JP4487306B2 - Composite structure forming apparatus and forming method - Google Patents

Composite structure forming apparatus and forming method Download PDF

Info

Publication number
JP4487306B2
JP4487306B2 JP2004071350A JP2004071350A JP4487306B2 JP 4487306 B2 JP4487306 B2 JP 4487306B2 JP 2004071350 A JP2004071350 A JP 2004071350A JP 2004071350 A JP2004071350 A JP 2004071350A JP 4487306 B2 JP4487306 B2 JP 4487306B2
Authority
JP
Japan
Prior art keywords
base material
film
fine particles
aerosol
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004071350A
Other languages
Japanese (ja)
Other versions
JP2004300572A (en
Inventor
広典 鳩野
純治 平岡
万也 辻道
篤史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2004071350A priority Critical patent/JP4487306B2/en
Publication of JP2004300572A publication Critical patent/JP2004300572A/en
Application granted granted Critical
Publication of JP4487306B2 publication Critical patent/JP4487306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、微粒子を含むエアロゾルを基材に吹き付け、微粒子材料からなる構造物を基材上に形成させることによって、基材と構造物からなる複合構造物を作製する複合構造物形成装置および形成方法に関する。   The present invention relates to a composite structure forming apparatus for forming a composite structure composed of a base material and a structure by spraying an aerosol containing fine particles onto the base material to form a structure composed of the fine particle material on the base material, and the formation Regarding the method.

基材表面に脆性材料からなる構造物を形成する方法として、従来特許文献1、特許文献2、特許文献3などが挙げられており、微粒子ビーム堆積法あるいはエアロゾルデポジション法と呼ばれる名称で認知されている。これは脆性材料の微粒子をガス中に分散させたエアロゾルをノズルから基板に向けて噴射し、基材に脆性材料微粒子を衝突させ、この衝突の衝撃により脆性材料が変形あるいは破砕し、これにより基材上に脆性材料微粒子の構成材料からなる構造物をダイレクトで形成させることを特徴としており、特に加熱手段を必要としない常温で構造物が形成可能なプロセスで、焼成体同等の機械的強度を保有する脆性材料構造物を得ることができる。この方法に用いられる装置は、基本的にエアロゾルを発生させるエアロゾル発生器と、エアロゾルを基材に向けて噴射するノズルとからなり、ノズルの開口よりも大きな面積で構造物を作製する場合には、基材とノズルを相対的に移動・揺動させるXYステージなどの位置制御装置を有し、減圧下で作製を行う場合にはチャンバーと真空ポンプを有し、またエアロゾルを発生させるためのガス発生源を有することが一般的である。   As a method of forming a structure made of a brittle material on the surface of a base material, there are conventional Patent Document 1, Patent Document 2, Patent Document 3 and the like, which are recognized by a name called a fine particle beam deposition method or an aerosol deposition method. ing. This is because an aerosol in which fine particles of a brittle material are dispersed in a gas is sprayed from a nozzle toward the substrate, the fine particles of the brittle material collide with the base material, and the impact of the collision causes the brittle material to be deformed or crushed. It is characterized by directly forming a structure consisting of constituent materials of brittle material fine particles on the material, and in particular a process that can form a structure at room temperature that does not require a heating means, and has a mechanical strength equivalent to a fired body The brittle material structure possessed can be obtained. The apparatus used in this method basically consists of an aerosol generator for generating aerosol and a nozzle for injecting the aerosol toward the base material. When a structure is produced with a larger area than the opening of the nozzle, , Which has a position control device such as an XY stage that relatively moves and swings the substrate and the nozzle, and has a chamber and a vacuum pump when producing under reduced pressure, and a gas for generating aerosol It is common to have a source.

この技術の改良を目的として、特許文献4ではイオン、原子、分子ビームや低温プラズマなどの高エネルギービームを微粒子の流れに照射し、微粒子を活性化させて良好な膜物性と、良好な基板への密着性を確保する工夫がなされている。   For the purpose of improving this technique, Patent Document 4 irradiates a flow of fine particles with a high energy beam such as an ion, atom, molecular beam, or low-temperature plasma to activate the fine particles to obtain good film properties and a good substrate. The device has been devised to ensure the adhesion.

特許文献2では、微粒子材料の吹きつけの流れの基板表面への入射角度を変化させることで、微粒子材料の膜の接合が十分で組織が緻密であり、表面が平滑であり、密度の均一なものを製造する工夫がなされている。   In Patent Document 2, by changing the incident angle of the spray flow of the fine particle material onto the substrate surface, the film of the fine particle material is sufficiently bonded, the structure is dense, the surface is smooth, and the density is uniform. There is a device for manufacturing things.

特許文献3では脆性材料微粒子に内部歪を印加する工程を行った後に、この脆性材料微粒子を基材表面に衝突させ、この衝突の衝撃によって微粒子同士を再結合せしめることで、基材との境界部にその一部が基材表面に食い込む脆性材料からなるアンカー部を形成し、このアンカー部の上に脆性材料からなる構造物を形成させる複合構造物の形成方法が提案され、構造物の形成速度を向上させる工夫がなされている。   In Patent Document 3, after the step of applying internal strain to the brittle material fine particles, the brittle material fine particles collide with the surface of the base material, and the fine particles are recombined with each other by the impact of the collision. A method of forming a composite structure is proposed, in which an anchor portion made of a brittle material that partially penetrates the substrate surface is formed in the portion, and a structure made of a brittle material is formed on the anchor portion. Devises to improve speed.

これらエアロゾルデポジション法で使用される基板としては、金属、ガラス、セラミックス、ある種のプラスチックなどが挙げられる。   Examples of the substrate used in these aerosol deposition methods include metals, glass, ceramics, and certain plastics.

また特許文献5には、微粒子をエアロゾル化した上で膜形成基板へと吹き付けるのに伴って微粒子膜を形成するガスデポジション法が紹介され、その後750℃以上の熱処理を行って高密度化した微粒子膜を得るセラミック膜の形成方法が記載されている。ここでは、膜形成時もしくは後工程の熱処理時に発生する応力に伴って膜形成基板そのものに歪が生じてしまうという課題に対して、エアロゾル状微粒子を前記膜形成基板の表裏面それぞれに対して同時に供給し、表裏面上に微粒子膜を同時に形成させるガスデポジション製膜法とその装置の紹介がある。   Patent Document 5 introduced a gas deposition method in which fine particles are aerosolized and then sprayed onto a film forming substrate to form a fine particle film, and then heat treatment at 750 ° C. or higher is performed to increase the density. A method for forming a ceramic film to obtain a fine particle film is described. Here, in order to solve the problem that the film forming substrate itself is distorted due to the stress generated during the film formation or the heat treatment in the subsequent process, the aerosol fine particles are simultaneously applied to the front and back surfaces of the film forming substrate. There is an introduction of a gas deposition film forming method and an apparatus for forming a fine particle film on the front and back surfaces simultaneously.

特許第3256741号Japanese Patent No. 3256741 特許第3338422号Japanese Patent No. 3338422 特許第3348154号Japanese Patent No. 3348154 特許第3256741号Japanese Patent No. 3256741 特開2002−339058号公報JP 2002-339058 A

これら構造物の品質を上げる発明がなされる一方、緻密質で強固であり、密着性の良好な構造物を形成すると、構造物内に圧縮残留応力が発生し、それゆえ基材が構造物を上にして凸の形にそる変形を起こすという問題がある。特に基材が金属箔やプラスチックフィルムのように薄く、容易に撓むような素材の場合には、片面に製膜を行うと、基材自体が巻物状にカールしたり、膨らむなどして、取り扱いが困難となる不具合が発生する。これは微粒子を衝突させるというこの手法の特徴ゆえに、構造物形成時に常に構造物は圧縮性衝撃力の印加にさらされ、内部に応力が蓄積されるとともに、構造物が鍛造されて押し広げられるためと考えられる。   While inventions have been made to improve the quality of these structures, when a dense and strong structure with good adhesion is formed, compressive residual stress is generated in the structure, and therefore the base material There is a problem of causing deformation along the convex shape upward. In particular, when the base material is thin, such as a metal foil or plastic film, and easily bends, when the film is formed on one side, the base material itself curls or swells in a scroll shape, and is handled. The trouble that becomes difficult occurs. This is because the structure is always exposed to the application of compressive impact force during the formation of the structure due to the characteristics of this method of colliding fine particles, and stress is accumulated inside and the structure is forged and expanded. it is conceivable that.

また、特許文献5にあるエアロゾルの同時供給、微粒子膜の同時形成を試みる場合でも、金属箔やプラスチックフィルムのように軟らかく撓みやすい基材を用いた場合、基材が中空に浮いている部位に高速噴射のエアロゾルを衝突させるため、基材の振動や位置の変位などのことが発生し、基材とノズルの間の距離が変化するなどのことで、膜形成の精度に不具合をきたす恐れがある。基材の搬送装置として紹介されているX−Y−Z−θテーブルではロール状基材への微粒子膜の形成は困難であるが、本発明の目的のひとつであるロール状基材などの面積の大きい素材を用いる場合においてはこの振動や変位の懸念は大きい。   In addition, even when trying to simultaneously supply aerosol and simultaneously form a fine particle film in Patent Document 5, if a soft and flexible base material such as a metal foil or a plastic film is used, the base material is in a position floating in the air. Due to the collision of high-speed sprayed aerosol, vibration of the substrate, displacement of the position, etc. may occur, and the distance between the substrate and the nozzle may change, which may cause problems in film formation accuracy. is there. Although it is difficult to form a fine particle film on a roll-shaped substrate with the XYZ-θ table introduced as a substrate transport device, the area of the rolled substrate, which is one of the objects of the present invention In the case of using a large material, there is a great concern about this vibration and displacement.

本発明は、上記事情に鑑みてなされたものであり、脆性材料の構造物の形成に当たって、構造物が保有する残留応力を原因とする複合構造物の変形に障害されることなく構造物が形成でき、またこの残留応力による変形をより少なくした状態で複合構造物を得ることのできる複合構造物形成装置および形成方法を提案したものである。   The present invention has been made in view of the above circumstances, and in forming a structure of a brittle material, the structure is formed without being obstructed by the deformation of the composite structure caused by the residual stress possessed by the structure. Further, the present invention proposes a composite structure forming apparatus and a forming method capable of obtaining a composite structure in a state where deformation due to residual stress is reduced.

本発明では、脆性材料微粒子をガスに分散させたエアロゾルを、フィルム状の金属基材表面に向けてノズルより噴射して衝突させ、脆性材料微粒子の構成材料からなる脆性材料構造物を、基材の一方の表面に形成させる複合構造物形成装置であって、基材を搬送する基材搬送装置を有し、基材搬送装置は、基材の一方の表面に脆性材料構造物を形成した後で、基材の他方の面が延性変形を起こして伸展するように、基材を搬送しながら基材の他方の面に引っ張り応力を印加する機構を備えることを特徴とする複合構造物形成装置を提供する。また脆性材料微粒子をガスに分散させたエアロゾルを、フィルム状の金属基材の表面に向けてノズルより噴射して衝突させ、この衝撃によって脆性材料微粒子の構成材料からなる脆性材料構造物を、基材の一方の表面に形成させる複合構造物形成方法であって、基材の一方の面に構造物を形成させた後で、基材の他方の面が延性変形を起こして伸展するように、基材を搬送しながら基材の他方の面に引っ張り応力を印加することを特徴とする複合構造物の形成方法を提供する。


In the present invention , an aerosol in which fine particles of brittle material are dispersed in a gas is jetted from a nozzle toward a film-like metal substrate surface to be collided, and a brittle material structure made up of constituent materials of the brittle material fine particles is used as a substrate. A composite structure forming apparatus for forming on one surface of the substrate having a base material transport device for transporting the base material, after the base material transport device forms a brittle material structure on one surface of the base material And a mechanism for applying a tensile stress to the other surface of the base material while transporting the base material so that the other surface of the base material extends and undergoes ductile deformation. I will provide a. In addition, an aerosol in which fine particles of brittle material are dispersed in a gas is jetted from a nozzle toward the surface of a film-like metal base material to be collided. a composite structure forming method for forming on one surface of the timber, after having formed a structure on one side of the substrate, as the other surface of the substrate, extending undergo ductile deformation, Provided is a method for forming a composite structure, wherein a tensile stress is applied to the other surface of the base material while the base material is conveyed .


基板に引っ張り応力を与えることは、製膜中に薄いフィルムが撓んだり、変形したりなどすることを防止できるため好適である。この引っ張り応力は基板の弾性変形レベル内での応力でも良いし、また基板が延性変形して伸展するまでの応力を与えても良い。内部応力を有する構造物が基材上に形成されることで、基材は変形を起こすが、ここで基材に引っ張り応力を与えて延性変形を起こさせることで、構造物にも引っ張り応力がかかることとなり応力は相殺される。結果、基材は多少伸展するものの、カールや膨れなどの製品不具合について解消がされる。 Applying a tensile stress to the substrate is preferable because a thin film can be prevented from being bent or deformed during film formation. This tensile stress may be a stress within the elastic deformation level of the substrate, or a stress until the substrate is ductile deformed and extended. By forming a structure having internal stress on the base material, the base material is deformed. However, by applying tensile stress to the base material to cause ductile deformation, tensile stress is also applied to the structure. As a result, the stress is offset. As a result, although the base material expands somewhat, product defects such as curling and swelling are resolved.

以上に説明したように本発明によれば、エアロゾルデポジション法によって圧縮残留応力を持つ脆性材料構造物をフィルム状の基材に形成させた場合でも、その応力によって基材が変形することを極力抑えることが可能となる。   As described above, according to the present invention, even when a brittle material structure having compressive residual stress is formed on a film-like base material by the aerosol deposition method, the base material is deformed as much as possible by the stress. It becomes possible to suppress.

エアロゾルデポジション法は脆性材料などの微粒子をガス中に分散させたエアロゾルをノズルから基材に向けて噴射し、金属やガラス、セラミックスやプラスチックなどの基材に微粒子を衝突させ、この衝突の衝撃により脆性材料微粒子を変形や破砕を起させしめてこれらを接合させ、基材上に微粒子の構成材料からなる構造物をダイレクトで形成させることを特徴としており、特に加熱手段を必要としない常温で構造物が形成可能であり、焼成体同等の機械的強度を保有する構造物を得ることができる。この方法に用いられる装置は、基本的にエアロゾルを発生させるエアロゾル発生器と、エアロゾルを基材に向けて噴射するノズルとからなり、ノズルの開口よりも大きな面積で構造物を作製する場合には、基材とノズルを相対的に移動・揺動させる位置制御手段を有し、減圧下で作製を行う場合には構造物を形成させるチャンバーと真空ポンプを有し、またエアロゾルを発生させるためのガス発生源を有することが一般的である。   In the aerosol deposition method, an aerosol in which fine particles such as brittle materials are dispersed in a gas is sprayed from a nozzle toward the base material, and the microparticles collide with a base material such as metal, glass, ceramics or plastic, and the impact of this collision It is characterized in that brittle material fine particles are deformed or crushed and joined together to directly form a structure consisting of fine particle constituent materials on the base material, especially at room temperature that does not require heating means A structure can be formed, and a structure having mechanical strength equivalent to that of the fired body can be obtained. The apparatus used in this method basically consists of an aerosol generator for generating aerosol and a nozzle for injecting the aerosol toward the base material. When a structure is produced with a larger area than the opening of the nozzle, In addition, it has a position control means that moves and swings the base material and the nozzle relative to each other, and has a chamber and a vacuum pump for forming a structure when producing under reduced pressure, and also generates aerosol It is common to have a gas source.

エアロゾルデポジション法のプロセス温度は常温であり、微粒子材料の融点より十分に低い温度、すなわち数百℃以下で構造物形成が行われるところにひとつの特徴がある。   The process temperature of the aerosol deposition method is room temperature, and one feature is that the structure is formed at a temperature sufficiently lower than the melting point of the particulate material, that is, several hundred degrees C. or less.

また使用される微粒子はセラミックスや半導体などの脆性材料を主体とし、同一材質の微粒子を単独であるいは混合させて用いることができるほか、異種の脆性材料微粒子を混合させたり、複合させて用いることが可能である。また一部金属材料や有機物材料などを脆性材料微粒子に混合させたり、脆性材料微粒子表面にコーティングさせて用いることも可能である。これらの場合でも構造物形成の主となるものは脆性材料である。   In addition, the fine particles used are mainly brittle materials such as ceramics and semiconductors, and fine particles of the same material can be used alone or mixed, and different fine particles of brittle material can be mixed or used in combination. Is possible. Further, it is also possible to mix a part of a metal material or an organic material with brittle material fine particles or to coat the surface of brittle material fine particles. Even in these cases, the main component of structure formation is a brittle material.

この手法によって形成される構造物において、結晶性の脆性材料微粒子を原料として用いる場合、構造物の脆性材料部分は、その結晶子サイズが原料微粒子のそれに比べて小さい多結晶体であり、その結晶は実質的に結晶配向性がない場合が多く、脆性材料結晶同士の界面にはガラス層からなる粒界層が実質的に存在しないと言え、さらに構造物の一部は基材表面に食い込むアンカー層を形成することが多いという特徴がある。   In the structure formed by this method, when crystalline brittle material fine particles are used as a raw material, the brittle material portion of the structure is a polycrystalline body whose crystallite size is smaller than that of the raw material fine particles, and the crystal In many cases, there is substantially no crystal orientation, and it can be said that there is substantially no grain boundary layer consisting of a glass layer at the interface between brittle material crystals, and a part of the structure is an anchor that bites into the substrate surface It is characterized by often forming a layer.

この方法により形成される構造物は、微粒子同士が圧力によりパッキングされ、物理的な付着で形態を保っている状態のいわゆる圧粉体とは明らかに異なり、十分な強度を保有している。   The structure formed by this method clearly has a sufficient strength unlike a so-called green compact in which fine particles are packed by pressure and keeps a form by physical adhesion.

この構造物形成において、脆性材料微粒子が破砕・変形を起していることは、原料として用いる脆性材料微粒子および形成された脆性材料構造物の結晶子サイズをX線回折法で測定することにより判断できる。すなわちエアロゾルデポジション法で形成される構造物の結晶子サイズは、原料微粒子の結晶子サイズよりも小さい値を示す。微粒子が破砕や変形をすることで形成されるずれ面や破面には、もともと内部に存在し別の原子と結合していた原子が剥き出しの状態となった新生面が形成される。この表面エネルギーが高い活性な新生面が、隣接した脆性材料表面や同じく隣接した脆性材料の新生面あるいは基板表面と接合することにより構造物が形成されるものと考えられる。また微粒子の表面に水酸基が程よく存在する場合では、微粒子の衝突時に微粒子同士や微粒子と構造物との間に生じる局部のずり応力により、メカノケミカルな酸塩基脱水反応が起き、これら同士が接合するということも考えられる。外部からの連続した機械的衝撃力の付加は、これらの現象を継続的に発生させ、微粒子の変形、破砕などの繰り返しにより接合の進展、緻密化が行われ、脆性材料構造物が成長するものと考えられる。   In this structure formation, the brittle material fine particles are crushed and deformed by measuring the brittle material fine particles used as raw materials and the crystallite size of the formed brittle material structure by X-ray diffraction. it can. That is, the crystallite size of the structure formed by the aerosol deposition method is smaller than the crystallite size of the raw material fine particles. A new surface in which atoms originally present inside and bonded to other atoms are exposed is formed on the slip surface or fracture surface formed by crushing or deforming fine particles. This active new surface having a high surface energy is considered to be formed by joining the surface of the adjacent brittle material, the new surface of the adjacent brittle material, or the substrate surface. In addition, when hydroxyl groups are present on the surface of the fine particles moderately, a mechanochemical acid-base dehydration reaction occurs due to local shear stress generated between the fine particles or between the fine particles and the structure when the fine particles collide with each other. It can be considered. The addition of continuous mechanical impact force from the outside causes these phenomena to occur continuously, and the progress and densification of joints are performed by repeated deformation and crushing of fine particles, and brittle material structures grow. it is conceivable that.

以下に本発明の実施の形態を添付図面に基づいて説明する。図1は本発明に基づく複合構造物作製装置10を示したものであり、外環境と遮断される構造物作製チャンバー101内にフィルム準備室102、構造物作製室105、フィルム洗浄室115、フィルム巻き取り室117が設置されている。フィルム準備室102にはロール状で準備された長尺のフィルム103が図示しない回転制御装置に連結した、基材搬送装置であるフィルム巻き出し装置104に装填される。フィルム103は金属箔やプラスチック箔などが用意される。フィルム103の端を引き出す形で、構造物作製室105内にこれが挿入され、図示しない回転制御装置に連結した整形ロール106a、106b、106c、106d、また図示しない回転制御装置に連結した基材搬送保持具である円筒状の構造物形成ロール107a、107bに固定され、フィルム洗浄室115内の洗浄ロール116にセットされ、フィルム巻き取り室117内で図示しない回転制御装置に連結した、基材搬送装置である巻き取りロール118にこの端が固定される。一方窒素やヘリウムなどのガスボンベ108a、108bを経てエアロゾル発生器109a、109bが配置されており、このエアロゾル発生器109a、109bの中に例えば酸化アルミニウムなどの脆性材料微粒子が装填されている。エアロゾル発生器109a、109bの先はエアロゾル搬送管110a、110bを通じてノズル111a、111bが、その先端の開口を、構造物形成ロール107a、107b上に配置されたフィルム103の表面に向けてちょうど構造物形成ロール107a、107bと基材の表裏で対となるように配置される。このノズル111aとノズル111bは、フィルム103の片面とこれとは異なるもう片面にそれぞれエアロゾルの噴射開口を向けて配置されている。またノズルの開口の先には、エアロゾル回収口112a、112bが配置され、これらは配管を通じて粉体回収装置113a、113bを経て真空ポンプ114a、114bに連結されている。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a composite structure manufacturing apparatus 10 according to the present invention. A film preparation chamber 102, a structure preparation chamber 105, a film cleaning chamber 115, and a film are provided in a structure preparation chamber 101 that is cut off from the outside environment. A winding chamber 117 is installed. In the film preparation chamber 102, a long film 103 prepared in a roll shape is loaded into a film unwinding device 104, which is a base material transport device, connected to a rotation control device (not shown). As the film 103, a metal foil, a plastic foil, or the like is prepared. The film 103 is inserted into the structure production chamber 105 in such a manner that the end of the film 103 is pulled out, and the shaping rolls 106a, 106b, 106c, 106d connected to a rotation control device (not shown) and the substrate transport connected to a rotation control device (not shown) Substrate transport fixed to cylindrical structure forming rolls 107a and 107b, which are holders, set on cleaning roll 116 in film cleaning chamber 115, and connected to a rotation control device (not shown) in film winding chamber 117 This end is fixed to a take-up roll 118 which is a device. On the other hand, aerosol generators 109a and 109b are disposed through gas cylinders 108a and 108b such as nitrogen and helium, and brittle material particles such as aluminum oxide are loaded in the aerosol generators 109a and 109b. The aerosol generators 109a and 109b have nozzles 111a and 111b through aerosol transport pipes 110a and 110b, with the opening at the tip thereof facing the surface of the film 103 disposed on the structure forming rolls 107a and 107b. The forming rolls 107a and 107b are arranged so as to be paired on the front and back of the base material. The nozzle 111a and the nozzle 111b are arranged on one side of the film 103 and the other side different from the nozzle 103 with the aerosol injection opening facing each other. Further, aerosol recovery ports 112a and 112b are arranged at the tip of the nozzle opening, and these are connected to vacuum pumps 114a and 114b through powder recovery devices 113a and 113b through piping.

以下にエアロゾルデポジション法に基づく複合構造物作製装置10の作用を述べる。ガスボンベ108a、108bを開栓し、ガスをエアロゾル発生器109a、109b内に送り込み、運転させて脆性材料微粒子とガスが適当比で混合されたエアロゾルを発生させる。また真空ポンプ114a、114bを稼動させ、エアロゾル発生器109a、109bと構造物作製室105の間に差圧を生じさせる。エアロゾルをエアロゾル搬送管110a、110bを通して加速させ、ノズル111a、111bよりフィルム103のそれぞれ異なる面に向けて噴射する。一方、フィルム103はフィルム巻き取りロール118やフィルム巻きだしロール104などの回転制御を受けて徐徐にフィルム巻き取りロール118に巻き取られる形で搬送される。図示するロール上の矢印はフィルムの巻き取り方向を示している。このようにして、フィルム103上でエアロゾルとの衝突位置を変化させつつ、微粒子の衝突により膜状の脆性材料構造物がフィルム103の両面に形成されていく。このときフィルム103は一方向に進行して搬送されてもよいし、回転制御により進行と退行を繰り返して搬送されてもよい。すなわち所望の形成高さを形成させるために搬送速度に緩急をつけたり、あるいは揺動状態にして形成高さを稼ぐことができる。またこれらノズルをさらに複数ユニット配置させて、順次形成高さを増していくことも好適である。図中のノズル111a、111bの先端にある矢印はエアロゾルの流れを示しており、その先にあるエアロゾル回収口112a、112bに構造物形成に使用されなかったエアロゾルが導入され、粉体回収装置113a、113bにて脆性材料微粒子とガスとが分離されて、脆性材料微粒子は回収され、ガスは真空ポンプ114a、114bにて外界に排気される。またエアロゾルの基材への衝突位置はちょうど構造物形成ロールの表面に接触保持されている基材表面にあたるため、高速のエアロゾル流が衝突しても、箔状である基材が撓んだり、振動したりするなどの不具合がない。   The operation of the composite structure manufacturing apparatus 10 based on the aerosol deposition method will be described below. The gas cylinders 108a and 108b are opened, the gas is sent into the aerosol generators 109a and 109b, and the gas cylinders 108a and 108b are operated to generate an aerosol in which brittle material fine particles and gas are mixed at an appropriate ratio. Further, the vacuum pumps 114 a and 114 b are operated to generate a differential pressure between the aerosol generators 109 a and 109 b and the structure manufacturing chamber 105. Aerosol is accelerated through the aerosol transport pipes 110a and 110b, and sprayed toward different surfaces of the film 103 from the nozzles 111a and 111b. On the other hand, the film 103 is conveyed in such a manner that it is gradually wound around the film take-up roll 118 under the rotation control of the film take-up roll 118 and the film take-up roll 104. The arrow on the illustrated roll indicates the film winding direction. In this manner, a film-like brittle material structure is formed on both surfaces of the film 103 by collision of fine particles while changing the collision position with the aerosol on the film 103. At this time, the film 103 may travel in one direction and be transported, or may be transported by repeatedly proceeding and retreating by rotation control. That is, in order to form a desired formation height, the conveyance speed can be increased or decreased, or the formation speed can be increased by swinging. It is also preferable to further increase the formation height by arranging a plurality of these nozzles. The arrows at the tips of the nozzles 111a and 111b in the figure indicate the flow of the aerosol. The aerosol that has not been used to form the structure is introduced into the aerosol collection ports 112a and 112b at the tip, and the powder collection device 113a. 113b, the brittle material fine particles and the gas are separated, the brittle material fine particles are recovered, and the gas is exhausted to the outside by the vacuum pumps 114a and 114b. In addition, since the collision position of the aerosol to the base material is just on the surface of the base material held in contact with the surface of the structure forming roll, even if a high-speed aerosol flow collides, the foil-shaped base material is bent, There are no problems such as vibration.

このようにして、フィルム103の両面に一工程にて構造物形成が行われるため、片面のみ構造物を形成して取り出すという工程を経ることによる膜の膨れやカールによる取り扱いの困難さを解消することができるとともに、フィルムの両面に製膜された後には、脆性材料構造物のもつ圧縮応力が相殺されて、膨れやカールなどの形状の癖をなくすことができる。   In this way, since structure formation is performed on both surfaces of the film 103 in one step, the difficulty of handling due to film bulging or curling due to the process of forming and removing the structure on only one side is eliminated. In addition, after the film is formed on both sides of the film, the compressive stress of the brittle material structure is canceled, and wrinkles such as swelling and curling can be eliminated.

またエアロゾル発生器109aを停止して、片面のみ、ノズル111bにて構造物形成を行い、かつ構造物形成ロール107b、整形ロール106dのロール表面材質をゴム製として、フィルム103との接触部の摩擦抵抗を大きくすることや、串型電極を配置させて電界印加によってプラスチックフィルムなど誘電体への静電吸着力を働かせることによって、フィルム103とロールの間に吸着力を生じさせる工夫を行い、かつこれらロールの回転制御を電磁モータで行って、構造物形成ロール107bの周速度を他のロールと同じに制御しつつ、整形ロール106dは無負荷の状態で構造物形成ロール107bの周速度以上で回転するようあらかじめ制御しておき、この状態でフィルムを移動させながら構造物形成を行うことで、成形ロール106dが構造物形成ロール107bに密着するフィルム103の抵抗を受けて周速度を構造物形成ロール107bと同じ程度まで遅くしつつ、これらの間に位置する領域のフィルム103に引っ張り応力を与え、さらにはこれらロールの間でフィルムの伸展を起こさしめることで、構造物の圧縮応力を緩和することが可能となる。   Further, the aerosol generator 109a is stopped, the structure is formed only on one side by the nozzle 111b, and the surface of the structure forming roll 107b and the shaping roll 106d is made of rubber, so that the friction of the contact portion with the film 103 is reduced. By increasing the resistance, or by placing a skewer electrode and applying an electrostatic attraction force to a dielectric material such as a plastic film by applying an electric field, we devised to generate an attraction force between the film 103 and the roll, and The rotation control of these rolls is performed by an electromagnetic motor, and while the peripheral speed of the structure forming roll 107b is controlled to be the same as the other rolls, the shaping roll 106d is not loaded and is above the peripheral speed of the structure forming roll 107b. By controlling in advance to rotate and forming the structure while moving the film in this state, The film 106d receives the resistance of the film 103 adhered to the structure forming roll 107b and slows the peripheral speed to the same level as that of the structure forming roll 107b, while applying a tensile stress to the film 103 in the region located between them. Furthermore, it is possible to relieve the compressive stress of the structure by causing the film to stretch between these rolls.

また構造物形成ロール107bや整形ロール106dを加熱することにより、フィルム103が塑性変形を起こしやすい状態にして、伸展を助長させることも好適である。   It is also preferable to promote the stretching by heating the structure forming roll 107b and the shaping roll 106d so that the film 103 easily undergoes plastic deformation.

本発明は、例えば金属箔上やプラスチックフィルム上に絶縁膜やチタニアなどの光触媒膜を形成させる用途、銅箔上にチタン酸バリウムやチタン酸ストロンチウム、PZTやこれらの複合酸化物の膜状構造物を形成させた回路基板用コンデンサシートの製造に利用できる。   The present invention is, for example, used for forming a photocatalytic film such as an insulating film or titania on a metal foil or a plastic film, or a film-like structure of barium titanate, strontium titanate, PZT or a composite oxide thereof on a copper foil. It can be used for the production of a capacitor sheet for a circuit board on which is formed.

複合構造物作製装置を示す模式図Schematic diagram showing a composite structure manufacturing device

符号の説明Explanation of symbols

10…複合構造物作製装置
101…構造物作製チャンバー
102…フィルム準備室
103…フィルム
104…フィルム巻き出し装置
105…構造物作製室
106a、106b、106c、106d…整形ロール
107a、107b…構造物形成ロール
108a、108b…ガスボンベ
109a、109b…エアロゾル発生器
110a、110b…エアロゾル搬送管
111a、111b…ノズル
112a、112b…エアロゾル回収口
113a、113b…粉体回収装置
114a、114b…真空ポンプ
115…フィルム洗浄室
116…洗浄ロール116
117…フィルム巻き取り室
118…巻き取りロール
DESCRIPTION OF SYMBOLS 10 ... Composite structure preparation apparatus 101 ... Structure preparation chamber 102 ... Film preparation room 103 ... Film 104 ... Film unwinding apparatus 105 ... Structure preparation room 106a, 106b, 106c, 106d ... Shaping roll 107a, 107b ... Structure formation Roll 108a, 108b ... Gas cylinder 109a, 109b ... Aerosol generator 110a, 110b ... Aerosol transport pipe 111a, 111b ... Nozzle 112a, 112b ... Aerosol recovery port 113a, 113b ... Powder recovery device 114a, 114b ... Vacuum pump 115 ... Film cleaning Chamber 116 ... Cleaning roll 116
117 ... film winding chamber 118 ... winding roll

Claims (2)

脆性材料微粒子をガスに分散させたエアロゾルを、フィルム状の金属基材表面に向けてノズルより噴射して衝突させ、前記脆性材料微粒子の構成材料からなる脆性材料構造物を、前記基材の一方の表面に形成させる複合構造物形成装置であって、前記基材を搬送する基材搬送装置を有し、前記基材搬送装置は、前記基材の一方の表面に脆性材料構造物を形成した後で、前記基材の他方の面が延性変形を起こして伸展するように、前記基材を搬送しながら前記基材の他方の面に引っ張り応力を印加する機構を備えることを特徴とすることを特徴とする複合構造物形成装置。 An aerosol in which fine particles of brittle material are dispersed in a gas is jetted from a nozzle toward the surface of a film-like metal base material to be collided, and a brittle material structure made of the constituent material of the brittle material fine particles is applied to one of the base materials . A composite structure forming apparatus to be formed on the surface of the substrate having a base material transport device for transporting the base material, the base material transport device forming a brittle material structure on one surface of the base material And a mechanism for applying a tensile stress to the other surface of the base material while transporting the base material so that the other surface of the base material undergoes ductile deformation and extends later. A composite structure forming apparatus. 脆性材料微粒子をガスに分散させたエアロゾルを、フィルム状の金属基材の表面に向けてノズルより噴射して衝突させ、この衝撃によって前記脆性材料微粒子の構成材料からなる脆性材料構造物を、前記基材の一方の表面に形成させる複合構造物形成方法であって、前記基材の一方の面に構造物を形成させた後で、前記基材の他方の面が延性変形を起こして伸展するように、前記基材を搬送しながら前記基材の他方の面に引っ張り応力を印加することを特徴とする複合構造物の形成方法。 The aerosol in which the fine particles of the brittle material are dispersed in the gas is jetted from the nozzle toward the surface of the film-like metal base material to be collided, and by this impact, the brittle material structure made of the constituent material of the brittle material fine particles is A method of forming a composite structure formed on one surface of a base material, wherein after the structure is formed on one surface of the base material, the other surface of the base material undergoes ductile deformation and extends As described above , a tensile stress is applied to the other surface of the base material while the base material is being conveyed .
JP2004071350A 2003-03-17 2004-03-12 Composite structure forming apparatus and forming method Expired - Lifetime JP4487306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071350A JP4487306B2 (en) 2003-03-17 2004-03-12 Composite structure forming apparatus and forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003071488 2003-03-17
JP2004071350A JP4487306B2 (en) 2003-03-17 2004-03-12 Composite structure forming apparatus and forming method

Publications (2)

Publication Number Publication Date
JP2004300572A JP2004300572A (en) 2004-10-28
JP4487306B2 true JP4487306B2 (en) 2010-06-23

Family

ID=33421734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071350A Expired - Lifetime JP4487306B2 (en) 2003-03-17 2004-03-12 Composite structure forming apparatus and forming method

Country Status (1)

Country Link
JP (1) JP4487306B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099575B2 (en) * 2005-03-08 2012-12-19 Toto株式会社 Method for manufacturing brittle material structure
JP4595118B2 (en) * 2005-04-28 2010-12-08 独立行政法人産業技術総合研究所 Modified plastics and method for producing the same
JP4595893B2 (en) * 2006-06-27 2010-12-08 パナソニック電工株式会社 Insulating film formation method
JP4661703B2 (en) * 2006-06-27 2011-03-30 パナソニック電工株式会社 Insulating film formation method
JP4363491B1 (en) 2008-06-09 2009-11-11 トヨタ自動車株式会社 Method for manufacturing film-formed body
JP4998387B2 (en) * 2008-06-30 2012-08-15 三菱マテリアル株式会社 Power module substrate manufacturing method and power module substrate
JP4711242B2 (en) * 2008-09-25 2011-06-29 Toto株式会社 Composite structure and manufacturing method thereof
JP2010180436A (en) * 2009-02-04 2010-08-19 Nikon Corp Particle jet film deposition system for continuous film deposition of foil substrate, and continuous film deposition method of foil substrate
DE102010031741B4 (en) * 2010-07-21 2012-09-20 Siemens Aktiengesellschaft Method and device for producing superconducting layers on substrates
JP5628231B2 (en) * 2012-02-22 2014-11-19 日本発條株式会社 Laminated body
US9583364B2 (en) 2012-12-31 2017-02-28 Sunedison Semiconductor Limited (Uen201334164H) Processes and apparatus for preparing heterostructures with reduced strain by radial compression
JP6396123B2 (en) * 2014-08-29 2018-09-26 日東電工株式会社 Powder coating equipment
JP2015025210A (en) * 2014-10-07 2015-02-05 株式会社ニコン Fine particle injection film deposition system and foil substrate continuous film deposition method
JP6953823B2 (en) * 2017-06-20 2021-10-27 東洋紡株式会社 Liquid coating device and liquid coating method.

Also Published As

Publication number Publication date
JP2004300572A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4487306B2 (en) Composite structure forming apparatus and forming method
CA2303515C (en) Method of forming shaped body of brittle ultra fine particle at low temperature
EP1937872A1 (en) Method of manufacturing composite structure, impurity removal processing apparatus, film forming apparatus, composite structure and raw material powder
Naoe et al. Effect of process for producing Al2O3 particles on deposition efficiency in aerosol deposition method
WO2018045387A1 (en) Polymer nanoparticle thermal insulators
JP2007288063A (en) Dielectric device
CN109295451B (en) Plasma-assisted aerosol deposition film-forming method and aerosol deposition device
JP2005262108A (en) Method for manufacturing film-forming apparatus and piezoelectric material
JP2005344171A (en) Raw material powder for film deposition, and film deposition method using the same
JP3897623B2 (en) Composite structure manufacturing method
JP2007162077A (en) Film deposition apparatus, film deposition method, ceramic film, inorganic structure, and device
JP2007320797A (en) Composite structure and its manufacturing method
JP2005279953A (en) Ceramic structure and its manufacturing method
JP4866088B2 (en) Deposition method
JP2007063582A (en) Film-forming method and film-forming apparatus
JP5246632B2 (en) Film forming method and film forming apparatus
Kim et al. Role of TiO2 nanoparticles in the dry deposition of NiO micro-sized particles at room temperature
JP4590594B2 (en) Aerosol deposition system
JP2005089826A (en) Composite structure production device
JP3850257B2 (en) Low temperature forming method for brittle material structures
JP5190766B2 (en) Composite structure forming apparatus and method for forming composite structure
WO2007105670A1 (en) Method for fabricating film-formed body by aerosol deposition
JP4086627B2 (en) Deposition method
JP2005076104A (en) Manufacturing device of composite structure
JP2010084223A (en) Composite body of metal silicate film and glass base material, composite body of metal silicate film and the body to be film-formed, and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4