JP4489084B2 - 不揮発性半導体記憶装置 - Google Patents
不揮発性半導体記憶装置 Download PDFInfo
- Publication number
- JP4489084B2 JP4489084B2 JP2007011862A JP2007011862A JP4489084B2 JP 4489084 B2 JP4489084 B2 JP 4489084B2 JP 2007011862 A JP2007011862 A JP 2007011862A JP 2007011862 A JP2007011862 A JP 2007011862A JP 4489084 B2 JP4489084 B2 JP 4489084B2
- Authority
- JP
- Japan
- Prior art keywords
- data
- memory cell
- storage circuit
- threshold voltage
- data storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Read Only Memory (AREA)
Description
図2は、本発明の不揮発性半導体記憶装置の概略構成を示すものであり、例えば4値(2ビット)を記憶するNANDフラッシュメモリの構成を示している。
上記構成において、動作について説明する。
プログラム動作は、先ずアドレスを指定し、図3に示す2ページが選択される。本メモリは、この2ページのうち、第1ページ、第2ページの順序でしかプログラムできない。したがって、初めにアドレスで第1ページを選択する。近年、複数ビットを記憶する多値フラッシュメモリの書き込み動作において、閾値電圧の分布を狭くするため、1回のプログラムシーケンスが2回のプログラム動作を含む書き込み方式が採用されている。この方式において、第1回目のプログラム動作は、本来の閾値電圧より低いベリファイ電位を設定して、書き込み及びベリファイ動作を行なう。第1回目のプログラム動作がパスした後、第2回目のプログラム動作が行なわれる。第2回目のプログラム動作は、ベリファイ電位を本来の値に設定して、書き込み及びベリファイ動作が行なわれる。この方式は、一旦書き込みが行なわれたメモリセルに対して再書き込みし、最初に書き込まれた閾値電圧より若干高い閾値電圧を設定する。このため、書き込み時の閾値電圧の変動率が小さいため、閾値電圧分布が小さくなる。また、NAND型フラッシュメモリの場合、同一ワード線に接続された複数のセルのうち、半分のセルを一度に書き込む。このため、書き込みベリファイのループにおいて、最初のベリファイ時は、閾値電圧の低いセルが多い。したがって、ソース線が浮いており、最初に書き込みが完了するセルはこの状態で閾値電圧が決まる。この後、他のセルの書き込みが終了すると、ソース線が所定の電位に固定される。このため、最初に書き込みが完了したセルの閾値電圧が低くなったようになり、閾値電圧の分布が広がる問題もなくなる。さらに、第1回目の書き込みの、書き込み電圧の増加分ΔVpgmを大きくし、第2回目の書き込みの、書き込み電圧の増加分ΔVpgmを小さくすることにより、書き込み動作を高速化することができる利点を有している。
先ず、図8、図10(a)(b)、図11を参照して第1ページの書き込み動作について説明する。
先ず、書き込みデータを外部より入力し、全てのデータ記憶回路10内のPDCに記憶する。外部より書き込みを行なわないことを示すデータ“1”が入力されると、図1に示すPDCのノードN1aがハイレベルに設定される。また、外部より書き込みを行なうことを示すデータ“0”が入力されると、PDCのノードN1aがローレベルに設定される。以後、PDCのデータはノードN1aの電位、DDCのデータはトランジスタ61rのゲート電位とする。
書き込みコマンドが入力されると、信号DTGが一瞬ハイレベルとなり、DDCを構成するトランジスタ61sが一瞬オンとされる。このため、PDCのデータがトランジスタ61sを介してDDCにコピーされる。したがって、トランジスタ61rのゲート電位がハイレベルとなる(図10(a))。
次に、図1に示す信号BLC1、BLCLAMP、BLSo又はBLSeの電位をVdd+Vth(Vdd:電源電圧(例えば3V又は1.8V、しかし、この電圧に限定されるものではない)、Vth:NチャネルMOSトランジスタの閾値電圧)とする。すると、トランジスタ61hがオンとなり、PDCに書き込みを行なわないことを示すデータ“1”が記憶されている時、ビット線がVddになり、書き込みを行なうことを示すデータ“0”の時、ビット線がVss(接地電位)となる。また、選択されたワード線に接続され、非選択ページ(ビット線が非選択)のセルは書き込みが行なわれてはならない。このため、これらのセルに接続されているビット線もデータ“1”と同じVddとする。ここで、選択されているブロックのセレクト線SG1をVdd、選択ワード線にVpgm(20V)、非選択ワード線にVpass(10V)を供給すると、ビット線がVssになっている場合、セルのチャネルがVss、ワード線がVpgmであるため書き込みが行なわれる。一方、ビット線がVddになっている場合、Vpgmによりセルのチャネルが、カップリングによってVpgm/2程度となる。このため、ビット線がVddになっているメモリセルはプログラムされない。
信号BLPREを一旦Vddとし、信号VPREをVssとして、TDCをVssにする。次に、信号VREGをVddとし、信号REGを一旦ハイレベルとしてトランジスタ61qをオンさせる。すると、DDCがハイレベルを記憶している場合、トランジスタ61rがオンし、トランジスタ61r、61qを介してTDCがVddとなる。また、DDCがローレベルを記憶している場合、トランジスタ61rがオフであるため、TDCはVssのままとなる。この動作により、DDCのデータがTDCにコピーされる。次に、信号DTGを一旦ハイレベルとし、PDCのデータをDDCにコピーする。この後、信号BLC1を一旦ハイレベルとし、TDCのデータをPDCにコピーする。この結果、PDCに記憶されていたデータはDDCに移動し、DDCに記憶されていたデータはPDCに移動する(図10(b))。
第1ページプログラムベリファイは、図6(b)に示すように、選択されているワード線にベリファイ電位“a*’”を与える。本来のベリファイ電位“a’”はリードレベルより若干高くする。しかし、第1ページプログラムの第1回目のベリファイ電位“a*’”は、本来のベリファイ電位“a’”より若干低い電位にする。
全てのPDCのデータがハイレベルになった状態において、先ず、前述したと同様の動作を実行し、PDCのデータとDDCのデータを入れ替える。すなわち、DDCに記憶されたデータをPDCに移す。DDCのデータは、もともとPDCに記憶されていたデータであり、書き込みを行なわない場合はデータ“1”、書き込みを行なう場合はデータ“0”となっている。
次に、図9、図12(a)(b)、図13(a)(b)を参照して第2ページの書き込み動作について説明する。
第2ページプログラムも第1ページプログラムと同様に、外部より書き込みデータを入力し、全てのデータ記憶回路10のPDCに記憶する。
図7(a)に示すように、第1ページの書き込み動作によりメモリセルのデータが“0”になっている(第1ページに書き込み動作を行なわなかった)場合で、第2ページのデータが“0”(書き込みを行なう)の時は、メモリセルのデータを“3”とし、第2ページのデータが“1”(書き込みを行なわない)の時は、メモリセルのデータを“0”のままとする。また、第1ページの書き込み動作によりメモリセルのデータが“1”になっている(第1ページに書き込み動作を行なった)場合で、第2ページのデータが“0”(書き込みを行なう)の時は、メモリセルのデータを“2”とし、第2ページのデータが“1”(書き込みを行なわない)の時は、メモリセルのデータを“1”のままとする。このため、第2ページのデータをメモリセルに書き込む前に、予めメモリセルのデータが“0”か“1”かを調べておく必要がある。
第2ページプログラムの第1回目は、第1ページプログラムの第1回目と同様の動作により、PDCにハイレベルがラッチされている場合、メモリセルにデータを書き込まず、PDCにローレベルがラッチされている場合、メモリセルにデータを書き込む。
第2ページプログラムベリファイにおいて、メモリセルにデータ“2”が書き込まれたかどうかのベリファイを、第1ページプログラムベリファイの第1回目と同様に実行した場合、正しくベリファイできない。すなわち、メモリセルにデータ“3”を書き込んでいるセルの閾値電圧は、データ“2”を書き込んでいるメモリセルの閾値電圧より高いため、データ“2”の書き込みが不十分の場合においてもパスしてしまう。したがって、データ“2”のベリファイは、以下のように実行する。
メモリセルにデータ“3”が書き込まれたかどうかのベリファイは、第1ページプログラムベリファイの第1回目と同様に実行する。但し、ベリファイレベルは“c*’”である。ベリファイレベル“c*’”は、本来のベリファイリード時のレベル“c’”より若干低く設定されている。データ“2”のベリファイ後、PDCには、書くか書かないかを示すデータがラッチされ、DDCにはメモリセルにデータ“2”を書き込む時、ハイレベルとなっている。このため、ベリファイ前に、以下の操作をし、PDCとDDCのデータの入れ替える。
先ず、信号BLPREを一旦Vddとし、信号VREGをVssとしてTDCをVssにする。次に、信号VREGをVddとし、一旦信号REGをハイレベルとすると、DDCがハイレベルの場合、TDCはVddとなり、DDCがローレベルの場合、TDCはVssのままとなる。つまり、DDCのデータがTDCにコピーされる。次に信号DTGを一旦ハイレベルとし、PDCのデータをDDCにコピーする。この後、信号BLCを一旦ハイレベルとしTDCのデータをPDCにコピーする。この結果、PDCに記憶されていたデータはDDCに移り、DDCに記憶されていたデータはPDCに移動する。
図7(a)に示すように、第1回目のプログラムにおいて、データ“2”とデータ“3”をメモリセルに書き込んでいる。これらデータ“2”とデータ“3”の閾値電圧は、本来の閾値電圧より低く設定されている。したがって、第2回目のプログラムにより、図7(b)に示すように、データ“2”とデータ“3”を本来の閾値電圧に書き込む。しかし、第1回目プログラム及びプログラムベリファイが完了すると、PDCのデータが全てハイレベルになっている。したがって、書き込みデータが無くなってしまうため、リード動作を行ないメモリセルにデータ“2”又はデータ“3”に書き込んでいるかどうかを調べる。
第2ページにおいてデータを書き込む場合、PDCはハイレベルをラッチし、書き込まない場合、PDCはローレベルラッチしている。このため、PDCのデータを反転させなくてはならない。したがって、以下の操作を行なう。
先ず、信号BLPREを一旦Vddとし、VPREをVssとしてTDCをVssにする。次に、信号VREGをVddとし、信号REGを一旦ハイレベルとする。DDCがハイレベルの場合、TDCはVddとなり、DDCがローレベルの場合、TDCはVssのままとなる。つまり、DDCのデータがTDCにコピーされる。次に、信号DTGを一旦ハイレベルとし、PDCのデータをDDCにコピーする。この後、信号BLC1を一旦ハイレベルとし、TDCのデータをPDCにコピーする。
先ず、信号BLPREを一旦Vddとし、信号VPREをVddとしてTDCをVddにする。次に、信号VREGをVssとし、信号REGを一旦ハイレベルとする。DDCがハイレベルの場合、TDCはVssとなり、DDCがローレベルの場合、TDCはVddのままとなる。つまり、DDCのデータがTDCに反転してコピーされる。次に信号DTGを一旦ハイレベルとし、PDCのデータをDDCにコピーする。この後、信号BLC1を一旦ハイレベルとし、TDCのデータをPDCにコピーする。この結果、PDCに記憶されていた書き込みデータは反転してPDCに移り、DDCに記憶されていたデータは、変わらない。したがって、第2ページで書き込む場合、PDCにローレベルラッチされ、書き込まない場合、PDCにハイレベルがラッチされる。
第2ページプログラムの第2回目は、第2ページプログラムの第1回目と同様の動作である。すなわち、PDCにハイレベルがラッチされている場合、書き込まず、PDCにローレベルがラッチされている場合、書き込む。
第2ページプログラムにおいて、データ“2”とデータ“3”の第2回目のベリファイ動作は、第1回目のデータ“2”とデータ“3”のベリファイ動作と同様であり、ベリファイ電位のみが相違している。すなわち、2回目のベリファイは、図7(b)に示すように、本来のベリファイ電位“b’”及び“c’”をワード線に印加する。
(第2ページリード)(図14(a))
第2ページのリードは、選択されているワード線にリードの時の電位“b”を印加する。次に、選択されているブロック内の非選択ワード線及びセレクト線SG1に読み出し電位Vread(例えば4.5V)を印加する。また、信号VPREをVdd、信号BLPRE、BLCLAMPに所定の電圧を与え、データ記憶回路10のTDCを前述した動作により、ハイレベルに設定するとともに、ビット線をプリチャージする。この後、セルのソース側のセレクト線SG2をハイレベルにする。メモリセルの閾値電圧が“b”より高い時、セルがオフする。このため、ビット線はハイレベルのままである。一方、メモリセルの閾値電圧が“b”に達していない場合、セルはオンする。このため、ビット線はVssとなる。図6(a)に示すように、メモリセルのデータとメモリセルの閾値電圧を定義しているため、メモリセルのデータが“0”、“1”であるとTDCはローレベルとなり、メモリセルのデータが“2”、“3”であるとハイレベルのままである。
第1ページのリードで出力されるデータが“1”の場合、図6(a)に示すように、メモリセルのデータが“0”、“3”と離れた領域になっている。したがって、最初にメモリセルのデータが“2”以下か、“3”であるかを判断し、次にメモリセルのデータが“0”か、“2”以上であるかを判断しなければならない。
先ず、メモリセルのデータが“2”以下か、“3”であるかを調べる。このため、ワード線にリード電位“c”を印加してメモリセルのデータをビット線に読み出す。この読み出されたデータは、TDCに記憶され、PDCに転送される。この結果、PDCにハイレベルがラッチされるのは、メモリセルのデータが“3”の場合だけである。また、PDCにローレベルがラッチされる場合は、メモリセルのデータが“0”、“1”、“2”の場合である。
次に、メモリセルのデータが“1”か、“2”以上であるかを調べる。このため、ワード線にリード電位“a”を印加してメモリセルのデータをビット線に読み出す。この結果、ビット線の電位はメモリセルのデータが“0”の場合、ローレベルし、メモリセルのデータが“1”、“2”、“3”であるとハイレベルとなる。
次に、第2の実施形態について説明する。
次に、本発明の第3の実施形態について説明する。第1、第2の実施形態は、4値のデータを書き込む場合について説明した。しかし、図1に示す構成のデータ記憶回路10を用いて、メモリセルに4値(2ビット)以上のデータを記憶することが可能である。
先ず、最も閾値電圧が高いセル、すなわち、データ“6”を書き込んでいるセルをベリファイする。この場合、選択されているワード線にリードの時の電位“f”より少し高い電位“f’”を印加する。選択されているブロック内の非選択ワード線及びセレクト線SG1に読み出し電位Vreadを供給し、データ記憶回路10の信号BLCLAMP、及び信号BLPREに前述した所定の電圧を供給し、ビット線をプリチャージする。メモリセルの閾値電圧が“f’”より高い時、セルはオフする。このため、ビット線はハイレベルのままである。また、メモリセルの閾値電圧が“f’”より低い場合、セルはオンする。このため、ビット線はVssとなる。このビット線の放電中、TDCを一旦Vssとし、この後、信号REGをハイレベルとして、トランジスタ61qをオンさせ、DDCのデータをTDCに移す。
中間の閾値電圧を有するセル、すなわち、メモリセルにデータ“2”、“4”を書き込んでいるセルのベリファイは、前記最も閾値電圧の高いセルのベリファイと同様にベリファイすることは困難である。なぜなら、中間の閾値電圧を有するセルよりも高い閾値電圧を書き込んでいるセルの閾値電圧は、これら中間の閾値電圧より高いため、これら高い閾値電圧のセルもベリファイがOKとなってしまうからである。そこで、リード動作を行ない、中間の閾値電圧のベリファイ電位より高い閾値電圧のセルがあるかどうかを調べ、このようなセルがある場合、ベリファイ結果をNGとしなくてはならない。
上記ビット線の放電中、TDCを一旦Vssとし、信号VREGをVddとし、信号REGをハイレベルとしてDDCのデータをTDCに移す。この後、信号DTGを一旦ハイレベルとして、PDCのデータをDDCに移す。この後、TDCのデータをPDCに転送する。
TDCを一旦Vddとし、信号VREGをVssとし、信号REGをハイレベルとして、DDCのデータをTDCに反転して転送する。この後、信号DTGを一旦ハイレベルとして、PDCのデータをDDCに移す。この後、TDCのデータをPDCに移す。
TDCを一旦Vssとし、信号VREGをVddとし、信号REGをハイレベルとして、DDCのデータをTDCに移す。この後、信号DTGを一旦ハイレベルとし、PDCのデータをDDCに転送する。この後、TDCのデータをPDCに転送する。
TDCを一旦Vssとし、信号VREGをVddとし、信号REGをハイレベルとして、DDCのデータをTDCに移す。この後、信号DTGを一旦ハイレベルとして、PDCのデータをDDCに移す。次いで、TDCのデータをPDCに転送する。
TDCを一旦Vddとし、信号VREGをVssとし、信号REGをハイレベルとして、DDCのデータをTDCに反転して移す。信号DTGを一旦ハイレベルとし、PDCのデータをDDCに移す。この後、TDCのデータをPDCに移す。
プログラム動作は、第1、第2の実施形態のプログラム動作と同様であり、PDCにデータ“1”が記憶されている場合、書き込みが行なわれず。データ“0”が記憶されている場合、書き込みが行なわれる。
上記プログラム後、本来のベリファイ電位“b’”、“d’”、“f’”により、ベリファイする。上記プログラム及びベリファイ動作を、全てのPDCのデータが“1”になるまで繰り返す。プログラム及びベリファイ動作は、前述した最も高い閾値電圧のセルのベリファイ、及び中間の閾値電圧のセルのベリファイと同様である。
次に、図21を参照して、第3ページの書き込み動作について説明する。
次に、第3ページの書き込みデータを外部よりPDCにロードする(S51)。図23(a)は、PDCにロードされたデータを示している。書き込みコマンドが入力された後、リード時の電位“a”“d”“f”を選択されたワード線に供給し、メモリセルのデータを読み出す(S52〜S54)。この読み出したデータにより、データキャッシュを設定する(S55)。この結果、PDCにラッチされるデータは図23(b)に示すようになる。ここで、データ“1”は書き込み非選択、データ“0”は書き込みを示している。
プログラム動作は、第1、第2の実施形態と同様であり、PDCにデータ“1”が記憶されている場合、書き込みが行なわれず。データ“0”が記憶されている場合、書き込みが行なわれる。
プログラム後、本来のベリファイ電位“a’”、“c’”、“e’”、“g’”によりベリファイ動作を行なう。このバリファイ動作は、全てのPDCのデータが“1”になるまで繰り返される(S61〜S56)。プログラムベリファイ動作において、ベリファイ電位“g’”でのベリファイ動作は、前述した最も高い閾値電圧のセルのベリファイと同様である。ベリファイ電位“a’”、“c’”、“e’”のベリファイ動作は、前述した中間の閾値電圧のセルのベリファイと同様である。これらベリファイ後、ワード線の電位を読み出し電圧“b”、“d”、“f”としてメモリセルのデータを読み出し、これより高い閾値電圧のセルに書き込んでいるセルがベリファイOKとならないように操作する。
第4の実施形態は第3の実施形態を変形したものである。上記第3の実施形態は、第3ページ(3ビット目のデータ)の書き込み前に、第2ページと第1ページ(4値、2ビット)のメモリセルのデータを、本来のベリファイ電位“b’”、“d’”、“f’”に書き込んでいた。しかし、閾値電圧の分布に余裕のある場合、この動作を省略することが可能である。この場合、図20に示す動作を省略し、図21に示す、第3ページのデータ“1”、“3”、“5”、“7”の書き込みのみを行なう。
第1乃至第4の実施形態において、データ記憶回路10は、図1、図3に示すように、2つのビット線に共有されていた。しかし、これに限定されるものではない。
Claims (3)
- n値(nは2以上の自然数)の閾値電圧により複数のデータを記憶するメモリセルと、
前記メモリセルに接続され、外部より入力された第1論理レベル又は第2論理レベルのデータを記憶する第1のデータ記憶回路と、
前記第1のデータ記憶回路に接続され、前記第1のデータ記憶回路のデータを記憶する第2のデータ記憶回路と、
前記第1、第2のデータ記憶回路に接続され、前記メモリセルから読み出された第1論理レベル又は第2論理レベルのデータを記憶するデータ保持回路と、
前記メモリセルにデータを書き込む書き込み回路を有し、
前記書き込み回路は、前記メモリセルにデータを書き込む書き込み動作時に、前記第1のデータ記憶回路に記憶された第1論理レベルのデータに基づきメモリセルに本来の閾値電圧より低い閾値電圧によりh値(h<n)を書き込み、次のデータによりそのメモリセルに(h+1)値以上を書き込み、前記次のデータを書き込む前に、前記第1のデータ記憶回路に記憶されたデータと前記第2のデータ記憶回路に記憶されたデータとを前記データ保持回路を用いて入れ替え、前記第2のデータ記憶回路に記憶されたデータと前記データ保持回路に記憶された前記メモリセルから読み出されたデータとに基づいて変換したデータを前記第1のデータ記憶回路に保持するベリファイ動作を行い、前記ベリファイ動作後、前記第1のデータ記憶回路に記憶されたデータと前記第2のデータ記憶回路に記憶されたデータとを前記データ保持回路を用いて入れ替え、前記第1のデータ記憶回路の第1論理レベルのデータに基づき前記h値の閾値電圧を本来の閾値電圧にする書き込みを行なうことを特徴とする不揮発性半導体記憶装置。 - n値(nは2以上の自然数)の閾値電圧により複数のデータを記憶するメモリセルと、
前記メモリセルに接続され、外部より入力された第1論理レベル又は第2論理レベルのデータを記憶する第1のデータ記憶回路と、
前記第1のデータ記憶回路に接続され、前記第1のデータ記憶回路のデータを記憶する第2のデータ記憶回路と、
前記第1、第2のデータ記憶回路に接続され、前記メモリセルから読み出された第1論理レベル又は第2論理レベルのデータを記憶するデータ保持回路と、
前記メモリセルにデータを書き込む書き込み回路を有し、
前記書き込み回路は、前記第1のデータ記憶回路に記憶された第1論理レベルのデータに基づき前記k(n=2k)ビットのビット毎にデータをメモリセルに書き込み、各ビットのデータは本来の閾値電圧より低い閾値電圧に書き込む書き込みと、本来の閾値電圧に書き込む書き込みとを有し、
前記書き込み回路は、前記本来の閾値電圧より低い閾値電圧に書き込む書き込み後、前記第1のデータ記憶回路に記憶されたデータと前記第2のデータ記憶回路に記憶されたデータとを前記データ保持回路を用いて入れ替え、前記第2のデータ記憶回路に記憶されたデータと前記データ保持回路に記憶された前記メモリセルから読み出されたデータとに基づいて変換したデータを前記第1のデータ記憶回路に保持するベリファイ動作を行い、前記ベリファイ動作後、前記第1のデータ記憶回路に記憶されたデータと前記第2のデータ記憶回路に記憶されたデータとを前記データ保持回路を用いて入れ替え、前記第1のデータ記憶回路の第1論理レベルのデータに基づき前記本来の閾値電圧に書き込む書き込みを行うことを特徴とする不揮発性半導体記憶装置。 - n値(nは2以上の自然数)の閾値電圧により複数のデータを記憶するメモリセルと、
前記メモリセルに接続され、外部より入力された第1論理レベル又は第2論理レベルのデータを記憶する第1のデータ記憶回路と、
前記第1のデータ記憶回路に接続され、前記第1のデータ記憶回路のデータを記憶する第2のデータ記憶回路と、
前記第1、第2のデータ記憶回路に接続され、前記メモリセルから読み出された第1論理レベル又は第2論理レベルのデータを記憶するデータ保持回路と、
前記メモリセルにデータを書き込む書き込み回路を有し、
前記書き込み回路は、第iページ(i<=k、n=2k)の書込みにおいて、メモリセルへ1ビットデータを書込み、第iページ(i=k)の書き込み時、1度の書き込み動作により、本来の閾値電圧に書き込み、第1ページ(1<k)の書き込み時、本来の閾値電圧より低い閾値電圧の書き込みと本来の閾値電圧での書き込みに分けて書き込み、
前記書き込み回路は、前記第1のデータ記憶回路に記憶された第1論理レベルのデータに基づき前記本来の閾値電圧より低い閾値電圧に書き込む書き込み後、前記第1のデータ記憶回路に記憶されたデータと前記第2のデータ記憶回路に記憶されたデータとを前記データ保持回路を用いて入れ替え、前記第2のデータ記憶回路に記憶されたデータと前記データ保持回路に記憶された前記メモリセルから読み出されたデータとに基づいて変換したデータを前記第1のデータ記憶回路に保持するベリファイ動作を行い、前記ベリファイ動作後、前記第1のデータ記憶回路に記憶されたデータと前記第2のデータ記憶回路に記憶されたデータとを前記データ保持回路を用いて入れ替え、前記第1のデータ記憶回路の第1論理レベルのデータに基づき前記本来の閾値電圧に書き込む書き込みを行うことを特徴とする不揮発性半導体記憶装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007011862A JP4489084B2 (ja) | 2007-01-22 | 2007-01-22 | 不揮発性半導体記憶装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007011862A JP4489084B2 (ja) | 2007-01-22 | 2007-01-22 | 不揮発性半導体記憶装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003383925A Division JP4041057B2 (ja) | 2003-11-13 | 2003-11-13 | 不揮発性半導体記憶装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007103010A JP2007103010A (ja) | 2007-04-19 |
JP4489084B2 true JP4489084B2 (ja) | 2010-06-23 |
Family
ID=38029770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007011862A Expired - Lifetime JP4489084B2 (ja) | 2007-01-22 | 2007-01-22 | 不揮発性半導体記憶装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4489084B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101177278B1 (ko) * | 2007-10-08 | 2012-08-24 | 삼성전자주식회사 | 비휘발성 메모리 셀 프로그래밍 방법 |
KR101468099B1 (ko) | 2008-07-24 | 2014-12-03 | 삼성전자주식회사 | 불휘발성 메모리 장치의 프로그램 방법 |
KR101635504B1 (ko) | 2009-06-19 | 2016-07-04 | 삼성전자주식회사 | 3차원 수직 채널 구조를 갖는 불 휘발성 메모리 장치의 프로그램 방법 |
-
2007
- 2007-01-22 JP JP2007011862A patent/JP4489084B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2007103010A (ja) | 2007-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4041057B2 (ja) | 不揮発性半導体記憶装置 | |
JP4170952B2 (ja) | 半導体記憶装置 | |
US6925004B2 (en) | Semiconductor memory device for storing multivalued data | |
JP3935139B2 (ja) | 半導体記憶装置 | |
JP5142478B2 (ja) | 半導体記憶装置 | |
JP4928752B2 (ja) | 半導体記憶装置 | |
JP4713873B2 (ja) | 半導体記憶装置 | |
JP4768256B2 (ja) | 半導体記憶装置 | |
JP4843362B2 (ja) | 半導体記憶装置 | |
JP2010225220A (ja) | 不揮発性半導体記憶装置、及びそのデータ書き込み方法 | |
JP2008010046A (ja) | 不揮発性半導体記憶装置 | |
JP4489084B2 (ja) | 不揮発性半導体記憶装置 | |
JP5284391B2 (ja) | 半導体記憶装置 | |
JP5197730B2 (ja) | 半導体記憶装置 | |
JP5216908B2 (ja) | 半導体記憶装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090407 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090811 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100302 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100330 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4489084 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140409 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |