JP4489490B2 - Sewage sterilization using pulse power generated shock wave - Google Patents
Sewage sterilization using pulse power generated shock wave Download PDFInfo
- Publication number
- JP4489490B2 JP4489490B2 JP2004132639A JP2004132639A JP4489490B2 JP 4489490 B2 JP4489490 B2 JP 4489490B2 JP 2004132639 A JP2004132639 A JP 2004132639A JP 2004132639 A JP2004132639 A JP 2004132639A JP 4489490 B2 JP4489490 B2 JP 4489490B2
- Authority
- JP
- Japan
- Prior art keywords
- shock wave
- sewage
- water
- pulse power
- sewage treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010865 sewage Substances 0.000 title claims description 81
- 230000035939 shock Effects 0.000 title claims description 77
- 230000001954 sterilising effect Effects 0.000 title claims description 26
- 238000004659 sterilization and disinfection Methods 0.000 title description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 56
- 239000013505 freshwater Substances 0.000 claims description 20
- 238000010248 power generation Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 12
- 239000012528 membrane Substances 0.000 claims description 11
- 244000000010 microbial pathogen Species 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 3
- 238000011109 contamination Methods 0.000 claims 1
- -1 sterilized Substances 0.000 claims 1
- 241000588724 Escherichia coli Species 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 238000003672 processing method Methods 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000012768 molten material Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 241000223935 Cryptosporidium Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Physical Water Treatments (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
この発明は、下水をはじめとする汚水処理での処理水が最終沈殿池で海綿状になった活性汚泥を沈殿させ、きれいな上澄み水に含まれる例えば大腸菌等の病原性微生物を滅菌してそのまま河川や海洋に放流されるため、処理結果によっては放流水が放流先水域の環境に直接深刻な影響を与えることとなるため、有害な消毒副生成物を生成させないパルスパワー生成衝撃波による汚水滅菌処理法に関するものである。 In this invention, treated water in sewage treatment including sewage precipitates activated sludge in a spongy form in the final sedimentation basin, and sterilizes pathogenic microorganisms such as Escherichia coli contained in clean supernatant water as it is in the river Because it is discharged into the ocean and the ocean, depending on the treatment results, the discharged water will directly have a serious impact on the environment of the discharge destination water area, so the sewage sterilization method using pulse power generation shock waves that do not generate harmful disinfection by-products It is about.
現在実施されている下水をはじめとする汚水処理での処理水の滅菌処理方法は、塩素,オゾン等の薬品消毒による方法と紫外線消毒による方法に大別される。
塩素,オゾン等の薬品消毒による方法は
(1)汚水処理水に塩素,オゾン等の薬品を添加すると薬品自体が有毒であるため殺菌後それらの添加物を完全除去する必要があり、また薬品添加は他の有機物と反応して完全に分解せず有害な中間副生成物が残留して放流水が放流先水域の環境に深刻な影響を与える。
(2)滅菌処理に要する関連設備が大掛かりになり、また滅菌処理作業において薬品注入量の適正な管理と排気ガス等の安全管理が必要となる。
(3)人に対して寄生による疾患を起こすクリプトスポリジュウム原虫は塩素への抵抗性が強く、従来の塩素消毒では効果がないことが最近判明した。
紫外線消毒による方法は
(1)消毒装置が汚水処理水との接液面積が大きいため浸漬部に水中の汚水成分が付着して故障の原因となりやすく、受光部接液面に汚れが付着すると滅菌モニターの精度が低下して安全面での不安が残る。
(2)受光部品は直接紫外線を受光するため劣化が激しく短寿命であり、また紫外線ランプも照度経時変化のため短期間にランプ交換の必要があり、メンテナンスコストが増大する。
(3)滅菌処理運転時の紫外線ランプの照射に使用する消費電力が大きく、ランニングコストが増大する。
The methods of sterilizing treated water in sewage treatment including sewage currently being implemented are roughly divided into chemical sterilization methods such as chlorine and ozone, and ultraviolet sterilization methods.
Methods for disinfection of chemicals such as chlorine and ozone are as follows: (1) When chemicals such as chlorine and ozone are added to sewage treated water, the chemicals themselves are toxic, so it is necessary to completely remove these additives after sterilization. Does not decompose completely by reacting with other organic matter, leaving harmful intermediate by-products, and the discharged water has a serious impact on the environment of the discharged water.
(2) Related equipment required for sterilization becomes large, and appropriate management of chemical injection amount and safety management of exhaust gas and the like are necessary in sterilization work.
(3) Cryptosporidium protozoa that cause disease due to parasitic on humans has recently been found to be highly resistant to chlorine and ineffective with conventional chlorine disinfection.
UV disinfection methods (1) Since the disinfection device has a large area in contact with the sewage treated water, sewage components in the water are likely to adhere to the immersion part and cause failure. The safety of the monitor remains uncertain due to the reduced accuracy of the monitor.
(2) Since the light receiving component directly receives ultraviolet rays, it is deteriorated and has a short life, and the ultraviolet lamp also needs to be replaced in a short period of time due to changes in illuminance with time, resulting in an increase in maintenance costs.
(3) The power consumption used for the irradiation of the ultraviolet lamp during the sterilization operation is large, and the running cost increases.
この発明は、上記のような課題に鑑み、その課題を解決すべく創案されたものであって、その目的とするところは、パルス幅が非常に短い大電力であるパルスパワーを用いた水中スパーク放電によって衝撃波を効率よく発生させて、汚水処理水に含まれる病原性微生物を殺死させる方法により、短時間で効率的に病原性微生物を滅菌できるばかりでなく有害な消毒副生成物を生成させず、かつ従来方式に比べて格段の低コストで実現することのできる、パルスパワー生成衝撃波による汚水滅菌処理法を提供することにある。 In view of the above-described problems, the present invention has been devised to solve the problems. The object of the present invention is to create an underwater spark using a pulse power having a very short pulse width and a large power. By efficiently generating shock waves by discharge and killing pathogenic microorganisms contained in sewage treated water, not only can pathogenic microorganisms be sterilized efficiently in a short time, but also harmful disinfection by-products are generated. In addition, it is an object of the present invention to provide a sewage sterilization method using a pulse power generation shock wave that can be realized at a much lower cost than conventional methods.
以上の目的を達成するために、請求項1の発明は、パルス幅の非常に短い大電力のパルスパワーを発生するパルスパワー発生部と、パルスパワー発生部で発生するパルスを円筒形の汚水処理放流管の円周側面の中央上部にあけられた孔に取り付けられた衝撃波透過性膜を介して汚水処理放流管の内部の汚水処理水と分離された淡水中で高電圧電極間にスパーク放電して衝撃波を発生させる上記孔の上部側に取り付けられた衝撃波発生部とから構成され、淡水中で発生し衝撃波透過性膜を透過した衝撃波により汚水処理水に含まれる病原性微生物を殺死させ、滅菌すると共に、衝撃波発生部に形成された吸水口と排水口とにより衝撃波発生部の淡水を適宜交換するようにして衝撃波発生部の淡水が不純物で汚れるのを防ぐ手段よりなるものである。
In order to achieve the above object, the invention according to
以上の記載により明らかなように、請求項1の発明に係るパルスパワー生成衝撃波による汚水滅菌処理法によれば、次のような効果を奏することができる。
(1)汚水処理での汚水処理水に含まれる例えば大腸菌等の病原性微生物をパルスパワーによりスパーク放電して衝撃波を発生させて殺死し、滅菌することができる。
(2)パルスパワーは大電力を発生するがそのパルス幅が非常に短いため、大電力を発生する割には消費電力が小さくてすむ。
(3)基本的装置構成はパルスパワー発生部と衝撃波発生部からなり、コンパクトで汚水処理設備への本装置の設置はスペース面からも経済性の面からも適用に問題ない。
(4)高度な汚水処理水が得られるため清澄で生態系にやさしい放流水が得られ、閉鎖系水域や水質涵養地帯の水質保全に、また、処理水を用水利用する処理場にも適用できる。
As is apparent from the above description, according to the sewage sterilization method using the pulse power generation shock wave according to the invention of
(1) Pathogenic microorganisms such as Escherichia coli contained in sewage treated water in sewage treatment can be subjected to spark discharge with pulse power to generate a shock wave to kill and sterilize.
(2) Although the pulse power generates a large amount of power, the pulse width is very short, so that the power consumption is small for generating the large amount of power.
(3) The basic device configuration is composed of a pulse power generation unit and a shock wave generation unit, and the installation of the present apparatus in a sewage treatment facility is not problematic in terms of space and economy.
(4) Since advanced sewage treated water can be obtained, clear and eco-friendly effluent water can be obtained, and it can be applied to water quality conservation in closed water areas and water recharge zones, and also to treatment plants that use treated water. .
また、請求項1の発明に係るパルスパワー生成衝撃波による汚水滅菌処理法によれば、次のような効果を奏することができる。
(1)衝撃波を導入したい汚水処理水の導電率に関係なく、スパーク放電による衝撃波の発生環境を常に適正に保つことができる。
(2)衝撃波を導入したい汚水処理水を電極の溶融材料などで汚染しない。
(3)衝撃波を導入したい汚水処理水中の物質や例えば大腸菌等の病原性微生物の電極への沈着が起こらない。
Moreover, according to the sewage sterilization treatment method using the pulse power generation shock wave according to the first aspect of the invention, the following effects can be obtained.
(1) The environment in which shock waves are generated by spark discharge can always be kept appropriate regardless of the conductivity of sewage treated water into which shock waves are to be introduced.
(2) The sewage treated water to which shock waves are to be introduced is not contaminated with the molten material of the electrode.
(3) Deposition of substances in sewage treated water to which shock waves are to be introduced and pathogenic microorganisms such as Escherichia coli on the electrode does not occur.
以下、図面に記載の発明を実施するための最良の形態に基づいて、この発明をより具体的に説明する。
ここで、図1はパルスパワー生成衝撃波による汚水滅菌処理法で使用する汚水滅菌処理装置の概略構成図、図2はスパーク放電の電流、電圧波形、図3は汚水処理水中に効率的に衝撃波を導入する概略構成図、図4は汚水処理放流管に本装置を取り付けた実験概要図、図5は図4におけるA−A断面図、図6は衝撃波発生部の概略構成図である。
Hereinafter, the present invention will be described more specifically based on the best mode for carrying out the invention described in the drawings.
Here, FIG. 1 is a schematic configuration diagram of a sewage sterilization apparatus used in a sewage sterilization treatment method using a pulse power generation shock wave, FIG. 2 is a spark discharge current and voltage waveform, and FIG. 3 is an efficient shock wave in sewage treated water. 4 is a schematic configuration diagram to be introduced, FIG. 4 is a schematic diagram of an experiment in which the present apparatus is attached to a sewage treatment discharge pipe, FIG. 5 is a cross-sectional view taken along the line AA in FIG.
図1において、汚水処理水充填容器(1)内の汚水処理水(2)中に配置された衝撃波発生部(13)の間隔数mmの高電圧電極(3)に、図のようなパルスパワー発生部(4)のコンデンサ放電回路を用いてパルス高電圧を印加すると、しばらく時間が経過した後に衝撃波発生部(13)の高電圧電極(3)間にスパーク放電(5)が形成され、これに伴って衝撃波発生部(13)からは衝撃波(6)が発生する。この衝撃波(6)の強さはスパーク放電(5)に転じた直後のパルス電流の大きさに伴って大きくなる。電極間にパルス高電圧を印加してからスパーク放電(5)が形成されるまでの間、汚水処理水(2)を通して伝導電流が流れるが、その電流の衝撃波生成への寄与は小さい。しかしながら、この伝導電流によってコンデンサ(7)に蓄えられたエネルギーは少しずつ消耗する。スパーク放電(5)の形成前に消耗するエネルギーが大きいほどスパーク放電(5)に転じた直後の電流値が小さくなるので、結果的に衝撃波(6)の強さも小さくなる。この消耗エネルギーは水の導電率が大きいほど大きく、このため、汚水処理水の導電率が大きい場合、導電率の大きい汚水処理水中で直接スパーク放電(5)によって衝撃波(6)を発生させることは、導電率の小さい淡水(12)中での場合に比べて極めてエネルギー効率が悪い。また、汚水処理水中で直接スパーク放電(5)によって衝撃波(6)を発生させることは、衝撃波発生部(13)の高電圧電極(3)の溶融材料などで汚水処理水(2)を汚染したり、汚水処理水中の物質や例えば大腸菌等の病原性微生物の高電圧電極(3)への沈着が起こったりする不都合がある。なお、図1において、(8)は直流電源、(9)はスイッチ、(10)は電流、(11)は電圧である。 In FIG. 1, a pulse power as shown in the figure is applied to a high-voltage electrode (3) having an interval of several mm between shock wave generating parts (13) arranged in sewage treated water (2) in a sewage treated water filling container (1). When a pulse high voltage is applied using the capacitor discharge circuit of the generator (4), a spark discharge (5) is formed between the high voltage electrodes (3) of the shock wave generator (13) after a while. Accordingly, a shock wave (6) is generated from the shock wave generator (13). The intensity of the shock wave (6) increases with the magnitude of the pulse current immediately after turning to the spark discharge (5). A conduction current flows through the sewage treated water (2) from when a high pulse voltage is applied between the electrodes until the spark discharge (5) is formed, but the contribution of the current to the generation of the shock wave is small. However, the energy stored in the capacitor (7) is gradually consumed by this conduction current. The greater the energy consumed before the formation of the spark discharge (5), the smaller the current value immediately after switching to the spark discharge (5), resulting in a smaller intensity of the shock wave (6). This consumable energy increases as the conductivity of water increases. For this reason, when the conductivity of sewage treated water is large, it is not possible to generate a shock wave (6) by spark discharge (5) directly in sewage treated water having a high conductivity. Compared to the case of fresh water (12) having a low conductivity, the energy efficiency is extremely poor. In addition, generating the shock wave (6) by spark discharge (5) directly in the sewage treated water contaminates the sewage treated water (2) with the molten material of the high voltage electrode (3) of the shock wave generating part (13). Or deposition of substances in the sewage treated water or pathogenic microorganisms such as E. coli on the high voltage electrode (3). In FIG. 1, (8) is a DC power supply, (9) is a switch, (10) is a current, and (11) is a voltage.
そこで、図3に図示するように、淡水(12)中でスパーク放電(5)を用いて衝撃波(6)が発生する衝撃波発生部(13)と、衝撃波(6)を導入したい汚水処理水(14)とを例えばシリコンなどの衝撃波透過性膜(15)を用いて分離することによって、汚水処理水(14)中に効率よく衝撃波(6)を導入可能となる。つまり、淡水(12)中に配置された衝撃波発生部(13)で発生した衝撃波(6)は、衝撃波透過性膜(15)を透過して汚水処理水(14)中に効率よく伝わり、汚水処理水(14)に含まれる大腸菌等の病原性微生物を殺死させ、滅菌することになる。また、衝撃波発生部(13)と汚水処理水(14)とを衝撃波透過性膜(15)を用いて分離することによって、衝撃波発生部(13)の高電圧電極(3)の溶融材料などで汚水処理水(2)が汚染されるのを防いだり、汚水処理水中の物質や例えば大腸菌等の病原性微生物の高電圧電極(3)への沈着が起こったりするのを防ぐことができる。 Therefore, as shown in FIG. 3, a shock wave generator (13) that generates a shock wave (6) using a spark discharge (5) in fresh water (12), and sewage treated water to which the shock wave (6) is to be introduced ( 14) is separated using, for example, a shock wave permeable membrane (15) such as silicon, so that the shock wave (6) can be efficiently introduced into the sewage treated water (14). That is, the shock wave (6) generated by the shock wave generator (13) disposed in the fresh water (12) is transmitted efficiently through the shock wave permeable membrane (15) into the sewage treated water (14). Pathogenic microorganisms such as E. coli contained in the treated water (14) are killed and sterilized. Further, by separating the shock wave generating part (13) and the sewage treated water (14) by using the shock wave permeable membrane (15), the molten material of the high voltage electrode (3) of the shock wave generating part (13) can be used. It is possible to prevent the sewage treated water (2) from being contaminated, and to prevent the deposition of substances in the sewage treated water and pathogenic microorganisms such as Escherichia coli on the high voltage electrode (3).
汚水処理放流管に衝撃波発生装置を設置して、汚水処理水に含まれる大腸菌を殺死する実験を行った。このときの実験装置を図4、図5、図6に、実験結果を図7に示す。対象生物をシリコンゴムでできた容器に入れて放電から6cm離れた場所に置いた。1回の処理で大腸菌は死滅した(図7(B)参照)。 A shock wave generator was installed in the sewage treatment discharge pipe, and an experiment was conducted to kill E. coli contained in the sewage treatment water. The experimental apparatus at this time is shown in FIGS. 4, 5, and 6, and the experimental results are shown in FIG. The target organism was placed in a container made of silicon rubber and placed 6 cm away from the discharge. E. coli was killed by one treatment (see FIG. 7B).
次に、汚水処理放流管に本装置を設置して汚水処理水に含まれる大腸菌を殺死させる実験を行った図4、図5、図6に図示する実験装置の構造について説明する。 Next, the structure of the experimental apparatus shown in FIGS. 4, 5, and 6 in which the present apparatus is installed in the sewage treatment discharge pipe and an experiment for killing Escherichia coli contained in the sewage treatment water will be described.
例えば鉄管からなる汚水処理放流管(16)は円筒形の形状を有し、その両端には汚水処理放流管(16)内部の例えば汚水処理水(14)が漏れ出ないようにアクリル板(17)で塞がれている。汚水処理放流管(16)の中央上部には孔があけられ、孔の上部側には衝撃波発生部(13)が取付けられている。 For example, the sewage treatment discharge pipe (16) made of an iron pipe has a cylindrical shape, and an acrylic plate (17) prevents the sewage treatment water (14) inside the sewage treatment discharge pipe (16) from leaking to both ends thereof. ). A hole is formed in the central upper part of the sewage treatment discharge pipe (16), and a shock wave generating part (13) is attached to the upper side of the hole.
また、汚水処理放流管(16)の中央上部の孔には例えばシリコンなどからなる衝撃波透過性膜(15)が取付けられていて、この衝撃波透過性膜(15)によって汚水処理放流管(16)内部の例えば汚水処理水(14)と汚水処理放流管(16)の中央上部は分離されている。衝撃波透過性膜(15)によって分離された汚水処理放流管(16)の中央上部には淡水(12)が充填された空間が形成されている。淡水(12)と例えば汚水処理水(14)はこの衝撃波透過性膜(15)によって上下に分離されている。 In addition, a shock wave permeable membrane (15) made of, for example, silicon is attached to the hole at the upper center of the sewage treatment discharge pipe (16), and the sewage treatment discharge pipe (16) is formed by the shock wave permeable film (15). For example, the central upper part of the sewage treatment water (14) and the sewage treatment discharge pipe (16) inside are separated. A space filled with fresh water (12) is formed at the upper center of the sewage treatment discharge pipe (16) separated by the shock wave permeable membrane (15). Fresh water (12) and, for example, sewage treated water (14) are separated vertically by this shock wave permeable membrane (15).
この淡水(12)には衝撃波発生部(13)が接しており、衝撃波発生部(13)は例えば汚水処理水(14)と直に接することはない。衝撃波発生部(13)はその電極先端金具(20)が淡水(12)内に入っている。電極先端金具(20)は碍子(19)を介して汚水処理放流管(16)の中央上部の淡水(12)の上部側を構成する金属製の取付け盤に取付けられている。衝撃波発生部(13)の電極先端金具(20)は絶縁ケーブル(18)を通じてパルスパワー発生部(4)に接続されている。 The fresh water (12) is in contact with the shock wave generating section (13), and the shock wave generating section (13) does not directly contact the sewage treated water (14), for example. The shock wave generating part (13) has its electrode tip fitting (20) in fresh water (12). The electrode tip fitting (20) is attached to a metal mounting board constituting the upper side of the fresh water (12) at the center upper part of the sewage treatment discharge pipe (16) through the insulator (19). The electrode tip metal fitting (20) of the shock wave generating section (13) is connected to the pulse power generating section (4) through an insulated cable (18).
また、汚水処理放流管(16)の中央上部の淡水(12)の上部側を構成する取付け盤には、給水口(21)と排水口(22)が形成されていて、淡水(12)は適宜交換できるようになっていて、衝撃波(6)の発生に伴う電極先端金具(20)の一部が淡水(12)中に溶けだして溶出して淡水(12)が不純物で汚れるのを防いでいる。 Moreover, the water supply port (21) and the drainage port (22) are formed in the mounting board which comprises the upper side of the fresh water (12) of the center upper part of a sewage treatment discharge pipe (16), and fresh water (12) The electrode tip metal fitting (20) accompanying the generation of the shock wave (6) is prevented from being partly dissolved and eluted in the fresh water (12) and contaminated with the impurities. Yes.
なお、この発明は上記発明を実施するための最良の形態に限定されるものではなく、この発明の精神を逸脱しない範囲で種々の改変をなし得ることは勿論である。 Note that the present invention is not limited to the best mode for carrying out the invention, and various modifications can be made without departing from the spirit of the invention.
1 汚水処理水充填容器
2 汚水処理水
3 高電圧電極
4 パルスパワー発生部
5 スパーク放電
6 衝撃波
7 コンデンサ
8 直流電源
9 スイッチ
10 電流
11 電圧
12 淡水
13 衝撃波発生部
14 衝撃波を導入したい汚水処理水
15 衝撃波透過性膜
16 汚水処理放流管(鉄管)
17 アクリル板
18 絶縁ケーブル
19 碍子
20 電極先端金具
21 給水口
22 排水口
DESCRIPTION OF
17
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004132639A JP4489490B2 (en) | 2004-04-28 | 2004-04-28 | Sewage sterilization using pulse power generated shock wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004132639A JP4489490B2 (en) | 2004-04-28 | 2004-04-28 | Sewage sterilization using pulse power generated shock wave |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005313051A JP2005313051A (en) | 2005-11-10 |
JP4489490B2 true JP4489490B2 (en) | 2010-06-23 |
Family
ID=35441048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004132639A Expired - Lifetime JP4489490B2 (en) | 2004-04-28 | 2004-04-28 | Sewage sterilization using pulse power generated shock wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4489490B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101223505B1 (en) | 2009-05-28 | 2013-01-18 | 삼건세기(주) | Apparatus and method for generating shock wave, and system and method for microorganism treatment using that |
JP2017080656A (en) * | 2015-10-26 | 2017-05-18 | 国立大学法人東北大学 | Purifier and purification method |
-
2004
- 2004-04-28 JP JP2004132639A patent/JP4489490B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005313051A (en) | 2005-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102657897B1 (en) | Method and system for applying superimposed time-varying frequency electromagnetic waves for bio-fouling control in ship ballast water | |
JP4041224B2 (en) | Liquid processing method and liquid processing apparatus | |
EP2799401B1 (en) | Method of operating a purifying device | |
JP2005000858A (en) | Photocatalytic water treatment apparatus | |
JP5595213B2 (en) | Disinfecting water manufacturing apparatus and disinfecting water manufacturing method | |
US20130105375A1 (en) | Ballast water treatment system using a high efficient electrolyzing apparatus | |
KR101497591B1 (en) | Apparatus for treating water using discharge in reactor | |
CA2398124C (en) | Device for treatment of water | |
JP4489490B2 (en) | Sewage sterilization using pulse power generated shock wave | |
KR200186341Y1 (en) | High density plasma device coupled with ultrasonic wave and high frequency pulse for waste water treatment | |
KR100304460B1 (en) | Apparatus cleaning water | |
JP4391863B2 (en) | Ballast water treatment method using pulse power generated shock wave | |
KR100304461B1 (en) | Apparatus cleaning water | |
KR100312824B1 (en) | Apparatus cleaning water | |
JP4761686B2 (en) | Water treatment equipment | |
KR100950415B1 (en) | Electrolysis apparatus of seawater or fresh water | |
KR20120119034A (en) | Chlorine removal device of using uv | |
KR20010085036A (en) | Apparatus and method for removing an industrial pollution material by copper and silver ion | |
RU2737801C1 (en) | Device for disinfecting and purifying water | |
AU2013366297B2 (en) | Method for electrochemically disinfecting water | |
CN213266132U (en) | Electrochemical treatment high-difficulty degradation wastewater treatment device | |
KR20130119131A (en) | Apparatus for sterilization using potocatalyst and high voltage pulse and sterilization method | |
KR20090007951U (en) | Ballast water treatment unit | |
KR200177419Y1 (en) | High density plasma device coupled with ultrasonic wave and high frequency pulse for waste water treatment | |
EP2307322A2 (en) | Electronic fluid treatment apparatus and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100309 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100331 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4489490 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140409 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |