における逆格子点をX線回折方法により測定する際に、入射X線と回折X線のなす角度である2θ軸、入射X線と試料のなす角度であるω軸、X線の入射方向に対して垂直方向のあおり角であるψ軸ならびに試料の面内回転角であるφ軸からなる4つの可動軸を備えたX線回折を用い、2θ軸とω軸をカップリングさせて一定の角度区間を走査し、ついでψ軸をシフトして再び2θ軸とω軸をカップリングさせながら一定の角度区間を走査することを最大で角度90度まで繰返すことにより逆格子点を測定し、ならびにこの測定中にφ軸を高速回転させることを特徴とするX線回折方法。When measuring the reciprocal lattice point in the sample by the X-ray diffraction method, the 2θ axis that is the angle formed by the incident X-ray and the diffracted X-ray, the ω axis that is the angle formed by the incident X-ray and the sample, and the X-ray incident direction Using X-ray diffraction with four movable axes consisting of the ψ axis which is the vertical tilt angle and the φ * axis which is the in-plane rotation angle of the sample, the 2θ axis and the ω axis are coupled and fixed. Measuring the reciprocal lattice point by scanning the angle section, then shifting the ψ axis and scanning the constant angle section while coupling the 2θ axis and the ω axis again up to an angle of 90 degrees; and An X-ray diffraction method characterized in that the φ * axis is rotated at high speed during this measurement. 試料における逆格子点をX線回折方法により測定する際に、入射X線と回折X線のなす角度である2θ軸、入射X線と試料のなす角度であるω軸、X線の入射方向に対して垂直方向のあおり角であるψ軸ならびに試料の面内回転角であるφ軸からなる4つの可動軸を備えたX線回折を用い、2θ軸とω軸をカップリングさせて一定の角度区間を走査し、ついでω軸をシフトして再び2θ軸とω軸をカップリングさせながら一定の角度区間を走査することを最大で角度90度まで繰返すことにより逆格子点を測定し、ならびにこの測定中にφ軸を高速回転させることを特徴とするX線回折方法。When measuring the reciprocal lattice point in the sample by the X-ray diffraction method, the 2θ axis that is the angle formed by the incident X-ray and the diffracted X-ray, the ω axis that is the angle formed by the incident X-ray and the sample, and the X-ray incident direction Using X-ray diffraction with four movable axes consisting of the ψ axis which is the vertical tilt angle and the φ * axis which is the in-plane rotation angle of the sample, the 2θ axis and the ω axis are coupled and fixed. Measuring the reciprocal lattice points by scanning the angle interval, then shifting the ω axis and scanning the constant angle interval while coupling the 2θ axis and the ω axis again up to an angle of 90 degrees; and An X-ray diffraction method characterized in that the φ * axis is rotated at high speed during this measurement. φ の高速回転が全空間における逆格子を収集できるような回転である請求項1もしくは2記載のX線回折方法。3. The X-ray diffraction method according to claim 1, wherein the high-speed rotation of the φ * axis is rotation that can collect a reciprocal lattice in the entire space. 試料より反射する回折X線を検出する検出器の前にスリットを挿入する請求項1もしくは2記載のX線回折方法。  3. The X-ray diffraction method according to claim 1, wherein a slit is inserted in front of a detector for detecting diffracted X-rays reflected from the sample. 試料における逆格子点を中性子線回折方法により測定する際に、入射中性子線と回折中性子線のなす角度である2θ軸、入射中性子線と試料のなす角度であるω軸、中性子線の入射方向に対して垂直方向のあおり角であるψ軸ならびに試料の面内回転角であるφ軸からなる4つの可動軸を備えた中性子線回折を用い、2θ軸とω軸をカップリングさせて一定の角度区間を走査し、ついでψ軸をシフトして再び2θ軸とω軸をカップリングさせながら一定の角度区間を走査することを最大で角度90度まで繰返すことにより逆格子点を測定し、ならびにこの測定中にφ軸を高速回転させることを特徴とする中性子線回折方法。When measuring the reciprocal lattice point in a sample by the neutron diffraction method, the 2θ axis that is the angle between the incident neutron beam and the diffracted neutron beam, the ω axis that is the angle between the incident neutron beam and the sample, and the incident direction of the neutron beam Using neutron diffraction with four movable axes consisting of the ψ axis which is the vertical tilt angle and the φ * axis which is the in-plane rotation angle of the sample, the 2θ axis and the ω axis are coupled and fixed. Measuring the reciprocal lattice point by scanning the angle section, then shifting the ψ axis and scanning the constant angle section while coupling the 2θ axis and the ω axis again up to an angle of 90 degrees; and A neutron diffraction method characterized in that the φ * axis is rotated at high speed during this measurement. 試料における逆格子点を中性子線回折方法により測定する際に、入射中性子線と回折中性子線のなす角度である2θ軸、入射中性子線と試料のなす角度であるω軸、中性子線の入射方向に対して垂直方向のあおり角であるψ軸ならびに試料の面内回転角であるφ軸からなる4つの可動軸を備えた中性子線回折を用い、2θ軸とω軸をカップリングさせて一定の角度区間を走査し、ついでω軸をシフトして再び2θ軸とω軸をカップリングさせながら一定の角度区間を走査することを最大で角度90度まで繰返すことにより逆格子点を測定し、ならびにこの測定中にφ軸を高速回転させることを特徴とする中性子線回折方法。When measuring the reciprocal lattice point in a sample by the neutron diffraction method, the 2θ axis that is the angle between the incident neutron beam and the diffracted neutron beam, the ω axis that is the angle between the incident neutron beam and the sample, and the incident direction of the neutron beam Using neutron diffraction with four movable axes consisting of the ψ axis which is the vertical tilt angle and the φ * axis which is the in-plane rotation angle of the sample, the 2θ axis and the ω axis are coupled and fixed. Measuring the reciprocal lattice points by scanning the angle interval, then shifting the ω axis and scanning the constant angle interval while coupling the 2θ axis and the ω axis again up to an angle of 90 degrees; and A neutron diffraction method characterized in that the φ * axis is rotated at high speed during this measurement. φ の高速回転が全空間における逆格子を収集できるような回転である請求項5もしくは6記載の中性子線回折方法。The neutron diffraction method according to claim 5 or 6, wherein the high-speed rotation of the φ * axis is rotation capable of collecting a reciprocal lattice in the entire space. 試料より反射する回折中性子線を検出する検出器の前にスリットを挿入する請求項5もしくは6記載の中性子線回折方法。  The neutron diffraction method according to claim 5 or 6, wherein a slit is inserted in front of the detector for detecting the diffracted neutron beam reflected from the sample.
JP2001289460A 2001-09-21 2001-09-21 X-ray diffraction method and neutron diffraction method Expired - Fee Related JP4492779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001289460A JP4492779B2 (en) 2001-09-21 2001-09-21 X-ray diffraction method and neutron diffraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001289460A JP4492779B2 (en) 2001-09-21 2001-09-21 X-ray diffraction method and neutron diffraction method

Publications (2)

Publication Number Publication Date
JP2003098124A JP2003098124A (en) 2003-04-03
JP4492779B2 true JP4492779B2 (en) 2010-06-30

Family

ID=19111944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001289460A Expired - Fee Related JP4492779B2 (en) 2001-09-21 2001-09-21 X-ray diffraction method and neutron diffraction method

Country Status (1)

Country Link
JP (1) JP4492779B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284187A (en) * 2005-03-31 2006-10-19 Japan Synchrotron Radiation Research Inst Rapid structure analyzing method by x-ray for interfacial structure of solution and solid
JP4565202B2 (en) * 2004-09-02 2010-10-20 独立行政法人 日本原子力研究開発機構 Structure mapping method using neutron scattering
JP5164052B2 (en) 2005-01-19 2013-03-13 キヤノン株式会社 Piezoelectric element, liquid discharge head, and liquid discharge apparatus
JP4121146B2 (en) 2005-06-24 2008-07-23 株式会社リガク Twin analyzer
JP4859019B2 (en) * 2005-07-06 2012-01-18 株式会社リガク X-ray diffractometer
US7874649B2 (en) 2006-07-14 2011-01-25 Canon Kabushiki Kaisha Piezoelectric element, ink jet head and producing method for piezoelectric element
JP5879567B2 (en) * 2011-10-13 2016-03-08 国立研究開発法人物質・材料研究機構 X-ray diffraction sample rocking device, X-ray diffraction device, and X-ray diffraction pattern measurement method
CN110646445A (en) * 2019-11-12 2020-01-03 中国工程物理研究院核物理与化学研究所 Angle measuring device and using method thereof

Also Published As

Publication number Publication date
JP2003098124A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
He Introduction to two-dimensional X-ray diffraction
US20030012334A1 (en) Method and apparatus for rapid grain size analysis of polycrystalline materials
JP4492779B2 (en) X-ray diffraction method and neutron diffraction method
JP2003506673A (en) Apparatus and method for semiconductor wafer texture analysis
JP5871393B2 (en) X-ray analyzer
KR20120062624A (en) X-ray diffraction apparatus and x-ray diffraction measurement method
JP5959057B2 (en) X-ray analyzer
JP3821414B2 (en) X-ray diffraction analysis method and X-ray diffraction analysis apparatus
JP2003194741A (en) X-ray diffractometer, method of measuring reflected x-ray, and method of drawing up reciprocal lattice space map
JPH06258259A (en) In-plane distribution measuring method and device
JP3676249B2 (en) Crystal observation method and apparatus using X-ray diffraction
EP2077449A1 (en) Reverse x-ray photoelectron holography device and its measuring method
Langer et al. KOPSKO: a computer program for generation of Kossel and pseudo Kossel diffraction patterns
He Two-dimensional powder diffraction
JPH1048159A (en) Method and apparatus for analyzing structure
JP2905659B2 (en) X-ray apparatus and evaluation analysis method using the apparatus
EP1477795B1 (en) X-ray diffractometer for grazing incidence diffraction of horizontally and vertically oriented samples
Eba et al. Observation of crystalline phase distribution with confocal angle-dispersive X-ray diffractometer
Masson et al. On the use of one-dimensional position sensitive detector for x-ray diffraction reciprocal space mapping: Data quality and limitations
JPH11304729A (en) X-ray measurement method and x-ray measurement device
WO2008060237A1 (en) Electron rotation camera
JP2715999B2 (en) Evaluation method for polycrystalline materials
JPH05312736A (en) Apparatus and method of x-ray measurement of single crystal orientation
Kužel et al. X-ray diffraction study of stresses and textures in strongly oriented thin films
He Phase identification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100311

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees