JP4487239B2 - Method for manufacturing FRP structure - Google Patents

Method for manufacturing FRP structure Download PDF

Info

Publication number
JP4487239B2
JP4487239B2 JP2004041254A JP2004041254A JP4487239B2 JP 4487239 B2 JP4487239 B2 JP 4487239B2 JP 2004041254 A JP2004041254 A JP 2004041254A JP 2004041254 A JP2004041254 A JP 2004041254A JP 4487239 B2 JP4487239 B2 JP 4487239B2
Authority
JP
Japan
Prior art keywords
resin
mold
reinforcing fiber
fiber base
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004041254A
Other languages
Japanese (ja)
Other versions
JP2005231112A (en
Inventor
悟 長岡
俊英 関戸
高史 吉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004041254A priority Critical patent/JP4487239B2/en
Publication of JP2005231112A publication Critical patent/JP2005231112A/en
Application granted granted Critical
Publication of JP4487239B2 publication Critical patent/JP4487239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum

Description

本発明は、FRP(Fiber Reinfoced Plastics:繊維強化樹脂)構造体の製造方法に関し、特に、成形品の端部の強度の劣化を防ぐため、強化繊維基材を成形品の隅々まで容易に行き渡らせ、特に薄板(0.5〜5mm程度の厚み)の端部の強度を維持するFRP成形品の製造に好適なFRP構造体の製造方法に関する。   The present invention relates to a method for manufacturing an FRP (Fiber Reinfoced Plastics) structure, and in particular, in order to prevent deterioration in strength at the end of a molded product, the reinforcing fiber base material is easily distributed to every corner of the molded product. In particular, the present invention relates to a method for manufacturing an FRP structure suitable for manufacturing an FRP molded product that maintains the strength of the end of a thin plate (thickness of about 0.5 to 5 mm).

FRP、特にCFRP(炭素繊維強化樹脂)は軽量、かつ高い機械的性質を有する複合材料として様々な分野で利用されている。FRP成形方法の一つとして、型に強化繊維基材を載置し、型閉めの後、型内を減圧して液状樹脂を注入し、加熱硬化させるRTM成形法(レジントランスファーモールディング)が知られている。   FRP, especially CFRP (carbon fiber reinforced resin) is used in various fields as a composite material having a light weight and high mechanical properties. As one of the FRP molding methods, there is known an RTM molding method (resin transfer molding) in which a reinforcing fiber base is placed on a mold, and after closing the mold, the inside of the mold is depressurized to inject a liquid resin and heat cure. ing.

RTM成形法は、FRP、特にCFRPの特徴である軽量、かつ高い機械的性質、複雑な形状を実現するには最適な方法の一つである。しかしながら、成形後のバリ取りなどの不要な部分の削除には、NC機械加工などが必要となり、工数・工程の増加につながる。特に、CFRPでは繊維が固く、工具の摩耗も早く、省略したい行程の一つである。この作業を省略するため、成形形状にできるだけ近い強化繊維基材の形状を得ようと強化繊維基材の賦形に関する提案が種々なされている。   The RTM molding method is one of the most suitable methods for realizing light weight, high mechanical properties, and complex shapes, which are the characteristics of FRP, particularly CFRP. However, removal of unnecessary parts such as deburring after molding requires NC machining, which leads to an increase in man-hours and processes. In particular, CFRP is one of the processes to be omitted because the fibers are hard and the tool wears quickly. In order to omit this work, various proposals regarding shaping of the reinforcing fiber base have been made to obtain the shape of the reinforcing fiber base as close as possible to the molded shape.

たとえば上下の賦形型で挟み込むことで、成形型に配設する前に事前に強化繊維基材にある程度の形状賦形することがすでに提案されている(たとえば、特許文献1)。また、複数枚重ねた強化繊維基材に熱可塑性樹脂材料を付与し、上記賦形型により加熱賦形すれば、さらに確実な形状維持が可能となる(たとえば、特許文献2)。さらに、型に基準線を配しておき、その基準線に合致する強化繊維基材の位置には織り糸に沿ったマーキングを施し、成形型に配設する際に、正確に位置決めする工夫もなされている(たとえば、特許文献3)。
特開2003−305719号公報 特開2003−80607号公報 特開2003−127157号公報
For example, it has already been proposed to shape the reinforcing fiber base material to some extent in advance by placing it between the upper and lower shaping dies before being placed in the molding die (for example, Patent Document 1). Further, if a thermoplastic resin material is applied to a plurality of reinforced fiber base materials and heat-shaped by the above-described shaping mold, it is possible to maintain a more reliable shape (for example, Patent Document 2). In addition, a reference line is placed on the mold, and markings along the weaving yarn are applied to the position of the reinforcing fiber base that matches the reference line. (For example, Patent Document 3).
JP 2003-305719 A JP 2003-80607 A JP 2003-127157 A

しかしながら、上記のような従来の方法において、NC機械加工などを省略しようとすると、強化繊維基材を所定の成形形状より小さくつくって、成形形状からはみ出さないようにすることが必要である。たとえば図1、図2に示すように、バイクのカウルなどの薄い板状(0.5〜3mm程度の厚み)の繊維強化樹脂成形品101をRTM成形法で成形する場合、端部には、繊維強化基材102の充填されない樹脂リッチ部分103が存在することにつながり、端部の性格上、ぶつける等の衝撃を受けやすく、強度が低くなった部分の”欠け”が問題となることが多い。   However, in the conventional method as described above, if NC machining or the like is to be omitted, it is necessary to make the reinforcing fiber base smaller than a predetermined molding shape so as not to protrude from the molding shape. For example, as shown in FIGS. 1 and 2, when a thin plate-like (thickness of about 0.5 to 3 mm) fiber reinforced resin molded article 101 such as a cowl of a motorcycle is molded by an RTM molding method, This leads to the presence of the resin-rich portion 103 that is not filled with the fiber reinforced base material 102, and due to the nature of the end portion, it is easily affected by impact such as bumping, and “cracking” of the portion with reduced strength often becomes a problem. .

強化繊維基材の成形品の端部まで、目的の強度を得ようとすると、強化繊維基材が端部の隅々まで行き渡っている必要がある。そこで、図3に示すように、成形品の隅々まで強化繊維基材102を行き渡らせるために、下型に配設する前に賦形型を用いて、あらかじめ形状を厳密に合わせ込んでおく方法を検討したが、織物の目がずれることで寸法は大きく変化するため、要求される寸法精度(たとえば、±2mm程度)を得ることは困難であった。さらに、型上でハサミなどで端部を切って厳密に調整することは可能であるが、作業時間が長くなると同時に、作業者の熟練度や出来、不出来により、品質に差が現れるという問題が生じる。   In order to obtain the desired strength up to the end of the molded article of the reinforcing fiber base, it is necessary that the reinforcing fiber base is spread to every corner of the end. Therefore, as shown in FIG. 3, in order to spread the reinforcing fiber base material 102 to every corner of the molded product, the shape is strictly adjusted in advance using a shaping mold before being arranged in the lower mold. Although the method was examined, since the size of the woven fabric was shifted greatly, the required dimensional accuracy (for example, about ± 2 mm) was difficult to obtain. Furthermore, it is possible to cut the edge with scissors etc. on the mold and adjust it precisely, but at the same time the work time becomes long and at the same time, there will be a difference in quality due to the skill level of the worker and the ability Occurs.

そこで本発明の課題は、従来のFRP成形法の問題である、成形品端部の強度の低下を防ぐために、成形型形状と合致した強化繊維基材の製作に関し、特に従来の方法に対し時間や手間をかけることなく良好な品質のFRP構造体を成形することが可能な、FRP構造体の製造方法を提供することにある。   Therefore, an object of the present invention relates to the production of a reinforced fiber base material that matches the shape of the mold in order to prevent the strength of the end of the molded product from being lowered, which is a problem of the conventional FRP molding method. Another object of the present invention is to provide a method for producing an FRP structure capable of forming an FRP structure having a good quality without taking time and effort.

上記課題を解決するために、本発明に係るFRP構造体の製造方法は、成形型内に強化繊維基材を配設し、樹脂を注入した後に硬化して成形するFRP構造体の製造方法において、前記強化繊維基材として、織物シートで構成される成形形状より小さい主強化繊維基材と、その周囲に配置された短繊維で構成される副強化繊維基材とを、接着一体化した強化繊維基材を用いることを特徴とする方法からなる In order to solve the above-mentioned problem, a method for manufacturing an FRP structure according to the present invention is a method for manufacturing an FRP structure in which a reinforcing fiber substrate is disposed in a mold, and after being injected with a resin, the resin is cured and molded. As the reinforcing fiber base, a main reinforcing fiber base smaller than a molded shape constituted by a woven sheet and a secondary reinforcing fiber base constituted by short fibers arranged around the main reinforcing fiber base are bonded and integrated. It consists of the method characterized by using a fiber base material .

記の方法においては、主強化繊維基材は成形形状に対し適度に小さく形成しておけばよく、事前の加工や賦形は極めて容易に行える。そして、その周囲に短繊維で構成される副強化繊維基材を配置し、例えば熱可塑性樹脂で接着一体化しておくことで、成形形状に対し隅々まで強化繊維を確実に配置できる。この熱可塑性樹脂はFRPのマトリックス樹脂を構成するものではなく、単に副強化繊維基材の接着一体化に用いられるものであるから、成形されたFRP構造体の機械的特性には実質的に無関係である。このように簡単に隅々まで強化繊維が配置されることにより、端部まで良好な品質のFRP構造体が成形される。 In the above method SL, the main reinforcing fiber base material may by forming moderately reduced to molded shape, pre-processing and shaping can be performed very easily. Then, by arranging a sub-reinforced fiber base composed of short fibers around it and bonding and integrating it with, for example, a thermoplastic resin, it is possible to reliably arrange the reinforcing fibers to every corner of the molded shape. This thermoplastic resin does not constitute a matrix resin for FRP, but is merely used for adhesion and integration of the sub-reinforcing fiber base material, so that it is substantially unrelated to the mechanical properties of the molded FRP structure. It is. As described above, the reinforcing fibers are easily arranged to the every corner, so that an FRP structure having a good quality is formed to the end.

本発明に係るFRP構造体の製造方法によれば、強化繊維基材は、事前にNC加工などの精密加工を施す必要はなく、精度を要しない極めて簡単な加工や賦形を行えばよく、作業が容易で作業者間に品質の差が生じることもない。そして、確実に成形品の隅々まで強化繊維を配置できるので、端部まで良好な品質のFRP構造体を安価にかつ容易に成形することができるようになる。   According to the method for manufacturing an FRP structure according to the present invention, the reinforcing fiber base does not need to be subjected to precision processing such as NC processing in advance, and may be performed by extremely simple processing or shaping that does not require accuracy, Work is easy and there is no difference in quality between workers. Since the reinforcing fibers can be surely arranged to every corner of the molded product, it is possible to easily and inexpensively form an FRP structure of good quality up to the end.

以下に、本発明の望ましい実施の形態について、図面を参照しながら説明する。
本発明において、FRPとは、強化繊維により強化されている樹脂を指し、強化繊維としては、例えば、炭素繊維、ガラス繊維、金属繊維等の無機繊維、あるいはアラミド繊維、ポリエチレン繊維、ポリアミド繊維などの有機繊維からなる強化繊維が挙げられる。FRPのマトリックス樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂等の熱硬化性樹脂が挙げられ、さらには、ポリアミド樹脂、ポリオレフィン樹脂、ジシクロペンタジエン樹脂、ポリウレタン樹脂、ポリプロピレン樹脂等の熱可塑性樹脂も使用可能である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
In the present invention, FRP refers to a resin reinforced with reinforcing fibers. Examples of reinforcing fibers include inorganic fibers such as carbon fibers, glass fibers, and metal fibers, or aramid fibers, polyethylene fibers, and polyamide fibers. Reinforcing fibers made of organic fibers can be mentioned. Examples of the FRP matrix resin include thermosetting resins such as epoxy resins, unsaturated polyester resins, vinyl ester resins, and phenol resins. Furthermore, polyamide resins, polyolefin resins, dicyclopentadiene resins, polyurethane resins, Thermoplastic resins such as polypropylene resin can also be used.

本発明に係るRTM成形法で使用する樹脂としては、粘度が低く強化繊維への含浸が容易な熱硬化製樹脂または熱可塑性樹脂を形成するRIM(Reaction Injection Molding)用モノマーが好適であり、その中でもFRP構造体の熱収縮を低減させ、クラックの発生を抑えるという点から、エポキシ樹脂または熱可塑性樹脂やゴム成分などを配合した変性エポキシ樹脂、ナイロン樹脂、ジシクロペンタジエン樹脂がより適している。   The resin used in the RTM molding method according to the present invention is preferably a thermosetting resin or a monomer for RIM (Reaction Injection Molding) that forms a thermoplastic resin that has a low viscosity and can be easily impregnated into a reinforcing fiber. Among them, modified epoxy resins, nylon resins, and dicyclopentadiene resins blended with an epoxy resin or a thermoplastic resin or a rubber component are more suitable from the viewpoint of reducing thermal shrinkage of the FRP structure and suppressing the occurrence of cracks.

また、本発明で使用する強化繊維基材としては、例えば樹脂の含浸されていない強化繊維からなる基材を指し、その強化繊維の織物やチョップドファイバー、マット、ニット材料、さらにこれらとインサート部品との組み合わせ等が挙げられ、その用途により使い分けられる。前記インサート部品とは、例えばスチールやアルミニウムなどの金属板や、金属柱、金属ボルト、ナット、ヒンジなどの接合用の金属、アルミハニカムコア、あるいはポリウレタン、ポリスチレン、ポリイミド、塩化ビニル、フェノール、アクリルなどの高分子材料からなるフォーム材やゴム質材、木質材等が挙げられ、主として、釘が効くことや、ネジが立てられる等の接合を目的としたインサート部品、中空構造で軽量化を目的としたインサート部品、振動の減衰を目的としたインサート部品などが多く用いられる。   The reinforcing fiber substrate used in the present invention refers to a substrate made of reinforcing fibers not impregnated with resin, for example, the reinforcing fiber fabric, chopped fiber, mat, knit material, and these and insert parts. Can be used depending on the application. Examples of the insert parts include metal plates such as steel and aluminum, metals for joining such as metal columns, metal bolts, nuts, and hinges, aluminum honeycomb cores, polyurethane, polystyrene, polyimide, vinyl chloride, phenol, acrylic, and the like. Foam materials, rubber materials, wood materials, etc. composed of the above polymer materials are mainly used, and insert parts intended for joining such as nails and screws can be raised, with a hollow structure for the purpose of weight reduction Insert parts that are used for the purpose of damping vibration are often used.

また、本発明で使用する成形型は、例えば上型と下型とからなる成形金型からなり、例えば上型が金型昇降装置に取り付けられる。下型には強化繊維基材を設置する。この強化繊維基材は、事前に成形型に納まりやすいように強化繊維基材を製品形状に賦形することを目的とした賦形型により作成する。成形型の材質としてはFRP、鋳鋼、構造用炭素鋼、アルミニウム合金、亜鉛合金、ニッケル電鋳、銅電鋳などが挙げられる。量産には、剛性、耐熱性、作業性の面から構造用炭素鋼が好適である。   Moreover, the shaping | molding die used by this invention consists of a shaping die which consists of an upper mold | type and a lower mold | type, for example, for example, an upper mold | type is attached to a mold raising / lowering apparatus. Reinforcing fiber base material is installed in the lower mold. This reinforcing fiber base is prepared by a shaping mold for the purpose of shaping the reinforcing fiber base into a product shape so that it can be easily accommodated in the mold in advance. Examples of the material of the mold include FRP, cast steel, structural carbon steel, aluminum alloy, zinc alloy, nickel electroforming, and copper electroforming. For mass production, structural carbon steel is suitable in terms of rigidity, heat resistance, and workability.

図4は、本発明の一実施態様に係るFRP構造体の製造方法を実施するための成形システムを示している。図4において、2は、上型と下型とを有する成形型としての成形金型を示しており、その上型が金型昇降装置1に取り付けられている。金型昇降装置1は、油圧ポンプ10、油圧シリンダー11を備えた油圧ユニット9を有しており、上型の作動、加圧が油圧により制御されるようになっている。   FIG. 4 shows a molding system for carrying out a method for manufacturing an FRP structure according to an embodiment of the present invention. In FIG. 4, reference numeral 2 denotes a molding die as a molding die having an upper die and a lower die, and the upper die is attached to the die lifting device 1. The mold lifting / lowering apparatus 1 has a hydraulic unit 9 including a hydraulic pump 10 and a hydraulic cylinder 11, and the operation and pressurization of the upper mold are controlled by hydraulic pressure.

成形型2には、樹脂注入口8aに繋がる樹脂注入流路13、排出口8bに繋がる排出路14が接続されている。樹脂注入流路13、排出路14は各々注入バルブ22a、排出バルブ22bを介して注入口8a、排出口8bに接続する。注入バルブ22a、排出バルブ22bの開閉作動およびその作動タイミングは、制御装置22cからの指令に基づいて行われる。樹脂注入流路13には樹脂注入装置3が接続されている。樹脂注入装置3は、主剤タンク5、硬化剤タンク6にそれぞれ主剤、硬化剤を収容し、それぞれのタンクは加温できる機構を備えているとともに、真空ポンプ24により真空脱泡できるようになっている。樹脂注入時にはそれぞれのタンクから加圧装置23により樹脂を樹脂注入流路13に向かって押し流す。逆止弁12を介して設けられた加圧装置23にはシリンジポンプを用いており、シリンジを同時に押し出すことで定量性も確保することが、2液混合により硬化する樹脂には好ましい。主剤、硬化剤は混合ユニット4で混合され、樹脂注入流路13に至る。排出路14には、真空ポンプ7aあるいは加圧ポンプ7bへの樹脂の流入を防ぐために、樹脂トラップ15が介装されている。   The mold 2 is connected to a resin injection channel 13 connected to the resin injection port 8a and a discharge channel 14 connected to the discharge port 8b. The resin injection channel 13 and the discharge channel 14 are connected to the injection port 8a and the discharge port 8b via an injection valve 22a and a discharge valve 22b, respectively. The opening / closing operation of the injection valve 22a and the discharge valve 22b and the operation timing thereof are performed based on commands from the control device 22c. A resin injection device 3 is connected to the resin injection flow path 13. The resin injection device 3 stores the main agent and the curing agent in the main agent tank 5 and the curing agent tank 6, respectively, and each tank has a mechanism capable of heating and can be degassed by the vacuum pump 24. Yes. At the time of resin injection, the resin is pushed from each tank toward the resin injection flow path 13 by the pressurizing device 23. A syringe pump is used for the pressurizing device 23 provided via the check valve 12, and it is preferable for a resin that is cured by two-liquid mixing to ensure quantitativeness by simultaneously extruding the syringe. The main agent and the curing agent are mixed by the mixing unit 4 and reach the resin injection channel 13. A resin trap 15 is interposed in the discharge path 14 in order to prevent the resin from flowing into the vacuum pump 7a or the pressure pump 7b.

なお、注入口8aの数や位置は成形型の形状や寸法、1型内で同時に成形する成形品の数量などによって異なるが、注入口8aはできるだけ少ないことが好ましい。これは樹脂注入装置3からの注入用流路13を注入口8aに接続する箇所が増えて注入作業が繁雑になることを防ぐためである。   The number and positions of the injection ports 8a vary depending on the shape and size of the mold and the number of molded products that are simultaneously molded in the mold, but it is preferable that the number of injection ports 8a be as small as possible. This is to prevent the injection work from becoming complicated due to an increase in the number of locations where the injection flow path 13 from the resin injection device 3 is connected to the injection port 8a.

樹脂注入流路13の材料は十分な流量の確保と樹脂との適合性(温度や耐溶剤性、耐圧)を考慮する必要がある。チューブには口径5〜30mmのものを用い、樹脂の注入圧力に耐えるために1.0MPa以上の耐圧性、樹脂硬化時の温度に耐えるために100℃以上の耐熱性が必要となり、厚みが2mm程度の”テフロン(登録商標)”などのフッ素樹脂製チューブが好適である。ただし、”テフロン(登録商標)”以外にも、比較的安価なポリエチレン、ナイロン等のプラスチック製のチューブやスチール、アルミ等の金属管であってもよい。   The material of the resin injection flow path 13 needs to ensure sufficient flow rate and compatibility with the resin (temperature, solvent resistance, pressure resistance). A tube with a diameter of 5 to 30 mm is used. A pressure resistance of 1.0 MPa or more is required to withstand the injection pressure of the resin, and a heat resistance of 100 ° C. or more is required to withstand the temperature during resin curing, and the thickness is 2 mm. A tube made of fluororesin such as “Teflon (registered trademark)” is suitable. However, other than “Teflon (registered trademark)”, a relatively inexpensive plastic tube such as polyethylene or nylon, or a metal tube such as steel or aluminum may be used.

また、排出口8bの数や位置は成形型の形状や寸法、1型内で同時に成形する成形品の数量などによって異なるが、排出口もできるだけ少ないことが好ましい。また、排出口8bは、型内に残留する気体が抜けやすいように注入口8aよりも気体が浮動し易い方向である高い位置に設置されることが好ましい。   Further, the number and positions of the discharge ports 8b vary depending on the shape and size of the molding die, the number of molded products that are simultaneously molded in the mold, and the like, but it is preferable that the number of discharge ports be as small as possible. Moreover, it is preferable that the discharge port 8b is installed at a high position in a direction in which the gas is more likely to float than the injection port 8a so that the gas remaining in the mold can easily escape.

排出路14の材料は、樹脂注入流路13と同様に十分な流量の確保と樹脂との適合性(温度や耐溶剤性、耐圧)を考慮する必要がある。排出路14としてはスチール、アルミ等の金属管、あるいはポリエチレン、ナイロン、”テフロン(登録商標)”等のプラスチック製のチューブが挙げられるが、直径5〜10mm、厚み1〜2mmの”テフロン(登録商標)”製チューブが作業性の面からより好適である。   As for the material of the discharge passage 14, it is necessary to take into consideration the securing of a sufficient flow rate and compatibility with the resin (temperature, solvent resistance, pressure resistance) in the same manner as the resin injection passage 13. The discharge path 14 may be a metal tube such as steel or aluminum, or a plastic tube such as polyethylene, nylon, or “Teflon (registered trademark)”, but “Teflon (registered) having a diameter of 5 to 10 mm and a thickness of 1 to 2 mm. (Trademark) "tube is more preferable from the viewpoint of workability.

樹脂注入時の樹脂注入流路13、排出路14の途中に設置する注入バルブ22aや排出バルブ22bは、バイスグリップ等により、直接作業者により流路を挟むことで全域開閉や口径を変化させることができる。例えば図5に示すように、上型16と下型17からなる成形型の上型16側へと接続された樹脂注入流路13、排出路14の途中に、バイスグリップ21を設けることができる。   The injection valve 22a and the discharge valve 22b installed in the middle of the resin injection flow path 13 and the discharge path 14 at the time of resin injection can be opened / closed and the diameter of the entire area can be changed by directly sandwiching the flow path by an operator with a vise grip or the like. Can do. For example, as shown in FIG. 5, a vise grip 21 can be provided in the middle of the resin injection passage 13 and the discharge passage 14 connected to the upper die 16 side of the molding die composed of the upper die 16 and the lower die 17. .

樹脂の加圧は、シリンジポンプなどによる加圧方法によれば定量性も得られる。樹脂の注入圧Piは0.1〜1.0MPaの範囲で用いるのが好ましい。ここで樹脂の注入圧Piとは、加圧装置23により加圧される最大圧力を指し、図4の注入圧力計31で表示させる圧力を表す。最終的に樹脂が型内の基材に完全に含浸され排出路14まで到達したら排出路14を閉じ、その後暫くしてから注入用流路13も閉じて樹脂注入を終了する。成形型2は、例えば温調機25、26によって加温されており、これにより樹脂を硬化させる。なお、型内樹脂圧Pmとは、型内圧力計32の圧力を表す。   The pressurization of the resin can also provide quantitativeness by a pressurizing method using a syringe pump or the like. The resin injection pressure Pi is preferably in the range of 0.1 to 1.0 MPa. Here, the resin injection pressure Pi refers to the maximum pressure pressurized by the pressurizing device 23 and represents the pressure displayed by the injection pressure gauge 31 of FIG. When the resin is finally completely impregnated into the base material in the mold and reaches the discharge path 14, the discharge path 14 is closed, and after a while, the injection flow path 13 is also closed and the resin injection is finished. The mold 2 is heated by, for example, temperature controllers 25 and 26, thereby curing the resin. The in-mold resin pressure Pm represents the pressure of the in-mold pressure gauge 32.

従来の方法では、成形型形状に合わせた強化繊維基材を、あらかじめ配設して型を閉じて(このとき強化繊維基材の一部が型の間に挟まる)、次に、注入バルブ22aを閉鎖した状態で開口した排出バルブ22bに通じる排出路14から真空ポンプ7aで型内を真空吸引し、型内樹脂圧Pmを好ましくは0.01MPa以下の減圧状態にし、続いて注入バルブ22aを開口して注入用流路13から樹脂が型内に完全に充填されるまで加圧注入して成形していた。しかしながら、このような成形品では、強化繊維基材の一部が型の間に挟まるために、そのような部分は削除する必要がある。このため、特にバイクのカウルなどの薄い板状(0.5〜3mm程度の厚み)でかつ精度が要求される成形品では、NC制御の工作機械により所定の形状に仕上げる工程が要求されてきた。また、このような機械加工を避ける方法として強化繊維基材を成形形状より小さく作って、所定の成形形状からはみ出さない(強化繊維基材の一部が型の間に挟まらない)ようにすることが必要であるが、前述の如く強化繊維基材の充填されない端部が存在することにつながり、端部の性格上、ぶつける等の衝撃を受けやすく、強度が低くなった部分の”欠け”が問題となることが多い。   In the conventional method, a reinforcing fiber base matched to the shape of the mold is placed in advance and the mold is closed (at this time, part of the reinforcing fiber base is sandwiched between the molds), and then the injection valve 22a. The inside of the mold is vacuumed by the vacuum pump 7a from the discharge passage 14 leading to the discharge valve 22b opened in a closed state, and the resin pressure Pm in the mold is preferably reduced to 0.01 MPa or less, and then the injection valve 22a is turned on. Opening and molding was carried out by pressure injection from the injection flow path 13 until the resin was completely filled in the mold. However, in such a molded article, since a part of the reinforcing fiber base material is sandwiched between the molds, it is necessary to delete such a part. For this reason, in particular, in a thin plate shape (thickness of about 0.5 to 3 mm) such as a cowl of a motorcycle and a precision product is required, a process of finishing to a predetermined shape by an NC-controlled machine tool has been required. . Also, as a method to avoid such machining, make the reinforcing fiber base smaller than the molded shape so that it does not protrude from the predetermined molded shape (a part of the reinforcing fiber base is not sandwiched between the molds). However, as described above, there is an end portion that is not filled with the reinforcing fiber base material. Due to the nature of the end portion, the end portion is susceptible to impacts such as bumping, and the portion where the strength has been reduced is missing. "Is often a problem.

そこで本発明では、型による成形形状より若干小さく(要求性能や成形形状のサイズにより異なるが、おおよそ型形状の幅が100mm以内では幅の10〜20%、幅が100mm以上では5〜15%、幅が1000mm以上では2〜10%小さい)、寸法精度も従来より許容範囲が広く設定できる、複数の織物基材を重ねた主強化繊維基材を、賦形型により成形型に設置する前に準備しておく。   Therefore, in the present invention, it is slightly smaller than the molding shape by the mold (varies depending on the required performance and the size of the molding shape, but approximately 10 to 20% of the width when the width of the mold shape is within 100 mm, 5 to 15% when the width is 100 mm or more, Before the installation of the main reinforcing fiber base material on which a plurality of textile base materials are piled up on a forming die by a shaping die, the width can be set to be wider by 2 to 10% when the width is 1000 mm or more. Prepare.

次に、事前に準備した主繊維強化基材を成形型に配置し、成形形状より小さい部分を補うために、短繊維と熱可塑樹脂を吹き付けて副強化繊維基材を構成する。このとき、型の稜線近傍には、短繊維や熱可塑樹脂が余計な部分に付着しないように隔壁を設けることが望ましい。例えば図6に示すように、下型17内に配置された強化繊維基材40の周囲に、強化繊維糸41を短くカットして熱可塑性樹脂の粒子42とともに噴出する充填装置43を用い、余分な部分に付着しないように隔壁44を設けて、成形形状より小さい部分に対し短繊維で構成される副強化繊維基材を熱可塑性樹脂で接着一体化するようにすることができる。なお、接着樹脂成分は熱可塑性樹脂に限らず、一体成形出来て成形後の物性への影響が少なければ何でもよい。   Next, the main fiber reinforced base material prepared in advance is placed in a mold, and in order to make up for a portion smaller than the molded shape, a short fiber and a thermoplastic resin are sprayed to form a sub-reinforced fiber base material. At this time, it is desirable to provide a partition wall in the vicinity of the ridge line of the mold so that the short fiber and the thermoplastic resin do not adhere to an excessive portion. For example, as shown in FIG. 6, an extra filling device 43 is used around the reinforcing fiber base 40 disposed in the lower mold 17 to cut the reinforcing fiber yarns 41 shortly and eject them together with the thermoplastic resin particles 42. A partition wall 44 may be provided so as not to adhere to such a portion, and the sub-reinforcing fiber substrate composed of short fibers can be bonded and integrated with a thermoplastic resin to a portion smaller than the molded shape. The adhesive resin component is not limited to a thermoplastic resin, and may be anything as long as it can be integrally molded and has little influence on physical properties after molding.

短繊維の量は、目的により異なるが、主強化繊維基材の繊維体積含有率Vfと同等あるいはそれより10〜20%低くても、強度を得るための基材ではないので問題ない。ただし、短繊維の噴霧が手動である場合は、Vfのばらつきには厳重な注意が必要である。この危険を回避する手段として、ロボットなどの所定動作を確実に実施できる設備を用いることも好適である。   The amount of short fibers varies depending on the purpose, but even if it is equal to or lower by 10 to 20% than the fiber volume content Vf of the main reinforcing fiber substrate, there is no problem because it is not a substrate for obtaining strength. However, when spraying the short fibers is manual, strict caution is required for variations in Vf. As a means for avoiding this danger, it is also preferable to use equipment such as a robot that can reliably perform a predetermined operation.

なお、本工程は、成形型のみならず、賦形型により実施し、短繊維で構成した副強化繊維基材を熱可塑樹脂により主強化繊維基材に接着一体化してから成形型に設置しても問題ない。   This process is performed not only with the mold, but also with the shaping mold, and the auxiliary reinforcing fiber base composed of short fibers is bonded and integrated with the main reinforcing fiber base with the thermoplastic resin, and then installed in the mold. There is no problem.

また、上記本発明に係る方法は、成形品の端部に限られるものではなく、たとえば急激に細くなる部材や 急激に肉厚が増加する部分、織物シートがスムーズに賦形できず、強化繊維基材が充填されにくい角部のR形状や切り込みが必要以上に多くなる三次元曲面の補強等、織物のシートだけでは均一な繊維体積含有率Vfが得られない場所には、同じような方法で対応することが可能である。   In addition, the method according to the present invention is not limited to the end portion of the molded product, for example, a member that becomes sharply thinned, a portion that suddenly increases in thickness, or a woven fabric sheet cannot be shaped smoothly, and the reinforcing fiber The same method is used in places where a uniform fiber volume content Vf cannot be obtained only with a woven fabric sheet, such as a rounded corner R shape that is difficult to be filled with a base material, or reinforcement of a three-dimensional curved surface that requires more cutting than necessary. It is possible to cope with.

上記のような本発明に係る方法により、例えば図7、図8に示すような、FRP構造体としてのバイクのカウルを製造できる。図示例では、カウル51の成形形状よりも小さい積層織物シートからなる主強化繊維基材52の周囲に短繊維と熱可塑樹脂で構成した副強化繊維基材53を接着一体化し、それらにマトリックス樹脂を注入、含浸させてFRP部54とFRP部55が一体成形されたFRP製のカウル51が製造されている。外形形状の隅々まで強化繊維が配置されたFRP構造体となるので、全体にわたって優れた強度、剛性を発現でき、欠けなどのおそれを除去することが可能になる。   By the method according to the present invention as described above, for example, a cowl of a motorcycle as an FRP structure as shown in FIGS. 7 and 8 can be manufactured. In the illustrated example, a secondary reinforcing fiber base 53 composed of short fibers and a thermoplastic resin is bonded and integrated around a main reinforcing fiber base 52 made of a laminated woven sheet smaller than the molding shape of the cowl 51, and a matrix resin is bonded to them. The FRP cowl 51 in which the FRP part 54 and the FRP part 55 are integrally formed is manufactured by injecting and impregnating the same. Since the FRP structure in which the reinforcing fibers are arranged to every corner of the outer shape, excellent strength and rigidity can be exhibited throughout, and the possibility of chipping and the like can be removed.

図4に示した装置および図6に示した手法を用いて、FRP構造体として図7、図8に示したバイクのカウルを以下のように成形した結果、全体にわたって優れた強度、剛性を発現でき、欠けなどのおそれのない成形品を得ることができた。   Using the apparatus shown in FIG. 4 and the method shown in FIG. 6, the bike cowl shown in FIGS. 7 and 8 was molded as an FRP structure as follows, and as a result, excellent strength and rigidity were exhibited throughout. And a molded product with no fear of chipping could be obtained.

下金型には、織物4枚(CO6343B:T300−3K、組織:平織、目付:200g/m2 、東レ(株)製)からなる強化繊維基材を重ねて賦形型によりあらかじめ型形状に倣わせる。型形状に倣わせるために、強化繊維基材に熱可塑性の粘着材を付与しておき、型形状に倣わせた状態で加熱して複数枚の強化繊維基材を一体化する。このことにより賦形された形状での維持が可能となる。上型と下型は、ともに温調機8によって100℃に一定に加温されている。 The lower mold is preliminarily formed into a mold shape with a shaping mold by superposing reinforcing fiber bases made of four fabrics (CO6343B: T300-3K, organization: plain weave, basis weight: 200 g / m 2 , manufactured by Toray Industries, Inc.). Imitate. In order to follow the shape of the mold, a thermoplastic pressure-sensitive adhesive material is applied to the reinforcing fiber base and heated in a state following the shape of the mold to integrate a plurality of reinforcing fiber bases. This makes it possible to maintain the shaped shape. The upper mold and the lower mold are both heated to 100 ° C. by the temperature controller 8.

事前に賦形された主強化繊維基材を下型に配置する。同時に、図6に示したように型の稜線に隔壁を配置する。次に、強化繊維(炭素繊維ロービング)を5〜50mm程度に切断して成形形状でかつ強化繊維基材の無い部分に噴霧する。切断した強化繊維にあわせて熱可塑性の樹脂粉末を噴霧する。切断した強化繊維は、主強化繊維基材の繊維体積含有率Vfが50%設計のため、成形後のVfがおおよそ40%になるような割合で噴霧した。熱可塑性樹脂は、上記Vfの繊維量に対して重量比1%になるように噴霧した。実施例ではそれぞれを手作業にて行ったため、部分的なばらつきが大きいが、ロボットアームなどにより一定の動作を実行するよう機械化も可能である。なお、切断した強化繊維は、織物で構成される主強化繊維基材に、熱可塑樹脂にて密着して一体化するように重なりがあることが望ましい。主強化繊維基材と切断した繊維との間に隙間が発生すると、局部的な強度低下のため応力集中などの問題が発生する。   A pre-shaped main reinforcing fiber substrate is placed in the lower mold. At the same time, as shown in FIG. Next, the reinforcing fiber (carbon fiber roving) is cut to about 5 to 50 mm and sprayed on a portion having a molded shape and no reinforcing fiber substrate. A thermoplastic resin powder is sprayed in accordance with the cut reinforcing fibers. The cut reinforcing fibers were sprayed at such a ratio that the Vf after molding was approximately 40% because the fiber volume content Vf of the main reinforcing fiber base was 50%. The thermoplastic resin was sprayed at a weight ratio of 1% with respect to the Vf fiber content. In the embodiment, since each is performed manually, there is a large partial variation, but it is possible to mechanize the robot arm so as to execute a certain operation. In addition, it is desirable that the cut reinforcing fibers have an overlap so that the main reinforcing fiber base made of a woven fabric is closely adhered and integrated with a thermoplastic resin. When a gap is generated between the main reinforcing fiber base and the cut fiber, problems such as stress concentration occur due to local strength reduction.

このように主強化繊維基材と副強化繊維基材の準備ができた後、隔壁を取り上型を降下して下型と密着させる。このとき、短繊維は上型と下型の成形形状空間に収まる。なお成形型を用いずに、成形型とおおよそ同一形状の賦形型を用いて、事前に主強化繊維基材と副強化繊維基材を加熱して接着して一体化しておき、成形型に設置してもよい。   After the main reinforcing fiber base and the auxiliary reinforcing fiber base are thus prepared, the partition is taken out and the upper die is lowered to adhere to the lower die. At this time, the short fiber fits in the molding shape space of the upper mold and the lower mold. Instead of using a mold, use a shaping mold with roughly the same shape as the mold, and heat and bond the main reinforcing fiber base and the sub-reinforcing fiber base in advance to integrate them. May be installed.

そして、図4における注入口8aには樹脂注入用流路13を接続し、排出口8bには排出路14を接続する。注入用流路13、排出路14ともに直径12mm、厚さ2mmの”テフロン(登録商標)”製チューブを使用した。排出路14には樹脂が真空ポンプ7aまで流入するのを防ぐため、途中に樹脂トラップ15を設けた。型内の密閉を保つため、シール材20を型の外周に配置した。上型16を閉じることで、型の内部が樹脂注入用流路13と排出路14以外に連通していないことが理想的である。しかし、実質的には完全な密閉は困難であり、たとえば、樹脂注入路13に配置される注入バルブ22aを閉じ排出バルブ22bを開した状態で真空圧力計(図示略)の圧力をモニターし、ここでは真空ポンプ7a停止後10秒間0.01MPaを保持できた状態であれば成形上問題ないとして密閉の状態を確認することとした。   Then, a resin injection flow path 13 is connected to the injection port 8a in FIG. 4, and a discharge path 14 is connected to the discharge port 8b. A tube made of “Teflon (registered trademark)” having a diameter of 12 mm and a thickness of 2 mm was used for both the injection channel 13 and the discharge channel 14. In order to prevent the resin from flowing into the discharge path 14 to the vacuum pump 7a, a resin trap 15 is provided on the way. In order to keep the inside of the mold sealed, the sealing material 20 was arranged on the outer periphery of the mold. Ideally, by closing the upper mold 16, the interior of the mold does not communicate with any place other than the resin injection flow path 13 and the discharge path 14. However, substantially complete sealing is difficult. For example, the pressure of a vacuum pressure gauge (not shown) is monitored with the injection valve 22a disposed in the resin injection path 13 closed and the discharge valve 22b opened. Here, it was decided to check the sealing state as long as 0.01 MPa was maintained for 10 seconds after the vacuum pump 7a was stopped, and there was no problem in molding.

排出口8bから真空ポンプ7aで排出し、型内圧力を0.01MPa以下となったことを該真空圧力計により確認した後、加圧装置23により樹脂の注入を開始する。加圧装置23は、シリンジポンプを用いており、樹脂注入時にはタンク側への樹脂の逆流を防ぐように構成されている。樹脂は主剤として”エピコート”828(油化シェルエポキシ社製、エポキシ樹脂)、硬化剤は東レ(株)でブレンドしたTR−C35H(イミダゾール誘導体)を混合して得た液状エポキシ樹脂を使用した。樹脂注入装置3では事前に主剤5、硬化剤6を攪拌しながら40℃に加温し、所定の粘度まで降下させ、かつ真空ポンプ24で脱泡を行った。   After discharging from the discharge port 8b with the vacuum pump 7a and confirming with the vacuum pressure gauge that the pressure inside the mold is 0.01 MPa or less, the pressurizing device 23 starts injecting resin. The pressurizing device 23 uses a syringe pump, and is configured to prevent the backflow of the resin to the tank side when the resin is injected. The resin used was “Epicoat” 828 (epoxy resin, manufactured by Yuka Shell Epoxy Co., Ltd.) as the main agent, and the liquid epoxy resin obtained by mixing TR-C35H (imidazole derivative) blended with Toray Industries, Inc. was used. In the resin injection device 3, the main agent 5 and the curing agent 6 were heated in advance to 40 ° C. while being stirred, lowered to a predetermined viscosity, and defoamed with the vacuum pump 24.

樹脂注入の初期は樹脂混合ユニット4内の空気、ホース内の空気が入るため型内には流さずに図示しない分岐路から廃棄した。加圧装置23は200g/ストロークに設定した。最初の樹脂を廃棄した後、注入用流路13に設置した注入圧力計31によって注入樹脂圧(今回:0.6MPa)を確認して注入バルブ22aを開け、型内に樹脂を注入する。注入開始時は、排出路14は開の状態とした。このとき型内圧力Pm<供給圧力Piにより樹脂が型内に容易に注入される。樹脂が型内に充満すると、排出路14を閉じて樹脂注入を1分続け、念のため注入樹脂圧Piと型内樹脂圧力Pmを同一にして上記手段によっても残った樹脂中のガスを押しつぶす。1分後に注入路13を閉じ樹脂注入を終了する。この状態で40分間放置し、硬化させた。   At the initial stage of resin injection, the air in the resin mixing unit 4 and the air in the hose entered and were discarded from a branch path (not shown) without flowing into the mold. The pressure device 23 was set to 200 g / stroke. After discarding the first resin, the injection pressure gauge 31 installed in the injection flow path 13 is used to confirm the injection resin pressure (currently 0.6 MPa), the injection valve 22a is opened, and the resin is injected into the mold. At the start of injection, the discharge passage 14 was opened. At this time, the resin is easily injected into the mold by the pressure in the mold Pm <the supply pressure Pi. When the resin fills the mold, the discharge passage 14 is closed and the resin injection is continued for 1 minute, and the gas in the resin remaining by the above means is crushed by making the injection resin pressure Pi and the mold resin pressure Pm the same just in case. . After 1 minute, the injection path 13 is closed and the resin injection is finished. In this state, it was allowed to stand for 40 minutes and cured.

本発明は、隅々まで強化繊維の配置が望まれるFRP構造体、特に端部の強度を維持することが要求されるFRP製薄板の製造に好適な方法である。また、本発明は、エポキシ樹脂を用いたRTM成形法に限らず、樹脂流動によるFRP成形法のすべてに適用できる。   The present invention is a method suitable for manufacturing an FRP structure in which reinforcement fibers are desired to be disposed at every corner, in particular, an FRP sheet that is required to maintain the strength of the end portion. The present invention is not limited to the RTM molding method using an epoxy resin, but can be applied to all FRP molding methods based on resin flow.

従来の成形品の斜視図である。It is a perspective view of the conventional molded product. 図1の成形品のA−A断面図である。It is AA sectional drawing of the molded article of FIG. 従来の別の成形品の断面図である。It is sectional drawing of another conventional molded article. 本発明の一実施態様に係るRTM成形システムの機器系統図である。It is an equipment distribution diagram of an RTM molding system concerning one embodiment of the present invention. 図4のシステムで採用可能な構造の部分斜視図である。FIG. 5 is a partial perspective view of a structure that can be employed in the system of FIG. 4. 本発明方法の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the method of this invention. 本発明方法による成形品の一例を示す斜視図である。It is a perspective view which shows an example of the molded article by this invention method. 図7の成形品のA−A断面図である。It is AA sectional drawing of the molded article of FIG.

符号の説明Explanation of symbols

1 金型昇降装置
2 成形型
3 樹脂注入装置
4 混合ユニット
5 主剤タンク
6 硬化剤タンク
7a 真空ポンプ
7b 加圧ポンプ
8a 注入口
8b 排出口
9 油圧ユニット
10 油圧ポンプ
11 油圧シリンダー
12 逆止弁
13 樹脂注入流路
14 排出路
15 樹脂トラップ
16 上型
17 下型
20 シール材
21 バイスグリップ
22a 注入バルブ
22b 排出バルブ
22c 制御装置
23 加圧装置
24 真空ポンプ
25、26 金型温調機
31 注入圧力計
32 型内圧力計
40 強化繊維基材
41 強化繊維糸
42 熱可塑性樹脂の粒子
43 充填装置
44 隔壁
51 FRP構造体としてのバイクのカウル
52 主強化繊維基材
53 副強化繊維基材
54、55 FRP部
DESCRIPTION OF SYMBOLS 1 Mold raising / lowering device 2 Mold 3 Resin injection device 4 Mixing unit 5 Main agent tank 6 Hardener tank 7a Vacuum pump 7b Pressure pump 8a Inlet 8b Outlet 9 Hydraulic unit 10 Hydraulic pump 11 Hydraulic cylinder 12 Check valve 13 Resin Injection passage 14 Discharge passage 15 Resin trap 16 Upper die 17 Lower die 20 Sealing material 21 Vise grip 22a Injection valve 22b Discharge valve 22c Control device 23 Pressurization device 24 Vacuum pump 25, 26 Mold temperature controller 31 Injection pressure gauge 32 In-mold pressure gauge 40 Reinforcing fiber base material 41 Reinforcing fiber yarn 42 Thermoplastic resin particles 43 Filling device 44 Partition 51 Bicycle cowl as FRP structure 52 Main reinforcing fiber base material 53 Sub-reinforcing fiber base material 54, 55 FRP part

Claims (1)

成形型内に強化繊維基材を配設し、樹脂を注入した後に硬化して成形するFRP構造体の製造方法において、前記強化繊維基材として、織物シートで構成される成形形状より小さい主強化繊維基材と、その周囲に配置された短繊維で構成される副強化繊維基材とを、接着一体化した強化繊維基材を用いることを特徴とする、FRP構造体の製造方法。   In the manufacturing method of an FRP structure in which a reinforcing fiber base material is disposed in a mold and cured after being injected with a resin, the main reinforcing material is smaller than the forming shape constituted by a woven sheet as the reinforcing fiber base material. A method for producing an FRP structure, comprising using a reinforcing fiber base material obtained by bonding and integrating a fiber base material and a sub-reinforcing fiber base material composed of short fibers arranged around the fiber base material.
JP2004041254A 2004-02-18 2004-02-18 Method for manufacturing FRP structure Expired - Fee Related JP4487239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041254A JP4487239B2 (en) 2004-02-18 2004-02-18 Method for manufacturing FRP structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041254A JP4487239B2 (en) 2004-02-18 2004-02-18 Method for manufacturing FRP structure

Publications (2)

Publication Number Publication Date
JP2005231112A JP2005231112A (en) 2005-09-02
JP4487239B2 true JP4487239B2 (en) 2010-06-23

Family

ID=35014558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041254A Expired - Fee Related JP4487239B2 (en) 2004-02-18 2004-02-18 Method for manufacturing FRP structure

Country Status (1)

Country Link
JP (1) JP4487239B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2591633A1 (en) * 2004-12-06 2006-06-15 Toray Industries, Inc. Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
JP5104674B2 (en) * 2008-09-03 2012-12-19 トヨタ自動車株式会社 Fiber reinforced material product and manufacturing method thereof
US9393745B2 (en) * 2012-05-15 2016-07-19 Hexcel Corporation Over-molding of load-bearing composite structures
JP2017007266A (en) * 2015-06-25 2017-01-12 学校法人日本大学 Pultrusion manufacturing equipment of fiber-reinforced polyamide composite material, and pultrusion manufacturing method
KR102361297B1 (en) * 2016-05-20 2022-02-10 주식회사 성우하이텍 Complex materials forming product and forming method of the same
FR3089843B1 (en) * 2018-12-14 2022-02-18 Centre Techn Ind Mecanique Process for producing a composite part and implementation installation

Also Published As

Publication number Publication date
JP2005231112A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
US8491988B2 (en) Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
KR101151966B1 (en) Rtm molding method and device
US7413694B2 (en) Double bag vacuum infusion process
EP1829661B1 (en) Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
US20060220273A1 (en) Process for compression moulding liquid resins with structural reinforcements
JP2005193587A (en) Resin transfer molding method
JP2009202440A (en) Demolding method and manufacturing process of fiber-reinforced plastic
JP4487239B2 (en) Method for manufacturing FRP structure
JP4292971B2 (en) FRP manufacturing method and manufacturing apparatus
JP2008272959A (en) Method for manufacturing fiber-reinforced resin
JP2006205546A (en) Demolding apparatus for rtm molding
JP4826176B2 (en) Reinforcing fiber preform and RTM molding method
JP2006095727A (en) Rtm molding machine and rtm molding method
CN111113954B (en) Preparation method of low-density heat-proof composite material revolving body part
JP4923546B2 (en) Method for producing fiber-reinforced resin molded body
KR101199412B1 (en) Manufacturing method of a flexible composite bogie frame of a bogie for a railway vehicle using Resin Transfer Moulding
JP2006159457A (en) Molding method of frp hollow structure
JP2006159420A (en) Manufacturing method of frp molded product
JP2006231848A (en) Fiber reinforced counter boring structure and its manufacturing method
JP2006036057A (en) Air spoiler for automobile
JP2007090810A (en) Method for manufacturing hollow frp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees